
39
Stratum Approaches to Temporal

DBMS Implementation
Kristian Torp, Christian S. Jensen, and

Richard T. Snodgrass

Previous approaches to implementing temporal DBMSs have assumed that a
temporal DBMS must be built from scratch, employing an integrated archi-
tecture and using new temporal implementation techniques such as temporal
indexes and join algorithms. However, this is a very large and time-consuming
task. This paper explores approaches to implementing a temporal DBMS as
a stratum on top of an existing non-temporal DBMS, rendering implementa-
tion more feasible by reusing much of the functionality of the underlying con-
ventional DBMS. More specifically, the paper introduces three stratum meta-
architectures, each with several specific architectures. Based on a new set of
evaluation criteria, advantages and disadvantages of the specific architectures
are identified. The paper also classifies all existing temporal DBMS implemen-
tations according to the specific architectures they employ. It is concluded that
a stratum architecture is the best short, medium, and perhaps even long-term,
approach to implementing a temporal DBMS.

Keywords: temporal databases, database systems architectures, database inter-
faces, legacy systems

1241



1242 IMPLEMENTATION TECHNIQUES

1 Introduction

Most database application manage temporal data [9, 16], such as time and date of
withdrawal of money from an ATM machine, closing values of stocks on the stock
exchange, or the periods over which employees are associated with projects.

Temporal data management is currently being (re-)implemented in each indi-
vidual application in an ad-hoc manner, with little support from the DBMS. Writing
temporal queries in SQL-92 can be very tedious, and it has been shown that a tempo-
ral SQL can significantly reduce the amount and difficult of code needed to express
temporal queries [18, Ch. 1]. Temporal data management applications could thus
benefit substantially from built-in support.

Temporal databases extend conventional databases by associating timestamps
with facts. Implementing a temporal database management system (temporal
DBMS) on top of a conventional DBMS has generally not been pursued because
it cannot take advantage of well-known temporal implementations techniques such
as temporal indexes (e.g., [12]), temporal storage structures (e.g., [1]), and tem-
poral join (e.g., [21]) and coalescing algorithms [5]. Further, it seems that there
has been an implicit assumption (e.g., in [17]) that the performance of temporal
DBMSs should be similar to that of conventional DBMSs, even when a temporal
DBMS manages multiple versions of data and a conventional DBMS manages only
one version. However, building a complete DBMS from bottom up is a very large
task that may only be accomplished by the major DBMS vendors.

With the general goal of providing built-in support for time-varying data with-
out having to construct a temporal DBMS from scratch, we explore in this paper
how a temporal DBMS can be implemented in a stratum on top of an existing,
conventional DBMS. The idea is to reuse the functionality of existing DBMS tech-
nology. The limitation of building on top of an existing DBMS is that it is not
possible to modify existing core DBMS functionality, e.g., the data manager, the
query processor component, and the transaction manager.

While the stratum approach may bring built-in temporal support in the DBMS
to application programmers, the approach also provides a means of experimenting
with new temporal database technologies. The approach makes it feasible for re-
search teams to implement and experiment with temporal query languages, and it
also allows some experimentation with parts of the back end of a database, e.g.,
query evaluation and special temporal operator implementations [5]. The experi-
ences gained from using the stratum approach can be helpful when realizing the
long-term goal of building temporal functionality directly into the DBMS.

We list eight criteria that a stratum should satisfy. Among others, the cri-
teria include these: no changes to the underlying DBMS, retention of all desired
properties of the DBMS, minimal impact on middleware. We then define three
meta-architectures to building a stratum, namely (a) imposing a stratum directly,



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1243

(b) using middleware as the stratum (e.g., ODBC [13]), and (c) using a prepro-
cessor. Each overall architecture captures several specific architectures, which are
discussed in turn. We classify existing systems according to their architecture, in-
cluding the temporal DBMSs listed in a recent survey [4]. The specific architectures
are evaluated against the eight criteria.

The paper concludes that a stratum approach makes it possible to implement
a temporal DBMS with reasonable resources. It will take years before an integrated
architecture will become available. In the meantime, a stratum approach can be
used. In addition, a stratum is not necessarily a unintelligent converter—new tem-
poral functionally can be implemented in a stratum.

The paper is organized as follows. Section 2 discusses the general idea of a
stratum and lists our evaluation criteria for stratum implementations of a temporal
DBMS. A total of 15 specific stratum architectures, partitioned into three meta ar-
chitectures, and their current use are explored in Sections 3 and 4, respectively. In
Section 5, we compare the specific architectures to the criteria. Related work is the
topic of Section 6, and Section 7 summarizes the paper.

2 The Stratum Approach

This section describes the general idea of a stratum approach, it considers how the
approach applies to temporal databases, and it lists our design criteria for a temporal
stratum.

2.1 The Stratum Architecture

The general idea of a stratum architecture is illustrated in Figure 1, where the down-
ward arrows denote a flow of queries, and the upward arrows denote a flow of data.
All boxes denote software components. The round boxes denote components that
we can alter, and the square boxes denote components we cannot alter, i.e., black-
boxes. There are three levels in the stratum approach. The application level consists
of the applications that access the DBMS. At the stratum level, the stratum is im-
plemented as an interface to the DBMS. Finally, at the representational level, we
have the DBMS where the data is actually stored.

In the stratum approach, the database applications are not directly connected
to the DBMS. All communication between the applications and the DBMS is inter-
posed by a stratum. There are two important potential advantages of using a stratum.
First, it is possible to provide applications with a different data model than what is
actually implemented by the DBMS. Second, a new data model implemented in a
stratum does not have to be supplied by the DBMS vendor.

When the stratum approach is applied to temporal databases, the idea is to
convert the conventional DBMS, which supports SQL-92, to a temporal DBMS,
which supports some temporal SQL. The applications send temporal queries to the



1244 IMPLEMENTATION TECHNIQUES

Application Application Application

DBMS

Stratum

Stratum Level

Representational Level

Application Level

Figure 1: The Stratum Approach

temporal DBMS. The queries are received by the stratum, are converted into SQL-
92 queries, which, in turn, are sent to the DBMS (in [6] it has been shown that all
temporal queries can be converted to equivalent SQL-92 queries).

The result from the DBMS is returned to the stratum, which may do some
processing of the data before is is passed to the applications. The purpose of the
stratum is to make the conventional DBMS look like a DBMS supporting a temporal
data model from the applications’ point of view, as done, e.g., in [2, 7, 22, 27].

We restrict our attention to considering only new applications that may ex-
ploit the built-in temporal support. We do not consider the (orthogonal) problem of
converting legacy applications with built in ad-hoc temporal support to applications
using the temporal support implemented in the stratum.

2.2 Design Criteria for the Stratum Approach

In evaluating a stratum-implemented temporal DBMS, we stress the set of eight
design criteria introduced next. The criteria are used in Section 5 to evaluate the
different stratum architectures.

No modifications to the underlying DBMS are requiredThe DBMS is used en-
tirely as a black-box by the stratum. From the DBMS’s point of view, the stratum
is an application. The stratum uses only the DBMS’s, or a middleware’s, call level
interface (CLI) and does not rely on the DBMS being extended with any temporal
functionality. Because the stratum encapsulates the DBMS entirely, it is the only
application that uses the DBMS directly. It is important that the stratum does not
require the DBMS to be modified because we do not have the source code for the
DBMS available.

Minimal impact on middleware The stratum may not use the DBMS’s native
CLI, but may instead use a generic API, e.g., ODBC [13]. We allow changes to
this middleware, which can be used in the implementation of the stratum (to be dis-
cussed in Section 3.2) because generic APIs are open standards with their source



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1245

code available. An example can be to change the middleware to initiate a temporal
SQL-to-SQL-92 conversion. The criterion on middleware is more flexible than the
criterion on the DBMS because we do not assume we have the specification or the
source code for the DBMS. Minimal impact on middleware is important to avoid
side effects on existing applications.

Independence of applications The stratum implementation should encapsulate
the DBMS for all applications. Applications implemented using the DBMS di-
rectly, e.g., via its native CLI, and applications using the DBMS indirectly, e.g., via
a library, should all see the data model exposed by the stratum. If applications do
not see the same data model, several versions of new applications must be imple-
mented, and existing applications may be affected by the addition of time attributes
to tables they use.

Maximum reuse of existing technology We want a thin stratum and therefore
want to reuse as much of the functionality of the underlying DBMS as possible. We
do not want to implement functionality already in the DBMS, e.g., the log and the
transaction managers. Only functionality not found in the DBMS should be imple-
mented in the stratum. The motivation for maximum reuse and a thin stratum is that
limited resources are available for implementing the stratum.

Gradual availability of temporal functionality Again, because we assume lim-
ited resources and because an early return on the resources invested in the devel-
opment of the temporal DBMS is desirable, it should be possible to make new
temporal functionality available in a stepwise fashion. This provides a foundation
for early availability of a working temporal DBMS with functionality that may in-
crease gradually. Gradual availability is important to be able to demonstrate and
evaluate temporal functionality.

Retention of desired properties of the underlying DBMSThe underlying DBMS
satisfies core database properties, e.g., the ACID properties of transactions. We
want to retain these properties in the stratum, so that applications are not adversely
affected by a stratum being interposed. The criterion ensures that the functionality
provided by the stratum is an extension of the functionality provided by the under-
lying DBMS. However, it also means that if the underlying DBMS does not ensure
a certain database property, the stratum will not support it either.

Adequate Performance We define adequate performance as follows. First, legacy
applications should have the same performance as before a stratum is interposed.
Performance is essential to the acceptance of temporal functionality. We cannot
require existing (legacy) applications to be rewritten because new applications are
built that use temporal support. Second, temporal queries on temporal databases
should be as fast as the corresponding SQL-92 queries on the corresponding “snap-
shot” databases with temporal data. Put differently, SQL-92 code, for temporal-data



1246 IMPLEMENTATION TECHNIQUES

access, generated by the stratum’s temporal SQL-to-SQL conversion should be as
fast as hand-optimized SQL-92 code for the same purpose. Otherwise, application
programmers may not want to use the automatic converter.

DBMS independence The stratum should be independent of the underlying DBMS.
This may be achieved by using standards, such as SQL-92. It is also desirable that
the techniques used in the implementation of the stratum be generic. As an exam-
ple, we want to avoid that the temporal SQL-to-SQL conversion uses recursive SQL
as found in IBM’s DB2, but not in most other DBMSs.

The criteria are somewhat conflicting. As examples, the “independence of
applications” criterion may conflict with the “adequate performance” criterion, and
the “maximum reuse of existing technology” criterion may conflict with the “DBMS
independence” criterion. The stratum implementor must consider these trade-offs.

Several observations are in order for a stratum that fulfills all the criteria.
First, no legacy application that now uses the stratum was affected when the stratum
was introduced (this assumes that the temporal SQL is upward compatible with
SQL-92). They work as before and have the same performance. However, legacy
applications not using the stratum will be affected if table they use are altered to
support time.

Second, it is not possible to encapsulate the DBMS from the DBA’s point of
view. The DBA must be aware that, e.g., tables have been extended with time at-
tributes to implement the built-in support for time offered by the stratum. Third, all
update statements on temporal tables must be performed via the stratum if integrity
constraints specified in the stratum are to be enforced. Alternatively, the stratum
must rely on the integrity constraint mechanisms of the DBMS to implement new
temporal constraints. Otherwise, it may be possible to update a temporal table to
an inconsistent state, by circumventing the stratum. Finally, to make it possible for
the stratum to do semantic checking of temporal SQL queries, all DDL statements
altering tables to support time dimensions must be executed via the stratum.

3 Stratum Implementation Approaches

The next step is to explore how a stratum may be implemented. The outset is the
general architecture from Figure 1. We assume that we have a set of applications
that use temporal SQL, but that we do not have a temporal DBMS. Therefore, we
simulate a temporal DBMS by using a conventional DBMS and interposing a stra-
tum between the applications and the conventional DBMS.

The stratum can be implemented in different positions, leading to the fol-
lowing three overall architectures, each of which is explored in more detail in the
sequel.



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1247

• Interposing a stratum directly between the applications and the conventional
DBMS.
• Interposing a stratum in middleware (e.g., ODBC) between the applications

and the conventional DBMS.
• Interposing a stratum using a preprocessor software component.

In the subsequent discussions of the three architectures, we will only consider
applications where an API is used to communicate with the DBMS. This is a general
approach to accessing a DBMS.

The discussions and figures use sample specific APIs, e.g., the DBMS-specific
APIs for the DB2, Oracle, and Sybase DBMSs. Different specific DBMSs are
used simply to make the discussion easier to follow, and we do not investigate the
differences between, e.g., between the DB2 and Sybase APIs—from our point of
view, they are simply representatives of DBMS-specific APIs. Similarly, we use
the ODBC API [13] simply as a representative of any generic API (because it is
the best documented such one). We could have used other generic APIs such as the
JDBC API [10] or the Perl DBI API [3].

3.1 Interposing a Stratum Directly

Interposing a stratum directly between the applications and the DBMS is illustrated
in Figure 2. As for Figure 1, upward and downward arrows denote the flow of
queries and data, respectively. The round boxes and the square boxes are software
components that we can and cannot alter, respectively. The dashed lines show the
input interface and the output interface of the stratum.

Sybase App.
Using Lib.

Application
Using ODBC Using API

Oracle App.

API

Sybase

DBMS

API

Oracle

DBMS

DB2

DBMS

API

Driver
Sybase

Driver
DB2 Oracle

Driver

Driver Manager

API

Proprietary

Library

API

Translation
ODBC Oracle

API

Translation

Figure 2: Interposing a Stratum Directly

Before the stratum was interposed in Figure 2, the ODBC Translation and
Oracle Translation components did not exist. Further, the proprietary library was



1248 IMPLEMENTATION TECHNIQUES

not temporally enhanced. The applications were linked with the Proprietary Library,
the ODBC driver manager, or the Oracle API.

After the stratum is interposed, the API calls made by the applications are
intercepted (the ODBC and Oracle examples in Figure 2). The temporal-SQL code
in the call is translated to SQL-92 code, and the stratum calls a DBMS or the driver
manager at the representational level with this code.

When a stratum is interposed in a proprietary library, as shown in the Sybase
example, we will assume that no temporal-SQL code is passed as a parameter, but
that the library implements high-level functions specific to the database being man-
aged. For example, if an employee table is present, the library may implement a
functionCreate_Employee(<parameters>) that creates a new employee, specified
by theparameters, by inserting a tuple into the employee table in the underlying
DBMS. Note that in the proprietary-library approach, no SQL-92 code is passed as
a parameter. This is in contrast to the API approach, and it gives the two approaches
different properties.

To implement a stratum by interposing it directly, the stratum must support an
API (or library interface) that is a superset of the API (or library) the applications
used before the stratum was interposed. We next turn to discussing the examples in
Figure 2 in greater detail.

The Sybase application to the left in Figure 2 is an example of an application
that uses a proprietary library. Before the stratum was interposed, the Sybase ap-
plication used the proprietary library, which, in turn, used the Sybase DBMS. After
interposing the stratum in the library, we do not want to alter the possibly many ap-
plications that use this library. Instead we change the implementation of the library.
We retain, or strictly extend, the library’s interface to the applications. We have the
flexibility in the stratum to either make it use a DBMS-specific API or a generic
API. This flexibility is indicated in the figure by the arrows from the proprietary
library at the stratum level to the Sybase API and to the Driver Manager API at the
representational level.

In the middle of Figure 2, we have an example of an ODBC application which,
before the stratum was interposed, was linked to the ODBC driver manager. After
the stratum is interposed, the application is connected to a stratum ODBC driver
manager component. This component must comply fully with the ODBC API spec-
ification. When the ODBC application connects to a DBMS (now via the stratum),
the stratum converts the arguments passed, if necessary. Again, we have the flexi-
bility in the stratum to either map the input API calls to a generic API or a DBMS-
specific API.

The example to the right in Figure 2 shows an Oracle application that used
the Oracle-specific call-level interface before the stratum was interposed. After
the stratum is interposed the application uses the component at the stratum level
that complies with the Oracle call-level interface. The Oracle call-level interface



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1249

component in the stratum has the same functionality as the stratum ODBC driver
manager, converting temporal SQL to SQL-92 and forwarding the function calls.

Studying the input and output APIs of the stratum components, it can be seen
that the six combinations shown in Figure 3 exhaust the possibilities. Interposing
a stratum directly between the applications and the DBMSs or driver manager thus
yields a total of six specific architectures for implementing a stratum.

Input Interface Output Interface
Proprietary Library

Specific API
Generic API

 ×
{

Specific API
Generic API

}

Figure 3: Interposed Stratum Interfaces

3.2 Using Middleware as the Stratum

Next, we turn to the use of middleware for implementing a stratum. Again note
that we use ODBC as our prototypical middleware only because it is a mature and
well-documented interface. Other types of middleware such as JDBC and DBI are
based on ODBC and resemble it. The idea of using ODBC as the stratum is shown
in Figure 4. The dashed arrows inside the driver manager indicate different paths
that can be taken and are explained further shortly.

PowerBuilder
Using Lib.

PowerBuilder

Using ODBC Using ODBC
Oracle App.Sybase App.

Using ODBC

Temporal

Driver
ODBC

Temporal
Sybase
Driver Driver

DB2 Oracle
Driver

Sybase
Driver

Translate

Sybase

DBMS

API

DB2

DBMS

API

Oracle

DBMS

API

API

Library
Proprietary

Figure 4: Using ODBC as the Stratum



1250 IMPLEMENTATION TECHNIQUES

Both before and after the stratum is interposed in Figure 4, the applications
communicate with the ODBC driver manager.

The stratum can be implemented in two places using a generic API as ODBC.
First, the stratum can be implemented within the driver manager. This is indi-
cated with the component “Translate” in the figure. Second, the stratum can be
implemented entirely in an ODBC driver. This is indicated with the components
“Temporal Sybase Driver” and “Temporal ODBC Driver.”

When implementing the stratum within the driver manager, the driver man-
ager itself is extended by a component that translates temporal SQL to SQL-92.
When an application makes an ODBC call, the driver manager normally just for-
wards the call (assuming a connection has been established). With the extra tem-
poral SQL-to-SQL-92 translation component added, the driver manager checks
whether the arguments in the call contain temporal SQL that must be translated,
performs the translation if necessary, and then forwards the call and translated argu-
ments to the appropriate “plain” ODBC-driver. By “plain” we mean an off-the-shelf
ODBC driver. In Figure 4 the three ODBC drivers in the middle, i.e., the Sybase,
DB2, and Oracle drivers, are the “plain” ODBC-drivers. With this approach, the
paths taken within the driver manager are from the API through “Translate” to a
“plain” driver.

The other alternative when using ODBC is to implement the stratum entirely
in an ODBC-driver. The driver manager is then not altered. Instead, the translation
is done in “temporal” ODBC drivers. In Figure 4, we show two types of such a
“temporal” driver. To the left, there is a “Temporal Sybase Driver,” and to the right,
there is a “Temporal ODBC Driver.” We discuss each in turn.

Using a DBMS-specific “temporal” ODBC driver, as exemplified by the “Tem-
poral Sybase Driver,” when an application makes an ODBC call, the driver manager
performs the same actions as for a “plain” ODBC driver: it simply forwards the call
and arguments. In the “temporal” driver, temporal SQL is converted to SQL-92,
and the DBMS is queried.

When using a generic “temporal” ODBC driver (i.e., the “Temporal ODBC
Driver”), the driver manager forwards the call and the arguments to the driver. The
generic “temporal” driver converts temporal SQL to SQL-92. It does not forward
the call directly to a specific DBMS, but instead reconnects to the ODBC driver
manager. This second connection uses the “plain” driver for the appropriate specific
DBMS. The reconnection to the driver manager is possible because an ODBC driver
can function as an application.

The combinations of input and output from the stratum components using the
ODBC driver architecture as the stratum are shown in Figure 5. The architecture
provides a total of three specific stratum architectures: (1) A generic API/specific
API architecture obtained by implementing a DBMS specific “temporal” ODBC
driver; (2) a generic API/generic API architecture realized by implementing a generic



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1251

“temporal” ODBC driver; and (3) a generic API/specific API achieved by adding a
translation component to the driver manager. Note that the first and third architec-
tures, while different, have identical input and output interface.

Input Interface Output Interface{
Generic API

} ×
{

Specific API
Generic API

}
Figure 5: ODBC Stratum Interfaces

3.3 Preprocessing

The third overall architecture for implementing a stratum is to use a preprocessor.
The idea is shown in Figure 6, where the dashed arrows show the flow of program
code. A stratum implemented in a preprocessor does the conversion at compile
time, as opposed to the two overall architectures discussed previously, where the
stratum does the conversion at runtime. The preprocessor architecture is therefore
only possible for applications that do not generate temporal SQL code at runtime,
e.g., it cannot be used for applications handling ad-hoc queries against a tempo-
ral DBMS. The preprocessor idea is widely used to embed SQL code into a host
language such as C or COBOL.

There is no difference between the architectures before and after the prepro-
cessor stratum is interposed. The source code of the “temporal” applications is con-
verted using a preprocessor, being compiled into an executable. The only difference
is that the preprocessors are extended. First, a preprocessor converts temporal-SQL
code to SQL-92 code. Next, the SQL-92 code is run through the preprocessor sup-
plied by the DBMS vendor. We do not show the DBMS vendors’ preprocessors
in Figure 6; rather, the two preprocessing steps are both done in the preprocessor
components at the stratum level.

As an example consider the Sybase application using the Sybase API. Before
the temporally-enhanced application code is used, it is run through the “temporal”
Sybase preprocessor at the stratum level. This converts the temporal SQL in queries
to SQL-92 and may convert the API used to being either the Sybase-specific API or
the generic ODBC API.

The different type of input and output from the stratum components are the
same as for interposing a stratum directly as shown in Figure 3, leaving six specific
architectures for building a temporal DBMS in a preprocessor.



1252 IMPLEMENTATION TECHNIQUES

Preprocessor
Sybase

Preprocessor
ODBC

Preprocessor
Oracle

Using API
Sybase App. PowerBuilder

Using ODBC Using API
Oracle App

Application
Using ODBC Using API

Oracle App
Using API

Sybase App.

API

Sybase

DBMS

API

DB2

DBMS

API

Oracle

DBMS

Oracle
DriverDriver

DB2Sybase
Driver

Driver Manager

API

PowerBuilder

Using ODBC

Application

Using API

Figure 6: The Preprocessor Architecture

4 Applications of the Different Architectures

In this section we discuss the utility of the different stratum architectures and, when
possible, provide concrete examples of their use. Specifically, we have tried to cat-
egorize all the existing temporal DBMS implementations found in a recent survey
[4] that use the stratum approach. Where we have not been able to find an example
relating to temporal DBMS implementation, we discuss non-temporal examples.

4.1 Interposing a Stratum Directly

As shown in Figure 3, there are six combinations of input and output from the
stratum components. The resulting six different architectures will be discussed in
turn.

The proprietary library/specific APIarchitecture can be used if a site has a
large number of applications using a single DBMS and wants to change the under-
lying DBMS to a temporal DBMS. The applications are targeted towards a specific
DBMS that is considered a strategic component. There is no reason for porting the
library to support different DBMSs.

The advantage of using a single DBMS is that it is possible to use all the
features of the DBMS. It may have “that one essential feature,” providing the reason



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1253

why this specific DBMS is used. The feature can be a hardware feature, e.g., the
DBMS runs on an IBM mainframe, or a software feature, e.g., it supports data
blades.

We assume this architecture can be used, e.g, for companies that are exten-
sively using one DBMS in their applications, e.g., banks and insurance and tele-
phone companies. The DBMS may be a part of a high-performance mission-critical
transaction processing system. This architecture has been used by the Swiss Re-
gional Banks to implement a bitemporal DBMS library on top of Oracle 7.3 [2].

Theproprietary library/generic APIarchitecture can be used if a company has
an existing library targeted towards a specific DBMS which is used by a large set
of applications. However, the company now wants to add temporal support to the
DBMS. Further, the company gradually wants to move from a closed environment
to an open one. Instead of changing all the applications, the proprietary library is
reimplemented to support the mapping from temporal SQL to SQL-92. To make
the library open, the reimplementation makes connections to DBMSs via a generic
API, e.g., ODBC instead of via a DBMS-specific API.

The Perl 5 ODBC module [14] is an example of this architecture. The module
makes it possible to access the C-language ODBC API from Perl programs. Note
that the Perl ODBC module is an example of a library that is schema independent.
The module is not built to support a specific set of applications, but targets a generic
API, making it applicable to any database. In contrast, the Swiss bank proprietary
library/specific API example mentioned above is a database-specific, or schema-
dependent, library where the library implementor is aware of the underlying schema
of the DBMS targeted.

The specific API/specific APIarchitecture can be used where a large set of
applications use only one DBMS. The architecture is more general than using the
proprietary library/specific API architecture because the specific API/specific API
architecture is schema independent. The architecture converts the DBMS-specific
API calls, and not only the calls to the proprietary library. It is likely to be used
for the same reasons as the proprietary library/specific API architecture: a specific
DBMS is a strategic product, and all the features of the specific DBMS can be uti-
lized in the mapping, possibly leading to better performance. The architecture is
also useful for custom-built applications where the DBMS to be used is known at
design time, and where this DBMS is used throughout the lifetime of the applica-
tions.

The architecture can be used by the major DBMS vendors to extend their
database products with temporal support. Different research prototypes have added
temporal support to existing DBMSs by using this architecture, e.g., Chronolog,
HDBMS, TimeDB, and T-Square DBMS [4]. These are all examples of temporal
extensions of a specific conventional DBMS. The prototypes are not implemented
as an API conversion. Instead, they convert a temporal SQL dialect to SQL-92



1254 IMPLEMENTATION TECHNIQUES

(in fact, to vendor-specific SQL-92 dialects) and then query the SQL–92 database.
However, they all adopt the the overall idea of the specific API/specific API archi-
tecture.

Thespecific API/generic APIarchitecture can be used if the source code from
an application generator tool contains DBMS-specific API-calls and the user prefers
the application to access another DBMS, e.g., via ODBC.

The generic API/specific APIarchitecture can be used if a set of ODBC ap-
plications have a performance problem and the applications are only connected to
one specific DBMS. By interposing a stratum that connects directly to the DBMS
instead of using the ODBC driver manager, it may be possible to enhance the per-
formance of the applications by moving temporal functionality from the stratum
into the DBMS, e.g., as stored procedures.

Thegeneric API/generic APIarchitecture can be used where a set of ODBC-
enabled applications are connected to several DBMSs, each of which is updated
to support temporal data. When the temporal SQL-to-SQL-92 conversion occurs
before the driver manager, all DBMSs previously accessed can still be accessed
without building a converter for each specific DBMS.

4.2 Using Middleware as a Stratum

For this type of architecture, the combinations of input and output to the stratum
level are shown in Figure 5.

Thegeneric API/specific APIarchitecture is the normal way of using ODBC.
A set of applications are using a DBMS which is enhanced to support temporal data
management. To enable the existing applications to use the enhanced DBMS, all
the conversion from temporal SQL to SQL-92 is done in the DBMS-specific driver.

An example is the NNODBC driver [11], which allows users to query an
NNTP news server with a subset of SQL-92 via ODBC. The NNODBC driver en-
capsulates the news server with a relational interface, i.e., makes it look like a table
from the driver manager’s point of view. Another similar example is the flat-file
ODBC driver [13] that allows users to query ASCII files via SQL.

Thegeneric API/generic APIarchitecture is useful when applications are con-
nected to different DBMSs via a generic API, but there are no DBMS-specific
drivers available for the DBMS to be used. However, there is a “temporal” driver,
which bridges to a generic API for which a DBMS-specific driver exists.

An example of this architecture is the JDBC-ODBC bridge [10], which allows
Java applications, using the generic JDBC API, to access databases via ODBC. As
a difference from the example shown in Figure 4, not one but two different driver
managers are used. The applications using the JDBC-ODBC bridge connect to the
JDBC driver manager. The JDBC-ODBC driver then connects to the ODBC driver
manager, which establishes a connection to a specific DBMS.



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1255

The extended driver managerarchitecture is an alternative to the generic
API/generic API architecture. Extending the driver manager has the advantage that
only a single software components has to altered to provide temporal support in
multiple underlying DBMSs.

4.3 Preprocessor Stratum

The preprocessor approach is a simple one that is currently in wide use for permit-
ting the embedding of SQL code in host language code, e.g., C/C++, Pascal, and
COBOL code. Such host language code is run through a preprocessor before being
compiled. The preprocessor converts the embedded SQL code into, e.g., function
calls using a DBMS-specific API. The converted source code is then compiled. In
the stratum approach, this scenario must be extended with a temporal SQL-to-SQL-
92 conversion.

The combinations of input and output to the stratum level are shown in Fig-
ure 3. The main difference between interposing a stratum directly and using a
preprocessor architecture is that the former does the conversion of temporal SQL
to SQL (and possiblely between APIs) at runtime, whereas the latter does the con-
version at compile time. For this reason, we omit the discussion of all six specific
architectures and instead refer the reader to Section 4.1. However, we have the
following comments on two of the specific architectures.

Thespecific API/specific APIpreprocessor architecture is highly relevant for
DBMS vendors. As already mentioned, preprocessors are widely used; and a tem-
poral preprocessor does not necessitate any changes to the underlying DBMS. How-
ever, it does require the DBMS vendor to define a temporal SQL. Thespecific
API/generic APIand thegeneric API/generic APIarchitectures are of relevance
to independent software houses that support more than one DBMS and are inter-
ested in a single product that is relevant to as many customers as possible. Again, a
prerequisite is the specification of a temporal SQL.

5 Comparison of the Architectures

The following three subsections compare the 15 specific stratum architectures iden-
tified in Section 3 against the criteria introduced in Section 2.2. We use the follow-
ing notation for evaluating the architectures. A table field is empty if a criterion is
not fulfilled. A check-mark (

√
) indicates that a criterion is fulfilled, and a check-

mark-plus (
√+) indicates that a criterion is fulfilled to a higher degree than required.

We use NA if a criterion is not applicable to the specific architecture.



1256 IMPLEMENTATION TECHNIQUES

5.1 Interposing a Stratum Directly

The six specific architectures for interposing a stratum directly are compared in
Table 1. The criteria are listed as rows in the table in the order they were discussed
in Section 2.2.

Input Interface Prop. Lib. Specific Generic

Output Interface Spec. Gen. Spec. Gen. Spec. Gen.

No DBMS Mods.
√ √ √ √ √ √

Minimal Impact NA
√+ NA

√+ NA
√+

Indep. of Apps.
√ √ √ √

Reuse of Tech.
√ √ √+ √+ √+ √+

Gradual Avail.
√+ √+ √ √ √ √

Retention Props.
√ √ √ √ √ √

Adequate Perf.
√+ √ √+ √ √+ √

Indep. of DBMS
√ √ √+

Table 1: Interposed Architectures

None of the architectures require modifications to the underlying DBMS. The
stratum is an application that uses the DBMS; specifically, the stratum uses the pub-
lic interface to a specific DBMS or a generic API. To implement the architectures
that use a generic API as either the input or output interface, no modifications are
required to the middleware. Because “no modifications” is the absolute minimum
impact on the middleware, we give these architectures a check-mark-plus.

The two architectures that use a proprietary library as their input interface are
not independent of applications. The applications have to call the proprietary li-
brary to use the new temporal functionality. Even if some some applications use
the library, this does not rule out that other applications access the DBMS directly.
And as mentioned in Section 2.2, exposing different data models to same database
may cause problems. The remaining four architectures are independent of the ap-
plications because all calls to the input interface (an API) are interposed.

With respect to reuse of existing technology, all architectures are in compli-
ance. However, the two architectures using a proprietary library as input interface
require the library to be reimplemented. For this reason, we find that the architec-
tures that use an API as input interface may reuse existing technology better. On
the other hand, using a proprietary library as input interface may provide the best
possible way of ensuring gradual availability of temporal functionality. Temporal
functionality can be provided on a per-table basis. As time dimensions are added
to tables, all the functions using tables must be updated. Using an API as the in-
put interface requires more coding before application programmers can start using
the temporal functionality, because these architectures are more general than the
proprietary library architectures.



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1257

We assume that the architectures where the output interface is a specific API
can achieve better performance than the architectures where the output interface is
a generic API. The justification is that the former can be tuned to a specific DBMS,
e.g., rely on stored procedures. The cost of better performance is that they become
dependent on the DBMS, as shown in the last row in Table 1.

5.2 Using Middleware as a Stratum

The three specific architectures that use middleware as the stratum are compared in
Table 2. The leftmost generic API/specific API architecture is the DBMS-specific
“temporal” driver architecture. The rightmost generic API/specific API architecture
is the architecture that alters the driver manager.

Input Interface Generic
Output Interface Spec. Gen. Spec.

No DBMS Mods.
√ √ √

Minimal Impact
√+ √+ √

Indep. of Apps.
√ √ √

Reuse of Tech.
√+ √+ √

Gradual Avail.
√ √ √

Retention Props.
√ √ √

Adequate Perf.
√+ √ √

Indep. of DBMS
√+ √

Table 2: Middleware Architectures

As can been seen from Table 2, all architectures are DBMS independent—
they only rely on additions to the middleware. Regarding their impact on the mid-
dleware, the two “temporal” driver approaches require no changes to the driver
manager. The drivers are added to the driver manager as “plain” drivers. Altering
the driver manager requires addition of software components to the middleware.
The changes are likely to be isolated and do not require reimplementing the entire
driver manager. Having to change the middleware, we find that this is a minimal
impact.

All the architectures are independent of applications (the input interface is a
generic API), can provide temporal functionality gradually, and retain the desired
properties of the underlying DBMS. Regarding performance, the first architecture
can be tuned to a specific DBMS. Again, the better performance is at the cost of
DBMS independence. The tuning is not possible for the third architecture, even
though it also uses a specific API as output interface. The DBMSs are accessed via
“plain” ODBC drivers, which cannot be altered. However, the architecture becomes
independent of the DBMS because multiple specific APIs can be used.



1258 IMPLEMENTATION TECHNIQUES

5.3 Preprocessor Stratum

The six specific architectures for the overall preprocessor architecture are compared
in Table 3.

Input Interface Prop. Lib. Specific Generic

Output Interface Spec. Gen. Spec. Gen. Spec. Gen.

No DBMS Mods.
√ √ √ √ √ √

Minimal Impact NA
√+ NA

√+ NA
√+

Indep. of Apps.
√ √ √ √

Reuse of Tech.
√+ √+ √+ √+ √+ √+

Gradual Avail.
√+ √+ √ √ √ √

Retention Props.
√ √ √ √ √ √

Adequate Perf.
√+ √ √+ √ √+ √

Indep. of DBMS
√ √ √+

Table 3: Preprocessor Architectures

With respect to modifications to the DBMS, impact on middleware, and inde-
pendence of applications, the preprocessor architectures are similar to their equiv-
alent architectures (based on input and output interface) for imposing a stratum
directly, as discussed in Section 5.1.

All the preprocessor architectures are very good for reusing existing technol-
ogy. The preprocessor approach is widely used, so we assume DBMS vendors and
software houses have experience with implementing preprocessors in general. Fur-
ther, the preprocessor architectures make the coupling between the stratum and the
DBMSs lower because there is no run-time interaction between the stratum and the
DBMSs. The strata (preprocessors) are only used at compile-time, not at run-time.
We also assume that because of their widespread use, many applications program-
mers are familiar with the concept of a DBMS preprocessor.

Regarding performance, we have rated the preprocessor architectures simi-
lar to the performance of the architectures when the stratum is interposed directly.
However, we believe that the performance of the preprocessor architectures will be
better because queries are optimized at compile time instead of at runtime. As be-
fore, we assume that performance and DBMS independence are inversely related
for the architectures.

6 Related Work

The use of strata, or layers, is a general software design technique useful for de-
creasing the complexity of systems. The use of a layer can be found in several
design patterns. TheFacadedesign pattern [8] can be used to provide a high-level
interface to subsystems. The Facade pattern is useful for layering the system and



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1259

can do work on its own, e.g., if the interface to the subsystems does not apply di-
rectly to the interface provided by the Facade. In the context of this paper, the
Facade would then be the stratum and a specific DBMS would be a subsystem.
Other types of layers, also called wrappers, can be found in theDecoratorand the
Adaptordesign patterns [8].

An alternative to a stratum approach to building a temporal DBMS is the
integrated architecture where a DBMS is built from scratch and the implementa-
tion incorporates temporal support. The Postgres DBMS [24, 25] is the most well-
known example of such an architecture. It supports transaction time and so-called
time travelin the query language PostQuel. The TempIS Temporal DBMS supports
both valid and transaction time [15] and extends academic Ingres [23]. This system
implements the TQuel temporal query language [17]. (The implementation of the
TempIS Temporal DBMS is discontinued.) The TimeMultiCal is another tempo-
rally enhanced DBMS built from scratch [19]. It supports multiple calendars, but
neither valid time nor transaction time. The T-Requiem system has an integrated ar-
chitecture (for contact information, see [4]). This system extends a public domain
DBMS (Requiem) with valid and transaction time support. The prototype is not
publicly available.

The stratum approach has recently be used for implementing a temporal DBMS
prototype, called TimeDB, which supports both valid time and transaction time
[22]. It is built on top of the Oracle DBMS and supports the ATSQL2 temporal
query language [20], a descendent of the TSQL2 [18] temporal query language.
The Tiger prototype [7] is a close relative of TimeDB. It implements ATSQL [6]
and can be tested online.

A mixture of an integrated and a stratum architecture is documented in [27].
Here, a temporal DBMS prototype supporting valid time is implemented partly on
top of the Ingres DBMS and partly as an extension of the Ingres DBMS. The Ingres
kernel is extended with support for an interval data type. The rest of the temporal
functionality is built on top of the extended kernel.

Vassilakis et al. [28] have provided a survey of temporal DBMS architec-
tures that complements the study provided by this paper. While both papers present
surveys, there are fundamental differences. They describe and evaluate three ar-
chitectures that provide built-in temporal support in a client-server environment; in
contrast, we have explored 15 stratum architectures. More specifically, Vassilakis
et al. do not assume that the underlying DBMS is a black-box, as is assumed here.
Next, they assume that temporal SQL is not, and cannot be, translated to regular
SQL. Not performing this translation leads to very different types of architectures.
For example, query optimization must be partly done in the DBMS and partly in
the stratum. Further, they assume that application may connect directly to the un-
derlying DBMS, In contrast, we disallow direct access from applications to the



1260 IMPLEMENTATION TECHNIQUES

underlying DBMS because this may cause problems with respect to data integrity,
as discussed in Section 2.2.

Finally, in [26] it is discussed how a temporal DBMS can be implemented on
top of an existing system with a minimal effort. Several implementation techniques
are covered.

7 Summary

Building a temporal DBMS from scratch is a daunting task, which may only be
successfully taken on by the major DBMS vendors. To enable the efficient im-
plementation of applications that may benefit from built-in support for time in the
DBMS and to enable experimentation with a temporal DBMS, we have investigated
how the task of building a temporal DBMS can be reduced by building on top of an
existing conventional DBMS, maximally reusing its functionality.

A set of criteria for evaluating a stratum architecture is proposed. Three over-
all architectures to building a stratum are identified and fifteen specific architectures
are discussed. We categorize the existing temporal DBMS implementations that we
are aware of according to the specific architectures.

The specific architectures are then compared against our criteria. There is no
best architecture. Which architecture is preferred depends on the situation where the
stratum is to be used. Those who want temporal functionality available quickly can
use a temporally enhanced library to provided temporal support. A library can also
be tailored to a specific DBMS for maximum performance. The DBMS vendors
can extend their products by, e.g., providing a temporally enhanced preprocessor or
a stratum on top of the specific DBMS. DBMS vendors should make the tempo-
ral extension general, requiring more work compared with only extending a single
library with temporal support.

We believe that the best short and medium term approach to building a tempo-
ral DBMS is to build on top of an existing conventional DBMS. This way, resources
can be focussed on implementing new temporal functionality without having to
reimplement existing functionality.

Acknowledgements

This research was supported in part by the Danish Technical Research Council
through grant 9700780, by the National Science Foundation through grants IRI-
9632569 and IRI-9202244, and by the CHOROCHRONOS project, funded by the
European Commission DG XII Science, Research and Development, contract no.
FMRX-CT96-0056.



STRATUM APPROACHES TO TEMPORAL DBMS IMPLEMENTATION 1261

References

[1] I. Ahn and R. T. Snodgrass.Partitioned Storage for Temporal Databases.
Information Systems, 13(4):369–391, 1988.

[2] R. Barnert and G. SchmutzDie zeitbezogene Datenhaltung bei den Schweizer
Regionalbanken. Wirtschaftsinformatik, 39(1):45–53, 1997.

[3] T. Bunce et al. Perl DBI API. www.hermetic.com/technologia/ -
DBI/ , Dec. 1997.

[4] M. H. Böhlen. Temporal Database System Implementations. SIGMOD
Record, 24(4):53–60, 1995.

[5] M. H. Böhlen, M. D. Soo, and R. T. Snodgrass.Coalescing in Temporal
Databases. VLDB Proceedings, pp. 180–191, 1996.

[6] M. H. Böhlen and C. S. Jensen.A Seamless Integration of Time into SQL. TR
R-96–2049, Aalborg University, 1996.

[7] M. H. Böhlen. The Tiger Bitemporal Database Prototype.
www.cs.auc.dk/ ∼tigeradm/ , Dec. 1997.

[8] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software.Addison-Wesley, 1995.

[9] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993.

[10] G. Hamilton and R. Cattell.JDBC: A Java SQL API version 1.20. JavaSoft,
1997.

[11] K. Jin. NNTP ODBC Driver. ftp.uu.net/pub/database/perl-
interfaces/other/ , Dec. 1997.

[12] D. Lomet and B. Salzberg.Access Methods for Multiversion Data. ACM
SIGMOD, pp. 315–324, 1989.

[13] Microsoft Corp. Microsoft ODBC Software Development Kit Version 2.0.
Microsoft Press, 1994.

[14] D. Roth.The Win32::ODBC Module. www.roth.net/odbc/ , Dec. 1997.

[15] K. Ryu. A Temporal Database Management Main Memory Prototype. TempIs
TR 26. University of Arizona, 1991.

[16] A. R. Simon. Strategic Database Technology: Management for the Year
2000. Morgan Kaufmann Publishers, 1995.

[17] R. T. Snodgrass. The Temporal Query Language TQuel. ACM TODS,
12(2):247–298, 1987.

[18] R. T. Snodgrass (ed.).The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, 1995.



1262 IMPLEMENTATION TECHNIQUES

[19] R. T. Snodgrass et al.The MultiCal System. ftp.cs.arizona.edu/ -
tsql/multical/ , 1997.

[20] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner.Adding Valid
Time to SQL/Temporal. ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3
DBL MAD-146r2, 1996.

[21] M. D. Soo, R. T. Snodgrass, and C. S. Jensen.Efficient Evaluation of the
Valid-time Natural Join. ICDE Proceedings, pp. 282–292, 1994.

[22] A. Steiner et al. TimeDB. www.cs.auc.dk/general/DBS/tdb/-
TimeCenter/Software/ , Dec. 1997.

[23] M. Stonebraker, E. Wong, and P. KrepsThe Design and Implementation of
INGRES. ACM TODS, 1(3):189–222, 1976.

[24] M. Stonebraker.The Design of the Postgres Storage System. VLDB Proceed-
ings, pp. 289–300, 1987.

[25] M. Stonebraker, M. Hirohama, and L. A. Rowe.The Implementation of
Postgres. IEEE TKDE, 2(1):125–142, 1990.

[26] K. Torp, C. S. Jensen, and M. H. Böhlen.Layered Implementation of Tempo-
ral DBMSs—Concepts and Techniques. TR R-96-2037, Aalborg University,
1996.

[27] C. Vassilakis, P. Georgiadis, and N. Lorentzos.Transaction Support in a Tem-
poral DBMS. In Recent Advances in Temporal Databases, Springer-Verlag,
pp. 255–271, 1995.

[28] C. Vassilakes, P. Geogiadis, and A. Sotiropoulou.Comparative Study of Tem-
poral DBMS Architectures. 7th Intl. Workshop on Database and Expert Sys-
tems Applications Proceedings, pp. 153–164, 1996.


