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Extending Existing Dependency Theory
to Temporal Databases

Christian S. Jensen, Richard T. Snodgrass, and
Michael D. Soo

Normal forms play a central role in the design of relational databases. Several
normal forms for temporal relational databases have been proposed. These defi-
nitions are particular to specific temporal data models, which are numerous and
incompatible.

This paper attempts to rectify this situation. We define a consistent frame-
work of temporal equivalents of the important conventional database design
concepts: functional dependencies, primary keys, and third and Boyce-Codd
normal forms. This framework is enabled by making a clear distinction be-
tween the logical concept of a temporal relation and its physical representation.
As aresult, the role played by temporal normal forms during temporal database
design closely parallels that of normal forms during conventional database de-
sign. These new normal forms apply equally well to all temporal data models
that have timeslice operators, including those employing tuple timestamping,
backlogs, and attribute value timestamping.

As a basis for our research, we conduct a thorough examination of exist-
ing proposals for temporal dependencies, keys, and normal forms. To demon-
strate the generality of our approach, we outline how normal forms and depen-
dency theory can also be applied to spatial and spatiotemporal databases.

Keywords: temporal relation, valid time, transaction time, functional depen-
dency, data semantics, normal form, database design
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1 Introduction

A central goal of relational database design is to produdatabase schemaon-
sisting of a set ofelation schemasEach relation schema is a collection of attribute
names and their associated domains.

Normal forms are an attempt to characterize “good” relation schemes. A wide
variety of normal forms has been proposed, the most prominent being third normal
form and Boyce-Codd normal form. An extensive theory has been developed to
provide a solid formal footing.

There is also a need for temporal normal forms and underlying concepts that
may serve as important guidelines during temporal database design. In response
to this need, an array of temporal normalization concepts have been previously
proposed, includindirst temporal normal fornj42], two variants oftime normal
form[4, 32], andP andQ normal formd26].

The proposals are significant since each, in the context of a particular temporal
data model, can be used to design temporal database schemas. However, the speci-
ficity of the proposals is a weakness since a given normal form inherits the inherent
peculiarities of its data model, and, having chosen a particular temporal normal
form, it is unsatisfactory to be required to define all of the normal forms anew for
each of the two dozen existing temporal data models [45], should another model be
better suited for representing the semantics of the application. Furthermore, the ex-
isting normal forms often deviate substantially in nature from conventional normal
forms and are in some sense not “true” extensions of these, for a variety of reasons
that we detail later in this paper.

In this paper, we show how temporal normal forms, including the related con-
cepts of temporal dependencies and temporal keys, may be defined so that they
apply to all temporal data models, and so that temporal database design concepts
closely parallel their conventional counterparts. We do not simply focus on a single
temporal data model. Instead, we utilize a new data model, termegitdrapo-
ral conceptual data modéBCDM), that is, in some sense, the “largest common
denominator” of existing temporal models [21]. Specifically, we have shown how
to map relations and operations in several quite different temporal relational data
models into relations and operations in this data model. This is an important prop-
erty, as it ensures that the normal forms expressed in this model are applicable also
to other models. We define the temporal normal forms in the context of this model.
Our proposal accommodateslid-timg transaction-timeandbitemporalrelations
[43, 20]. We also note that the BCDM has been adopted as the underlying data
model of the consensus temporal query language TSQL2 [47]. Design of TSQL2
schemas thus directly benefits from the definitions of temporal dependencies and
normal forms introduced here.

Our focus is on the design of temporal database schemas. A substantial body
of work exists on the specification and efficient checking of more general temporal,
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or dynamic, integrity constraints. The dependencies, keys and normal forms of
this paper can be seen as constraints on database instances, but are different in two
respects. Unlike general constraints, they impact the design of temporal databases.
And since the focus is on database design, on-line checking of the constraints is not
of relevance here.

We also believe that additional normalization concepts are needed that take the
different temporal characteristics of data into consideration, but the development of
such concepts is beyond the scope of this paper. Instead, this paper is restricted to
providing data-model independent mappings of the existing conventional normal-
ization concepts to temporal databases.

We also limit the scope of the paper to so-cailga-state dependenci¢s].
Intra-state dependencies are defined in terms of individual snapshots of a temporal
database. For example, the conventional notions of functional dependency and mul-
tivalued dependency are, by definition, intra-state dependenicies.state depen-
dencieson the other hand, express constraints between attribute values in different
shapshots.

The paper is organized as follows. In Sections 2, 3, and 4, we examine all
existing definitions, to our knowledge, of temporal dependencies, keys, and normal
forms, respectively. This is the first thorough survey of work in these areas. Each
section first briefly describes the relevant conventional normalization concepts, and
lists a number of important properties that should carry over to their temporal coun-
terparts. On this basis, the temporal database design proposals known to us are
introduced and evaluated. The existing definitions satisfy many, but not all, of the
properties required of entirely natural extensions of conventional normal forms.
The existing temporal design concepts provide a valuable foundation upon which
we subsequently build.

The topic of Section 5 is the bitemporal conceptual data model. We describe
the type of relation supported by the BCDM, and briefly describe a few algebraic
operators needed to support the new temporal normal forms defined in the next
section, where we then develop temporal counterparts of the conventional depen-
dencies, keys, and normal forms, again, limiting ourselves in this paper to intra-state
variants. This is done is such a way that virtually all of the conventional normaliza-
tion theory carries over to the temporal context. The result is that the role played
by temporal normal forms during temporal database design closely parallels that of
normal forms during conventional database design. This is possible, in part, be-
cause of a careful choice of temporal data model. Section 7 explores the properties
of the temporal framework.

To demonstrate the generality of our approach, we outline, in Section 8, how
normal forms and dependency theory can also be applied to spatial and spatiotem-
poral databases [2]. Recent work, conclusions, and future research are the subjects
of Sections 9 and 10.
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2 Previous Proposals for Temporal Dependencies

In this section, we consider previous proposals of temporal dependencies (in chrono-
logical order, of course!). To provide a basis for this, we first review the definition of
the conventional functional dependency, and then we highlight those properties that
we feel should also be satisfied by corresponding temporal database dependencies.

2.1 Conventional Functional Dependency

Throughout the paper, we generally ug¢o denote an arbitrary relation schema,
andr(R) to denote that is an instance oR. Explicit (non-temporal) attributes of
a relation schema are generally denotad. . . A,,, andX andY are used to denote
sets of attributes. For tuples, the symbak used (possibly indexed), anflX]
denotes the projection of tupteonto the attributeX.

For the purpose of database design, a functional dependency [1lhiean
sional property of a database schema. We associate with each schema a set of all
instances that are possible in the modeled reality, termegh&amingful instances

Definition 1 Let a relation schemA& be defined a® = (A1, Ao, ..., A,), and let
X andY be sets of attributes a®. The setY is functionally dependerdn the set
X, denotedX — Y, if for all meaningful instances of R

Vs1, 52 € r (s1[X] = s2[X] = s1[Y] = so[Y]).

If X — Y, we say thaX determines’. A functional dependency¥ — Y istrivial
ifY C X. O

A functional dependency describes (and constrains) the set of possible ex-
tensions of a relation. Which functional dependencies are applicable to a schema
reflects the reality being modeled and the intended use of the database. Determining
the relevant functional dependencies is a primary task of the database designer.

The two most important normal forms, third normal form [10] and Boyce-
Codd normal form [12], as well as the concept of key, all rely on the concept of
functional dependency.

Example 1 To illustrate, consider a database recording the phone numbers, de-
partments, and employees in a company. This can be modeled with the schema
Emp = (Name Dept PhNO. In this company, an employee can belong to only one
department, meaning that Name Dept. An employee may have several phone
numbers, so Name does not determine PhNo. O

Definition 2 The closureof a set of functional dependencids, is the set of de-
pendencies, denotdd", that are logicall implied by. O

Rather than applying the definition of functional dependency directly, it is
customary to apply a set of inference rules to derive new, implied dependencies.
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Armstrong’s axioms, a set of three inference rules, are among the most popular
of such rules. This set has been proven to be sound and complete, meaning that
precisely those dependencies that can be derived using the definition of functional
dependency can also be derived using the rules [3].

Example 2 In the example database, the closure of the given functional depen-
dency contains the following additional non-trivial dependencies.

{Name PhNg — {Dept

{Name PhNg@ — {Name Dept

{Name PhNg — {PhNaq Dept

{Name PhNg — {Name PhNaq Dept O

As a basis for the subsequent discussion, we summarize here two fundamental
gualities of dependencies (e,g., functional).

D1. Dependencies are intensional, not extensional, properties.
While it may require only few textual modifications to change an extensional
definition into an obvious intensional counterpart, the conceptual difference
between intensional and extensional concepts is significant. Dependencies
and normal forms are applied to relation schemas during database design
where no instances are present yet. Thus, extensional definitions make lit-
tle sense conceptually.

D2. Dependencies are defined independently of the representation of a relation.
These concepts are based on semantics, not on an arbitrary representation.
The meaning of this desideratum will become clearer once the necessary con-
cepts have been introduced; see Section 5.3. Briefly, in some data models
it is possible to have different relation instances that nevertheless contain the
same temporal information (i.e., are snapshot equivalent[21]). Such instances
should satisfy the exact same dependencies. Further, instances in different
temporal data models with the same information content should satisfy the
same dependencies.

While conventional dependencies may share additional qualities, these two quali-
ties are fundamental and are satisfied by all conventional dependencies, including
multivalued and join dependencies.

We add a third desideratum that is also related to the discussions on temporal
keys in Section 3. However, it is more appropriately applied to functional depen-
dencies.

D3. Functional dependencies are used to define keys.

We now characterize each of the previously proposed temporal dependencies based
on these desiderata.
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2.2 Extensional versus Intensional Database Constraints

In one of the first papers in temporal databases, Clifford and Warren make the dis-
tinction betweerextensional database constraintghich “can be said to hold (or
not hold) simply on the basis of the extension of the database with respect to a
single state” [[9], p. 246] (where “single state” is at a particular point in time),
andintensional database constraintghich “can be said to hold (or not hold) only
by examining at least two states of the” valid-time database (this terminology is
somewhat inconsistent with the normal definitionmEnsionalas applying to all
possible states, @xtensions They classify conventional functional dependencies
as extensional constraints. They then show that their intensional lkagjg &llows
one to specify explicitly that a functional dependency must hold over all states of the
database. Their logic is also able to specify other kinds of intensional constraints,
such as “No employee can later return to the same department.”

Concerning the subject of this paper, this early work is preliminary, in that
a functional dependency over time was never defined. Subsequent efforts, to be
discussed next, to define temporal variants of functional dependencies have taken
different tacks. We feel, however, that the general approach introduced in Clifford’s
paper is the appropriate one. We will define in Section téraporal functional
dependencgnd associated normal forms by formalizing the notion that a functional
dependency should hold over all time.

2.3 Dynamic Functional Dependencies

In the context of a formal model for the evolution of databases in time, Vianu ex-
tended the notion of functional dependencies (FDs) to hold over consecutive states
of a database. In this definitioty, is a set of attributes in the relational schertia,
represents the values of these attributes in a state of the databaseremsents

the values of these attributes in the next state of the database (Vianu provides formal
definitions for these sets). The basic idea is to have attribute values in consecutive
states determine values of other attributes in these states.

Deflnltlon 3 “A dynamic functional dependen@FD) overU isan FDX — Y
overU U such that, for each € Y, XAﬂU 79 andXANU #¢. ... Informally,
the above condition on FD§ — Y overUU ensures tha — Y does not imply
any nontrivial FDs ovet/ or U. (These would not truly be dynamic constraints.)
For example, i = ABC, thenA — B is a DFD, whileA — BC is not.” [[52],

p. 36] O

In an example provided by Vianu of an “equal opportunity” policy, a new salary is
determined solely by merit in conjunction with the old salary. This policy may be
encoded in the DFDMERIT SAL — SAL.

This definition satisfies Desiderdidl andD2 listed in Section 2.1. No keys
are defined in terms of DFDs.
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In the present paper, we will be concerned only with dependencies on tem-
poral databases that can be expressed on individual snapshots. Dynamic func-
tional dependencies address a different problem. Also, we will accommodate valid-
time, transaction-time, and bitemporal relations; dynamic dependencies are defined
solely over transaction-time relations.

2.4 Temporal Dependency in the Temporal Relational Model

The Time Relational Model (TRM) [32] is a valid-time data model. Valid-time is
supported by appending to each tuple two time attrib(ifes?,) denoting that the
tuple was valid during the closed intervd}, 7,].

As the basis for the definition of a temporal normal form (to be introduced
later), Navathe and Ahmed defined the notion of temporal dependency as follows.

Definition 4 There exists aemporal dependendyetween two time-varying at-
tributes, A; and A;, in a relation schem® = (A, Ao, ..., Ay, Ty, Te) if there
exists an extension(R) containing two distinct tuples,andr’, that satisfy each of
the following three properties.

1. t[K] = t/[K] whereK is the time invariant key.
2. t[T.] =1 [T,] — 1V [T, =t[T;] — 1.
3. 1[A;] = 1'[A;]1 XOR 1[A;] = 1'[Aj].
[[32], p. 156 and [1]] O

Thus, two attributes are mutually dependent if we are able to find, in some exten-
sion, two tuples that represent the same object of the modeled reality, have consec-
utive valid-time intervals, and agree on attribdteand disagree on attribute; or
disagree om; and agree om;. If two attributes arenot mutually dependent, then

they are termedynchronousas they change simultaneously.

The desire is to include only synchronous attributes in a relation. Otherwise,
when the value of an attribute changes, the other attributes retain their previous
value; these values must be replicated in the new tuple, creating redundant informa-
tion.

Example 3 Consider the following relation instance with time-invariant key Emp.
Emp Dept | Mgr | 75 | 7.
Bill Shipping | Zoe | 1 | 4

Bill Loading | Zoe | 5 | 10
In this relation instance a temporal dependency exists between the Dept and Mgr
attributes. Because of this temporal dependency, the Emp and Mgr attribute values
had to be copied to a new tuple when Bill changed departments. O

This dependency satisfies only Desiderafdi It is dependent on the repre-
sentation of a temporal relation and is not used for defining keys.
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2.5 Nested Relations with Valid-Time

Tansel and Garnett showed how nested relations can be augmented with valid-time
to support complex objects [50]. This data model uses attribute value timestamping.
Attribute values have the form ¢, v > wherer is a valid-time element (a set of
maximal valid-time intervals) and is a conventional attribute value. Informalty,
indicates the time intervals when the attribute had the valudtribute values may

be either atomic attribute values, as just described, or they may be nested relations
themselves.

This model does not define temporal dependencies. Instead, it defines snap-
shot multivalued dependencies between atomic attribute values, where the valid-
time associated with the atomic attribute value is treated as an explicit part of the
attribute.

Example 4 Consider the following relation instance with key Emp. For simplicity,
we only show a single valid-time interval associated with each attribute.

Emp Dept Mgr
< [1,10], Bill > | < [1,4], Shipping> | < [1, 6], Zoe >
<[5, 10], Loading> | < [7,10], Janet>
The relation contains a single tuple showing Bill's employment history for the in-
terval from time 1 until time 10. Temporal intersection of the attribute timestamp is
used to interpret the relation. From time 1 until time 4, Bill worked for the shipping
department and was managed by Zoe. From time 5 to time 6, Bill worked for the
loading department. During this time his manager remained Zoe. At time 7 and
continuing until time 10, Bill remained at the loading department but had Janet as
his manager.

We can unnest the nested relation to explicitly show the multivalued depen-
dencies. Some of the tuples produced in the unnesting may not be meaningful since
their attribute timestamps have an empty intersection.

Emp Dept Magr
< [1,10], Bill > | < [1,4], Shipping> | < [1, 6], Zoe >
< [1,10], Bill > | < [1,4], Shipping> | < [7,10], Janet>
< [1,10], Bill > | <[5,10], Loading> | < [1, 6], Zoe >
< [1,10], Bill > | < [5,10], Loading> | < [7,10], Janet>
The first, third, and fourth tuples in the unnested relation encode the same facts
over the intervals [1,4], [5,6], and [7,10], respectively, as does the single tuple in
the nested relation. The second tuple does not record a meaningful fact since the
intersection of its attribute timestamps is empty.

If we regard the attributes as atomic, i.e., the timestamps contained in the
attributes are considered explicit values, it should be clear from the unnested re-
lation that the multivalued dependencies Emp Dept and Emp>—> Mgr hold.
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Moreover, these dependencies are the traditional multivalued dependencies used in
shapshot database design to obtain fourth normal form relation schemas. O

The central observation is that multivalued dependencies exist between the
key attribute and set-valued attributes in nested relations. While also present in
non-temporal nested relations [33], the same observation holds when valid-time is
added to the model. Tansel and Garnett use these multivalued dependencies to guide
the normalization of nested valid-time schemas.

This approach satisfies DesideratDrh but notD2 (although the distinction
between semantics and representation perhaps is somewhat unclear). Desideratum
D3is not applicable to multivalued dependencies.

2.6 The Interval Extended Relational Model

The interval extended relational model (IXRM) [27] integratesi{mensional) in-
tervals into the snapshot relational model and meets in this way the needs of many
application areas. The intervals, one per attribute, may be drawn from any data
type, including time and space. Interval-valued attributes are accommodated, and
new operators that manipulate relations with interval attributes are defined.

The IXRM is not a temporal data model. The timestamps in a tuple do not
specify when that tuple, or even an attribute value in that tuple, was valid. Put
differently, the query language does not interpret interval attributes as temporal
attributes. The IXRM was designed to be used in applications (e.g., soil manage-
ment, e.g., [26]) where according interval attributes temporal semantics would ren-
der such attributes of little use. Rather, such timestamps are more properly thought
of asuser-defined timpt3]. The IXRM is mentioned here because, while it is not a
valid-time model, database users may think of relations in this modepassent-
ing valid-time relations. Indeed, some of the operators of the IXRM query language
may conveniently be used for valid-time queries.

Lorentzos extended the notion of functional dependency in two ways. In the
following definitions, 1(D) denotes the domain of intervals delimited by points in
domain D; and X(D) denotes an arbitrary domain of either points or intervals.

Definition 5 “If R(A=I(D), B=X(D), C=X(D)) is a relation scheme it is said that A
Interval Functionally DeterminedFD) B if and only if wheneveKay, b1, c1) €
R, (a2, b2, c2) € R anday = ap thenby = b2.” [[27], p. 43] O

Note that the value of attribute C is not used in the definition. Hence this depen-
dency is similar to the snapshot functional dependency, with the added constraint
that the left-hand side be an attribute over an interval domain, interpreted as an
atomic value.

Of relevance for the next definition, the result® UNFOLOA](R), where
R is a relation instance and is an interval-valued attribute at, is obtained by
“expanding” each tuple oR in turn. An argument tuple is expanded by generating
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one result tuple for each point in igsinterval value. The point becomes the ngaw
value of the result tuple which is otherwise left unchanged. For example, unfolding
the tuple([1, 3], b, ¢) yields{(1, b, ¢), (2, b, ¢), (3, b, ¢)}.

Definition 6 “Let R(A=X(D1), B=X(D2), C=X(D3)) be a relation scheme and let
S = S-UNFOLDOA](R). It is said that APoint Functionally Determine@FD) B
if and only if wheneveray, b1, c1) € S, (a2, bz, c2) € S anda; = ap then
b1 = b2." [[27], p. 44] O

In this dependency, an intervaln®tinterpreted as an atomic value, but rather as a
set of points.

Note that a A PFD implies an IFD, but not vice versa. These dependencies
may be combined to treat some interval-valued attributes as atomic and others as
sets of points.

These dependencies are intensional properties, but are tied to the represen-
tation of a relation. They are used to define temporal keys. Hence they satisfy
Desideratd1 andD3.

2.7 Wijsen’s Temporal Dependency Theory

Wijsen and his colleagues have recently extended snapshot dependency theory to an
object-based data model, i.e., a data model supporting object-identity [54, 55]. This
data model is a sequence of snapshot relations indexed by valid-time. Four types
of dependencies are defined: snapshot functional dependencies (SFDs), dynamic
functional dependencies (DFDs), temporal functional dependencies (TFDs), and
interval dependencies (IDs) [55, 56].

SFDs are intra-state dependencies, i.e, they are defined in terms of a single
snapshot in a temporal database. Essentially, an SFD is the conventional functional
dependency extended with object-identity.

DFDs, TEDs, and IDs are inter-state dependencies, i.e., they apply to the se-
guence of snapshots constituting the temporal relation. Like SFDs, these dependen-
cies use object identity. DFDs constrain pairs of adjacent valid-time states; TFDs
and IDs constrain a sequence of multiple valid-time states.

In terms of the desiderata, this proposal satisfies Desidematynm that the
defined dependencies are intensional properties. However, the reliance on object-
identity forces the proposal to be representation-dependent. The dependencies are
used to specify keys, and so satisfy DesideraBn

2.8 Summary

We have surveyed several interesting definitions of temporal dependencies. A few,
such as Tansel and Garnett and Lorentzos, treat relations with temporal information
as snapshot relations with explicit temporal attributes. The remaining define depen-
dencies, specifically Vianu’s dynamic dependency, Navathe and Ahmed’s temporal
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dependency, and Wijsen et al.’s DFD, TFD, and ID, are inter-state dependencies,
and thus are more ambitious than the intra-state dependencies considered further in
this paper.

3 Previous Proposals for Temporal Keys

We now turn to the related topic of defining keys for a temporal data model. We
briefly review the notion of keys in conventional databases and the important prop-
erties of conventional keys. Then the existing temporal database keys are introduced
and contrasted with the properties of conventional keys.

3.1 Conventional Keys

Definition 7 The set of attributeX is asuperkeyof R if X — R. A superkey

Is minimalif when any attribute is removed, it is no longer a superkey. A relation
schema may have many minimal keys, terncedididate keys One such key is
selected as thgrimary key. O

Example 5 In the example database, introduced in the previous section, there are
two superkeys, {Name, PhNo} and {Name, PhNo, Dept}. Only the former is mini-
mal; hence, it is the primary key, and there are no other candidate keys. O

The following five fundamental properties are held by the definitions of snap-
shot keys. We find it desirable that temporal keys also have these properties.

K1. Keys are intensional.
K2. Keys are properties of stored (base) relations only.

K3. Particular attributes are not a priori designated as keys.
In some temporal data models, relations have mandatory timestamp attributes.
The values of such attributes indicate when the non-temporal attribute values
are valid (or current). The desideratum states that these mandatory attributes
or other attributes should not be required to always be (part of) keys. Rather,
the database designer should be able to choose more freely.

K4. Keys are independent of the representation.
This desideratum, along with the previous one, will be clarified in Section 5.3.

K5. Primary keys are minimal.

Next we examine various proposals for temporal keys. Relation instances are
used for illustration, even though the notion of key should be applied to relation
schemas during database design. The key attributes are underlined.
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3.2 Keys in the Time Relational Model

In Ben-Zvi's pioneering dissertation [4], the standard definition of snapshot key
is retained (though the definition is stated informally, without explicit reference to
functional dependencies). To explain the notion of temporal key, we must first in-
troduce the notions of tuple-version, tuple-version-set, and time-relation as defined
in the Time Relational Model.

Definition 8 “Given a Relation R, a Key K for R, and letting; 3= (d1, do, ds, ...
d,) denote a typical tuple in R. Auple-Version;, is the ordered list;;|= (D;, T¢_,
Tf’s’ Tée’ Tf'e’ Tii)'”

“A Tuple-Version-Set,, is a set of Tuple-Versiond; /i = 1, ...m}, all having the
same key value Ki which compose the whole history of a unique tuple; this tuple
can be uniguely determined by the key Ki.”

“Given a Relation R, &ime-RelatiorR; is the collection of all tuple-version-sets

{L; j =1,...n} constructed from R'’s tuples.” [[4], pp. 47-50] O

The five T attributes used above encode the valid and transaction time of a tuple-
version. A time-relation is a set of tuple-version-sets.

A set of attributes K is &emporal keyf a time-relation, R if (1) the attributes
K form a (conventional) key of the corresponding non-temporal relation, R, and (2)
the tuple-version-sets in;Rire defined by partitioning tuple-versions so that tuple-
versions with identical values for the attributes K are in the same tuple-version-set.

This definitions has several notable properties. Clearly, the definition of a
temporal key is intensional and satisfies Desideralim As views are not dis-
cussed in this context, it is not known whether Desiderakids satisfied. Unlike
conventional relations, a time-relation has precisely one temporal key. This is so
because tuple-versions partitioned on a set of attributes K are generally not guaran-
teed to also be partitioned on any other set of attributes. A temporal key is a priori
designated, violating Desideratuf3, because a particular temporal key is chosen
to achieve a desirable structuring of the tuple-versions. The choice of temporal key
Is not determined by the representation of a time-relation, so Desidekatusrsat-
isfied. Finally, the notion of minimality of temporal keys for time-relations makes
little sense, since a time-relation can only have a single key. The temporal key of a
time-relation, R, may or may not be a minimal key of the corresponding snapshot
relation, R.

3.3 The HQL Data Model

In the data model associated with the query language HQL [36], valid-time relations
are represented by snapshot relations where tuples are timestamped with intervals.
Thus, a valid-time relation with explicit attributes, ... , A, is represented by a
snapshot relation with schengay, ... , A,, start, end).
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Without providing further explanation of the notion of key, it is required that
the attributestart andend be part of any primary key.

Two points can be made. First, using both timestamp attributes seems unnec-
essary. Indeed, one of the attributes is redundant, violating the minimality require-
ment of a primary key. Second, the definition of key appears to be representation-
dependent. In summary, this definition may satisfy Desidé¢atk3 (insufficient
discussion makes it impossible to know for sure), but it does not satisfy Desiderata
K4 or K5.

Example 6 Consider the following relation instance.

Emp Dept start | end
Bill Shipping | 1 5

Bill Shipping | 5 10
The primary key of the relation schema is {Engpart, end}. It may be observed
that generally either {Emstart} or {fEmp, end} are sufficient. O

3.4 The TRM Data Model

A key of a TRM relation schema is defined as follows. In the definition, the time-
invariant key (TIK) is the primary key of a snapshot version of the valid-time rela-
tion schema.

Definition 9 The candidate keys of a TRM relation schema are (T)Kor (TIK,
T,), i.e., the snapshot key appended with either the starting or ending timestamp.
(TIK, Ty) is designated as the primary key. [32] a

This definition is clearly intensional and therefore satisfies Desider&tlim
However, the definition does not satisfy Desideratkith since derived relations
have the given key. Similarly, Desiderd&{8 andK4 are not satisfied sincg (or
T,) must be part of a candidate key, and the definition is dependent on the given
tuple-timestamped representation. We assume Desidet@buma satisfied since
the TIK is assumed to be a minimal key.

3.5 The Interval Extended Relational Model

As before, we emphasize that the IXRM is not a temporal data model, in that it
supports only user-defined time [27]. It can, however, be used as the representation
of a valid-time relation.

Keys are defined in this data model in terms of point and interval functional
dependencies, in a manner very similar to snapshot keys. A key is required to be
minimal. As Lorentzos mentions “the” key, it is assumed that only the primary key
was being defined. This definition of key satisfies all but Desider&tdm
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Example 7 Consider a sample relation instance.

Emp Dept T

Bill Shipping | [1,5)
Bill Shipping | [5,10)
Bill Shipping | [3,10)

The key of this relation is T, since T determines {Emp, Dept}. a

3.6 The TempSQL Data Model

Gadia and Nair define a special notion of key in the data model associated with the
query language TempSQL [17, 31]. To examine this concept, the type of relation
employed must be understood first.

Example 8 Consider the following relation instance indicating the managers for
departments.

Mgr Dept
[10, 14] Bill | [10, 19] Shipping
[15, 19] Al
[15, 30] Bill | [15, 30] Loading

Attribute values are stamped with finite unions of intervals (i.e., valid-time elements
[16]). All information about the Shipping department is contained in the first tuple,
which states that Bill was the manager from time 10 to 14 and that Al was the
manager from time 15 to 19. O

We now state the definition, then explain it using the example.

Definition 10 “Arelation over R, with KC R as itskey, is a finite set of non-empty
tuples such that no key attribute value of a tuple changes with time, and no two
tuples agree on all their key attributes.” [[17] p. 10] a

The definition lists two requirements that must be fulfilled for a set of at-
tributes to be a key. In the example, the attribute Dept is a key because for each
tuple, there is only one value of attribute Dept and no two tuples have the same
value for attribute Dept.

It appears that a key is a property of arelational instance, making the definition
extensional. Also, the definition is independent of the notion of temporal functional
dependency. The dependencies DepiMgr and Mgr— Dept are assumed to hold,
making both Dept and Mgr keys of the schema (Dept, Mgr) in the conventional
sense. Yet, in the relation instance above, the attribute Mgr is not a key in the sense
defined here. An operator is available that restructures the instance to yield the
following, equivalent relation, now with Mgr as the only key.
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Mgr Dept
[10, 30] Bill | [10, 14] Shipping
[15, 30] Loading
[15, 19] Al [15, 19] Shipping

To summarize, this definition of key satisfies Desidek8aandK4, but does
not satisfy Desideratf1 or K2 (because operators can change the key of a rela-
tion). Primary keys are not defined in the model.

3.7 Wijsen’s Theory of Keys

In conjunction with their work in temporal dependency theory, Wijsen and his col-
leagues have developed a notion of keys for temporal relations [54, 55]. Three types
of keys, snapshot keys (SK), dynamic keys (DK), and temporal keys (TK), corre-
sponding to the notions of snapshot functional dependency, dynamic dependency,
and temporal dependency, respectively, are defined. Recall from Section 2.7 that a
major motivation for this work was to incorporate the concept of object-identity into

a temporal database. As object-identity is normally a hidden attribute of an object,
l.e., is an attribute that cannot be directly referenced or queried, the defined keys
attempt to make the identification of tuples belonging to the same object possible.

For example, the snapshot key is (informally) defined as follows.

Definition 11 A snapshot key is a set of attributes that snapshot functionally deter-

mines the object-identity of an object, for any snapshot which can be taken from
a temporal database. The snapshot key is also minimal. [Rephrasing of definition,
[54], p. 15] O

As can be seen from the definition, a snapshot key uses the object-identity in its
definition, though the object-identity is not part of the key. Notice also, that the
snapshot key is an intra-state key, i.e., the snapshot key does not express constraints
between attribute values in snapshots taken at different times.

This definition satisfies all of the desiderata except Desider&dinsince it
relies on object-identity.

Dynamic keys and temporal keys are defined using inter-state dependencies.
For example, a dynamic key, like a dynamic functional dependency, holds between
adjacent states of a temporal database, and a temporal key, like a temporal func-
tional dependency, holds between disjoint intervals of time.

Inter-state dependencies and keys are beyond the scope of this paper. Our
temporal key, to be defined later, is very similar to Wijsen’s snapshot key, except
we do not rely on the presence of an object-identity attribute.
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3.8 Summary

We have surveyed several interesting notions of keys. Each of the given proposals
adapt the notion of conventional relational keys to temporal databases, but none of
the keys individually satisfy all five desiderata in Section 3.1. We base our work on
the foundation provided by these previous proposals.

4  Previous Proposals for Temporal Normal Forms

We wish to develop normalization concepts that closely parallel their counterparts
in conventional normalization theory. We therefore begin by briefly reviewing the
two most important relational normal forms, third normal form and Boyce-Codd
normal form. This leads to a formulation of the common aspects of conventional
normal forms that we wish our temporal normal forms to possess. Existing temporal
normal forms are then introduced and examined with respect to these properties.

4.1 Conventional Normal Forms

A normal form is arintensionalproperty of a database schema that follows from a
set of (functional, multivalued, or other) dependencies. The goal of database design
Is to obtain a set of relation schemas that, together with their dependencies, satisfy
the normal forms.

We define the two most important normal forms, third normal form [10] and
Boyce-Codd normal form [12].

Definition 12 The pair of a relation schema&, and a setF, of functional de-

pendencies o is in third normal form(3NF) if for all non-trivial dependencies,
X — Y,in FT, X is a superkey foiR or each attribute irt is contained in a
minimal key forR. a

Definition 13 The pair of a relation schem&, and a setF, of functional depen-
dencies ok is in Boyce-Codd normal forlBCNF) if for all non-trivial depen-
denciesX — Y in FT, X is a superkey foR. O

The normal forms only allow the existence of certain functional dependencies,
making other functional dependenciesillegal. As we shall see, illegal dependencies
indicate either the need for null values, the possible existence of update anomalies,
or the presence of redundant information. By obeying the normal forms, some of
these undesired effects are avoided.

Example 9 Returning to the example in Section 2.1, Emp = (Name, Dept, PhNo),
we have Name> Dept. Since Name is not a superkey, BCNF is violated. As Dept
is not part of any minimal key, 3NF is also violated. As we may expect, a database
using this schema exhibits several problems.
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First, insertion anomalies are possible. If we want to insert the department of
an employee but do not know the employee’s telephone number, either the informa-
tion cannot be inserted or the phone number must be represented by a null value.
This is also true when we do not know the employee’s department. Normal forms
attempt to avoid excessive use of null values.

Second, update anomalies are possible through redundant information. For
example, whenever a new telephone number is inserted for an employee, the de-
partment information must be repeated. Apart from being wasteful of space, this
means that whenever an employee switches departments, several tuples, one for
each of the employee’s telephone numbers, must be updated. If one such tuple is
not updated then an inconsistency will be generated in the database. Normal forms
attempt to avoid redundancy.

Third, deletion anomalies are possible. Suppose that an employee no longer
needs a telephone, and all telephone numbers for that employee are deleted from the
database. When the last tuple containing that employee’s telephone is deleted, the
removal of that tuple results in the loss of the employee’s department information.
Again, undesirable null values may be used to overcome this problem. O

Decompositions one way to address these problems, by breaking up a large
relational schema into several smaller schemas, each of which satisfy the normal
forms.

Example 10 All of the anomalies previously mentioned with the example rela-
tional schema are avoided by decomposing the schema into Empbédame
Dept and EmpPhNe= (Name PhNo, both of which are in BCNF. a

In some applications, queries involving a join of two relations occur fre-
guently. As joins are expensive operations, performance considerations may dictate
that the relation schemas be merged, even if the resulting schema does not conform
to a desirable normal form. Thus, anomalies and redundancy may be tolerated in
order to enhance the performance of the database management system.

Additional normal forms exist that are more restrictive than BCNF. For ex-
ample, fourth normal form [13] is a close parallel of BCNF, but which relies on the
notion of multivalued dependencies [60].

We do not address these normal forms, for two reasons. First, they are gen-
erally believed to have less relevance in practical database design. Second, no pro-
posals for temporal counterparts of these have been proposed. Still, even though we
do not cover these further normal forms in this survey, temporal versions of such
normal forms such as fourth normal form may be defined within the framework
developed in Section 6.3.

In summary, the fundamental qualities of the conventional normal forms may
be outlined as follows.
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N1. Normal forms are intensional, not extensional, properties.
As argued before, while this may be a subtle distinction, it is a conceptually
important one.

N2. Normal forms are defined solely in terms of dependencies that exist or do not
exist.

N3. Normal forms are properties of stored (base) relations only—redundancy and
anomaly issues do not apply to (computed) views.
We have seen that normal forms are motivated by the desire to avoid update
anomalies and redundancy. These issues are only of interest for base relations
as they are the only relations that must be stored, and they are the only re-
lations that can be updated. Normal forms do not apply to views or derived
relations, and they are independent of query languages.

N4. Normal forms are defined independently of the representation of a relation.
These concepts are based on semantics, not on an arbitrary representation.
The meaning of this desideratum will become clearer once the necessary con-
cepts have been introduced, see Section 5.3.

While conventional normal forms may share additional qualities, these four qual-
ities are all fundamental and are satisfied by all conventional normal forms. We
characterize each of the previously proposed temporal normal forms based on these
desiderata.

When presenting the various normal forms, it is convenient to illustrate these
by means of sample relation instances. While normal forms may be applied to
individual instances, we emphasize that normal forms should be applied to relation
schemas during database design.

4.2 Time Normal Form

In his Time Relational Model, Ben-Zvi defined the first temporal normal form. The
definition employs the concepts of contiguous and non-contiguous time-relations.
Intuitively, a time-relation is contiguous if “there are no ‘holes’ in the effective-
time history of each tuple-version set” ([[4], p. 137]; a formal definition is also
provided). To illustrate this, consider a tuple-version-set that records the department
history of employee BiIll. If it is always the case that when Bill resigns from one
department, he immediately starts in another department, there are no times (i.e.,
no “holes”) during Bill's employment when he does not have a department value.
A time-relation “R is non-contiguous it is not contiguous.”

Definition 14 “A time-relation R is in time normal formif Relation R is inany
normal form anceitherall its attributes are contiguous non-contiguous.” [[4],
p. 139] O

Here, R is the underlying conventional relation on whichifRkdefined (see Sec-
tion 3.2).
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The rationale for this normal form is two-fold. In the example above, if tuple-
version-sets are known to be contiguous, users need not explicitly terminate the
employment of an employee in one department when recording that the employee
Is now with another department—the system is capable of doing this. Next, the
contiguity may be exploited in the implementation of a time-relation. It is not ne-
cessary to explicitly record when an employee left a department as this time may
be inferred from the time when the when the employee joins another department.

One confusing aspect of the definition is that it referattabutesas contigu-
ous or non-contiguous, even though these notions are only defined for relations. A
second confusion is whether first normal form qualifies. Earlier discussion of R
implies that it is in first normal form.

This definition satisfies Desideratd andN3. It does not satisfy Desiderata
N2 (since contiguity is not defined in terms of functional dependencid$dgsince
the definition of contiguity is in terms of the representation of a time-relation).

4.3 First Temporal Normal Form

Segev and Shoshani define, in their Temporal Data Model, a normal form, 1TNF, for
valid-time relations [42]. To understand this normal form, we need to first describe
their data model and the special variant of the timeslice operator employed there.

Valid-time relation schemas have a distinguished, so-caledogate at-
tribute. Surrogates represent objects in the modeled reality, and the time-varying
attribute values in a tuple of a relation instance may be thought of as containing
information about the object represented by the surrogate of the tuple.

The special timeslice operator relies on the presence of the surrogate attribute.
It takes a valid-time relation and a time value as arguments and returns, for each
surrogate value, all the values of each time-varying attribute that are valid at the
time given as argument. Thus, the result contains precisely one tuple per surrogate,
valued with at least one time varying attribute value, valid at the time argument.
As another consequence, time varying attributes may be set-valued, leading to a
non-1NF result relation.

Definition 15 For a relation to be irirst temporal normal forr{1TNF), “a time-
slice at point has to result in a standard 1NF-relation.” [[42], p. 17] O

In addition to giving a conceptual definition, the authors present two represen-
tation-dependent definitions of 1TNF, for valid-time relations represented by snap-
shot relations using interval and event tuple timestamping, respectively. For the
interval-based representation, containing the attribiife@he starting valid time)
andT, (the ending valid time), the following definition is given.
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Definition 16 “A relation with a schemaR(S, A1, ..., A,, Ts, T,), is in 1TNF if
there do not exist two tuples(st, a, ... , al, ¢, t1) andr3(s?, a2, ... , a2, 12, t?)

such that! = s2 and the interval§?, t1] and[¢2, ¢?] intersect.” [[42], p. 17] O

e

Example 11 Consider the following interval timestamped relation instance where
the Emp attribute is assumed to contain surrogate values.

Emp Dept T, | T,
Bill Shipping| 1 | 4
Bill Loading | 5 | 10
This relation instance is in 1 TNF since no two tuples with the same surrogate have
overlapping time intervals. O

The normal form has a specific purpose within the Temporal Data Model.
In essence, the model extends the relational model with surrogates. It then pro-
ceeds by defining a timeslice operator that uses the surrogates in a way that leads
to the possibility of getting set-valued attributes in results of timeslice operations.
This normal form is introduced to ensure that the results of timeslice operations
are always tuples with atomic attribute values. Thus, 1TNF is required rather than
desirable.

This normal form has a different motivation than do conventional normal
forms and it is needed because of non-relational extensions in the data model.
First, the normal form is extensional—it applies to a relation instance, not a re-
lation schema as do conventional normal forms. Second, the normal form is based
on an operator which relies on a designated attribute, the surrogate attribute. In the
conventional relational model, no attribute is special.

In summary, 1TNF does satisfy Desideratii#, as a conceptual definition
is provided. However, 1TNF does not satisfy Desidefdta(since normal forms
are defined on relations, rather than relation schem\#sjthough the conceptual
definition does employ the notion of snapshot 1NF)N& (since operators are
expected to preserve 1TNF, and are only defined over 1 TNF relations).

4.4 Time Normal Form

This normal form for valid-time relations also applies to an interval tuple-time-
stamped representation [32]. Unlike BenZvi’'s Time Normal Form and Segev and
Shoshani’'s 1TNF, it is based on the notion of temporal dependency, defined in Sec-
tion 2.

Definition 17 A valid-time relation “is intime normal form(TNF) if and only if

it is in [snapshot] BCNF and there exists no temporal dependency among its time
varying attributes.”

[[32], p. 157] O
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Example 12 Consider the following relation instance with time-invariant key Emp.
Emp Dept Mar | Ts | T,
Bill Shipping | Zoe |1 | 4
Bill Loading | Zoe | 5 | 10
Our previous observation that a temporal dependency exists between the Dept and
Mgr attributes means that this relation instance violates TNF. a

This definition satisfies Desideratd andN2, but it does not satisfy Desider-
ataN3 (because operators are defined only on TNF relations{oAlso, snapshot
normal forms, e.g., BCNF, and therefore snapshot functional dependencies are ap-
plied to the representations of valid-time relations [32], violating Desider&tdm
The clear distinction between the meaning of and the representation of a valid-time
relation is a more recent development in temporal databases.

4.5 The HSQL Data Model

In the valid-time data model associated with the query language HSQL [40], there
Is an explicit distinction between valid-time relations and their snapshot relation
representations. Thus a valid-time relati®n= (Aq, ... , A,) is represented by a
snapshot relatio® = (A1, ..., A,, PERIOD [39]. It is claimed, but not demon-
strated, that conventional normalization techniques apply to the design of a valid-
time database. One of the purposes of this paper is to give a formal and concrete
characterization of the sense in which this is true.

4.6 P and Q Normal Forms

A so-called P normal form is defined for the Interval Extended Relational Model.
We give a simplified definition; the original definition ([27], p. 49) used a rather
complex algebraic operator.

Definition 18 The schema of an interval extended relation, representing a valid-
time relation, is said to be iR normal form(PNF) if, in all extensions of that
relation scheme, no two tuples with the same key value have overlapping or adjacent
time intervals. O

This normal form satisfies Desiderdtd andN3. In this temporal context,
we use relations in the IXRM for representing valid-time relations, but as discussed
above IXRM relations are not valid-time relations. Consequently, PNF does not
satisfy Desiderat&l2 or N4.

A second normal form is also defined. We now give a simplified version.

Definition 19 The schema of an interval-extended relation, representing a valid-
time relation, is said to be i® normal form(QNF) if it is in PNF and the schema
contains exactly one non-key attribute. [Rephrasing of [27], p. 51] O
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Example 13 Consider the following interval timestamped instance with primary
key {Emp, Period}.

Emp Dept Mgr | Period
Bill Shipping | Zoe | [1,5)
Bill Shipping | Janet| [5,10)
This relation is not in QNF since the Dept and Mgr attributes are both non-key
attributes (and since PNF is violated). O

This normal form also satisfies DesiderBthandN3. As before, since IXRM
relations merely represent valid-time relations and QNF relies on PNF, QNF does
not satisfy Desideratisl2 or N4.

4.7 Summary

All existing temporal normal forms known to the authors have been surveyed.
While none of them completely satisfied all qualities that could be expected from
a natural extension of conventional normal forms, each presented interesting ideas.
And together the normal forms provide a platform from which it is possible to reach
further.

The data models mentioned in this context present notable exceptions, as the
majority of the two dozen temporal data models proposed thus far do not discuss
functional dependencies, keys, or normal forms at all.

On the other hand, it would be best to providedel-independeitefinitions.

It is generally not possible to apply model-specific definitions (like those surveyed)
of functional dependencies or keys to other data models in a straightforward fash-
ion.

5 A Bitemporal Conceptual Data Model

We feel that the reason why so many temporal data models have been proposed, and
why so many temporal keys and temporal normal forms have been defined, is that
previous models attempted to simultaneously retain the simplicity of the relational
model, present all the information concerning an object in one tuple, and ensure
ease of implementation and query evaluation efficiency.

It is clear from the number of proposed models that meeting all of these goals
simultaneously is a difficult, if not impossible task. We therefore advocate a sep-
aration of concerns. The time-varying semantics is obscured in the representation
schemes by other considerations of presentation and implementation. We feel that
the data model proposed in this section is the most appropriate basis for expressing
this semantics. However, in many situations, it is not the most appropriate way to
present the stored data to users, nor is it the best way to physically store the data.
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We have defined mappings to several representations; these representations may be
more amenable to presentation and storage, while retaining the semantics of the
conceptual data model.

We first formally characterize a bitemporal relation. Then we define the set of
bitemporal algebra operators necessary for the introduction of normal forms. The
objects and their operations constitute thi'emporal conceptual data modeir
BCDM [21]. Finally, we outline a few of theepresentationatiata models in which
instances and operators can be mapped to and from the BCDM.

5.1 Objects in the Model

Tuples in a bitemporal conceptual relation instance are associated with time values
from two orthogonal time domains, namely valid time and transaction time. Valid
time is used for capturing the time-varying nature of the portion of reality being
modeled, and transaction time models the update activity associated with the rela-
tion.

For both time domains, we assume that the database system has limited pre-
cision; the smallest time units are termed chronons [20]. This restriction greatly
simplifies implementation, and since no database system known to the authors sup-
ports time domains with unlimited precision, the restriction appears acceptable.

The time domains have total orders and both are isomorphic to subsets of the
domain of natural numbers. The domain of valid times may be givelgs =
{t1, 12, ..., 1z}, and the domain of transaction times may be givePag = {zi, ré,

..., 1/} U{UC} whereUC (“until changed”) is a distinguished value that is used

for indicating that a tuple is current in the database. A valid-time chronon is thus
an element oDy 7, a transaction-time chronon is an elemenDgfr, and a bitem-

poral chronon is an ordered pair of a transaction-time chronon and a valid-time
chronon. We expect that the valid time domain is chosen so that some times are
before the current time and some times are after the current time. We also define a
set of name®P, = {A1, Ao, ..., A,,} for explicit attributes and a set of attribute
domainsDp = {D1, D2, ..., Dy, }.

In general, the schema of a bitemporal conceptual relaiorpnsists of an
arbitrary number, e.gn, of explicit attributes fromD,4 with domains inDp, and
an implicit timestamp attribute, T, with domairP2 *Pv7 A set of bitemporal
functional (and multivalued) dependencies on the explicit attributes are part of the
schema. For now, we ignore these dependencies—they are treated in detail later.

A tuple, x = (a1, a>,...,a,| tp), in a bitemporal conceptual relation in-
stancer(R), consists of a number of attribute values associated with a bitemporal
timestamp value. For convenience, we will employ the term “fact” to denote the in-
formation recorded or encoded by a tuple, and we say that “a tuple encodes a fact.”
No additional assumptions are intended by this usage.
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An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tupldrige in the modeled realitguring
each valid-time chronon in the subset. Each individual valid-time chronon of a
single tuple has associated a subset of the domain of transaction times, meaning
that the fact, valid during the particular chronongigrent in the relationduring
each of the transaction-time chronons in the subset. Any subset of transaction times
less than the current time and including the vali@ may be associated with a
valid time. Notice that while the definition of a bitemporal chronon is symmetric,
this explanation is asymmetric. This asymmetry reflects the different semantics of
transaction and valid time.

We have thus seen that a tuple has associated a set of so{médiegboral
chrononsn the two-dimensional space spanned by transaction time and valid time.
Such a set is termedlatemporal elemen20] and is denoted,. Because no two
tuples with mutually identical explicit attribute values (termvatlie-equivalentare
allowed in a bitemporal relation instance, the full time history of a fact is contained
in a single tuple.

In graphical representations of bitemporal space, we choosedkis as the
transaction-time dimension, and thexis as the valid-time dimension. Hence, the
ordered pair 4, v) represents the bitemporal chronon with transaction tiraad
valid timev.

Example 14 Consider a relation recording employee/departmentinformation, such
as “Al works for the shipping department.” We assume that the granularity of
chronons is one day for both valid time and transaction time, and the period of
interest is some given month in a given yeatr, e.g., June 1994. Throughout, we use
integers as timestamp components. The reader may informally think of these inte-
gers as dates, e.g., the integer 15 in a timestamp represents the date June 15, 1994.
The current time is assumed to be 19.

Figure 1(a) shows an instance, empDep, of this relation. A graphical illustra-
tion of the empDep relation is shown in Figure 1(b). Right-pointing arrows in the
graph and the special vallgC in the relation signify that the given tuple is still
current in the database and that new chronons will be added to the timestamps as
time passes and until the tuple is logically deleted.

The relation shows the employment information for two employees, Al and
Bill, contained in three tuples. The first two tuples indicate when Al worked for the
shipping and loading departments, respectively. These two tuples are shown in the
graph as the regions labelled “(Al, Ship),” and “(Al, Load),” respectively. The last
tuple indicates when Bill worked for the shipping department, and corresponds to
the region of the graph labelled “(Bill, Ship).” a

Depending on the extent of decomposition, a tuple in a bitemporal relation
may be thought of as encoding an atomic or a composite fact. We simply use the
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Emp Dept T

Al Shipping || {(5, 10),...,(5,15),...,(9,10),...,(9,15),
(10,5), ..., (10,20, ...,(14,5), ..., (14, 20),
(15,10),...,(15,15)...,(19,10), ..., (19, 15)}
Al Loading || {(UC, 10),..., (UC, 15)}

Bill  Shipping || {(UC, 25), ..., (UC, 30)}

(@)

30
Vi 4 [:(BiII,Ship)
25

20

15

(ALship) | (AlLoad)

'

10

5

0

0 5 10 15 20 25 30
TT
(b)
Figure 1: A Conceptual Bitemporal Relation

terminology that a tuple encodes a fact and that a bitemporal relation instance is a
collection of (bitemporal) facts.

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time or transaction time, respectively. Thus
a valid-time tuple has associated a set of valid-time chronons (termedich
time elemenand denoted,), and a transaction-time tuple has associated a set of
transaction-time chronons (termedransaction-time elemeiind denoted,). For
clarity, we use the ternsnapshot relatiorfor a conventional relation. Snapshot
relations support neither valid time nor transaction time.

5.2 Operators in the Model

The previous section described the objects in the bitemporal conceptual data model,
tuples timestamped with a bitemporal element. We now define some algebraic op-
erators on these objects that will be used in the definition of temporal normal forms.
A complete operator set for the BCDM can be found elsewhere [21, 48].

We first define bitemporal analogues of some of the snapshot relational oper-
ators, to be denoted with the superscriit “
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Define a relation schemR = (A4, ..., A,|T), and letr be an instance of
this schema. LeD be an arbitrary set of explicit (i.e., non-timestamp) attributes of
relation schem&. The projection oD of r, 7}, (r), is defined as follows.

78 (r) = {z1P*D | 3x € r (z[D] = x[DDA
Vy € r (y[D] =z[D] = y[T] € z[TDA
Vt € z[T] 3y e r (y[D] =z[D] At € y[T])}

The first line ensures that no chronon in any value-equivalent tuplésdéft unac-
counted for, and the second line ensures that no spurious chronons are introduced.

Let P be a predicate defined oty, ..., A,. The selectionP onr, oB(r), is
defined as follows.

UE(r) ={z|z€er A P(z[A))}

As can be seen from the definitiom,?(r) simply performs the familiar snapshot
selection, with the addition that each selected tuple carries along its timestamp T.

In the bitemporal natural join, two tuples join if they match on the join at-
tributes and have overlapping bitemporal element timestamps. Deéinds to be
instances oR andsS, respectively, and lek andS be bitemporal relation schemas
given as follows.

R = (Al,...,An,Bl,-~-aBl|T)
S = (A1,...,A,,Cq,...,Cy | T)

The bitemporal natural join of ands, r X® s, is defined below. As can be
seen, the timestamp of a tuple in the join-result is computed as the intersection of
the timestamps of the two tuples that produced it.

riXes = D 3x e 3y e 5 (x[A] = Y[A] AX[T] N y[T] # OA
z[A] = x[A] A z[B] = x[B]A
Z[C] = y[CI A z[T] = x[T] N y[T]}

We have only defined operators for bitemporal relations. The similar opera-
tors for valid-time and transaction-time relations are special cases. The valid and
transaction-time natural joins are denotedd and X', respectively. The same
naming convention is used for the remaining operators.

Finally, we define two operators that select on valid time and transaction time.
Let 11 denote a time value not exceeding the current time ang lk@¢note an ar-
bitrary time. Thetransaction-timeslic@perator p®) evaluates to a relation time-
stamped with valid-time elemeritsand thevalid-timesliceoperator ¢?) yields a
relation timestamped with transaction-time elements.

P2 (1) ={z"*V | 3x e r Z[A]=x[A] A 2[T]={t2|(t1. 12) € x[TI} A 2[T,] 5 0)}
2 () ={z"" | 3x e r [Al=x[A] A [T ]={11] (11, 22) € x[T]} A 2[T;] # D)}

1operatorp was originally termed theollback operator, hence its name.
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Here, p7, (r) simply returns all tuples im that were current during the chronan

The timestamp of a returned tuple is set to all valid-time chronons associated with
n. Operatorz; (r) performs the same operation except the roles @indz, are
reversed.

Example 15 Consider the empDep relation shown in Figure 1(a). The following
result is produced by;,(empDep.

Emp | Dept T,

Bill | Ship || (5,...,19
Bill | Load {UC}
Using the graphical representation, valid timeslice can be visualized by drawing a
horizontal line through the graph at the given valid time. The tuples returned are
those that overlap with the drawn line. The timestamps of the returned tuples are
set to the segments of transaction time corresponding to the overlapped regions.

There also exist timeslice variants that extract a snapshot relation from valid-
time relations and transaction-time relations. To extract frdhe tuples current at
time 1 and valid in the database during(termed asnapshobf r), it is immate-
rial whetherr is first transaction timesliced and then valid timesliced or first valid
timesliced and then transaction timesliced. In the following, we will use the former
order, i.e., use,, (p;, (r)) where superscript”™ indicates a valid-time operator, to
produce a snapshot from

Note that since relations in the data modellamenogeneoys.e., all attribute
values in a tuple are associated with the same timestamp [16], the valid or transac-

tion timeslice of a relation will not introduce any nulls into the resulting relation.

5.3 Summary

We have previously described the role of the BCDM in the context of a tempo-
ral DBMS where data models are needed for several tasks [21]. Specifically, the
BCDM is intended to provide the conceptual model that the query language, e.g.,
TSQL2, is based on. Other, so-called representational data models are better suited
for the tasks of physical storage or data display and are utilized for those tasks. As
a consequence the conceptual database schema, designed using normalization tech-
niques to be described in the next section, is captured in the context of the BCDM.
The integration of several temporal data models within the same DBMS hinges
on the concept oBnapshot equivalencéo be defined in Section 7. Snapshot
equivalence is a formalization of the notion that two temporal relations have the
same information content, and it provides a natural means of comparing rather dis-
parate representations. We have previously developed mappings, respecting snap-
shot equivalence, between instances of the BCDM and instances of each of the five
existing bitemporal data models: a 1NF tuple timestamped data model [44], a data
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model based on 1NF timestamped change requests recorded in backlog relations
[18], a non-1NF data model in which attribute values were stamped with rectangles
in transaction-time/valid-time space [17] (discussed in Section 3.6), a bitemporal
data model where a bitemporal relation is a sequence of non-1NF tuples [29, 30],
and a 1NF data model using five timestamps [4] (discussed in Sections 3.2 and
4.4). We also showed how the relational algebraic operators defined in the previous
section could be mapped to analogous operators in the representational models.

A database designer would design the conceptual schema of the database as
a (normalized) collection of BCDM relation schemas. The mappings then make
it possible to store and display BCDM relations as snapshot equivalent instances
of other data models. In the next section, we show how existing dependency the-
ory generalizes naturally to the BCDM. Defining dependencies in terms of BCDM
schemas, which are purely conceptual and not intended for implementation, sat-
isfies the desiderata in Sections 2.1, 3.1 and 4.1, respectively, that dependencies,
keys, and normal forms be independent of a particular representation of a temporal
relation.

6 Generalizing Dependency and Normal Form Theory

In this section we generalize in turn the concepts of functional dependencies, keys,
and the normal forms themselves.

6.1 Temporal Dependencies

Functional dependencies argensiona) i.e., they apply to every possible exten-
sion. This intuitive notion already encompasses time, for a functional dependency
may be interpreted as applying at any time in reality and for any stored state of the
relation.

To be more specific, consider the restricted case of a transaction-time relation
r, with schemaR = (A4, ..., A,|T;), and a parallel snapshot relatienwith the
same schema (but without the implicit timestamp attribuf)= (A1, ..., A,).
The current state of will faithfully track the current state of’. Past states of
will be retained inv, and can be extracted via the appropriate timeslice operator. A
functional dependency oR’ will hold for all possible extensions, and hence for all
past states of . Hence, the same functional dependency must hold for all snapshots
of r (this insight first appeared over a decade ago [9]). A similar argument can be
applied to valid-time relations and to bitemporal relations, yielding the following
characterization.

Definition 20 Let X andY be sets of non-timestamp attributes of a temporal re-
lation schemaR?®, and letr; andz, be arbitrary times, witht; not exceeding the
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current time. Atemporal functional dependenajenotedx —> Y, exists onR? if,
for all meaningful instances® of R?,

Vi1, 12 Vs1, 52 € T (05,(rB)) (s1X] = s20X] = s1Y] = s2[Y]). O

Note that temporal functional dependencies are generalizations of conventional
functional dependencies. In the definition of a temporal functional dependency,
a temporal relation is perceived as a collection of snapshot relations. Each such
shapshot of any extension must satisfy the corresponding functional dependency.

Also note that this definition applies equally well to valid-time, transaction-
time, and bitemporal relations, utilizing the relevant variants of the transaction and
valid timeslice operators. While we differentiate valid-time, transaction-time, and
bitemporal operator variants, the temporal functional dependency is generic, apply-
ing to all forms of temporal relations, with the appropriate operator variants coming
into play. The *” designation in a temporal functional dependency refers to the
generic adjective “temporal.”

The close parallel between conventional functional dependencies and tempo-
ral functional dependencies means that inference rules such as Armstrong’s axioms
have close temporal counterparts that play the same role in the temporal context as
do the non-temporal rules in the non-temporal context.

Example 16 Consider again the database associating phone numbers, departments,
and employees in a company. While employees come and go, and phones are added
and dropped as needed, at any one time an employee can belong to only one de-
partment, and may have zero, one, or several phone numbers. Expressing these

properties using temporal dependencies, we have simply Nelbent. O

Temporal multivalued dependencies [60] may be defined using the same tem-
plate as that used for defining temporal functional dependencies.

Snapshot dependencies apply to snapshot relations, and temporal dependen-
cies apply to temporal relations. Further, a snapshot relation records information
that is currently believed to currently be true. A bitemporal relation with the same
explicit attributes is capable of also recording previous beliefs and beliefs about
the past and future. In this sense, a bitemporal relation schema may record more
information than its snapshot counterpart.

If a temporal relation schema is used for recording the same information as
its snapshot counterpart, a snapshot functional dependency on the snapshot schema
implies the corresponding temporal functional dependency on the temporal relation,
and vice versa. To make this correspondence between snapshot functional depen-
dencies and temporal functional dependencies more precise, it is practical to first
make precise the notion of snapshot and temporal relation schemas recording the
same information.
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Definition 21 LetR = (A1, Ao, ..., A,) be a snapshot relation schema a&ftl=
(A1, Ao, ..., A,|T) be a bitemporal relation schema. Leandr? range over all
possible instances of schemRand R, respectively, and lef andz, be arbitrary
times where, does not exceed the current time. Then, schefnasdR? are said
to record corresponding informatioifithe following three conditions are satisfied.

(1) VrPVn, o #n= k") =0)
(2) Vr83r (r = 1,,(Pu (%))
(3) Vr 3r8 (14, (0E,u (r®)) = 1) O

Note that the first condition restricts instanceéfto only record information that

is valid precisely when it is also current in the database. Using this definition, the
following relationship exists between snapshot and temporal functional dependen-
cies.

Theorem 1 Let R be a snapshot relation schema, andl@ndY be subsets of the
attributes ofR. Also, let RZ be a bitemporal relation schema with same explicit
attributes aR. Let the two schemas record corresponding information. Thes
Y holds forR if and only if X—>Y holds forR5.
PrRoOOF. The two directions of implication are shown in turn. To show the first,
we assume thaX — Y holds onR and show that an arbitrary instanc® of R?
satisfiesx—Y. To show this, we must show that for ajl and,, r,VZ(pfl(rB))
satisfiesX — Y. From the premise of the theorem, it follows immediately that
this is the case forn, = 2 = now and fort1 # r». Now consider the remaining
case, where, = 12 # now. \We must show that for all, r, = (o2 (rB)) satisfies
X — Y. Again by the premisek andR? also recorded corresponding information
at (any) timer. Attime ¢, now = ¢, so the definition of the premise implies that
is identical to some instance & Asr satisfies the dependency, so dees

The second direction of implication is straightforwardXH> Y holds forR2
then for all instances® (R®) and times; andrz, X — Y holds forz (o (r5)).
SinceR andR? record corresponding information, each instance(®) is identi-
cal to some timeslice of an instance®f and thus satisfies the dependency.O

It is important to note that two separate data models are involved here. The de-
pendencyX — Y applies to thesnapshotlata model only, whereas—> Y applies
to temporal data models: valid-time, transaction-time, and bitemporal data mod-
els. The theorem gives specific content to the statement that the notion of temporal
functional dependency as defined in this paper are natural generalizations of the
well-known notion of a snapshot functional dependency.

However, it isnot always the case that functional dependencies on snapshot
schemas generalizesoapshotunctional dependencies on temporal schemas, even
when the timestamp attribute is factored in (cf., [39]). Assume that.(.. , A,|T)
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is the schema for a temporal relati®¥. An instance ofR? can be interpreted in

two rather different ways: as an instance in the bitemporal conceptual data model,
where the timestamp attribute is implicit and is accorded a special semantics, or as
an instance in the snapshot data model, with schetpa. (. , A,,, T), where T is
simply another explicit attribute. We can compare functional dependencies in the
two interpretations.

Theorem 2 With X andY denoting arbitrary non-timestamp attributes of a relation
schema,
XU(T} > Y A X>Y.

PROOF. The following instance satisfies Emp{T} — Dept but not Emp>Dept.
Note that the conventional functional dependency treats T as just another attribute,
with values such as “10 — 25” being atomic (e.qg., like strings).

Emp Dept T
Bill | Shipping | 10— 25
Bill Loading | 15-30

Note that the implication does hold wh&nC X. O

The problem is that the timestamp attribute is considered to be atomic by the snap-
shot functional dependency.
It turns out, however, that the converdaeshold.

Theorem 3 Letting X andY be sets of non-timestamp attributes of a relation schema,
X5Y = XU{T} - Y.

PROOF. Assume that—>Y holds inR% and let-? be an arbitrary instance &?.
Assume thak U {T} — Y doesnothold, i.e., that there exist two separate tuples
ands in rB such thak1[X U {T}] = s2[X U {T}] buts1[Y] # so[Y]. Let (t1, £2) be

a bitemporal chronon isy[T], and lets; = s1[Az1, ... A,] ands), = s[A1, ... A,].

By constructionss, s, € 7, (o7, (r)). However,si[X] = s5[X] and by assumption
s1[Y] # so2[Y], and hence&X— Y is not satisfied. The implication of the theorem is
hence true by contradiction. O

6.2 Temporal Keys

Since temporal functional dependencies are a natural extension of conventional
functional dependencies, definition of the concepts of temporal keys and tempo-
ral closure are straightforward. For that reason, the presentation is brief.

Definition 22 A set of attributesX of a temporal relation schema igemporal su-
perkeyof R if X—> R. Theprimary temporal kejs a minimal temporal superkeyz
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Example 17 Considering again the Emp relation schema introduced in Section 2.1,
we see that there are two temporal superkeys, {Name, PhNo} and {Name, PhNo,
Dept}, with the former being minimal, and thus serving as the primary temporal
key. a

As with functional dependencies, snapshot keys generalize to temporal keys,
but only when using temporal dependencies. Specifically, i§ the primary key
of the (snapshot) relation scherRathenX is also the primary temporal key, but if
X U{T} is the (snapshot) primary key of the representation of the temporal relation,
it may not be the case thatis a temporal key.

6.3 Temporal Normal Forms

We can now generalize snapshot normal forms in a manner similar to generalizing
keys.

Definition 23 A pair (R, F) of atemporal relation schenfaand a set of associated
temporal functional dependenciésis in temporal third normal form(T3NF) if
for all non-trivial temporal functional dependenci€s>Y in F*, X is a temporal
superkey forR or each attribute of is part of a minimal temporal key at. a

Definition 24 A pair (R, F) of a temporal relation schenfaand a set of associ-
ated temporal functional dependenciess in temporal Boyce-Codd normal form
(TBCNF) if for all non-trivial temporal functional dependenciés>Y in F*, X is
a temporal superkey faR. O

The comments made in connection with dependencies in Section 6.1 about
the inadequacy of using snapshot definitions incorporating the timestamp attribute
apply here as well. For example, Theorem 1 can be generalizRaston BCNF if
and only if RB is in TBCNF.

Example 18 The relational schema Emp = (Name, Dept, PHNpviolates both
T3NF and TBCNF. O

These definitions are based on the temporal functional dependencies described
in Section 6.1, which, in turn, were extensions of the snapshot functional dependen-
cies.

As in our definitions, Tansel and Garnett [50] adapt well-understood snap-
shot techniques to a temporal setting, but the two approaches are quite different. In
Section 2.5, we saw how Tansel and Garnett applied snapshot dependency theory
directly to support normalization for their nested valid-time relations. Tansel and
Garnett do not define new temporal dependencies; rather, they use conventional
snapshot dependencies on timestamped attributes. Essentially, they have embed-
ded a valid-time model within a nested snapshot model, and then directly applied
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conventional dependency and normalization techniques. In contrast, the temporal
normal forms defined above are based on a temporal data model, the BCDM, where
conventional dependency theory and normalization concepts do not directly apply,
but must first be extended temporally.

Temporal versions of other conventional normal forms based on functional
and multivalued dependencies may be expressed analogously, e.g., second normal
form and fourth normal form. One can also define temporal variants of join de-
pendencies [34], fifth normal form (also called project-join normal form) [14], em-
bedded join dependencies [13], inclusion dependencies [7], template dependencies
[38], domain-key normal form [15], and generalized functional dependencies [37].
The extensions exploit the intensional quality of these properties (i.e., applying to
every extension implies applying over all time), as well as the simplicity of the
bitemporal conceptual data model.

6.4 Evaluation

It should be clear from the preceding discussion that the bitemporal conceptual
data model, with its associated definitions of functional dependency and normal
forms, satisfies all desiderata listed in Section 2.1. It should also be evident that the
definition of key in this model satisfies all five desiderata listed in Section 3.1, and
that TBCNF and T3NF satisfy all four desiderata listed in Section 4.1.

We now briefly compare our approach in turn to each of the previously pro-
posed definitions of temporal normal forms and temporal keys.

The purpose of Ben-Zvi’'s Time Normal Form [4] was to make updates more
user friendly and to aid in chosing a space efficient internal representation of a time-
relation. The normal form required the “corresponding” snapshot relation to be in
any normal form. It also utilized the concept of contiguity, which does not rely on
any notion of dependency.

The normal form 1TNF was introduced as a requirement to relations in the
Temporal Data Model [42] that ensures that the results of applying a special valid-
timeslice operator are 1NF relations. Without this requirement, non-1NF results
are possible because the definition of the operator relies on the presence of a dis-
tinguished surrogate attribute [42]. The timeslice operators defined in Section 5.2
do not rely on any distinguished attribute and always returns 1NF relations. In our
framework, 1TNF may be defined as follows: A relation schetna in 1TNF if
the surrogate attributgis a temporal key, i.e§— R. Thus, 1TNF is an application
of the concept of a key.

Time normal form (TNF) was defined to ensure that time-varying attributes
were synchronous, i.e., change at the same time [32]. This aspect is not accommo-
dated in our definitions of temporal normal forms.
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Using our definition of temporal key, P Normal Form (PNF) [27] will auto-
matically be satisfied. In our framework, PNF is thus also an application of the
concept of a key. Q Normal Form appears to have similarities with Navathe’s con-
cept of synchrony, and in any case is not accommodated in our definitions.

The snapshot normal forms were also applied to the representations of valid-
time relations in several data models [32, 39, 27, 50]. This contrasts our framework,
where temporal normal forms are applied to conceptual temporal relations.

Concerning keys, we formalized and extended the notions presentin the HQL
[36], HSQL [39], and IXRM [27] data models, using the more general concept of
temporal dependency. The concept of key in the TempSQL data model [17] appears
to be inconsistent with the concept of a snapshot key.

7 Properties of Temporal Normal Forms

In conventional database design, the notions of lossless-join and dependency pre-
serving decomposition are essential. This section covers issues related to these
notions in the temporal context.

During database design a conventional (i.e., non-temporal) relation schema
Is brought to satisfy a normal form by decomposing it. A decomposition should
have two important properties. First, the decomposition shoulddstessi.e., the
contents of the original relation should be available simply by performing a natural
join on the new relations, permitting the decomposition to be reversed without loss
of information. More formally, a decomposition of schemRas lossless if every
extension ofR is the natural join of its projection onto the schemas resulting from
the decomposition.

Definition 25 Let X andY be arbitrary sets of non-timestamp attributes of a tem-
poral relation schem&. Then the pailX, Y is alossless-join decompositianth
respect to the joii if, for all »(R) that satisfy the set of functional dependencies
ONR,

r=mnx(r)Xmy(r). O

It is possible to guarantee that a given decomposition is lossless. This con-
dition is used to guide the decomposition process, ensuring that the generated de-
compositions are practical. Assume that a single schema is decomposed into two
smaller schemas. If both of the smaller schemas contain a superkey of one of the
smaller schemas then the decomposition is guaranteed to be lossless.

Theorem 4 The decompositioX, Y of a relation schema& with a set of functional
dependencies is lossless (w.r.ti) if
XNY > XeFtorXNY —-YeFt.

PrRoOOF. The proof may be found elsewhere [51, 24]. a
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Second, the decomposition shoulddependency preservinm that it must
be possible to ensure that all dependencies are preserved when a relation is updated
without requiring any joins to be performed.

Definition 26 A decompositiorD = {R1, ..., R, } of R isdependency preserving
with respect to a set of functional dependendcias

(TR (F)U---Umg (F)T =FT.

Here, g, (F) denotes the set of functional dependencies fibrdefined on the
attributes ofR; [51]. a

Some decomposition algorithms can be proven to be dependency preserving;
others jettison this property in favor of more desirable ones, such as the lossless-
join property. For example, Korth and Silberschatz present a simple 3NF decompo-
sition algorithm that preserves dependencies, and they present a BCNF decompo-
sition algorithm that generally does not preserve dependencies (but always yields
a lossless-join decomposition) [24]. Note that BCNF is more restrictive than 3NF
and therefore avoids more redundancy than does 3NF. While it is always possible
to obtain a 3NF decomposition that is dependency preserving and lossless, such
Is not the case for BCNF. If a dependency preserving BCNF decomposition is not
possible, 3NF is usually preferred, at the risk of added data redundancy.

We now apply these concepts to temporal relations. Specifically, we utilize
the temporal natural join operator to identify such lossless join decompositions.

Definition 27 Let X andY be arbitrary sets of explicit attributes of a temporal
relation schem&. Then the paiX, Y is alossless-join decompositiavith respect

to the join X® if for all »(R) that satisfy the set of temporal functional dependencies
ONR,r =n%(r) X® wy(r). 0

Next, we set the stage for proving the temporal equivalent of Theorem 4. In
doing so, we first define two bitemporal relation instaneemds, to besnapshot
equivalentr = s, if for all times . not exceeding the current time and for all times
t2, T (p5 (1)) = 7.,(pf (s)). We have shown elsewhere [21] that the notions of
snapshot equivalence and identity of relations coincide in the BCDM model, i.e.,
thatry = rp is equivalent tory - ro, With r1 andr, being relation instances in
the BCDM. We also need the following result, which states that the temporal join
and projection operators reduce to, or are natural generalizations of, their snapshot
counterparts.

LEMMA: For bitemporal relation instancesands as given in the definitions of
temporal projection and join (in Section 5.2) and timgandr,, 1 not exceeding
the current time,

T (05, (5 (1)) = 7D (T (05, (1)
T (05, (r ) ) = 7 (05, () M 75 (pf (5))
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PROOF. Proofs are omitted for brevity. A proof of a property similar to the second
may be found elsewhere [21]. O

We can now prove the temporal equivalent of Theorem 4. As a result of this
theorem, the algorithms for normal form decomposition in conventional relational
databases are applicable to temporal databases as well.

Theorem 5 The decompositioX, Y of a temporal relation schema&, with a set
of temporal dependenciek, is lossless (w.r.t)® ) if

XNYSXeFtorXNYSY e FT.

PROOF. Letr be an instance ak (i.e., that satisfie#’). Showing that the definition
of lossless holds is equivalent to showing that % (r) X® g (r), which, in turn,

is equivalent to showing that for all times not exceeding the current time and
timesry,

7 (0% (1) = T} (02 (% (r) X 8 (r)).
From the premise and the definition of temporal functional dependency, we have
thatz,) (of, (r)) satisfiesx NY — X or X NY — Y. Theorem 4 then applies,
meaning thatr, (of (r)) = mx (7, (o, (1)) M my (T (7 (r))). Next, it follows
from the two properties stated in the previous lemma that this is equivalent to the
right-hand side of the formula displayed above. All of this holds for arbitrary times
1 andzy, and the theorem follows. O

With the property of snapshot equivalence, we next define the property of
snapshot subset.

Definition 28 A temporal relation instance is a snapshot subseif a temporal

S
relation instance, r C s, If T, (05 (1) € 7o (5)) holds for all timesr; not
exceeding the current time and all times O

S
Unlike for snapshot equivalence, C r» does not implyr; € r. For example,

let ;1 = {(Bill|{(5, 10)})} andr> = {(Bill |{(5, 10), (5. 11)})}. Thenry < ro, but
r1 € ro as the two relations contain distinct tuples.

The following theorem states three additional properties of the temporal nat-
ural join. The snapshot natural join has a parallel for each of these properties. For
example, the first property states that in general, a decomposifmgsigi.e., may
produce additional, spurious tuples that makes it impossible to identify the true
information.

Theorem 6 Let r be a bitemporal relation instance of a schema that includes the
setsX andY of non-timestamp attributes. Also lgtbe an instance of a bitempo-
ral relation schema with precisely the non-timestamp attribiteand leth be an
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arbitrary relation instance. The following three properties hold.

r é s (r) Xy (r)
R () S Ay () X g ()
ax(y M a) Sy

PROOF. We consider the first property only; the other properties may be proven
in similar fashion. For any snapshot relatioh it is the case that® C 7x(r®) X
my (r*). In particular, this holds for® equal tot; (o7, (), for arbitrary times
andtp, with 11 not exceeding the current time. From the lemma also used in the
previous theorem, it follows thaty (7, (o7, (r))) Xy (z;; (o7, (1)) = T, (g, (T3 (1)
X® 7y (r))). The first property then follows from the definition of snapshot subset
just given. O

In an entirely analogous way, by using the modified version of the relational
operators given in Section 5.2 and the concept of snapshot equivalence, one can
extend other properties of functional dependencies to hold for temporal functional
dependencies. Also, every concept defined above is applicable, as special cases,
to both valid-time and transaction-time relations, using the appropriate temporal
operators.

Our approach uses the bitemporal conceptual data model, along with the
timeslice operatorg andr, to define the notion of a temporal functional depen-
dency. It is possible to map such dependencies into representational data models.
Specifically, if appropriate valid and transaction timeslice operators are defined in
the representational model, then the definition of temporal functional dependency
and the various temporal normal forms apply directly to that model.

Elsewhere [21] we have provided timeslice operators for the popular data
models of tuple timestamping (e.qg., [4, 32, 35, 40, 44, 46]), backlogs (e.g., [23, 19]),
and attribute value timestamping (e.g., [8, 49, 16, 25, 29, 30]). Those operators,
combined with the definitions provided in this paper, enable model-specific defini-
tions of temporal functional dependencies, keys, and normal forms.

The result is a consistent and wholesale application of existing dependency
and normalization theory to valid-time, transaction-time, and bitemporal databases
in a wide variety of temporal relational data models.

8 Application to Spatial Databases

The graphical representation of a bitemporal element as an area in the two-dimen-
sional valid-time/transaction-time space (see Figure 1(b)) leads one to consider spa-
tial databases, which are either two dimensional (e.g., index by latitude and longi-
tude over the surface of the Earth, cf., [28]) or three dimensions (e.g., the third
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dimension being altitude or depth, cf., [22]). In fact, the entire discussion of gen-
eralizing normal form and dependency theory to accommodate time can be applied
to space. In this section, we outline this correspondence.

Each relation in the spatial data model would be “space-stamped” with an
implicit spatial elemen$, which is a set ok-dimensionafjuanta(the spatial ana-
logue of the temporal “chronon”). For two-dimensional modelibgpatial ele-
mentswvould be used; for three-dimensional modelitiggpatial elementsvould be
used. Spatial extensions of the relational operators could be defined. For example,
x-slice andy-slice operators, analogous to valid and transaction timeslice, could be
defined. Thespaceslicef a relationr, then, is a relation containing the tuplesin
that apply to specified values ofandy.

The functional dependency — Y can be generalized tospatial functional
dependencydenotedX = Y, by formalizing the dependency predicate to apply to
all space slices of all possible extensions, as well apaiotemporal functional
dependencydenotedx =Y, that would take all space slices and time snapshots
of all possible extensions. The spatial and spatiotemporal functional dependencies
introduced here are highly restricted, as they are defined in terms of single space
slices and time snapshots.

Like the temporal functional dependency, these dependencies would be nat-
ural generalizations of the snapshot functional dependency. More specifically, the
statement concerning temporal functional dependencies in Theorem 1 would also
apply to these new dependencies.

Finally, it is possible to generalize all of the other dependency results, multi-
valued, fourth and fifth normal forms, etc. to the spatial and spatiotemporal regimes.

9 Recent Work

While the present paper was in review, there were two other extensions of existing
dependency theory to temporal databases. Both built upon the work described here,
and in fact referenced prior versions of this paper. We describe these briefly here.

Wijsen and his colleagues have adapted his dependency theory to a relational
model without object identity [57, 58, 59]. In his most recent work [59], he adapts
his approach to the valid-time subset of the BCDM. His snapshot functional depen-
dency captures the same notion as our temporal functional dependency, while being
expressed in a different notation. The notions of keys and normal forms defined in
terms of snapshot functional dependencies also closely track the ones defined here.

Wang and his colleagues [53] extended temporal functional dependencies to
accommodate temporal granularities. Specifically, their dependency, also termed
a temporal functional dependenayust hold for an entire granule, say a day or
month. As such, it is more properly considered a interstate dependency.
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10 Summary and Future Research

In this paper, we have defined consistent temporal extensions of the concepts of
functional dependencies, keys, and normal forms. We briefly surveyed conventional
normalization concepts and extracted desiderata enumerating those properties of
conventional concepts that we would like temporal normalization concepts to also
possess. We further conducted the first thorough survey of previous contributions
related to temporal relational database design. In part, this was done in attempt
to build maximally on existing contributions and to put our proposal into a proper
perspective.

Our definitions were shown to be more natural extensions than those previ-
ously proposed, in the sense that they satisfied all desiderata. The generality of our
approach was indicated by applying it to spatial databases. The result is a consis-
tent and wholesale application of existing dependency and normalization theory to
valid-time, transaction-time, bitemporal, spatial, and spatiotemporal databases, in a
variety of existing temporal relational data models, allowing temporal and spatial
database design to closely track conventional database design.

We emphasize here the three fundamental decisions that made this possible.
First, we used snapshot equivalence of temporal relations (defined as having iden-
tical snapshots over all valid and transaction times) as a formalization of the notion
of temporal relations having the same information content. Second, we focused
on the semantics of temporal relations rather than their representation. Our use of
snapshot equivalence on conjunction with the fact that query languages of repre-
sentational models generally provide the means of computing snapshots enabled
this conceptual focus. The concepts apply globally, across most if not all existing
representational temporal data models. As a result, new concepts are not needed
for each representational data model. Third, we chose a simple data model that has
the important feature that relation instances with the same information content are
identical.

Our normal forms do not address all the issues that come into play when the
schema for a temporal database is being designed. First, the normal forms do not
consider the semantics of time-varying attributes, such as whether they are continu-
ously varying or are stepwise constant. Secondly, the normal forms do not consider
important efficiency concerns. Specifically, synchronous attributes, as defined by
Navathe [32], may be seen to affect the space efficiency of the storage of a temporal
relation or the time efficiency of evaluating a temporal query, yet are not relevant to
the semantic®of the temporal relation. Finally, more general inter-state (and inter-
slice) constraints such as “No employee can later return to the same department,”
or “No employee can be assigned to departments in geographically separate plants”
should be explored.

A fully articulated design methodology utilizing the normal forms presented
here and taking into account the time semantics of tuples and attributes and effi-
ciency concerns is still needed.
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