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Most data managed by existing, real-world database applications is time refer-
enced. Data warehouses are good examples. Often, two temporal aspects of
data are of interest, namelyvalid time, when data is true in the mini-world, and
transaction time, when data is current in the database, resulting in so-called
bitemporal data. Like spatial data, bitemporal data thus has associated two-
dimensional regions. Such data is in part naturally now-relative: some data is
currently true in the mini-world or is part of the current database state. So,
unlike for spatial data, the regions of now-relative bitemporal data grow con-
tinuously. Existing indices, including commercially available indices such as
B+- and R-trees, typically do not contend well with even small amounts of
now-relative data.

This paper proposes a new indexing technique that indexes general bitem-
poral data efficiently. The technique eliminates the different kinds of growing
data regions by means of transformations and then indexes the resulting station-
ary data regions with four R∗-trees, and queries on the original data are mapped
to corresponding queries on the transformed data. Extensive performance stud-
ies are reported that provide insight into the characteristics and behavior of
the four trees storing differently-shaped regions, and they indicate that the new
technique yields a performance that is competitive with the best existing index;
and unlike this existing index, the new technique does not require extension of
the kernel of the DBMS.
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1 Introduction

Two temporal aspects of data are fundamental—valid time and transaction time
[SA85] [JS96]. The valid time of a database tuple is the time when the tuple is true
in the modeled reality, the mini-world. A tuple’s transaction time is the time during
which the tuple is current in the database. These temporal aspects of data are essen-
tial in a wide range of existing, real-world applications, including medical, finan-
cial, travel, and multimedia applications. For example, real-world (non-textbook!)
banking databases do record at which times the (past and present) balances of an
account apply. Transaction time is essential in applications where trace-ability or
accountability are important. Data with both valid and transaction time associated
is termed bitemporal.

Although several dozen data models and temporal query languages have been
proposed and although the new SQL standard has an associated Temporal Part
[SNO96], the major DBMSs provide little support for temporal data management.
As a result, each new database application is consigned to solve anew and in an
ad-hoc fashion temporal data management problems that could be solved by the
DBMS. This paper proposes an efficient bitemporal indexing technique that can be
implemented as a layer on top of an existing DBMS, by an independent third-party
developer. In this sense, the index is light-weight.

Existing research shows that regular indices such as B+-trees are unsuited for
temporal data [ST97], and there has recently been proposed a number of indices
for temporal data. The majority are for transaction-time data, and only few support
valid-time data. Significantly less research has been done on creating indices for
bitemporal data. Spatial indices are obvious candidates for indexing bitemporal
data, due to the similarities between bitemporal and spatial data: the combined
valid and transaction time of a tuple can be treated as a region in two-dimensional
space. Several existing proposals [KTF95, KTF98, BJSS98] are based on the R∗-
tree [BEC90], a very efficient member of the R-tree family of spatial indices.

The bitemporal indices generally fall short in efficiently supportingnow-rela-
tive data [CLI97], data for which the end of the valid time or/and transaction time
tracks the progressing current time. Now-relative data occurs naturally in most
real-world databases. For example, consider the recording of a new employee in
a company’s database. The time when the employee starts working (valid-time
interval begin) is known, but it is unknown when the employee will leave. This is
captured by letting the valid-time end extend to the progressing current time. The
same applies to transaction time. The transaction-time interval begin of a tuple is
the time when it is inserted into the database. Since we do not know when the tuple
will stop being current, the transaction-time end extends to the current time. Two of
the existing indices, the 2-R index and the Bitemporal R-tree [KTF98], efficiently
support now-relative transaction time, but not now-relative valid time.
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Only the GR-tree [BJSS98] supports both now-relative valid time and now-
relative transaction time, and thus general bitemporal data, efficiently. But no exist-
ing DBMSs support this index, and adding it to a DBMS such as DB2, Oracle, or
Sybase would require an extension of the DBMS’s kernel. The indexing technique
proposed in this paper achieves a performance that is comparable to the GR-tree’s,
and it may be implemented on-top of any DBMS that supports R-trees, as does,
e.g., Informix.

The reliance of R-trees on (minimum) bounding rectangles does not combine
well with growing regions. We propose to overcome this problem by applying
transformations to the growing now-relative bitemporal data regions that render
them stationary and thus amenable to R-tree indexing. Growing regions come in
four kinds, depending on whether valid- or/and transaction-time end values are fixed
or track the current time, and each kind of regions has its own transformation and is
indexed with its own R∗-tree. The resulting index is termed the 4-R index. Queries
on the index are transformed into four separate queries, one for each tree. The
approach may be seen as a generalization of the approach underlying the 2-R index
[KTF95] or as an “extreme” case of the GR-tree.

Consisting of four R∗-trees, the 4-R index is quite complex. To provide a
proper understanding of its properties and behavior, a substantial portion of the
paper covers results of quite extensive performance studies of the index, thus pro-
viding detailed insight into the specifics of the index and its constituent trees.

The presentation is structured as follows. First, Section 2 briefly describes
important concepts and introduces two-dimensional bitemporal regions. Section 3
surveys the existing work related to the indexing of bitemporal data. The 4-R in-
dex, including data and query transformations, is described in Section 4. Section 5
presents performance studies. The final section offers conclusions and directions
for future work. An appendix proves the correctness of the data and query transfor-
mations.

2 General Bitemporal Data and Its Representation

As a foundation for understanding the challenges of indexing bitemporal data, this
section first describes in more detail the nature of bitemporal data, then character-
izes the different kinds of two-dimensional bitemporal data regions.

As mentioned in the previous section, valid time captures when a tuple is true
in the modeled reality, and transaction time captures when a tuple is current in the
database [SA85, JS96]. These two temporal aspects are orthogonal in that each
could be recorded independently, and each has specific properties associated with
it. The valid time of a tuple can be in the past or in the future (allowing to store
information about the past and the future) and can be changed freely. In contrast,
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the transaction time of a tuple cannot extend beyond the current time and cannot be
changed.

TQuel’s four-timestamp format [SNO87] (4TS) is the most popular format for
bitemporal data representation. With this format, each tuple has a number of non-
temporal attributes and four time attributes: VT`and VTa—the times when the
tuple’s information became and ceased to be true in the modeled reality; TT`and
TTa—the times when the tuple became and ceased to be current in the database.

A tuple is now-relative if its information is valid until the current time or if the
tuple is part of the current database state. This is represented in the 4TS format by
the use of variables, which denote the current time, for the time attributes VTa and
TTa [CLI97]. The variable UC (“until changed”) is used for TTa, and the variable
NOW is used for VTa. Table 1 exemplifies bitemporal data. The time granularity
is a month, and the current time is assumed to be 9/97.

Employee Department TT` TTa VT` VTa
(1) John Advertising 4/97 UC 3/97 5/97
(2) Tom Management 3/97 7/97 6/97 8/97
(3) Jane Sales 5/97 UC 5/97 NOW
(4) Julie Sales 3/97 7/97 3/97 NOW
(5) Julie Sales 8/97 UC 3/97 7/97
(6) Michelle Management 5/97 UC 3/97 NOW

Table 1: The EmpDep Relation

Tuple 1 records that the information “John works in Advertising” was true
from 3/97 to 5/97 and that this was recorded during 4/97 and is still current. Tuple
3 records that “Jane works in Sales” from 5/97 until the the current time, that we
recorded this fact on 5/97, and that this remains part of the current database state.

Specific constraints apply to insertions, deletions, and modifications of tuples.
When inserting a new tuple, the constraints VT`≤ VTaand VT̀ ≤ ‘current time’
if VT a is equal to NOW apply to valid time; and the constraints TT` = ‘current
time’ and TTa= UC apply to transaction time. Anycurrentdatabase tuple can be
deleted or modified. Deleting a tuple, the TTavalue UC is changed to the fixed value
‘current time’−11, making the tuple not current anymore (e.g., Tuple 2); tuples are
not physically deleted. A modification is modeled as a deletion followed by an
insertion (e.g., an update led to Tuple 4 and Tuple 5).

The temporal aspect of a tuple can be represented graphically by a two-
dimensional (“bitemporal”) region in the space spanned by valid and transaction
time [JS96]. Cases 1–4 in Figure 1 illustrate thebitemporal regionsof Tuples 1–4,
respectively.

1We use closed intervals and let [TT`, TTa] denote the interval that includes TT`and TTa.
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Figure 1: Bitemporal Regions

A now-relative transaction-time interval yields a rectangle that “grows” in the
transaction-time direction as time passes (Tuple 1, Case 1). Having both transaction-
and valid-time intervals being now-relative yields a stair-shaped region growing in
both transaction time and valid time as time passes (Tuple 3, Case 3). If, at some
time, a tuple stops being current, the bitemporal region stops growing (Tuples 2 and
4; Cases 2 and 4).

Information may be recorded in the database after it becomes true in the mod-
eled reality. In such situation, if both the transaction- and valid-time intervals are
now-relative (Tuple 6), a bitemporal region would be a growing stair-shape with
a high first step. It is also possible to record information in the database before
it becomes true in the modeled reality. In this case, the valid-time end must be
a ground value (Tuple 2); otherwise, the valid-time end, which would extend to
the current time, would initially be smaller than the valid-time start, violating the
second insertion constraint of the valid time.

Stated generally, we obtain four combinations of time attributes for which the
bitemporal regions are qualitatively different, as illustrated in Figures 1 and 2 where
‘tt1’, ‘tt2’, ‘vt1’, and ‘vt2’ denote ground values that satisfy the constraints given
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above. Stair-shapes having first steps of different heights are not treated as being
qualitatively different.

TT` TTa VT` VTa
Case 1 tt1 UC vt1 vt2
Case 2 tt1 tt2 vt1 vt2
Case 3 tt1 UC vt1 NOW (tt1=>vt1)
Case 4 tt1 tt2 vt1 NOW (tt1=>vt1)

Figure 2: Possible Combinations of Time Attributes

We have set the context for using spatial indices for indexing bitemporal data.
There already exist some indices for bitemporal data that are based on this approach;
we discuss them next.

3 Overview of the Existing Bitemporal Indices

References [ST97, BER97] provide comprehensive surveys of indices for different
types of temporal data. This section focuses solely on the indexing of bitemporal
data.

All existing indices for now-relative bitemporal data are based on the idea that
bitemporal data can be viewed as a special case of spatial data (recall Figure 1) and
that spatial indices can be utilized to index bitemporal data.

Many indices have been developed for spatial data with extent (i.e., non-point
data) [SAM90]. One of the most robust such indices is the R-tree [GUT84] in its
different variants—e.g., the R+-tree [SRF87], the R∗-tree [BEC90], and the Hilbert
R-tree [KF94]. In the R-tree, entries of a leaf-level node store minimum bound-
ing rectangles of spatial regions together with pointers to the data tuples containing
those regions. Entries of a non-leaf node store minimum bounding rectangles of
child nodes together with pointers to those child nodes. The minimum bounding
rectangle of a child node is the rectangle that bounds all entries of that child node.
All variants of the R-tree try to minimize the overlap between the minimum bound-
ing rectangles of the nodes at each level of the tree and to minimize the dead space
in the bounding rectangle of each node (the dead space is the space in the minimum
bounding rectangle not occupied by any of the enclosed rectangles). Minimizing
overlap reduces the I/O-incurring branching of search into several subtrees. Min-
imizing dead space reduces the probability that queries unnecessarily access disk
pages, eventually finding no qualifying data.

The R∗-tree is promising for indexing now-relative bitemporal data, but does
not accommodate growing bitemporal regions. The straightforward approach to
accommodating growing regions, themaximum-timestamp approach, is to represent
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these regions using the maximum possible transaction- and valid-time values. As
a consequence, their minimum bounding rectangles are static, but the result is also
excessive overlap and dead space, as illustrated in Figure 3(a).
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Figure 3: Indexing Growing Bitemporal Regions (a) Using Maximum-Timestamp
Values and (b) Using the GR-Tree

Kumar et al. [KTF95, KTF98] propose a new index to handling now-relative
transaction time, but do not address now-relative valid time—data regions with an
open valid time still must be represented using a maximum-timestamp value. In
their index, the 2-R index, they use two R-trees. The front R-tree indexes all grow-
ing (i.e., current) rectangles, while the back R-tree indexes all static (i.e., logically
deleted) rectangles. Observing that all growing rectangles are in the front tree and
that they all extend to the progressing current time, Kumar et al. show that storing
only the non-growing transaction-time begin value together with their fixed valid-
time interval in the front tree is adequate to support now-relative transaction time.
The 2-R index contends well with now-relative transaction time and performs bet-
ter [BJSS98] than the single, maximum-timestamp R∗-tree, but it suffers from the
penalty that two trees often have to be searched in a single query, resulting in more
disk accesses and diminishing the advantages gained from the decreased overlap.
The problem of representing now-relative valid time also remains open in the 2-R
index. As discussed already, using the maximum valid-time value for NOW is not
promising.

Instead of replacing UC and NOW with maximum time values, the GR-tree
[BJSS98] extends the existing R∗-tree [BEC90] to allow for the storage of these
variables in tree nodes. The GR-tree thus accommodates bitemporal regions (shown
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in Figure 1) and uses minimum bounding regions that can be either static or growing
and either rectangles or stair-shapes (see Figure 3(b)). It has been shown [BJSS98]
that the GR-tree outperforms indices based on the previously described approaches
by a factor of 3 or more. The GR-tree is an efficient index, but its implementation
requires access to and extension of the DBMS kernel.

Based on the above, we may conclude that two different approaches exist for
indexing now-relative bitemporal data. The first approach is to create a new index.
The GR-tree, although based on the R∗-tree, exemplifies this approach. The second
approach is to transform now-relative bitemporal data, in this way eliminating the
variables UC and NOW and obtaining static data, and then apply an existing “off-
the-shelf” spatial index. This paper explores the latter approach.

Subsequent sections show how now-relative bitemporal data can be efficiently
indexed using four R∗-trees and employing appropriate data and, consequently,
query transformations. The main purpose of the data transformations employed
here is to transform growing regions to stationary regions (transformations are used
widely in indexing, but always with different purposes).

4 The 4-R Index for Now-Relative Bitemporal Data

This section provides a detailed description of the 4-R indexing technique. The idea
behind the technique is to apply data transformations that render the continuously
growing (now-relative) bitemporal data regions static, upon which existing “off-
the-shelf” R-trees may be employed. Specifically, we (1) divide bitemporal data
regions into four classes, (2) perform transformations of the regions in each of the
classes, thus eliminating any variables, and (3) use separate R-trees for indexing the
transformed data regions of each class.

Section 4.1 describes the data transformation. In order to use the index when
answering queries, the queries must also be transformed; Section 4.2 presents the
query transformation. Section 4.3 concerns the implementation of the 4-R index.

4.1 Transformation of Data

In the interest of generality and for our purpose, it is appropriate to model a bitem-
poral data tuple as a pair of a bitemporal region and a tuple identifier. This corre-
sponds to the information captured at the leaf level of a secondary index such as the
R-tree.

The main goal of the transformation of now-relative bitemporal data is to
eliminate the variables UC and NOW, so that the data can be indexed with R-trees.
To this end, we distinguish between four types of bitemporal data, depending on
whether TTa is or is not equal to UC and whether VTa is or is not equal to NOW.
For each type, the transformed data is variable-free. The bitemporal region of a
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transformed, variable-free bitemporal tuple is always static. Before defining the
data transformation, we define the domain of bitemporal data and the domain of
variable-free bitemporal data.

Definition 1 Let the domain of timestamp values beT and the domain of tuple
identifiers beID. We then defineDB , the domain of bitemporal tuples, andDS , the
domain of variable-free bitemporal tuples, as follows.

DB , {〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ T × T ∪ {UC} × T × T ∪ {NOW} × ID |
(TTar = UC∨ TTr̀ ≤ TTar ) ∧ (VTar = NOW∨ VT r̀ ≤ VTar )}

DS , {〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ T × T × T × T × ID |
TTr̀ ≤ TTar ∧ VT r̀ ≤ VTar } 2

The “r” subscripts are used to clearly separate the data rectangles from the query
rectangles that will be introduced in the next section.

The data transformation defined next transforms a bitemporal tuple into a
variable-free bitemporal tuple augmented by a transformation type.

Definition 2 LetR ⊆ DB and defineType= {1, 2, 3, 4}. Then the 4-R data trans-
formationTD : 2DB → 2D

S×Type is defined as follows.

TD(R) , {Tr (〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉) | 〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ R},
where

Tr (〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉) ,



〈TTr̀ ,TTr̀ ,VT r̀ ,VT r̀ , idr , 1〉
if TTar = UC∧ VTar = NOW

〈TTr̀ ,TTr̀ ,VT r̀ ,VTar , idr , 2〉
if TTar = UC∧ VTar 6= NOW

〈TTr̀ ,TTar ,VT r̀ ,VT r̀ , idr , 3〉
if TTar 6= UC∧ VTar = NOW

〈TTr̀ ,TTar ,VT r̀ ,VTar , idr , 4〉
if TTar 6= UC∧ VTar 6= NOW

2

Four trees, numbered R1 through R4, are created and populated with result
tuples according to their types. Figure 4, described next, illustrates the intuition
behind the mapping.

Tree R1 indexes the regions that, before the transformation, had non-fixed
valid- and transaction-time end values. Knowing that such regions extend to the cur-
rent time in transaction time (TTa = UC) and to the line VT = TT (VTa = NOW),
it suffices to represent the regions by two-dimensional points〈TTr̀ ,TTr̀ ,VT r̀ ,
VT r̀ 〉, represented in turn by (TT̀, VT`) in the index.

Next, tree R2 indexes regions that had fixed valid-time end values, but non-
fixed transaction-time end values prior to the transformation. Because such regions
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Figure 4: Data Storage in the Four Trees of the 4-R Index

are rectangles that grow in transaction time and extend to the current time in this di-
mension (TTa = UC), we can represent these regions by two-dimensional intervals
〈TTr̀ ,TTr̀ ,VT r̀ ,VTar 〉, represented in the index as (TT`, VT`, VTa).

Tree R3 is devoted to regions that, before the transformation, had fixed trans-
action-time end values, but non-fixed valid-time end values. These regions are all
stair-shapes that extend to the line VT = TT (VTa = NOW). These may be repre-
sented by two-dimensional intervals〈TTr̀ ,TTar ,VT r̀ ,VT r̀ 〉, captured in the index
as (TT̀ , TTa, VT`).

Finally, tree R4 accommodates originally static data regions for which there
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is no need for transformation.
The next step is to explore search in the four trees of the 4-R index that ac-

commodate the transformed data. Queries must be transformed as well.

4.2 Transformation of Queries

We investigate the most common type of index query, namely the rectangular in-
tersection query. This type of query includes point queries as well as the different
kinds of range queries supported by the valid- and transaction-time timeslice opera-
tors frequently present in temporal query languages. Let〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 ∈
T×T×T×T denote the argument rectangle of an intersection query, whereT is the
domain of timestamps. We will make the reasonable assumptions that TTq̀ ≤ TTaq ,
VTq̀ ≤ VTaq , and TTaq ≤ CT where CT is the value of the current time. The
following definition gives the result of an intersection query on bitemporal data.

Definition 3 Define 〈TTr̀1,TTar1,VT r̀1,VTar1〉 ∩ 〈TTr̀2,TTar2,VT r̀2,VTar2〉 by
(TTr̀1 ≤ TTar2) ∧(TTar1 ≥ TTr̀2) ∧ (VT r̀1 ≤ VTar2) ∧ (VTar1 ≥ VT r̀2). Also letq =
〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 andR ⊆ DB . Then an intersection queryIntersectB on
R with query rectangleq and current time value CT as parameters is defined as
follows.

IntersectB[q,CT](R) ,
{idr | 〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ R ∧

((TTar = UC∧ VTar = NOW∧ TTaq ≥ VTq̀ ∧ q∩
〈TTr̀ ,CT,VT r̀ ,CT〉)∨

(TTar = UC∧ VTar 6= NOW∧ q ∩ 〈TTr̀ ,CT,VT r̀ ,VTar 〉)∨
(TTar 6= UC∧ VTar = NOW∧ TTaq ≥ VTq̀ ∧ q∩

〈TTr̀ ,TTar ,VT r̀ ,TTar 〉)∨
(TTar 6= UC∧ VTar 6= NOW∧ q ∩ 〈TTr̀ ,TTar ,VT r̀ ,VTar 〉))} 2

The first line restricts result tuple identifiers to be in the argument tuples. As
for Definition 2, each of the next four lines is devoted to one type of bitemporal
region. The first disjunct identifies the subset of qualifying growing stair-shapes,
the second identifies qualifying growing rectangles, the third, static stair-shaped re-
gions, and the fourth, static rectangles. In cases of stair-shaped regions, in addition
to checking the intersection between the bounding rectangle of a region and a query
rectangle, it is specified that the lower-right corner of a query must be below or on
the VT = TT line (condition TTaq ≥ VTq̀ ).

Similarly to Definition 3, we next define the rectangular intersection query on
variable-free bitemporal data. The result of this query is independent of the current
time.
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Definition 4 Let q = 〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 andS ⊆ DS . Then an intersection
queryIntersectS onS with a query rectangleq as a parameter is defined as follows.

IntersectS[q](S) , {idr |
〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ S ∧ q ∩ 〈TTr̀ ,TTar ,VT r̀ ,VTar 〉} 2

With Definitions 3 and 4 in place, we are now in a position to define the
4-R query transformation,Tq , that goes with the data transformation given in the
previous section. The transformation maps an intersection query on the original
data to two or four corresponding queries on the transformed data.

Definition 5 Initially define:

R ⊆ DB
S = TD(R)

Si = {〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 | 〈TTr̀ ,TTar ,VT r̀ ,VTar , idr, i〉 ∈ S},
i = 1, 2, 3, 4

q = 〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉
q1 = 〈0,TTaq , 0,VTaq 〉
q2 = 〈0,TTaq ,VTq̀ ,VTaq 〉
q3 = 〈max(TTq̀ ,VTq̀ ),TTaq , 0,VTaq 〉
q4 = 〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉

Then the 4-R query transformationTq : [2DB → 2ID] → [2DS×Type → 2ID] is
defined as follows.

Tq(IntersectB[q,CT])(S) ,
{ ⋃

i=1,2,3,4 IntersectS[qi](Si) if TTaq ≥ VTq̀⋃
i=2,4 IntersectS[qi](Si) if TTaq < VTq̀ 2

The search spreads to two or four trees and is performed differently in each
tree. Figures 5 and 6 illustrate the original search rectangle and the corresponding
transformed search rectangle in each tree. A discussion of the search in each of
the four trees follows Theorem 1 that states that the combination of the 4-R query
and 4-R data transformation yields perfect precision and recall, i.e., is correct. The
proof is given in Appendix A.

Theorem 1 For eachq = 〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 and each data setR ⊆ DB ,

IntersectB[q,CT](R) = Tq(IntersectB[q,CT])(TD(R)). 2

Searching tree R1, the argument search rectangle is enlarged to cover the
space spanned from the origin of the transaction and valid time to the argument
rectangle’s top-right corner. Tree R1 contains no data points above the line VT =
TT because the original regions encoded by the points in this tree extend only to
the line VT = TT. Thus, the transformed search rectangle could also be reduced to
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Figure 5: Search in the Four Trees of the 4-R Index

not extend above the line VT = TT without affecting correctness. But this reduction
of the search rectangle also does not improve performance because that additional
area is empty, so for simplicity, we use the unreduced rectangle.

When searching tree R2, we should look not only for data intervals overlap-
ping with the original search rectangle, but also for intervals to the left of the search
rectangle.

The search-rectangle transformation in tree R3 is similar, but now the argu-
ment search rectangle is extended downwards instead of to the left, and there is a
subtle complication. When part of a search rectangle is below the line VT = TT and
another part is above, only the part below this line should be extended downwards;
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extending the entire rectangle would yield “false drops” and would thus jeopardize
precision. This is illustrated in Figure 6, where extending the entire search rectangle
would yield one false drop. In Definition 5, function “max” handles this case.
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TTCT

search rectangle

transformed region

transformed search

actual region

rectangel

VTend = NOW; TTend = fixed

Figure 6: Search Specifics for Tree R3

Since tree R4 indexes untransformed bitemporal rectangles, transformation of
the argument search rectangle is unnecessary.

Several noteworthy special cases occur when querying the four trees. In trees
R1 and R3, the indexed points and intervals reside only below the line VT = TT, and
the regions encoded by these points or intervals also do not extend above this line.
Thus, search in these trees is only performed when at least some part of a search
rectangle goes below VT = TT.

Another special case is the current-time transaction-timeslice query (TTq̀ =
TTaq = CT), which is expected to occur frequently in practice. Current data resides
only in trees R1 and R2, so this timeslice query may be restricted to these two trees,
ignoring trees R3 and R4. If, in addition, a current time transaction-timeslice query
is above the VT = TT line, the only tree to be searched is R2. As a final special
case, if such a current-time transaction timeslice has no constraints on valid time,
all bitemporal tuples indexed by trees R1 and R2 should simply be returned, and no
search is required.
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4.3 Implementation

An important advantage of the 4-R index is that it may reuse preexisting and effi-
cient R-tree-based indexes such as R∗-tree without any modifications, because only
points, intervals, and rectangles are indexed—there are no growing bitemporal re-
gions. This means that the 4-R index may be implemented in a layer on top of any
DBMS that supports R-trees, with no need for extending the DBMS’s query opti-
mizer and recovery and concurrency control subsystems. This renders the index a
very practical one.

In addition, the data transformation of bitemporal shapes into intervals and,
especially, points may positively impact performance because these simpler shapes
take less space and thus lead to trees with higher fanouts of the nodes because more
entries fit in one node. The query transformation, where argument rectangles are
always enlarged, may have the reverse effect on the performance.

The layer implementing the 4-R technique on top of four R*-trees is respon-
sible for three main tasks.

insertions The layer determines into which of the four trees a new data region has
to be inserted, and it passes the correct insertion statement to the appropriate
tree.

deletions The layer determines the tree in which a given data region should be
stored, and it passes the correct deletion statement to that tree.

queries The layer translates queries into four corresponding queries, each of which
is passed to the appropriate tree; and the layer returns the combined result
obtained from searching the four trees.

Update is modeled as a deletion followed by an insertion. The algorithms
implemented by the layer follow the theory developed earlier in this section and are
outlined next.

Algorithm for Insertion into the 4-R Index

insert(TT`,TTa,VT`,VTa) =
insertR1(TT`,VT`) if TTa = UC∧ VTa = NOW
insertR2(TT`,VT`,VTa) if TTa = UC∧ VTa 6= NOW
insertR3(TT`,TTa,VT`) if TTa 6= UC∧ VTa = NOW
insertR4(TT`,TTa,VT`,VTa) if TTa 6= UC∧ VTa 6= NOW

Algorithm for Deletion from the 4-R Index

delete(TT`,TTa,VT`,VTa) =
deleteR1(TT`,VT`) if TTa = UC∧ VTa = NOW
deleteR2(TT`,VT`,VTa) if TTa = UC∧ VTa 6= NOW
deleteR3(TT`,TTa,VT`) if TTa 6= UC∧ VTa = NOW
deleteR4(TT`,TTa,VT`,VTa) if TTa 6= UC∧ VTa 6= NOW
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Algorithm for Search in the 4-R Index

search(TT`,TTa,VT`,VTa) =

searchR1(0,TTa, 0,VTa) ∪
searchR2(0,TTa,VT`,VTa) ∪
searchR3(max(TT`,VT`),TTa, 0,VTa) ∪
searchR4(TT`,TTa,VT`,VTa) if TT` 6= CT∧ TTa ≥ VT`

searchR2(0,TTa,VT`,VTa) ∪
searchR4(TT`,TTa,VT`,VTa) if TT` 6= CT∧ TTa < VT`

searchR1(0,TTa, 0,VTa) ∪
searchR2(0,TTa,VT`,VTa)

if TT` = CT∧ [VT`,VTa] 6= [tmin, tmax] ∧ TTa ≥ VT`

searchR2(0,TTa,VT`,VTa)
if TT` = CT∧ [VT`,VTa] 6= [tmin, tmax] ∧ TTa < VT`

R1∪R2 if TT` = CT∧ [VT`,VTa] = [tmin, tmax]

5 Performance

In this section, we compare the search and update performance of four indices: the
4-R index (4-R), the GR-tree, the R-tree (1-R), and the 2-R index (2-R), with the
latter two using the maximum-timestamp approach. We first present the strategy
used for data and query generation, then discuss the performance results obtained
for the data and queries generated using different parameters.

5.1 Data and Query Generation

The four indices were implemented using the Generalized Search Tree Package,
GiST [HNP95]. The numbers of I/O operations are measured using simulation.
The page size is set to 1024 bytes and one tree node is stored in one page. Thus,
one node read or write corresponds to one page access (one I/O operation). A buffer
of 100 pages is allocated for each index2. We include a buffer because Leutenegger
and Lopez [LL98] have shown that omitting a buffer may lead to quantitatively and
qualitatively incorrect conclusions. The root is always kept in the buffer; for the
other nodes, the least-recently-used page replacement policy is employed. If a node
is changed during an insertion or a deletion, its page is changed in the buffer and

2For the 4-R, 4 buffers of 25 pages are allocated, and for the 2-R, 2 buffers of 50 pages are allocated.
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marked as “dirty.” Dirty pages are written to disk at the end of the operation or
when they have to be removed from the buffer.

To fairly compare the search and update performance of the four indices, the
same data has to be inserted into the indices, and the same queries have to be run
on them. We use so-calledworkloadsto simulate the construction and usage of an
index for a certain period—theindex life-time. In our experiments, a workload typ-
ically contains 60,000 update operations. An update operation is either an insertion
or a (logical) deletion. First, 4000 insertions are performed in a sequence, and at
each later point in time insertion occurs with probabilityIns and deletion occurs
with probability 1− Ins.

Several parameters are used for generating the data to be inserted into the
indices. The valid-time interval length is uniformly distributed between 0 and the
maximum valid-time interval length,VL. Alternatively, the valid-time end can be
NOW. The percentage of data to be inserted into an index and having valid-time
end equal to NOW is denoted asPNow. We choose the valid-time begin to be
strongly bounded to the data-insertion time. Specifically, it is normally distributed
with a mean equal to the insertion time and with some deviationDev that specifies
how densely regions inserted into the trees are distributed around they = x axis. If
Dev is big and the valid-time end is fixed, the regions are scattered throughout the
valid-time universe. (Figure 7 illustrates this point in the GR-tree.) If the valid-time
end is equal to NOW, the regions are stair-shapes below and extending to they = x
axis.Dev influences how far below they = x axis the stair-shapes can start.

TT

VT

TT

VT

(a) (b)

Figure 7: Influence ofDevon Data Distribution in the GR-tree; (a) Small and (b)
LargeDev

A workload also contains queries intermixed with the update operations. We
perform bitemporal range, timeslice, and point queries. ParameterQcurdenotes the
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percentage of “current” queries, i.e., current timeslice and point queries or bitem-
poral range queries that extend to the current time. ParametersQrange, Qslice, and
Qpointdenote percentages of, respectively, bitemporal range, timeslice, and point
queries that will be run. ParameterQmaxIdenotes the maximum valid-time range
for bitemporal range queries and timeslice queries, and the maximum transaction-
time range for bitemporal range queries.

We useoverlapas the query predicate, meaning that regions that overlap with
the given query window qualify for the result.

The data and query generation parameters described above are termedwork-
load parametersand are summarized in Table 2. In different experiments, the values
of these parameters are varied. The values used are given together with the descrip-
tion of each concrete experiment. If the value of some parameter is omitted, the
“average” value is used.

Parameter Description Values used “Average”

PNow percentage of data with valid-time
end equal to NOW

0, 20, 40, 60, 80, 100 60

Ins percentage of insertions 50, 60, 70, 80, 90, 100 70
Dev deviation of VT̀ , when the mean

is the insertion time
1000, 5000, 10000,
25000, 50000

5000

VL maximum valid-time interval
length

50, 100, 500, 1000,
3000, 5000

500

Qcur percentage of current queries 0, 25, 50, 75, 100 65
Qrange percentage of range queries 25, 100 25
Qslice percentage of timeslice queries 50, 100 50
Qpoint percentage of point queries 25, 100 25
QmaxI maximum valid- and transaction-

time intervals given in a query
1, 100, 300, 500,
1000, 3000

300

Table 2: Workload Parameters

We intermix queries with update operations in the workload with the aim of
measuring search performance throughout the entire index life-time. In the exper-
iments, for each used workload we compute the average I/O cost of update and
search operations present in that workload. In each experiment, we also compute
pagination, overlap, and dead space in the trees.

The pagination is the percentage of the allocated space that is utilized for data,
i.e., it is the percentage of each node’s space that on the average is filled with en-
tries. The dead space of a node is the difference between the area of the minimum
bounding region of that node and the area of the union of minimum bounding re-
gions of all entries of that node. The dead space of a tree level is the sum of the dead
space of each node at that level. The overlap in a node is the difference of the sum



LIGHT-WEIGHT INDEXING OF GENERAL BITEMPORAL DATA 1205

of all areas of that node’s entries and the area of the union of all the entries in the
node. The overlap in a tree level is the sum of the overlap values of all nodes in that
level. The measurement units for dead space and overlap are quadratic time-points,
i.e., the same as those for a simple area of a bitemporal region.

5.2 Comparison of the Four Bitemporal Indices

In this section, we first discuss general issues in addition to specifics of the four
indices that influence their performance. Then we present the results of concrete
experiments with the bitemporal indices. For each experiment, the workload pa-
rameters are given, search and update performance results are illustrated, and dis-
cussions are offered that cover also index pagination, dead space, and overlap.

General Observations

The number of I/O operations performed during a search depends on index pag-
ination, dead space, and overlap. If nodes are poorly filled, many nodes have to
be accessed to retrieve a number of entries. Dead space leads to accessing nodes
in vain, eventually finding no qualifying entries. Overlap between nodes leads to
I/O-incurring branching of search into several subtrees.

In the 1-R and 2-R, dead space and overlap are excessive because they depend
on the maximum-timestamp value, which must be very large in order to exceed any
fixed time value used throughout the existence of an index.

Before analyzing the results of the concrete experiments, several issues about
the 4-R have to be mentioned. First, if a search rectangle does not extend below
they = x axis, only trees R2 and R4 have to be searched because there will not
be qualifying entries in the other two trees. Answeringcurrent timeslice or point
queries, only trees R1 and R2 have to be searched because R3 and R4 do not contain
any current data. Manipulating the workload parameters, several extreme cases of
the 4-R are possible. If the value of the parameterIns, the percentage of insertions,
is 100%, regions will never be deleted, and thus trees R3 and R4, devoted to non-
current data, will be empty. If the value of the parameterPNow, the percentage of
data with valid-time end equal to NOW, is 100%, trees R2 and R4 will be empty
because they are devoted to data with fixed valid-time intervals. IfPNow is 0%
then trees R1 and R3 will be empty. Thus, it is appropriate to perform specific
experiments to investigate properties of the individual trees of the 4-R index.

Experiments With Various Data

First, experiments were conducted to find out how varying percentages of data hav-
ing valid-time end equal to NOW influence search and update performance in the
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four indices. Different workloads were constructed changing the value of parameter
PNow. The search and update performance of the four indices with such data are
given in Figures 8(a) and 9(a), respectively.

In general, the GR-tree has the best search performance. The 4-R index does
not loose much and even outperforms the GR-tree whenPNowis 100%, while the
two maximum-timestamp-approach-based indices are clearly worse. The problem
of the latter two is big overlap and dead space caused by the huge rectangles repre-
senting growing bitemporal regions. One of the reasons why the GR-tree is better
than the 4-R index is that its pagination (65%) is better than the pagination of the
4-R trees (50% in R3 and 60% in the other trees). Another reason is tree R2 in
the 4-R index. This tree indexes data with non-fixed transaction-time intervals (i.e.,
current data) by physically storing only “vertical lines.” Because of the sequential
nature of transaction time, the R*-tree algorithms in many cases fail to group these
vertical lines into nodes with quadratic minimum bounding rectangles. Often min-
imum bounding rectangles of the nodes in R2 are long in the valid-time direction.
On the other hand, the transformed queries for R2 are not very long in the valid-time
direction, but extend to the very beginning of transaction time. Such queries access
a lot of nodes with minimum bounding rectangles that are long in valid time, but
not many entries (some times none at all) from these nodes qualify for the answer.

However, whenPNowis near 100%, the 4-R starts to outperform the GR-tree.
First, whenPNow is large, data is concentrated in trees R1 and R3, and the bad
performance of the poorly populated R2 does not seriously affect the overall 4-R
index performance. Second, with 65% of current queries (we use this number as
our average), the majority of the qualifying data is “current” data that resides in
R1 and R2. Since R2 is poorly populated, the major part of the qualifying data is
retrieved from R1. Tree R1 of the 4-R index has very good selectivity, i.e., usually
almost all entries of retrieved nodes qualify for the answer. Consequently, almost
the minimal number of nodes have to be accessed during a search, and thus tree R1
significantly contributes to the good performance of the 4-R index.

WhenPNow is low, the 1-R outperforms the 2-R. One of the reasons is the
worse pagination of the 2-R (55%, opposed to 65% of the 1-R).

WhenPNow is large, the 2-R outperforms the 1-R. Then the majority of the
rectangles in the 1-R extend to the maximum valid-time value; and to the maximum
transaction-time value if data is current. The rectangles representing not current
data (“short” in the transaction-time direction), however, are mixed with “current”
ones in the tree nodes. Thus the selectivity in the 1-R when answering a current
query (for which only current rectangles qualify) is not very high. The storing of
old and current data in separate trees in the 2-R index shows the advantage.

Concerning updates, the 4-R and 2-R indices achieve better performance than
one-tree indices.

Another set of experiments was carried out to investigate how the percentage
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of “current” data influences search and update performance in the four indices. In
this study, workloads generated with different values of parameterIns were used.
Results of the study are given in Figures 8(b) and 9(b).

When theIns value increases, regions are more rarely deleted, current data
remains current for a long period, and the amount of current data increases over
time. Thus with 65% as the average percentage of current queries (meaning that
mostly current data is of interest), whenIns increases, more data is retrieved from
the indices, resulting in an increasing cost of a search. Overall, the GR-tree has
the best performance, but the 4-R is quite close. The difference between the GR-
tree and the 4-R index is more visible whenIns is close to 100%; the GR-tree then
achieves better pagination (70%).

The 4-R and 2-R indices achieve the best update performance also in this
study.

Experiments were performed varying also values of parametersVL (maxi-
mum valid-time interval length) andDev(deviation of VTbegin, when the mean is
the insertion time). The results of these experiments are given in Figures 8(c)–(d)
and 9(c)–(d), respectively.

Experiments With Various Queries

For a database where the amount of current data increases over time (usingInsequal
to 70%, this is the case), the later in the database lifetime a query is issued, the more
results are retrieved, which in turn require more I/O operations. We already noticed
the impact of the current queries in the previous sections. In this section, we ex-
periment with various kinds of queries. First, we experiment with range, timeslice,
point, and “mixed” queries, varyingQcur, the percentage of current queries. The
results are illustrated in Figures 10 and 11(a). It can be seen that the performance of
the 1-R, 2-R, and 4-R indices drops as expected with an increasing amount of cur-
rent queries. The GR-tree, on the contrary, performs better as the number of current
queries increases. Investigating this “phenomenon,” we found out the following
about the four indices.

The GR-tree nodes containing current data have better pagination than nodes
containing non-current data. This is due to the sequential nature of the transaction
time. “Current” nodes are filled up by continuously arriving new entries, while new
entries are rarely inserted into the “old” nodes, which are left half-full after node
splits (the GR-tree split algorithm usually separates older and newer entries). Thus,
although the number of retrieved entries increases with an increasing amount of
current queries, the qualifying (current) entries are packed into a smaller number of
nodes.

In the 4-R index, while the pagination of the trees that contain current data
(R1 and R2) is higher than the pagination of trees R3 and R4, the performance is
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advertly affected by the bad performance of R2, which in turn is caused by the
geometry of the minimum bounding rectangles in this tree (see Section 5.2). The
2-R performs better than the 1-R when the percentage of current queries increases,
because current and old data are mixed in the nodes of the 1-R, and the percentage
of qualifying entries from each node is low for current queries.

The kind of queries used (range, timeslice, or point queries) practically does
not change the results.

The influence of the size of range and timeslice queries was also tested (Fig-
ure 11(b) and (c)). As can be expected, bigger queries lead to more entries being re-
trieved, thus requiring more efforts to perform. This is more pronounced for range
queries, which can be expanded to any size in two directions, than for timeslice
queries, which can be expanded only in the valid-time direction.

Experiments With Specialized Data

We experimented with specialized data to understand the properties of the four trees
in the 4-R index. We have already observed, in the previous sections, that tree R1
of the 4-R index has very good selectivity, and, in contrast, tree R2 has quite low
selectivity.

WhenIns is 100% (data is never deleted) andPNow is 0% (valid-time inter-
vals are fixed), regions representing transformed bitemporal data are solely indexed
by tree R2 in the 4-R. The low selectivity in this tree explains why the 4-R index is
worse not only than the GR-tree, but also than the R-tree (1-R) (see Figure 12(a)).
Note that results of the 2-R index and the 4-R index are the same because the front
tree of the 2-R is the same as tree R2 of the 4-R index, since there is no data with
now-relative valid-time intervals. The pagination in both the 2-R and the 4-R is
63%, while it is 74% in the GR-tree and 71% in the 1-R.

WhenIns is 100% (data is never deleted) andPNowis 100% (valid-time end
is always equal to NOW), regions representing transformed bitemporal data are
indexed solely by tree R1 in the 4-R. In tree R1, a rectangle of the transformed
query covers a huge area and therefore, during a search, most of the accessed entries
qualify for the result. But tree R1 has low pagination (54%) and therefore the 4-R
index looses to the GR-tree which has a pagination of 71% (see Figure 12(b)).

6 Conclusions

Because regular indices such as the B+-tree are unsuited for indexing temporal data,
a number of indices for temporal data have been proposed. Almost none of these
support both now-relative valid- and transaction-time intervals, which are accom-
modated by most of the temporal data models and are natural and meaningful for
many kinds of applications. The straightforward R-tree based solution to indexing
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now-relative bitemporal data, the maximum-timestamp approach, is not effective.
Another R-tree based index, the GR-tree, employs a special structure and algorithms
to contend with now-relative valid- and transaction-time intervals. Although having
good performance, the GR-tree is not currently available in any existing DBMSs.

This paper shows how efficient indexing of now-relative bitemporal data can
be achieved with little effort by implementing a layer on top of a DBMS supporting
R-trees. To make possible the usage of R-trees, the proposed technique applies
transformations to bitemporal data regions. Four types of bitemporal regions are
distinguished and the transformed counterparts of the bitemporal regions of each of
the four types are stored in separate R∗-trees. Each query is also transformed into
four separate queries, one for each tree.

The proposed index, the 4-R index, may be seen as a generalization of the 2-
R index [KTF95], where transformation is used to support now-relative transaction
time intervals. In another sense, the 4-R index is a special case of the GR-tree. The
insertion algorithm of the GR-tree separates bitemporal data regions of different
types into different nodes achieving a tree with groups of nodes storing bitemporal
data regions of the same kind. Thus, the 4-R index is an extreme special case of the
GR-tree, where such groups of nodes form four different trees.

The detailed performance experiments show that the search performance of
the 4-R index is comparable to that of the GR-tree, although usually a little bit
worse. In most cases, the difference is not bigger than 25%. On the other hand, the
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4-R index shows very good, steady update performance, surpassing the GR-tree’s
update performance by a big margin.

The performance experiments also reveal some weaknesses of the 4-R index.
Most of all, the performance is adversely affected by the unproportionally long, in
the valid-time direction, minimum bounding rectangles in tree R2. It seems that
what would be desirable is exactly the opposite. Because transformed queries in R2
have relatively long transaction-time extents, the same kind of geometry for mini-
mum bounding rectangles should result in less I/O operations during searches. The
same observations hold for tree R3. To achieve the desired geometry of minimum
bounding rectangles, the split algorithms of the R∗-tree could be modified. This
would mean that “off-the-shelf” implementations of the R∗-tree cannot be used.
To preserve the reusability of “off-the-shelf” technology, the same problem could
be addressed by transforming the two-dimensional intervals from R2 and R3 trees
into three-dimensional points. Additional query transformations would then also be
required.
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1216 IMPLEMENTATION TECHNIQUES

A Correctness of Transformations

Having the definitions given in Section 4, the following theorem holds.

Theorem 2 For eachq = 〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 and each data setR ⊆ DB ,

IntersectB[q,CT](R) = Tq(IntersectB[q,CT])(TD(R))
PROOF: Simplifying Definition 5, we have thatTq(IntersectB[q,CT])(TD(R)) =⋃
i=1,2,3,4 IntersectS[qi](Si) = T1 ∪ T2 ∪ T3 ∪ T4. Similarly, according to Defini-

tion 3, IntersectB[q,CT](R) can be expressed asQ1 ∪Q2 ∪Q3 ∪Q4 where each
Qi is defined by a corresponding disjunct in Definition 3. Note thatQ1 = Q3 = ∅
andT1 = T3 = ∅, if TTaq < VTq̀ . We will prove thatTi = Qi, i = 1, . . . , 4. This
actually corresponds to checking correctness of a transformed query in each of the
four index trees.

We begin by looking atT1 andQ1. Let us assume that TTaq ≥ VTq̀ (otherwise
bothT1 andQ1 are empty). Then, according to Definition 3,

Q1 = {idr | 〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ R ∧
TTar = UC∧ VTar = NOW∧ q ∩ 〈TTr̀ ,CT,VT r̀ ,CT〉}.

On the other hand, according to Definition 5 and Definition 4,

T1 = {idr |〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ S1 ∧ q1 ∩ 〈TTr̀ ,TTar ,VT r̀ ,VTar 〉}.
According to the definition ofS1 and Definition 2, we have that,

T1 = {idr | 〈TTr̀ ,TTar ,VT r̀ ,VTar , idr〉 ∈ R ∧
TTar = UC∧ VTar = NOW∧ q1 ∩ 〈TTr̀ ,TTr̀ ,VT r̀ ,VT r̀ 〉}.

Thus, to prove thatT1 = Q1, we have to prove that

〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 ∩ 〈TTr̀ ,CT,VT r̀ ,CT〉 ⇔ 〈0,TTaq , 0,VTaq 〉∩
〈TTr̀ ,TTr̀ ,VT r̀ ,VT r̀ 〉,

that is,

(TTq̀ ≤ CT) ∧ (TTaq ≥ TTr̀ ) ∧ (VTq̀ ≤ CT) ∧ (VTaq ≥ VT r̀ )
⇔ (0≤ TTr̀ ) ∧ (TTaq ≥ TTr̀ ) ∧ (0≤ VT r̀ ) ∧ (VTaq ≥ VT r̀ ).

According to constraints put onq, TTq̀ ≤ CT and also VT̀q ≤ CT because we
assumed that TTaq ≥ VTq̀ . Thus, the first and the third conditions on both sides of
the implications are always satisfied and the others match, proving the implications.

As for T1 andQ1, it can be shown that to prove equalityT2 = Q2, we have to
prove that

〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 ∩ 〈TTr̀ ,CT,VT r̀ ,VTar 〉
⇔ 〈0,TTaq ,VTq̀ ,VTaq 〉 ∩ 〈TTr̀ ,TTr̀ ,VT r̀ ,VTar 〉,
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wherer is a growing rectangle. Again, expressing the intersection of rectangles by
conjunctions, we get:

(TTq̀ ≤ CT) ∧ (TTaq ≥ TTr̀ ) ∧ (VTq̀ ≤ VTar )∧ (VTaq ≥ VT r̀ )
⇔ (0≤ TTr̀ ) ∧ (TTaq ≥ TTr̀ ) ∧ (VTq̀ ≤ VTar ) ∧ (VTaq ≥ VT r̀ ).

The first condition on both sides of the implications is always satisfied and the oth-
ers match, thus the implications are proved.

As for T1 andQ1, to prove equalityT3 = Q3, we have to prove that

〈TTq̀ ,TTaq ,VTq̀ ,VTaq 〉 ∩ 〈TTr̀ ,TTar ,VT r̀ ,TTar 〉
⇔ 〈max(TTq̀ ,VTq̀ ),TTaq , 0,VTaq 〉 ∩ 〈TTr̀ ,TTar ,VT r̀ ,VT r̀ 〉,

wherer is a static stair-shaped region. Expressing the intersection of rectangles by
conjunctions, we get:

(TTq̀ ≤ TTar ) ∧ (TTaq ≥ TTr̀ ) ∧ (VTq̀ ≤ TTar ) ∧ (VTaq ≥ VT r̀ )
⇔ (max(TTq̀ ,VTq̀ ) ≤ TTar ) ∧ (TTaq ≥ TTr̀ ) ∧ (0≤ VT r̀ ) ∧ (VTaq ≥ VT r̀ ).

The third condition on the right-hand side of the implications is always true, the sec-
ond and the fourth conditions on both sides of the implications match and(TTq̀ ≤
TTar ) ∧ (VTq̀ ≤ TTar ) ⇔ max(TTq̀ ,VTq̀ ) ≤ TTar .

Based on Definition 5, it follows thatT4 is the result of an untransformed
queryq on untransformed static rectangles fromD. It is easy to conclude that
T4 = Q4. 2


