
28
Temporal Statement Modifiers
Michael H. Böhlen and Christian S. Jensen

A wide range of database applications manage time-varying data. Although
temporal database technology has reached a level of maturity and sophistica-
tion where it is evident that these applications may benefit substantially from
built-in temporal support in the database management system (DBMS), these
applications typically run in an ad-hoc fashion on top of conventional relational
systems. This state of affairs may be explained by the fact that it is not clear
how to smoothly migrate from a non-temporal DBMS to one that provides sys-
tematic and comprehensive temporal support.

The topic of what requirements the data model and query language of
a temporal DBMS should satisfy to facilitate this transition has only received
scant attention so far, but is nonetheless vital in order to unlock the potential of
temporal technology for application in practice. This paper defines a set of such
requirements.

The paper introduces the notion ofstatement modifiersthat provide a
means of systematically adding comprehensive temporal support to an existing
data model and query language. Statement modifiers apply to all query lan-
guage statements, e.g., joins, set difference, subqueries, aggregation, integrity
constraints, assertions, views, and data manipulation statements. It is demon-
strated how to temporally extend SQL–92 with statement modifiers while ful-
filling each of the requirements. A temporally extended SQL–92 is formally
defined via a denotational-semantics-style mapping of temporal statements to
expressions using a combination of temporal relational and relational algebraic
operators. A prototype implementation of the temporal SQL–92 extension is
accessible online.

799

800 SQL STANDARDIZATION AND BEYOND

1 Introduction

A wide variety of applications manage substantial amounts of time-varying data.
They include financial applications such as portfolio management, budgeting, ac-
counting, and banking; record-keeping applications, such as personnel, medical-
record, insurance policies, and inventory; and they include travel applications such
as airline, train, and hotel reservations and schedule management. Thus, numer-
ous database applications manage substantial quantities of time-varying data. This
has held true for as long as databases have been maintained [43, 37]. Along with
the continued improvement of storage technologies and new, data-intensive appli-
cations such as decision support and data warehousing, old versions of data are
retained longer in the databases. This yields very large databases with all data ex-
hibiting a prominent temporal dimension.

In stark contrast, conventional relational database technology provides only
little support for temporal data management and is incapable of exploiting the time
dimension to achieve better performance. In response to this unfulfilled potential for
improvement, much work on temporal database management has been conducted
over the past decade or two, leading to, e.g., a wide variety of data models and
query languages and to numerous performance-enhancing implementation tech-
niques. Recent query languages (e.g., IXSQL [21], TempSQL [15], and TSQL2
[39]) demonstrate that temporal application development may benefit substantially
from built-in temporal support in the query language.

However, whether or not temporal database technology will gain wide accep-
tance in practice is not only determined by the availability and quality of temporal
languages and features galore, but also (and perhaps mainly!) by the ease of tran-
sitioning from the existing technology. Despite its importance, this issue has never
been discussed thoroughly.

We present a comprehensive set of requirements that not only takes migra-
tion concerns into consideration, but also ensures systematic and comprehensive
built-in temporal support. The requirement ofupward compatibilityguarantees that
replacing the existing DBMS with a new, temporal DBMS does not affect the func-
tioning of any application code. When new code is developed and legacy code is
revised, it becomes important that new and old code can coexist harmoniously. This
is ensured by thetemporal upward compatibilityrequirement. The reuse of exist-
ing programmer expertise for the formulation of advanced temporal statements is
also desirable. We argue that a temporal DBMS should be asyntactically similar
snapshot reducibleextension of a nontemporal DBMS. This ensures comprehensive
built-in support for the point-based view of a temporal database, which is natural
for many applications. Beyond this point-based view, the specific timestamping of
database facts with intervals is also of importance for some applications. The re-
quirement ofinterval preservationguarantees that query language statments with

TEMPORAL STATEMENT MODIFIERS 801

built-in temporal semantics respect the intervals of their arguments in a specific
technical sense. Finally, thenon-restrictivenessrequirement provides the ability to,
whenever convenient, override the built-in temporal semantics and instead manipu-
late time explicitly.

When developing a general-purpose temporal data model and query language,
two temporal aspects of data attract special attention. Thevalid time(vt) of a data-
base fact (e.g., a tuple) is the times when the fact was or will be true in the modeled
reality. Thetransaction time(tt) of a database fact is the times when the fact has
been stored as current in the database. All database facts have a valid time and a
transaction time, and we consider both of these times in this paper. There is no
requirement that a database captures either of these aspects. We will use the modi-
fiers temporalor time-varyingfor databases if one or both of valid and transaction
time are associated with their facts. For more specific situations, we use the terms
valid-time database for a database that records valid time only, transaction-time
database for a database that records transaction time only, and bitemporal database
for a database that records both valid and transaction time.

The paper shows how so-calledtemporal statement modifiersmay be em-
ployed to design a systematic and comprehensive temporal extension of SQL that
satisfies the requirements. In addition to queries (select statements), we also address
data definition statements, modification statements, and integrity constraints. The
language is described in two steps. First, it is shown how the requirements shape
the skeleton of a language. Second, a formal definition of the semantics of the
query language is provided by means of a denotational-semantics-style mapping to
well-defined algebraic expressions. This mapping assumes a mapping of SQL–92
to relational algebra and defines temporal statements in terms of their mapping to
well-defined relational and temporal relational algebra expressions. The temporal
relational algebra used here is efficiently implementable in that the evaluation of its
expressions relies only on the end points of periods and not on intermediate points,
making evaluation granularity independent.

Having defined the temporal extension based on statement modifiers, its prop-
erties are subjected to scrutiny. First, it is shown that its definition indeed satisfy the
migration-related requirements. Second, additional properties of the language are
considered. In particular, we compare semantic defaults as provided by statement
modifiers with syntactic defaults as chosen by most other temporal languages.

Tiger, a prototype system that implements the temporal SQL is accessible
online, via URL<http://www.cs.auc.dk/~tigeradm> .

The paper is structured as follows. The next section is concerned with the
formulation of the requirements to a temporal data model that, when satisfied, will
guarantee a smooth transition of legacy applications from a non-temporal DBMS
to a temporally enhanced DBMS with adanced temporal support. Section 3 then
proceeds by illustrating how a sample language, SQL–92, may be systematically

802 SQL STANDARDIZATION AND BEYOND

extended with statement modifiers to provide built-in support for temporal data-
base management. Having provided the rationale and intuition behind the language
design, Section 4 gives a concise, yet precise and comprehensive semantics for the
language. This provides a solid footing for the exploration of language properties—
the topic of Section 5. Related research is explored in some detail in Section 6, and
Section 7 summarizes and points to opportunities for future research. Appendices
with detailed technical matter complete the paper.

2 The Smooth Migration to a Temporal DBMS

Initially, an overview and a description of the assumed context is given. Subsequent
sections explore problems that may occur when migrating database applications
from an existing to a new temporal DBMS, and they precisely formulate a number
of requirements to the temporal DBMS that must be satisfied to facilitate a smooth
migration. Throughout, we use simple SQL-based examples, with new constructs
underlined, for illustration purposes. This section assumes only a working knowl-
edge of SQL–92. Sections 3 and 4 properly define the syntax and semantics of the
examples.

2.1 Overview and Context

The prospective users of temporal database technology are enterprises with appli-
cations that manage potentially large amounts of time-varying data. These applica-
tions may benefit substantially from built-in temporal support in the DBMS. Tem-
poral queries that are shorter and more easily formulated are among the potential
benefits. This leads to improved productivity, correctness, and maintainability. It
is also a matter of fact that these enterprises are already managing time-varying
data, with the applications already in place and working. Indeed, the uninterrupted
operation of the existing applications is likely to be of vital importance to any enter-
prise. The question is then how the enterprise can smoothly migrate from its current
DBMS to a temporal DBMS.

We assume that the interface of a DBMS is captured in a data model and thus
talk about the migration of application code using an existing data model to using
a new data model. We will adopt the convention that a data model consists of two
components, namely a set of data structures and a language for querying the data
structures [41]. For example, the central data structure of the relational model is the
relation, and the central, user-level query language is SQL.

Notationally,M = (DS, QL) then denotes a data modelM consisting of a data
structure componentDSand a query language componentQL. Thus,DS is the set
of all databases, schemas, and associated instances expressible byM, andQL is the
set of all update and query statements inM that may be applied to some database

TEMPORAL STATEMENT MODIFIERS 803

in DS. We usedb to denote a database; a statement is denoted bys and is either
a queryq or an updateu (in SQL–92, any modification statement, i.e.,INSERT,
DELETE, or UPDATE).

2.2 Upward Compatibility

It is of fundamental importance to ensure that all code without modification will
work with the new system, exactly with the same functionality as with the existing
system. The next two definitions capture the essence of what is needed for that to
be possible.

We define a data model to besyntactically upward compatiblewith another
data model if all the data structures and legal query expressions of the latter model
are contained in the former model.

Definition 1 (syntactical upward compatibility) Let M1 = (DS1,QL1) and
M2 = (DS2,QL2) be two data models. ModelM1 is syntactically upward com-
patiblewith modelM2 iff

• ∀db2 ∈ DS2 (db2 ∈ DS1) and

• ∀s2 ∈ QL2 (s2 ∈ QL1). 2

When transitioning from one system to a new system, it is important that the new
data model contains the existing data model. If that is the case, all existing applica-
tion code will remain syntactically correct.

For a query language expressions and an associated databasedb, both legal
elements ofQL andDS of data modelM = (DS,QL), we let〈〈s(db)〉〉M be the
result of applyings to db in data modelM. With this notation, we can precisely
describe the requirements to a new model that guarantee uninterrupted operation of
all application code. In addition to the previous syntactical requirement, we add the
requirement that all queries expressible in the existing model must evaluate to the
same results in the existing and new models.

Definition 2 (upward compatibility) Let M1 = (DS1,QL1) andM2 = (DS2,

QL2) be two data models. ModelM1 is upward compatiblewith modelM2 iff

• M1 is syntactically upward compatible withM2, and

• ∀db2 ∈ DS2 (∀s2 ∈ QL2 (〈〈s2(db2)〉〉M2 = 〈〈s2(db2)〉〉M1)). 2

The first condition implies that all existing databases and query expressions in the
old system are also legal databases in the new system. The second condition guar-
antees that all existing queries compute the same results in the new system as in
the old system. Thus, the bulk of legacy application code is not affected by the
transition to a new system.

To illustrate upward compatibility (UC), consider the following statements.

804 SQL STANDARDIZATION AND BEYOND

CREATE TABLE p (A INTEGER CONSTRAINT p_pk PRIMARY KEY);
CREATE TABLE q (B INTEGER, C INTEGER,

FOREIGN KEY (B) REFERENCES p(A));
CREATE VIEW v AS
SELECT * FROM p WHERE A NOT IN (SELECT B FROM q);
SELECT AVG(B), C FROM q GROUP BY C;
DELETE FROM p WHERE NOT EXISTS (SELECT * FROM q WHERE B > A);

These statements are simple legacy SQL–92 statements that must be supported by
any reasonable (temporal) extension of SQL–92. The semantics is the one dictated
by SQL–92 [23]. The first data definition statement defines a table with one column.
A column constraint is used to state that the column is a primary key. The second
statement defines a table with two columns. A table constraint is used to makeq.B
referencep.A . The third statement defines a view that returns all tuples inp that
are not referenced fromq. The select statement that follows groups tableq on the
C column and determines the averageB-value for each group. The last statement
deletes all rows inp with a A-value smaller than the smallest value ofB in q.

By requiring that a temporal extension is a strict superset (i.e., onlyadding
non-mandatoryconstructs and semantics), it is relatively easy to ensure that the
temporal extension is upward compatible with SQL–92. Still, it should be noted
that upward compatibility does place strict constraints on the temporal extension:
It must be “in the spirit” of and must live with any peculiarities of the language it
extends. As an example, when extending SQL–92 with a data type for intervals, the
string “interval” cannot be used in the syntax because this string is already used for
the data type of durations.1

There is one unintended ramification of the upward compatibility definition.
Any temporal extension that includes new reserved keywords will violate upward
compatibility. The reason is that legacy query language statements may have em-
ployed such keywords as identifiers. Under the semantics of the new model, such
statements will be illegal. However, it is impractical to exclude new reserved key-
words from a temporal as well as non-temporal extension. For example, SQL–92
added some 112 reserved keywords to the 115 reserved keywords of its predeces-
sor, SQL–892. One proposed solution is to usequotedidentifiers in legacy code
where identifiers conflict with new reserved keywords and in new code, to avoid
future problems. In conclusion, to follow current practice and to avoid being overly
restrictive, we consider upward compatibility to be satisfied even when new key-
words are added in the extension.

1This is the reason why we generally use the SQL3 term “period” for intervals.
2Reference [23] provides a list of 10 items with incompatibilities among SQL–89 and SQL–92, with the

keyword aspect being one item.

TEMPORAL STATEMENT MODIFIERS 805

2.3 Temporal Upward Compatibility

While essential, upward compatibility is only a first step. Upon adopting a tem-
poral data model, the benefits of the built-in temporal support are only realized
incrementally, by modifying existing application code or developing new applica-
tion code that exploits the temporal capabilities. A next step is thus to formulate
requirements that aim at ensuring a harmonious coexistence of legacy application
code and new, temporally-enhanced application code.

To see the point of tension between the two, assume that the new temporal
model is in place. No application code has been modified, and all relations are thus
snapshot relations. Now, an application needs support for the temporal dimension
of the data in one of the existing relations. To accommodate this need, the existing
snapshot relation is changed to become a temporal relation. It is undesirable to have
to change the (legacy) application code that accesses the snapshot relation that has
become temporal. It may even be that the source code of the legacy application
is no longer available. Therefore, we formulate a requirement stating that the ex-
isting applications on snapshot relations must continue to work unmodified when
the relations are altered to become temporal. Intuitively, the requirement is that a
queryq must return the same result on an associated snapshot databasedb as on
the temporal counterpart of the database,T (db). Further, updates should not affect
this.

Definition 3 (temporal upward compatibility) Let a temporal and a snapshot data
model be given byMT = (DST ,QLT) andMS = (DSS,QLS), respectively.
Also, letT be an operator that changes the type of a snapshot relation to the tempo-
ral relation with the same explicit attributes. Next, letU = u1, u2, . . . , un (n ≥ 0)
denote a sequence of update operations. With these definitions, modelMT is tem-
poral upward compatiblewith modelMS iff

• MT is upward compatible withMS and

• ∀dbS ∈ DSS (∀ U (∀qS ∈ QLS (〈〈qS(U(dbS))〉〉MS
=

(〈〈qS(U(T (dbS)))〉〉MT
)))). 2

The subset of the functionality of a temporal data model that corresponds to
temporal upward compatibility (TUC) consists of all SQL–92 language constructs,
the means of creating temporal tables, and the ability of applying SQL–92 queries
and updates to temporal tables. To illustrate, we assume that a temporal DBMS
satisfying TUC is in place and build on the statements from the previous section.

ALTER TABLE p ADD VT;
INSERT INTO p VALUES (6);
DELETE FROM p VALUES (3);
SELECT * FROM p WHERE NOT EXISTS (SELECT * FROM q

WHERE q.B = p.A);
SELECT * FROM v;

806 SQL STANDARDIZATION AND BEYOND

The first statement extendsp to capture valid time by making it a valid-time ta-
ble. (Alternatively, valid time could be captured by adding a special valid-time
column, thus not altering the table type [6].) The other statements are all legacy
SQL–92 statements, but their semantics have changed because the underlying data
structure, i.e., tablep, has changed. For example, the modification statements must
adequately maintain the valid time ofp [3]. Also, integrity checking must take into
consideration thatp is temporal whereasq still is a snapshot table. Specifically,p
must be restricted to the current state. The same holds true for the fourth statement.
Finally, querying the view requires that the semantics of the view has been redefined
(which would be achieved in practice by recompiling the view definition).

Example 1 Let p be{〈1||5−8〉, 〈3||1−NOW 〉, 〈4||1−5〉} (the “||” separates the valid
time from explicit attributes), letq be{〈1, 2〉, 〈3, 4〉}, and let the current time be 7.
Assume the data definitions from the previous section and the queries just given.

• The database is consistent because, at time 7, both integrity constraints are
satisfied, i.e.,p.A is a primary key andq.B referencesp.A .

• Adding 〈1||2−6〉 to p leaves the database in a consistent state. Because of
TUC, the integrity constraints are checked on the state that is valid at time 7
only.

• Adding either〈1||6−9〉 to p or 〈2, 4〉 to q violates the consistency of the
database. In the first casep.A is no longer a primary key at time 7; in the
second case, the referential integrity fromq.B to p.A is violated at time 7.

• The insert statement adds〈6||7−NOW 〉 to p.

• The delete statement changes〈3||1−NOW 〉 to 〈3||1−6〉 (we assume closed
intervals).

• Each of the two queries returns an empty table because all values ofp.A
occur inq.B as well at time 7. 2

In summary, with temporal upward compatibility, existing applications con-
taining both queries and update statements are not affected when relations are made
temporal. New applications that use temporal relations may thus coexist with ex-
isting applications, making it feasible for new applications to take incrementally
advantage of the built-in temporal support now available in the DBMS.

2.4 Syntactically Similar Snapshot Reducibility

The syntactically similar snapshot reducibility (for short, S-reducibility) require-
ment aims at protecting the investments in programmer training and at ensuring
continued efficient, cost-effective application development upon migration to a tem-
poral model. This is achieved by exploiting the fact that programmers are likely to
be comfortable with the non-temporal query language, e.g., SQL–92.

TEMPORAL STATEMENT MODIFIERS 807

The requirement states that the query language of the temporally extended
data model must offer, for each query in the non-temporal query language, a syn-
tactically similar temporal query that is its “natural” generalization, in a precise
technical sense. With this requirement satisfied and assuming that SQL–92 is the
non-temporal query language, slightly modified versions of the SQL–92 queries,
now on temporal tables, are temporal queries with semantics that are easily under-
stood in terms of the semantics of the corresponding SQL–92 queries on snapshot
tables. The familiar syntax and “naturally” extended semantics make it possible
for programmers to immediately and easily write a wide range of temporal queries,
with little need for expensive training, few errors, and no significant initial drop in
productivity.

We first define the notion of snapshot reducibility among query languages.
We will user andrbi for denoting a snapshot and a bitemporal relation instance,
respectively. Similarly,db anddbbi are sets of snapshot and bitemporal relation in-

stances, respectively. The bitemporal timeslice operatorτ
Mbi,M
(ctt ,cvt)

(e.g., [34, 7]) takes

as arguments a bitemporal relationrbi (in the data modelMbi) and a bitemporal
instant(ctt , cvt) and returns a snapshot relationr (in the data modelM) containing
all tuples current at timectt and valid at timecvt . In other words,r consists of all
tuples ofrbi whose associated time includes the time instant(ctt , cvt), but without
the valid and transaction time.

Definition 4 (snapshot reducibility) [36] LetM = (DS,QL) be a snapshot rela-
tional data model, and letMbi = (DSbi,QLbi) be a bitemporal data model. Data
modelMbi is snapshot reducible with respect todata modelM iff

∀q ∈ QL (∃qbi ∈ QLbi (∀dbbi ∈ DSbi (∀ctt , cvt (τMbi,M
(ctt ,cvt)

(qbi(dbbi)) =
q(τ

Mbi,M
(ctt ,cvt)

(dbbi)))))). 2

In other words, snapshot reducibility implies that for all query expressionsq in the
snapshot model, there must exist a queryqbi in the temporal model, such that for
all dbbi and for all time arguments,qbi reduces toq.

Observe thatqbi being snapshot reducible with respect toq poses no syntac-
tical restrictions onqbi . It is thus possible forqbi to be quite different fromq, and
qbi might be very involved even ifq s not. This is undesirable when we are for-
mulating language design requirements and would like the temporal model to be a
straightforward extension of the snapshot model. Consequently, we require thatqbi

andq be syntactically similar.

Definition 5 (syntactically similar snapshot reducibility) [5] LetM = (DS,QL)
be a snapshot data model, and letMbi = (DSbi,QLbi) be a bitemporal data model.
Data modelMbi is asyntactically similar snapshot-reducible extensionof modelM
iff

808 SQL STANDARDIZATION AND BEYOND

1. data modelMbi is snapshot reducible with respect to data modelM and

2. there exist two (possibly empty) strings,S1 andS2, such that each queryqbi

in QLbi that is snapshot reducible with respect to a queryq in QL is syntac-
tically identical toS1qS2.

If the two stringsS1 andS2 are both the empty string, the extension is termed a
syntactically identical snapshot reducible extension. 2

The stringsS1 andS2 are termedstatement modifiersbecause they change the
semantics of the entire statementq that they enclose.

If the temporal data model treats temporal relations as new types of relations,
it is possible to use the same syntactical constructs (i.e.,qbi andq are identical)
for querying snapshot and temporal relations. In this case, the type of the argument
relations determine the meaning of the construct. However, if TUC is also satisfied
and if there is no separate, global context, it is impossible to achieve an exten-
sion that isboth temporal upward compatibleandsyntactically identical snapshot-
reducible.

With snapshot reducibility along with the syntactical similarity requirement
satisfied, a snapshot reducible query evaluates to a result consistent with evaluating
the syntactically similar, nontemporal query at each state of the argument temporal
relation, producing a state of the output relation for each such evaluation. As a
result, temporal queries are easily formulated and understood. This applies also to,
e.g., modification statements and integrity constraints.

In the following examples, we prepend statements with the statement modi-
fier SEQ VT, to be described in detail in Section 3. This modifier tells the temporal
DBMS to evaluate statements withsequencedsemantics in the valid-time dimen-
sion. We use the term “sequenced” to indicate that the database is viewed as a
time-indexed sequence of snapshots. Explanations follow the example statements.

SEQ VT SELECT * FROM p;
SEQ VT SELECT p.A, q.C FROM p, q WHERE p.A = q.B;
SEQ VT SELECT A FROM p WHERE NOT EXISTS (SELECT * FROM q

WHERE B > A);
SEQ VT SELECT AVG(B), C FROM q GROUP BY C;
CREATE TABLE r (D INTEGER, SEQ VTPRIMARY KEY (D));

The first query simply returns all tuples together with their valid time—this corre-
sponds to returning the content ofp at each state. The remaining queries assume
that tableq has also been altered to become a valid-time table. The second query
joins p andq at each state of the database. This amounts to the well-known tem-
poral natural join [19]. Similarly, the third query evaluates the query, and the sub-
query, on each state of the database, thereby performing a variation of temporal
difference. Again, the modifierSEQ VTtells the DBMS to compute the difference
at each snapshot. The last statement defines a tabler and requires columnD to

TEMPORAL STATEMENT MODIFIERS 809

be a “temporal” primary key, i.e.,D must be a primary key at each state (but not
necessarily across states).

Example 2 Let p be{〈1||5−8〉, 〈3||1−3〉, 〈3||4−12〉, 〈4||1−5〉}and letq be{〈1, 2||4−
10〉, 〈3, 2||6−9〉, 〈4, 2||6−9〉}. Assume the queries shown above.

• The first query returns{〈1||5−8〉, 〈3||1−3〉, 〈3||4−12〉, 〈4||1−5〉}.
• The second query returns{〈1, 2||5−8〉, 〈3, 2||6−9〉}. Conceptually, we get the

result by evaluation the enclosed SQL-statement on each state of the database.
Computationally, the interval 6−9 is the result of intersecting the intervals
4−12 and 6−9 (interval intersection returns those instants that are contained
in both input intervals).

• The third query returns{〈1||5−5〉, 〈3||1−3〉, 〈3||4−5〉, 〈3||10−12〉, 〈4||1−5〉}.
Again, we conceptually evaluate the enclosed statement on each state of the
database. Computationally, we, e.g., subtract the interval 6−9 from the interval
4−12 to get the intervals 4−5 and 10−12.

• The aggregate query returns{〈1, 2||4−5〉, 〈2.667, 2||6−9〉, 〈1,2||10−10〉}.
As before, we evaluate the enclosed statement on each state to determine the
result. 2

Example 3 Let r be{〈1||3−6〉, 〈1||10−17〉, 〈2||4−8〉}. Assume the data definition
statement shown above.

• The database is consistent because at each stater.D is a primary key.

• Adding 〈1||7−9〉 to r leaves the database in a consistent state.

• Adding〈2||7−9〉 to r violates the consistency becauser.D would then not be
a primary key at times 7 and 8. 2

These examples illustrate that syntactically similar snapshot reducible state-
ments are easy to write and understand. However, despite their natural semantics,
these statements become very difficult to write without statement modifiers. For ex-
ample, even skilled SQL programmers will find it close to impossible to formulate
all examples in pure SQL.

2.5 Interval Preservation

While the novel coupling of the well-known snapshot reducibility property (Defini-
tion 4) with syntactical similarity (Definition 5) and the use of this resulting property
as a guideline for how to syntactically embed temporal functionality in a language
is highly attractive, it is also limited. Specifically, S-reducibility does not distin-
guish between different relations if they contain the same snapshots, i.e., if they are
snapshot equivalent [19]. This means that many different results of an S-reducible
query are generally possible: the results will be snapshot equivalent, but differ in

810 SQL STANDARDIZATION AND BEYOND

how the result tuples are timestamped. As a simple example, if{〈X||1−5〉} is a
possible result of an S-reducible query, so is{〈X||1−2〉, 〈X||3−5〉}. This section
delves into the issue of which result, or results, should be favored out of the many
possible results permitted by S-reducibility. To illustrate the issue in more detail,
consider Figure 1.

president
Name VTIME

Bill Clinton 1993/01/20−1997/01/20
Bill Clinton 1997/01/21−NOW

president′
Name VTIME
Bill Clinton 1993/01/20−NOW

Figure 1: Snapshot-equivalent Relations with Different Application Semantics

The two relations in Figure 1 are different and may be given different mean-
ings by the user. The tuples in the relation to the left denote the fact “Bill Clinton
was president” during two adjacent time periods. The relation to the right repre-
sents when Bill Clinton was president, which is different from recording during
which terms he served. In spite of this difference, the relations are the same in the
eyes of snapshot reducibility. This is so because to snapshot reducibility, a relation
is no more than a sequence of snapshot relations; and the two relations are mutu-
ally snapshot equivalent, i.e., for all time pointstp, the snapshotsτvttp (president)
andτvttp (president

′) are identical. We thus have an example where two different
relations—with quite different meanings in terms of what is important for the ap-
plication user—cannot be told apart by snapshot-equivalence-based properties.

The difference between the two relations is that one is coalesced while the
other is not [9]. In general, two tuples in a temporal relation with intervals as times-
tamps are candidates for coalescing if they have identical explicit attribute values
and adjacent or overlapping timestamps. Such tuples may arise in many ways.
For example, uncoalesced tuples may have been stored in the database on purpose,
update operations may not enforce coalescing due to efficiency concerns, or a pro-
jection of a coalesced temporal relation may produce an uncoalesced result, much
as duplicate tuples may be produced by a projection on a duplicate-free snapshot
relation.

When formulating more specific design requirements for how to timestamp
tuples of query results, two possibilities come to mind. We can require results to be
coalesced. This solution is attractive because it defines a canonical representation
for temporal relations. Potential disadvantages are that timestamps of tuples stored
into the database are are not preserved and that with more than one interval-valued

TEMPORAL STATEMENT MODIFIERS 811

time dimension, no unique coalesced relation exists (cf. Section 3.2). As the second
possibility, we can preserve, or respect, the timestamps as originally entered into the
database. This approach is faithful to the information entered by the user and offers
more control to the user, but it also moves the responsibility for maintaining the
semantics of the timestamps from the system to the user.

Because there are advantages to both possibilities, we have chosen to illustrate
how statement modifiers may accomodate both in the same language. The default
is to preserve the timestamps—being irreversible, coalescing cannot be the default.

In the sequel we define interval preservation [2], which intuitively requires
that timestamps are respected as much as possible, i.e., unless required by the snap-
shot reducibility requirement, timestamps may not be split or merged. As first steps,
we introduce three auxiliary notions, namelynormalized relations, relevant tuples,
andmaximal interval fragments.

To define normalized relations, we use the following auxiliary notions from
the literature. RelationsR1 andR2 aresnapshot equivalent, i.e.,R1

se= R2, iff at
each point in time their snapshots are identical [19]. Two tuples arevalue equivalent
iff their explicit attributes are pairwise identical [9]. Finally, atemporal elementis
a finite union of intervals, i.e., a set of maximal non-overlapping intervals [14].

We use the database and query from Example 2 for illustrating the definitions
that follow. Thus, define:

• p = {〈1||5−8〉, 〈3||1−3〉, 〈3||4−12〉, 〈4||1−5〉}
• q = {〈1, 2||4−10〉, 〈3, 2||6−9〉, 〈4, 2||6−9〉}
• DB= p ∪ q
• Q= SEQ VT SELECT A FROM p

WHERE NOT EXISTS (SELECT * FROM q WHERE B > A)
• r = {〈1||5−5〉, 〈3||1−3〉, 〈3||4−5〉, 〈3||10−12〉, 〈4||1−5〉}

Normalized relations are timestamped with temporal elements and do not con-
tain value-equivalent tuples. A set of snapshot equivalent relations shares the same
normalized relation, and we use normalized relations to characterize the set of time
points that must be included in the timestamp of a query result. Note that because
all intervals in normalized relations are maximal, the actual result intervals are guar-
anteed to be subintervals of the intervals in a normalized relation.

Definition 6 (normalized relation) Let R be a temporal relation and letRn be
a temporal relation timestamped with temporal elements.Rn is normalizedwith
respect toR iff Rn is snapshot equivalent withR andRn does not contain value-
equivalent tuples. 2

Example 4 Relationsp, q, andr from above are normalized as follows.

• pn = {〈1||{5−8}〉, 〈3||{1−12}〉, 〈4||{1−5}〉}
• qn = {〈1, 2||{4−10}〉, 〈3, 2||{6−9}〉, 〈4, 2||{6−9}〉}
• r n = {〈1||5−5〉, 〈3||{1−5, 10−12}〉, 〈4||{1−5}〉}. 2

812 SQL STANDARDIZATION AND BEYOND

We proceed to define the notion of relevant tuples. To each tuple of a normal-
ized result relation, there exists a set of tuples that is relevant to it, i.e., if any of
the relevant tuples is removed from the input database, the query no longer yields
a relation that is snapshot equivalent with the normalized result relation. Relevant
tuples are interesting because they contribute to the computation of the result. The
timestamps of relevant tuples are the ones that need to be preserved. Note that the
set of relevant tuples is generally not homogeneous, but may include tuples from
relations with different schemas.

Definition 7 (relevant tuples)Assume a temporal databaseDB and a S-reducible
queryQ. DBreltn ⊆ DB is therelevant tuplesfor tn ∈ Q(DB)n iff Q(DBreltn)

se=
{tn} and∀DB ′(DB ′ ⊂ DBreltn ⇒ ¬(Q(DB ′) se= {tn})). 2

Example 5 With DB,Q, andr from our example the following holds true.

• The relevant tuples fort n1 = 〈3||{1−5, 10−12}〉 areDBrel
tn1
= {〈3||1−3〉, 〈3||4−

12〉, 〈4, 2||6−9〉}.
• The relevant tuple fort n2 = 〈4||{1−5}〉 is DBrel

tn2
= {〈4||1−5〉}. 2

Intuitively, the maximal interval fragments for a normalized tuple of a query
result are those parts of the intervals of the relevant tuples that must be included
in the query result. Maximal fragments are important because we want to pre-
serve intervals as much as possible in query results (but without violating snapshot
reducibility). We uset ime(t) to denote the timestamp of tuplet , and we let inter-
sections (∩) return temporal elements.

Definition 8 (maximal interval fragments) Assume a temporal databaseDB and
an S-reducible queryQ onDB. Let tn ∈ Q(DB)n, the normalized query result,
and letDBreltn be the set of relevant tuples fortn. Themaximal interval fragments
(MIF) are then given as follows.

MIF(DB,Q, tn) = {I |∃ti ∈ DBreltn ∧ I ∈ (time(ti) ∩ t ime(tn))} 2

The maximal interval fragments are thus the intervals obtained from intersect-
ing the timestamps of relevant tuples with the timestamp of the normalized tuple.

Example 6 Assumet n1, t
n
2,DBrel

tn1
, andDBrel

tn2
from the previous example.

• The maximal interval fragments fort n1 andDBrel
tn1

are{1−3, 4−5, 10−12}.
• The maximal interval fragment fort n2, andDBrel

tn2
is {1−5}. 2

We are now in a position to define interval preservation. Informally, interval
preservation means that the timestamp of a result tuple is restricted to an interval
from the corresponding set of maximal interval fragments.

TEMPORAL STATEMENT MODIFIERS 813

Definition 9 (interval preservation) An S-reducible queryQ is interval preserv-
ing iff for all databasesDB, each tuple inQ(DB) is timestamped with an interval
from the set of maximal interval fragments of the corresponding normalized tu-
ple. 2

Example 7 In our example, we haver = {〈1||5−5〉, 〈3||1−3〉, 〈3||4−5〉, 〈3||10−
12〉, 〈4||1−5〉}. The maximal interval fragment for the tuple with explicit attribute
value 1 is{5−5}. The maximal interval fragments for tuples with explicit attribute
value 3 are{1−3, 4−5, 10−12}. The maximal interval fragment for the tuple with
explicit attribute value 4 is{1−5}. Thus, intervals are preserved and the query is
interval preserving.

On the other hand, assumer 1 = {〈1||5−5〉, 〈3||1−5〉, 〈3||10−12〉, 〈4||1−5〉},
which results from coalescing the two value-equivalent tuples inr with adjacent in-
tervals. Becauser 1

se= r , the result is perfectly acceptable according to the snapshot
reducibility. However, intervals are not preserved because 1−5 is not a maximal
interval fragment.

Finally, assumer 2 = {〈1||5−5〉, 〈3||1−3〉, 〈3||4−5〉, 〈3||10−12〉, 〈4||1−2〉, 〈4||3−
5〉}, which we obtain from splitting an interval inr . Again,r 2

se= r , which means
that r 2 respects the snapshot reducibility requirement. Yet, intervals are not pre-
served because neither 1−2 nor 3−5 are elements of the corresponding set of
maximal interval fragments. 2

2.6 Universal Statement Modifiers

The reducibility requirement of Definition 5 is applicable only to queries of the
underlying non-temporal query language. Thus, it does not extend to queries such
as the following.
SEQ VT SEQ VT

SELECT * SELECT p.X, VTIME(q) ,
FROM p, q VTIME(p)
WHERE p.X = q.X FROM p, q
AND DURATION(VTIME(p),YEAR) > 5 WHERE p.X = q.X

Both queries are quite natural and easy to understand. The query to the left con-
strains the temporal join top-tuples with a valid time longer than 5 years. Note that
this condition cannot be evaluated on individual snapshots because the timestamp is
lost when taking a snapshot of a temporal database. The query to the right computes
a temporal join as well, but also returns the original valid times. Again snapshot re-
ducibility by itself cannot be used to answer the query because the original valid
times are not present in the snapshots.

Queries such as these arise naturally. DBMSs generally provide predicates
and functions on time attributes, which may be applied to, e.g., valid time. Enlarg-
ing the applicability of theSEQ VTmodifer to statements that include predicates

814 SQL STANDARDIZATION AND BEYOND

and functions on valid and transaction time yields a more user-friendly (and orthog-
onal) query language.

Definition 10 (universal statement modifiers)Statement modifiers areuniversal
iff they apply to all statements. 2

Although S-reducibility in itself cannot define statements that include func-
tions and predicates on timestamps, these statements are constrained to observe the
spirit of S-reducibility (they are consistent with viewing a temporal database as a
time indexed sequence of nontemporal databases). Recall the sample query above.
The conditionDURATION(VTIME(p),YEAR) > 5 cannot be evaluated by con-
sidering individual snapshots in isolation. However, the temporal join itself can
still be conceptualized as a nontemporal join evaluated on each snapshot. Thus, S-
reducibility can be used to constrain the semantics of the “nontemporal constructs”
(e.g., a join, difference, or subquery) of a sequenced statement, but it cannot be used
to define temporal constructs that explicitly reference the timestamps.

Statements that may include functions and predicates on timestamps are de-
fined in Section 4. Specifically, the statements are mapped into well–defined tem-
poral relational algebra expressions. The temporal algebra is carefully designed to
(1) respect snapshot reducibility, (2) define the timestamps of query results, and (3)
preserve timestamps. A formal discussion and proofs follow later in the paper.

2.7 Non-Sequenced Statements

Sequenced statements are attractive because they provide built-in temporal seman-
tics that is based on viewing a database as a sequence of states. However, there
are many reasonable queries that cannot be expressed as sequenced queries. There-
fore a temporal query language should also allownon-sequencedqueries, with no
built-in temporal semantics enforced.

Definition 11 (non–restrictiveness)A query language isnon–restrictiveiff times-
tamps can be manipulated like regular attributes, with no implicit temporal seman-
tics enforced. 2

Non-restrictiveness is attractive because it guarantees a standard non-temporal
behavior of statements. This is particularly important in the context of a smooth
migration where users can be expected to be well-acquainted with the semantics
of their non-temporal language. The non-restrictiveness requirement ensures that
users are able to keep using the paradigm they are familiar with and to incrementally
adopt the new features.

There is a theoretical argument in favor of non-restrictive languages as well:
It has been shown that any variant of temporal logic, a well-developed language
that only provides built-in temporal semantics, is strictly less expressive than a first

TEMPORAL STATEMENT MODIFIERS 815

order logic language with explicit references to time, i.e., a non-restrictive language
[42].

We use the modifierNSEQ VTto signal non-sequenced semantics, i.e., stan-
dard semantics with full explicit control over timestamps. (The choice of this mod-
ifier is discussed in the next Section.)

NSEQ VT
SELECT *
FROM p, q
WHERE VTIME(p) PRECEDES VTIME(q) AND A = B;

CREATE TABLE s (E INTEGER, NSEQ VTPRIMARY KEY (E));

The query joinsp andq. The join is not performed at each snapshot. Instead we
require that the valid time ofp precedes the valid time ofq. The result relation is a
nontemporal one. The data definition statement makesE a nonsequenced primary
key of r , i.e., independent of the time,E is a primary key ofr .

Example 8 Let p be {〈1||5− 8〉, 〈3||1− 12〉, 〈4||1− 5〉} and let q be {〈1, 2||4−
10〉, 〈3, 2||6−9〉, 〈4, 2||6−9〉}. The above query returns{〈4〉}. 2

Example 9 Let s be{〈1||3−6〉, 〈2||4−8〉}.
• The database is consistent because, independent of the time,s.E is a primary

key.

• Adding another tuple with an explicit attribute value of either 1 or 2 violates
the consistency of the database because this makess.E no longer a primary
key that is independent of the time.

• Adding a tuple with an explicit attribute value other than 1 and other than 2
leaves the database in a consistent state. 2

The concept of non-sequenced queries naturally generalizes to modifications.
Non-sequenced modifications destructively change states, with information retrieved
from possibly all states of the original relation.

Non-sequenced statements are more complex than S-reducible statements in
the sense that the user gets less built-in support. The query language must provide
a set of functions and predicates so that the user can express temporal relation-
ships (e.g.,PRECEDES) and perform manipulations and computations on times-
tamps (e.g.,VTIME). This requires new constructs in the query language. These
constructs are, however, easy to integrate because they require changes at the level
of built-in predicates and functions only.

2.8 Summary of Requirements

In this section, we have formulated requirements that are essential for the data
model of a temporal DBMS to satisfy in order to ensure a smooth transition from

816 SQL STANDARDIZATION AND BEYOND

a non-temporal DBMS to the temporal system and in order to ensure a systematic
and comprehensive support for advanced temporal statements. We review each in
turn.

Upward compatibility guarantees that replacing the existing DBMS with a
new, temporal DBMS does not affect the functioning of any application code. Tem-
poral upward compatibility guarantees that, with the new DBMS in place, it is possi-
ble to incrementally exploit more and more of the built-in temporal support. Specif-
ically, changing existing snapshot relations to become temporal relations does not
affect the functioning of any legacy code. Together, these two requirements aim
at making it possible to benefit from temporal support while protecting the invest-
ments in legacy application code.

The requirement that the temporal language be a syntactically similar snap-
shot-reducible extension of the existing language makes the temporal query lan-
guage easy to use for programmers familiar with the existing query language. They
ensure a systematic support for temporal statements that conceptualize a temporal
database as a sequence of nontemporal database states. For such queries, the tempo-
ral system automatically computes the timestamps of the result queries. This is very
attractive because the alternative is to explicitly formulate the predicates necessary
to correctly compute the timestamps, which is often a complicated and error-prone
activity, leading to involved and hard-to-understand statements. We have shown
simple statements that would become extremely difficult to formulate without the
availability of built-in temporal support.

Another important observation is that snapshot reducibility cannot be used
to define the timestamps to be returned. We therefore require a language to be
interval preserving. This not only defines the timestamps to be returned but it also
ensures that the database system is faithful to the timestamps stored in the database.
In order to increase the utility of statement modifiers and in order to increase the
orthogonality of the language, we require that statement modifiers be universally
applicable, i.e., modifiers can be applied to statements that include predicates and
functions on timestamps.

Finally, when the semantics of sequenced queries are not adequate, the lan-
guage should provide good support for expressing the intended timestamps and
results within nonsequenced statements. For example, a set of predicates on times-
tamps should be available that allow for the convenient expression of the possible
ordering relations among timestamps. The non-restrictiveness requirement gives
the user full control over timestamps.

3 Applying Statement Modifiers to SQL-based Languages

The previous section motivated and defined requirements without making restrictive
assumptions about the properties of particular query languages and data models—
simple SQL-based examples were used merely for illustration purposes.

TEMPORAL STATEMENT MODIFIERS 817

The main purpose of this section is to describe the language design space con-
strained by the requirements and to demonstrate the practical utility of statement
modifiers for meeting the requirements. To achieve this, we have chosen to develop
a design of an SQL-based temporal language. We have chosen SQL–92 as the con-
crete context because it is a rather complex language and because of its widespread
use. However, statement modifiers are not restricted to a specific language, but are
generally applicable.

3.1 Global Impact of Requirements

Upward compatibility dictates that the temporal language contains all statements
of SQL–92, including its temporal features. For example, SQL–92 contains the
data typeINTERVAL of duration values. Thus, a new language should also use
INTERVAL for durations, and another keyword must be chosen for the interval
data type—we choosePERIOD. As another implication, the temporal extension
must contend withall the facilities of SQL–92, e.g., nested queries, aggregates, and
null values.

In order to satisfy temporal upward compatibility (TUC), it is necessary that
all SQL–92 statements work on temporal relations as well as on snapshot relations,
as described in detail in the previous section. This is achieved by letting SQL–92
modification statements on temporal relations modify the current and future states
of the relations. The statements thus take effect on the states current at the time
of the modification, and the effects persist in the (dynamically changing) current
state from that time on and until affected by other modifications. Queries, views,
and constraints simply consider only the snapshot states of the argument temporal
relations that are current and valid at the times they are evaluated. This seman-
tics guarantees that adding time to existing snapshot relations has no effect on the
applications that use them.

The requirement that there should exist syntactically similar snapshot reducible
temporal counterparts of all SQL–92 queries also affects the design. For each SQL–
92 query, we must be able to pre- or append a fixed text string, amodifier, to get
the corresponding temporal query. We choseSEQ VTfor valid time,SEQ TTfor
transaction time to emphasize that the temporal database is viewed as a sequence
of nontemporal databases. Note that it is not possible to use the empty modifier,
which is reserved for TUC statements.

Sequenced statements offer built-in, or default, timestamp-related process-
ing—the temporal DBMS rather than the application does the potentially very com-
plex processing involving timestamps. Thus, it is an attractive property of the new
query language that as many queries as possible can be formulated as sequenced
queries. This reduces the complexity of application code, with many associated
benefits. To increase the utility of sequenced queries, we extend them with so-called
domain specifications, making it possible to restrict the parts of the argument tuples

818 SQL STANDARDIZATION AND BEYOND

considered in queries to certain time periods. We also add range specifications that
allow the specification of the timestamps of result tuples. These specifications are
integral parts of the statement modifiers.

While the built-in semantics of sequenced queries are “natural” in the specific
technical sense defined earlier, there are many queries that cannot be formulated
using these default semantics. Rather, it must be possible to formulate a much wider
range of queries where the application programmer is in complete control of, and
responsible for, the timestamp manipulation. Such queries need another modifier,
different from that of sequenced queries. Using no flags is not an option, due to
interaction with the semantics of SQL–92 queries on temporal relations, as dictated
by temporal upward compatibility. We choose the flagsNSEQ VTandNSEQ TT.
In these nonsequenced queries, no default timestamp-related semantics is built into
the query language. Rather, the timestamps of temporal relations are made available
in the query, essentially as regular, explicit attributes.

The new period data type,PERIOD, is used for the timestamps. In addition,
built-in facilities for constructing periods and for end-point extraction are provided
along with a host of predicates on the data type (cf. Appendix A).

3.2 Adding Detail to the Design

The requirements shape the overall design of a temporal extension of SQL as dis-
cussed above. When we move to a more detailed level in the design, good design
practice (e.g., generality and orthogonality) rather than the requirements guides the
design. Below, we add detail to the general design (Section 4 provides precise se-
mantics).

Extensions at the Statement Level

First, we discuss how to associate modifiers with statements, i.e., with query ex-
pressions, views, assertions, integrity constraints, and modification statements.

We saw that different semantics are given to different temporal statements:
(i) SQL–92 statements, (ii) statements with semantics dictated by temporal upward
compatibility, (iii) sequenced statements, and (iv) statements with nonsequenced
semantics. Now, we study in more detail the syntax of the statement modifiers that
specify these semantics.

Section 2 simply requires that a statement modifier is placed at the beginning
or end of a statement and that it applies to the statement as a whole. Within these
restrictions, there are several possibilities for the positioning of the statement mod-
ifiers for the different types of statements. We provide an EBNF syntax for each of
our specific extensions to SQL–92. We thus focus on the temporal extensions and
gloss over the details of SQL–92. In addition, we will focus on queries, which are
the most complex statements, but will also consider other statements. In the EBNF

TEMPORAL STATEMENT MODIFIERS 819

productions that follow, terminals are of the form"xxx" , i.e., enclosed in quota-
tion marks. Non-terminals of the form<xxx> derive from the SQL–92 standard
[23, p.481ff], and new non-terminals are of the form<xxx> . Omitting these new
non-terminals yields the original (slightly simplified) SQL–92 productions.

• In queriesand cursor expressions (termed<cursor specification>
in SQL–92) the statement modifiers are placed at the outermost level, right at
the beginning.

<cursor specification> ::=
<modifiers> <query expression>
[<order by clause>] |
"(" <modifiers> <query expression> ")" <coal>
[<order by clause>]

The scope of the semantics implied by the statement modifiers is all parts
of the query (e.g., including nested queries), with the exception of derived
table expressions in the from clause. The non-terminal<coal> is used for
specifying coalescing, to be discussed later in this section.

• In views, the statement modifiers are placed immediately following theAS
keyword.

<view definition> ::=
"CREATE" "VIEW" <table_name>
["(" <view column list> ")"] "AS"
(<modifiers> <query expression> |

"(" <modifiers> <query expression> ")" <coal>)

• Statement modifiers can be associated withderived table expressionsin from
clauses. The motivation is that derived tables may be meaningfully computed
independently of the computation of the remainder of the containing query.
Put differently, derived table expressions have their own scope and may be
replaced by views or auxiliary tables, thus meaningfully allowing derived ta-
bles expressions to have their own individual statement modifiers. This adds
flexibility to the language and improves its usefulness. As a syntactic short-
hand, coalescing is also allowed after table names in the from clause (in order
to facilitate point-based queries).

<table reference> ::=
<table name> <coal>
[["AS"] <correlation name>] |
"(" <modifiers> <query expression> ")" <coal>
["AS"] <correlation name>

Note that, while syntactically similar, derived tables in the from clause are
quite different from subqueries in the where clause. Subqueries can be corre-

820 SQL STANDARDIZATION AND BEYOND

lated with the main query and cannot be evaluated independently. Therefore,
no separate modifier is allowed for subqueries.

• In assertions, statement modifiers are placed right after theCHECKkeyword.

<assertion definition> ::=
"CREATE" "ASSERTION" <constraint name>
CHECK <modifiers> "(" <search condition> ")"

• Table and column constraintsare syntactic shorthands for assertions. The
statement modifiers are placed right in front of the table and column con-
straints, respectively.

<column definition> ::=
<column name> <modifiers>
<column constraint definition>

<table constraint definition> ::=
<constraint name definition> <modifiers>
<table constraint>

• As with queries, the modifiers are placed in front ofmodification statements.

<SQL data change statement> ::=
<modifiers> <insert statement> |
<modifiers> <delete statement> |
<modifiers> <update statement>

Summarizing, statement modifiers are associated with all “statements” that
can be evaluated independently. Examples include queries, data manipulation state-
ments, assertions, integrity constraints, and views. In general, statement modifiers
are placed in front of statements to emphasize their impact upon the entire state-
ment.

Statement Modifiers

We start with an EBNF syntax for statement modifiers and continue with a discus-
sion of their meaning.

<modifiers> ::= [<modifier> ["AND" <modifier>]]
[<vt_range>]

<modifier> ::= <mode> <dimension> [<domain>]
<mode> ::= "SEQ" | "NSEQ"
<dimension> ::= "TT" | "VT"
<domain> ::= period_constant
<vt_range> ::= "SET" "VT" period_expression

TEMPORAL STATEMENT MODIFIERS 821

The meaning of the statement modifiers naturally divides into four orthogonal
parts, namely the specification of the core semantics, the time-domain specification,
the time-range specification, and specification of coalescing. We start with the dis-
cussion of the core semantics and continue with domain and range specifications
and coalescing in the next sections.

The following three types of modifiers determine thecore semanticsof tem-
poral statements. Each of the three types of modifiers applies orthogonally to valid
and transaction time.

<empty modifier> A missing modifier for a time dimension (i.e., valid or transac-
tion) dictates upward compatibility (UC) when neither of the underlying argu-
ment relations support that time; otherwise, evaluation according to temporal
upward compatibility (TUC) is dictated. For queries, the time dimension will
not be present in the result relation.

SEQ When this keyword is present for a time dimension, evaluation consistent with
sequenced semantics (SEQ), i.e., built-in timestamp-related processing, is dic-
tated for the time dimension. The time dimension will be present in relations
that result from queries.

NSEQThis keyword signals nonsequenced semantics (NSEQ), i.e., timestamp pro-
cessing with no built-in semantics enforced by the temporal DBMS. The af-
fected time dimension is not present in query results (with this modifier, the
time effectively becomes an explicit attribute that can be included in the result
similarly to how other explicit attributes are included).

With two time dimensions, the three cases lead to a total of nine kinds of
statements, as summarized in Table 1. For simplicity, we have omitted permutations
of the valid and transaction time modifier (they have the same semantics).

syntax semantics
vt tt

<SQL–92> (T)UC (T)UC
SEQ VT<SQL–92> SEQ (T)UC
NSEQ VT<SQL–92> NSEQ (T)UC
SEQ TT<SQL–92> (T)UC SEQ
NSEQ TT<SQL–92> (T)UC NSEQ
SEQ VT AND SEQ TT<SQL–92> SEQ SEQ
SEQ VT AND NSEQ TT<SQL–92> SEQ NSEQ
NSEQ VT AND SEQ TT<SQL–92> NSEQ SEQ
NSEQ VT AND NSEQ TT<SQL–92> NSEQ NSEQ

Table 1: The Basic Usage of Statement Modifiers

822 SQL STANDARDIZATION AND BEYOND

Time-Domain and Time-Range Specifications

Statement modifiers also allow for time-domain and time-range specifications. The
time domainis a period constant that may be placed right after theVT and TT
keywords, respectively. It restricts the database to the part that is valid or current
during the respective period. A domain restriction is applied prior to the evaluation
of a statement, i.e., in a preprocessing step.

SEQ VT PERIOD′1994-1997 ′
SELECT * FROM p, q WHERE p.A = q.B;

CREATE TABLE r (C INTEGER,
SEQ VT PERIOD′10-20 ′ PRIMARY KEY (C));

The domain restriction in the query says that we are only interested in facts valid
during the last four years. Similarly, it is possible to restrict integrity constraints to
a certain period. Specifically, the primary key constraint will only be enforced from
time 10 to time 20.

For valid time, it can be meaningful to specify the valid time of the result, i.e.,
the time range. TheSET VTclause is used for this purpose. Note that it makes no
sense to provide a similar clause for transaction time. Transaction-time semantics
forbids this kind of user interaction [28]. The time range is set in a postprocessing
step, i.e., after the evaluation of a query.

NSEQ VT
SET VT PERIOD(BEGIN(VTIME(p)),END(VTIME(q)))

SELECT * FROM p, q WHERE VTIME(p) PRECEDES VTIME(q);

The statement joinsp- andq-tuples if the former precedes the latter. The valid time
of the result tuple is set to the period that covers the valid times of both input tuples
including all time points in-between.

Coalescing

Coalescing merges tuples with overlapping or adjacent timestamps, and identical
corresponding attribute values (termed value equivalent), into a single tuple. Coa-
lescing is allowed at the levels where the modifiers are also allowed. In addition,
as a syntactic shorthand, a coalescing operation is permitted directly after a relation
name in the from clause. In this case, a coalesced instance of the relation, rather
than the uncoalesced one, is considered.

<coal> ::= "(" <dimension> ")"

The semantics of coalescing depends on the type of relation it is applied to.
A snapshot relation cannot be coalesced. A valid-time relation can be coalesced in
valid time only, and the equivalent is true for transaction-time relations. With a sin-
gle time dimension, coalescing degenerates to the merging of value-equivalent tu-
ples with overlapping or adjacent time periods. In this case, the meaning is straight-

TEMPORAL STATEMENT MODIFIERS 823

forward (performance aspects of one-dimensional coalescing have been studied
elsewhere [9]).

We thus turn our attention to the coalescing of bitemporal relations where the
semantics are more subtle. Here, overlapping or adjacent time regions (rectangles)
of value-equivalent tuples have to be merged. In the general case, overlapping rect-
angles do not coalesce into a single rectangle, which means that several result tuples
have to be generated. This can be done in two ways: with the resulting rectangles
maximized in valid time or in transaction time. We use(VT) for the former and
(TT) for the latter. Figure 2 exemplifies bitemporal coalescing.

(TT) (VT) (TT)(VT) (VT)(TT)

tt

vt

tt

vt vt

tt tt

vt

tt

vt

Figure 2: Different Forms of Coalescing

The first picture displays the rectangular shapes defined by the timestamps
of four value-equivalent tuples. The second and third pictures illustrate the two
basic coalescing operations; coalescing in transaction time and coalescing in valid
time. These two basic operations can be combined to(TT)(VT) , which means
that we first coalesce in transaction time and then in valid time. As exemplified
by the last two pictures, the sequence of coalescing operations matters. Sequence
(TT)(VT) results in maximal valid-time periods, whereas(VT)(TT) results in
maximal transaction-time periods.

(SEQ VT SELECT * FROM p)(VT) ;
SEQ VT SELECT * FROM p(VT) WHERE DURATION(VTIME(p),YEAR) > 5;

In the first statement, we coalesce the result of a sequenced query. In the second
query, we coalesce the relation in the from clause because we want the subsequent
condition to be evaluated over maximal valid times only.

3.3 Summary of Syntax

Initially, we discussed the global impact of the requirements. We then defined the
syntax of a temporal extension of SQL–92 that satisfies UC, TUC, SEQ, and NSEQ
in terms of EBNF productions. We emphasized the general concepts with the goal
of making it easier to appreciate that it is possible to extend a non-temporal language
different from SQL–92, as well as to use different specific modifiers.

824 SQL STANDARDIZATION AND BEYOND

4 A Formal Semantics

This section provides a precise and comprehensive definition of the semantics of
the temporal extension of SQL in terms of a mapping to standard and temporal
relational algebra, both of which are defined here. We illustrate that statement mod-
ifiers are amenable to giving a concise and precise definition of the semantics.

4.1 Translating Temporal Statements to Relational Algebra Expressions

The translation to (temporal) relational algebra expressions consists of two parts.
First, we consider constructs at the level of functions and predicates. This step is
straightforward and is discussed in the first section. The translation at the statement
level, i.e., the translation of statements enhanced with statement modifiers, is much
more involved (and important!) and is covered in the subsequent three sections.

Constructs for Timestamp Manipulation

Temporal query languages generally define a variety of constructs to manipulate
their various timestamp types. These include constructors (to create instances of the
timestamp types), extractors (to extract constituent parts from timestamps), predi-
cates (boolean-valued, for comparison), and operations (to create new timestamps
from existing ones). Many constructs exist in the literature [39, pp. 251–291]. They
are relatively easy to define, and adding one more construct to a language has only
a localized effect on the language design. Therefore, we only define a relatively
small number of constructs here.

We assume the most common timestamp representation, namely fourTIME-
STAMPattributes representing valid and transaction time, respectively. This repre-
sentation leads to the definitions given in Appendix A, which we will use through-
out, including in relational algebra expressions, e.g., in selection predicates. This
makes the expressions more readable. It is straightforward to adapt these definitions
to different representations, e.g., a representation that is based on thePERIODdata
type of the evolving SQL/Temporal part of the SQL3 standard.

Query Expressions

We define the meaning of temporal query expressions by translating them to well-
defined algebraic expressions. As a precursor, we introduce the notation that we
will use in the algebra expressions.

We use〈t〉, 〈t ||V T 〉, 〈t ||T T 〉, and〈t ||V T, T T 〉 to denote tuple variables rang-
ing over snapshot, valid-time, transaction-time, and bitemporal relations, respec-
tively. The vertical double-bar “||” is used to separate the explicit attributes from

TEMPORAL STATEMENT MODIFIERS 825

the implicit timestamps. The valid time is referred to asV T , the transaction time
asT T .

In the definitions, we need auxiliary operators that timeslice relations and turn
timestamps into regular, explicit attributes. These operators are overloaded to apply
to valid-time, transaction-time, and bitemporal relations, and they have variants for
both valid and transaction time. Their formal definition is provided in Appendix B.
There are two timeslice operations. The first,τtp, selects all tuples in the argument
relation with a timestamp that overlaps time pointtp. The time dimension used in
this selection is not present in the result relation. The second timeslice operation,
δper , returns all argument tuples that overlap with periodper. The timestamp of a
result tuple is the intersection ofper with the tuple’s original timestamp. The snap-
shot operationSN turns a time dimension into an explicit attribute. Note thatSN

is not needed at the implementation level, where all attributes are explicit (cf. Sec-
tion 4.1). With these conventions in place, Table 2 gives the semantics for core
statements (cf. Table 1).
In the table,[[<SQL–92>]]SQL−92 evaluates to the standard relational algebra ex-
pression that corresponds to<SQL–92> [12, 18]. Next,[[<SQL–92>]]T , where
T ∈ {vt, tt, bi}, evaluates to the same algebraic expression as does
[[<SQL–92>]]SQL−92, except that every nontemporal relational algebra operator
(e.g.,×, σ, π) is replaced by the corresponding temporal relational algebra opera-
tor (e.g.,×T , σT , πT). The algebras are defined in Section 4.2. The following two
examples illustrate the definition.

Example 10 The query below, termedQ1, is an example of a non-sequenced query.
The argument relations are assumed to be bitemporal.

NSEQ VT
SELECT p.X
FROM p, q
WHERE p.X = q.X
AND VTIME(p) PRECEDES VTIME(q)

This query is defined by the relational algebra expression given next.

[[Q1]]temp(p, q) =
πp.X(σp.X=q.X(σVT IME(p) PRECEDES V T IME(q)(SNvt (τ ttnow(p))×

SNvt (τ ttnow(q)))))

Note that the mapping from SQL–92 queries to relational algebra is still the same.
The temporal selection condition can be viewed as a syntactic shorthand for a stan-
dard selection condition (cf. Table 6). The only addition is the “adjustment” of the
relations (SNvt andτ ttnow) to fit the non-sequenced evaluation mode for valid time
and the temporal upward compatible evaluation mode for transaction time.2

826 SQL STANDARDIZATION AND BEYOND

[[<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]SQL−92(τ

tt
now(τ

vt
now(r1)), . . . , τ

tt
now(τ

vt
now(rn)))

[[SEQ VT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]vt (τ ttnow(r1), . . . , τ ttnow(rn))

[[NSEQ VT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]SQL−92(τ

tt
now(partSize2evt(r1)), . . . , τ ttnow(partSize2evt(rn)))

[[SEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]tt (τ vtnow(r1), . . . , τ vtnow(rn))

[[NSEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]SQL−92(τ

vt
now(partSize2ett (r1)), . . . , τ vtnow(partSize2ett (rn)))

[[SEQ VT AND SEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]bi(r1, . . . , rn)

[[SEQ VT AND NSEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]vt (partSize2ett (r1), . . . , partSize2ett (rn))

[[NSEQ VT AND SEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]tt (partSize2evt (r1), . . . , partSize2evt(rn))

[[NSEQ VT AND NSEQ TT<SQL–92>]]temp(r1, . . . , rn) 4=
[[<SQL–92>]]SQL−92(partSize2ett (partSize2evt (r1)), . . . ,

partSize2ett (partSize2evt(rn)))

Table 2: Core Semantics

Example 11 The following query, termedQ2, is sequenced in both valid and trans-
action time.

SEQ VT AND SEQ TT
SELECT p.X
FROM p, q
WHERE p.X = q.X

It is defined by the following temporal relational algebra expression.

[[Q2]]temp(p, q) = πbip.X(σ bip.X=q.X(p ×bi q))
Apart from the superscripts on the operators, the translation from SQL–92 queries
to relational algebra expressions remain the standard one. 2

TEMPORAL STATEMENT MODIFIERS 827

Domain and Range Specifications

Next, we define the semantics of domain and range specifications. A time-domain
restriction constrains the argument relations in a query to contain only tuples that are
valid during a specific period. Thus, only the parts of argument tuples that intersect
with the time-domain restriction are considered when the query is evaluated. This
is formalized in Table 3.

[[<mode> VT<domain> qT]]temp(r1, . . . , rn) 4=
[[<mode> VT qT]]temp(δvt<domain>(r1), . . . , δ

vt
<domain>(rn))

[[<mode> TT <domain> qT]]temp(r1, . . . , rn) 4=
[[<mode> TT qT]]temp(δtt<domain>(r1), . . . , δ

tt
<domain>(rn))

Table 3: Definition of Domain Restrictions

Next, it is possible to specify time ranges—using the modifier “SET VTrange”
whererangeis period valued—that determine the valid times of the result tuples.
There are two different situations. First, if the core statement is aSEQ VTstate-
ment then the automatically computed valid time is replaced by the value resulting
from evaluating the time-range specification. Second, for all other core statements,
prependingSET VTrangeresults in the inclusion of valid time into the result. Be-
cause these core statements return results that do not contain valid-time timestamps,
the type of the result is changed. The valid time of a tuple is that resulting from
evaluatingrange. The details are given in Table 4.

[[SET VTrangeqT]]temp(r1, . . . , rn) 4=

{〈t ||V T 〉 | 〈t〉 ∈ [[qT]]temp(r1, . . . , rn) ∧ V T = range(t)}
if [[qT]]temp(r1, . . . , rn) evaluates to a snapshot relation

{〈t ||V T 〉 | 〈t ||V T ′〉 ∈ [[qT]]temp(r1, . . . , rn) ∧ V T = range(t)}
if [[qT]]temp(r1, . . . , rn) evaluates to a valid-time relation

{〈t ||V T, T T 〉 | 〈t ||T T 〉 ∈ [[qT]]temp(r1, . . . , rn) ∧ V T = range(t)}
if [[qT]]temp(r1, . . . , rn) evaluates to a transaction-time relation

{〈t ||V T, T T 〉 | 〈t ||V T ′, T T 〉 ∈ [[qT]]temp(r1, . . . , rn) ∧ V T = range(t)}
if [[qT]]temp(r1, . . . , rn) evaluates to a bitemporal relation

Table 4: Definition of Range Specifications

828 SQL STANDARDIZATION AND BEYOND

Coalescing

Any query that returns a temporal relation may be coalesced. To define coalesc-
ing, let qT denote any temporal query. If this query returns a valid-time relation,
it may be modified to(qT)(VT) , to return the coalesced version of the valid-
time relation. The obvious corresponding result holds when replacing valid time
by transaction time. If the query returns a bitemporal relation, it may be coalesced
in valid time, in transaction time, or in a combination of the two. Table 5 provides
the definitions. Definitions of representative versions of the algebraic coalescing
operator,coal, will be given shortly.

[[(qT)(VT)]]temp(r1, . . . , rn) 4=
coalvt([[qT]]temp(r1, . . . , rn))

if [[qT]]temp(r1, . . . , rn) evaluates to a valid-time relation

coalbivt ([[qT]]temp(r1, . . . , rn))
if [[qT]]temp(r1, . . . , rn) evaluates to a bitemporal relation

[[(qT)(TT)]]temp(r1, . . . , rn) 4=
coaltt ([[qT]]temp(r1, . . . , rn))

if [[qT]]temp(r1, . . . , rn) evaluates to a transaction-time relation

coalbitt ([[qT]]temp(r1, . . . , rn))
if [[qT]]temp(r1, . . . , rn) evaluates to a bitemporal relation

Table 5: Definition of Coalescing

4.2 The Temporal Relational Algebra

Having provided mappings from the temporal extension of SQL to a combination of
conventional and temporal relational algebra expressions, the next step is to define
the algebra operators that may occur in these expressions.

We start by reviewing Codd’s relational algebra. In the definitions given in
Figure 3,c is a predicate andf is a generalized projection function that roughly
corresponds to the select list of an SQL–92 statement.

We proceed by defining the temporal relational algebra operators. With the
exception of the Cartesian product, the operators respect snapshot reducibility (Sec-
tion 5 studies this in detail). In addition, two other properties of the algebra are
noteworthy. First, the algebra is interval-based in that it preserves the timestamps
in the relations. It thus generally matters for query results whether, e.g., one tuple

TEMPORAL STATEMENT MODIFIERS 829

σc(r)
4= {t | t ∈ r ∧ c(t)}

πf (r)
4= {t1 | ∃t2(t2 ∈ r ∧ t1 = f (t2))}

r1 ∪ r2 4= {t | t ∈ r1 ∨ t ∈ r2}
r1× r2 4= {t1 ◦ t2 | t1 ∈ r1 ∧ t2 ∈ r2}
r1 \ r2 4= {t | t ∈ r1 ∧ t 6∈ r2}

Figure 3: The Snapshot Relational Algebra

with valid time 10−20 or two (value-equivalent) tuples with valid times 10−15
and 16−20, appear in an argument relation. Second, care was taken to only con-
sider end points of valid and transaction timestamps when defining the operators—
intermediate time points are never used. This allows for an efficient (essentially,
granularity independent) implementation.

Figure 4 contains the definition of the valid-time version of the temporal re-
lational algebra. The transaction-time version is omitted because it is similar, the
only difference being that the temporal operations are performed on the transaction-
time attribute rather than on the valid-time attribute. The definition uses function
intersect (on two periods) and the predicateoverlaps (on two periods), both of
which were defined in Table 6. The symbol “◦” denotes tuple concatenation.

σvtc (r)
4= {〈t ||V T 〉 | 〈t ||V T 〉 ∈ r ∧ c(〈t, V T 〉)}

πvtf (r)
4= {〈t1||V T 〉 | ∃t2(〈t2||V T 〉 ∈ r ∧ t1 = f (〈t2, V T 〉))}

r1 ∪vt r2 4= {〈t ||V T 〉 | 〈t ||V T 〉 ∈ r1 ∨ 〈t ||V T 〉 ∈ r2}
r1×vt r2 4= {〈〈t1, V T1〉 ◦ 〈t2, V T2〉||V T 〉 | 〈t1||V T1〉 ∈ r1 ∧ 〈t2||V T2〉 ∈ r2 ∧

V T = intersect(V T1, V T2) ∧
V T1 overlaps V T2}

r1 \vt r2 4= {〈t ||V T 〉 | ∃V T1(〈t ||V T1〉 ∈ r1 ∧
(∃V T2(〈t ||V T2〉 ∈ r2 ∧ V T −1 ≤ V T +2 ∧ V T − = V T +2)∨V T − = V T −1) ∧
(∃V T3(〈t ||V T3〉 ∈ r2 ∧ V T +1 ≥ V T −3 ∧ V T + = V T −3)∨V T + = V T +1) ∧ V T − < VT + ∧¬∃V T4(〈t ||V T4〉 ∈ r2 ∧ V T4 overlaps V T))}

Figure 4: The Valid-Time Algebra

830 SQL STANDARDIZATION AND BEYOND

Clearly the most complex operation is temporal difference. In the general
case, three tuples are required to determine one result tuple, namely one tuple from
r1 and two tuples fromr2, as illustrated in Figure 5.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

VT

VT1

VT2 VT3

r1

r2

r1 \ r2

Figure 5: Valid-Time Difference

The second line of the definition in Figure 4 identifies all potential starting points
for periods of result tuples. Result periods may start where a period from anr1
tuple starts and where a period of ar2 tuple ends. The second line then identifies all
potential end points of periods of result tuples. The last two lines of the definition
then exclude “false” result tuples: The third line eliminates meaningless combina-
tions of starting and ending points, and the last line eliminates tuples with excessive
periods.

The only operation without a non-temporal counterpart is coalescing. It is
also special because it destroys the representation of timestamps in order to enforce
a particular representation (maximum periods). By definition, coalescing merges
(chains of) overlapping or adjacent value-equivalent tuples as illustrated in Figure 6.

VT2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

coal(r)

r
VT1

VT

Figure 6: Coalescing a Valid-Time Relation

While it is not possible to compute arbitrary transitive closures in SQL–92,
coalescing is possible in SQL–92 because time islinear [9, 11].

coalvt(r)
4= {〈t ||V T 〉 | ∃V T1 ∃V T2(〈t ||V T1〉 ∈ r ∧ 〈t ||V T2〉 ∈ r ∧

V T −1 < VT +2 ∧ V T − = V T −1 ∧ V T + = V T +2 ∧∀V T3(〈t ||V T3〉 ∈ r ∧ V T − < VT −3 < VT + ⇒
∃V T4(〈t ||V T4〉 ∈ r ∧ V T −4 < VT −3 ≤ V T +4)) ∧¬∃V T5(〈t ||V T5〉 ∈ r∧
(V T −5 < VT − ≤ V T +5 ∨ V T −5 ≤ V T + < VT +5)))}

The two tuples introduced in the first line serve to define the starting (V T −1) and
end (V T +2) points of a coalesced tuple, as specified in the second line. The third
and fourth lines ensure that there are no gaps betweenV T − andV T +. This is done

TEMPORAL STATEMENT MODIFIERS 831

by ensuring that every tuple with a start time betweenV T − andV T + is extended
towardsV T −, i.e., there must exist another tuple with a valid time containing the
respective start time. Finally, on the last line we make sure that the valid time of the
result tuple is maximal, i.e., there may not exist another tuple that contains either
V T − orV T +.

The bitemporal relational algebra is a natural extensions of the valid-time (and
transaction-time) algebra. However, both time dimensions must be handled simul-
taneously, meaning that rectangles rather than periods must be considered. While
this does not change the basic ideas, it adds to the complexity of the definitions; for
this reason, it is deferred to Appendix C.

4.3 Summary of Semantics

We defined the semantics of temporal queries in three steps. First, the semantics of
constructs for timestamp manipulation was given. The second step was to define
the semantics of core queries, as well as queries with domain and range specifica-
tions and coalescing. Specifically, mappings to relational and temporal relational
algebraic expressions were given. Finally, the relational and temporal relational
algebras were defined.

Taking into consideration that a temporal extension of SQL–92 is a language
more complicated than SQL–92, the semantics are quite concise. This has been
achieved by giving the semantics in terms of the semantics of SQL–92 (specifically,
in terms of a mapping of SQL–92 queries to relational algebra). This, in turn, is
possible because statement modifiers systematically and faithfully extend SQL–92.

5 Properties of the Temporal Statement Modifier-Extended SQL

This section discusses properties of temporal statement modifieres. It is argued
that the extension indeed satisfies the compatibility and reducibility properties that
were introduced in Section 2. We also contrast temporal statement modifiers with
approaches based on (syntactic) defaults. For brevity and to avoid tedious details,
we cover the valid-time dimension only.

5.1 Compatibilities and Syntactic Restrictions

Upward compatibility with respect to SQL–92 (or any other language to be ex-
tended) is fulfilled by design. The approach adopted for defining the syntax and
semantics emphasizes this property: The syntax was given byextendingthe syntax
of SQL–92 withnon-mandatoryconstructs. Thus, the new language contains all
legal SQL–92 statements. The approach taken to define the semantics also makes it

832 SQL STANDARDIZATION AND BEYOND

straightforward to verify that all SQL–92 statements retain their original semantics.
Specifically, the first definition in Table 2 covers SQL–92 statements.

The statement modifiers of Section 3 also ensure temporal upward compat-
ibility with SQL–92. This follows from the satisfaction of upward compatibility,
the first definition in Table 2, and the definition of SQL–92 modification statements
when applied to temporal relations. These statements are covered in detail else-
where [3].

Finally, snapshot reducible statements (further discussed below) are syntac-
tically similar with respect to SQL–92. This again follows from the definition of
the language. Definition 5 constrains the differences between an SQL query and
the corresponding syntactically similar snapshot reducible temporal query to be at
most two fixed strings (i.e., the statement modifiers), prepended and appended to the
SQL query, respectively. The fixed strings do not depend on the particular query,
but are the same for all queries. Satisfying this requirements leads to a wholesale,
“semantic” approach to defaults, as will be discussed in Section 5.3.

Statement modifiers are universal because they apply to all statements with-
out restriction. Nonsequenced statements fulfill the non-restrictiveness requirement
because they allow manipulation of timestamps as ordinary explicit attributes, with
no implicit temporal semantics being enforced (cf. the last definition in Table 2).

5.2 Syntactically Similar Snapshot Reducibility

In this section the focus of attention is the S-reducibility property of sequenced
queries with respect to SQL–92. The satisfaction of this property follows from
the design of the mapping and the definition of the temporal algebraic operators.
Below, we discuss first how the definition of the temporal algebra is shaped to make
the preservation of the property possible. Then follows a discussion of the top-level
mapping of sequenced statements (as given in Table 2).

Recall the definition of snapshot reducibility (Definition 4). We first show
that the valid-time relational algebra almost has this property with respect to the
snapshot relational algebra.

Theorem 1 The valid-time relational algebra (Figure 4) satisfies the following re-
ducibility properties below with respect to the snapshot relational algebra (Fig-
ure 3).

• ∀tp (τvttp (σ vtc (r)) ≡ σc(τvttp (r)))
• ∀tp (τvttp (πvtf (r)) ≡ πf (τvttp (r)))
• ∀tp (τvttp (r1 ∪vt r2) ≡ τvttp (r1) ∪ τvttp (r2))
• ∀tp (π−r1.V T ,r2.V T (τvttp (r1×vt r2)) ≡ τvttp (r1)× τvttp (r2))
• ∀tp (τvttp (r1 \vt r2) ≡ τvttp (r1) \ τvttp (r2))

TEMPORAL STATEMENT MODIFIERS 833

Recall thattp, c, andf denote a time point, a predicate, and a projection list, respec-
tively. The equivalences hold for arbitrary relations, with the only restrictions being
that in the first two equivalences,c andf refer to explicit attributes only and that
the relations be union compatible in the third and fifth equivalence. Also,π−X (r) is
given byπr.∗\X(r) wherer.∗ denotes all the attributes ofr. 2

The proofs of these properties may be found in Appendix D.
It follows that the valid-time selection, projection, union, and difference oper-

ators are snapshot reducible to their snapshot counterparts. Thus, all valid-time al-
gebra statements involving only these operators are snapshot reducible to the snap-
shot algebra statements obtained by simply removing thevt superscripts.

However, the equivalence involving the Cartesian products attracts attention:
this operator is not reducible to the snapshot Cartesian product! While it is straight-
forward to define a temporal Cartesian product that is snapshot reducible to the
snapshot Cartesian product, we have chosen a definition that violates snapshot re-
ducibility. Let us explore why this is a good design decision.

Initially, note that the “problem” with our temporal Cartesian product is that
it retains the implicit valid-time attributes of its argument relations and turns them
into explicit attributes. The operatorπ− is introduced to eliminate these “extrane-
ous” attributes. Now, when mapping a (sequenced) temporal query to its algebraic
equivalent, we would like to exploit the standard mapping used when mapping SQL
queries to relational algebra. Consider the following query.

SEQ VT
SELECT <L>
FROM p, q, r
WHERE <P>

We would like to map this query to

πvt<L′>(σ
vt
<P ′>((p ×vt q)×vt r))

where〈L′〉 and〈P ′〉 are slight syntactical variations of<L> and<P>, respectively.
One possible choice for predicate<P> would be

DURATION(VTIME(p),DAY) + DURATION(VTIME(q),DAY) <
DURATION(VTIME(r),DAY)

With our definition of the valid-time Cartesian product, we can express the corre-
sponding algebra predicate〈P ′〉 as follows because the timestamps of the argument
tuples are retained as explicit attributes.

DURATION(p.V T ,DAY)+ DURATION(q.V T ,DAY) < DURATION(r.V T ,DAY)

Using a snapshot-reducible Cartesian product would make it impossible to
construct a corresponding predicate〈P ′〉. The information required to evaluate the
predicate would be lost. This observation holds for any tuple timestamped and

834 SQL STANDARDIZATION AND BEYOND

any homogeneous [15] attribute-value timestamped data model. Snapshot-reducible
temporal Cartesian products for such models are unable to serve the role during
the mapping of temporal SQL queries to algebraic expressions that the snapshot
Cartesian product serves when mapping SQL queries to relational algebra.

One approach to retain the simple mapping and also retain a snapshot re-
ducible temporal Cartesian product is to introduce an additional (information-preser-
ving) Cartesian product that produces results withtwo implicit valid times. But this
latter product returns results that are not valid-time relations and thus breaks the
closedness property of the algebra, an undesirable complication. This approach was
adopted in the algebra for the HSQL data model [30] that includes both a reducible
“Concurrent Product” and an information-preserving “Cartesian product.”

Another approach that will ensure that the necessary information is available
in the algebra for evaluating any predicateP is to introduce an n-ary valid-time join
that can then be defined to be snapshot reducible. The transformation to algebra
would then be as follows.

πvt〈L′〉(1
vt
〈P ′〉 (p, q, r))

This approach was adopted for the algebra proposed for TSQL2 [35]. While the
added complexity of an n-ary operator may be undesirable, there is another problem
with this approach. Consider the sample<L> = p.X, VTIME(p) that specifies
that the implicit valid-time attribute of relationp is to be present in the result as
an explicit attribute. With the n-ary join approach, it is not possible to produce an
equivalent〈L′〉. Specifically, the original valid times of tuples also fromp cannot
be inferred from the result of the join. With our Cartesian product, we have〈L′〉 =
p.X, p.VT .

Most temporal algebras have operators that are snapshot reducible with re-
spect to the snapshot Cartesian product (e.g., the TJOIN [25], the Concurrent Prod-
uct Operator [30], the cross-product [27], (temporal) equijoin [10], and the valid-
time Cartesian product3 [38]; reference [22] gives a survey).

The simple binary temporal Cartesian product defined here permits the use
of the standard mapping from SQL to algebra without imposing any restrictions
on the contents of theSELECTandWHEREclauses. As we discuss next, the non-
reducibility of the operator does not lead to violations of the S-reducibility to SQL.

In SQL-based languages, Cartesian products are specified using theFROM
clause ofquery specifications[23, p.175]. For a temporal query to be reducible, the
result of evaluating it must not include the implicit valid-time attributes of argument
tuples as explicit attributes. In S-reducible queries, it is not possible to select a time

3This operator is defined in a non-homogeneous attribute-value timestamped data model. Unlike any other
product we have seen, this operator reduces to the snapshot Cartesian product and yet does not possess the
two deficiencies.

TEMPORAL STATEMENT MODIFIERS 835

dimension of a relation; and defaults (e.g.,SELECT *) do not expand to include
the implicit time attributes. The presence of subsequent projections in the definition
of reducible queries, the presence of the additional explicit time attributes in the
results of Cartesian products then does not compromise the S-reducibility property.

The choice of making the temporal Cartesian products in isolation not snap-
shot reducible improves the design of the temporal SQL, improving its orthogonal-
ity and ease of use. Another choice would have been to have the user turn valid
times into explicit attributes (using derived table expressions) and to make Carte-
sian products snapshot reducible, but this is less attractive because some statements
become cumbersome to formulate.

5.3 Built-in Semantics and Defaults

The additional user-friendliness achieved when extending a query language with
temporal support has two sources. First, the addition ofnew temporal data types
with associated constructors, predicates, and operations makes temporal data man-
agement more convenient. For example, adding a period data type to SQL–92
makes it easier to manage the valid time of tuples. To illustrate this, assume that
snapshot relationp has attributesa andVT, with the latter being period-valued and
recording valid time. Similarly, let relationq have attributesb, c , andVT. A tem-
poral natural join of these two relations is expressed as follows.

SELECT p.a, q.b, q.c, INTERSECT(p.VT, q.VT) AS VT
FROM p, q
WHERE p.a = q.b AND p.VT OVERLAPS q.VT

Without a data type for time periods, using instead pairs of time-point valued at-
tributes, this query gets harder to formulate and understand.

Second, providingbuilt-in timestamp processingadds user-friendliness. For
example, with statement modifiers it is possible to write a temporal natural join
essentially as a regular natural join, as follows.
SEQ VT

SELECT p.a, q.b, q.c
FROM p, q
WHERE p.a = q.b

In this query, we assume thatp andq are valid-time relations. The statement mod-
ifier triggers a sequenced evaluation, which means that the subsequent snapshot
natural join turns temporal.

For a simple join query, the added user-friendliness of using built-in process-
ing over simply using a new data type is clear, but not substantial. This is so because
it is relatively straightforward to generalize a snapshot natural join to a temporal
natural join. When considering complicated SQL–92 queries, possibly involving
subqueries and aggregates, the generalized queries frequently become very difficult

836 SQL STANDARDIZATION AND BEYOND

to formulate in SQL–92, with or without new data types. This is where the utility
of built-in processing stands out. For example, with statement modifiersanyquery
is generalized by simply prependingSEQ VT.

Two approaches to built-in processing may be identified. The first approach
is represented by TSQL2 [39, e.g., pp. 291–297], which provides comprehensive
built-in processing. In this approach, built-in processing is provided bysyntacti-
cally defined defaults. For example, in TSQL2 the above join can be formulated as
follows.
SELECT p.a, q.b, q.c SELECT p.a, q.b, q.c
FROM p, q VALID INTERSECT(p, q)
WHERE p.a = q.b FROM p, q

WHERE p.a = q.b

The query to the left is a syntactic shorthand for the query to the right. When
the valid clause of TSQL2 is missing from a query and all argument relations are
valid-time relations, the meaning of the query is given by adding a valid clause
that generates a timestamp of result tuples that is given by the intersection of the
timestamps of the argument tuples.

The second approach is the“semantic” approachwe have adopted for state-
ment modifiers. Rather than defining query language statements that provide built-
in processing in terms of syntactical additions to them, the built-in processing is
defined semantically, i.e., to be consistent with S-reducibility.

The syntactic approach has been shown to be problematic. We have previ-
ously identified TSQL2 statements that have no obvious semantics [5]. The prob-
lem stems in part from the syntactic defaults. For example, the rule above becomes
unclear when select statements are included in the where clause (subqueries). It
turns out that it is exceedingly difficult to define built-in processing in SQL–92 via
syntactic defaults in a manner that is comprehensive and also systematic and thus
sufficiently easily comprehensible for it to be practically useful.

The problem with syntactic defaults is one of scalability over language con-
structs, and SQL–92 has numerous constructs with subtle semantics and also lacks
orthogonality. With syntactic defaults, it must be possible to state in the query lan-
guage the default for a wide range of statements. Accomplishing this is quite chal-
lenging because each syntactic default is dependent on the specifics of the statement
that it is the default for. In this way, the complexity of specifying the actual default
is comparable to the complexity of specifying the entire language.

Semantic defaults behave quite differently. No attempt is made to actually
define defaults that are syntactical shorthands for other, more cumbersome state-
ments. Specifically, with statement modifiers we do not try to syntactically map
sequenced statements to semantically equivalent (non-sequenced) statements. (Our
experience with compiling sequenced statements to SQL suggests that this is im-
practical.) This makes the temporal language conceptually simple, and it becomes

TEMPORAL STATEMENT MODIFIERS 837

much more robust with respect to extensions and dialects of SQL because the SQL
part of a temporal statement can essentially be treated as a black box.

In fact, the temporal statement modifier-extended SQL may be seen as the re-
sult of replacing in TSQL2 the syntactic defaults by systematic, semantically-based
built-in time-related processing, thereby fixing fundamental problems in TSQL2
[5]. The semantic approach leads to a syntactically identifiable class of queries with
built-in support and thus provides a systematic and wholesale approach to built-in
default processing.

5.4 Summary of Properties

The section covered first the properties that the temporal SQL was designed to
fulfill, namely UC, TUC, S-reducibility, universal statement modifiers, and non-
restrictiveness. It then proved the S-reducibility of sequenced queries. Finally,
semantic and syntactic defaults were compared.

6 Related Work

We cover in turn related work on language requirements and related temporal SQL’s.

6.1 Query Language Requirements

We describe the background of the language requirements from Section 2, as well
as related requirements.

Few precise query language requirements have been proposed by other au-
thors. While the phrase “upward compatibility” has been used widely and in many
contexts [1, p. 513], [26, p. 99], [30, p. 123], [30, p. 125], [21, p. 480], we have
found no precise definition of it.

The precise formulation of the UC and TUC requirements in Section 2 evolved
in part from studies of TSQL2 [39] and were developed with Richard Snodgrass and
John Bair [3]. Extensive discussions in the context of developing proposals for the
SQL/Temporal part [32, 31] of SQL3 shaped the formulation of the requirements.

We have encountered one proposal that aims at satisfying a requirement that
seems similar to temporal upward compatibility. The TempSQL language (e.g.,
[17]) introduces notions of so-called classical and system user types. System users
see the full temporal database, while classical users see only the current snapshot of
the database. If applications are classical by default, and if individual statements,
rather than all statements issued by a user, can be independently made temporal,
this would essentially (providing that a number of other design decisions are made
correctly) yield a temporal upward compatible SQL extension.

838 SQL STANDARDIZATION AND BEYOND

The formulation of the notion of S-reducibility uses the fundamental notion
of snapshot reducibility [36] and was inspired by an informal concept that was
presented in the context of the ChronoLog language. S-reducibility was formalized
during the process of solving identified problems in TSQL2 [5], the goal being to
develop a proposal for standardization in SQL3 [32, 31, 33].

The language requirements beyond S-reducibility, i.e., interval preservation,
universality of statement modifiers, and non-restrictiveness, do not appear to have
been subject to study by other authors. Theoretical aspects of interval preservation
are the subject of an upcoming paper [2]. We are not aware of requirements that
relate to universal statement modifiers and non-restrictive languages.

6.2 Temporal Extensions to SQL

We first consider related efforts that involve statement modifiers, then consider each
existing temporal SQL in turn.

Statement Modifiers

Temporal statement modifiers represent a novel approach for adding temporal sup-
port to an existing language. A primitive form of statement modifiers were used in
ChronoLog [8], a temporal extension of a Datalog-based language.

Earlier offsprings of the work described in this paper are the change pro-
posals that were submitted to the SQL/Temporal part of SQL3 [32, 31, 33] (also
cited above). The change proposals evolved through extensive interactions with
the ANSI and ISO standardization committees. This interaction led to syntactical
and semantic changes aimed at making the proposals palatable to context of the
the standard, with its associated peculiarities. The extension presented here differs
from that of the change proposals in several respects. It satisfies a comprehensive
set of requirements; emphasizes orthogonality of language constructs; has a formal,
deterministic semantics. The present paper also discusses and proves properties of
statement modifiers.

Existing Temporal SQL’s

To complete the coverage of related research, we evaluate all existing temporal SQL
proposals that we are aware of, including SQL–92, with respect to our requirements,
and and we relate their designs to the statement modifier-based approach. We re-
port compliance with a requirement if this is claimed in the documentation of a
proposal, or if non-compliance cannot be proved. We consider each SQL in turn
and in chronological order of their appearance. UC is satisfied by all proposals, and
a more detailed study of the TUC requirement may be found elsewhere [3].

TOSQL [1] extends SQL with the specification of the query’s time aspects.
These extensions include AT, WHILE, DURING, BEFORE, AFTER, ALONG, and

TEMPORAL STATEMENT MODIFIERS 839

AS_OF clauses. The default options are defined syntactically such that a query that
omits the temporal portion retains the standard meaning of the corresponding SQL
select operation. TUC, while not defined explicitly, was clearly a concern when
designing TOSQL. A large part of TOSQL respects TUC, but statements of the
form select * from r violate TUC because they also return the table’s time-
stamp(s). S-reducibility is not provided. The built-in time-related processing is
restricted to the above clauses and can be overwritten by stating the clauses explic-
itly, which makes TOSQL non-restrictive and interval preserving.

TSQL [24, 25, 26] is a superset of SQL, extending the latter with, e.g., a
WHEN, a TIME-SLICE, and a MOVING WINDOW clause. TSQL satisfies neither
TUC (no adequate defaults for the above mentioned clauses) nor S-reducibility.
The restriction to coalesced relation instances also breaks the interval preservation
requirement. Apart from the enforced coalescing, TSQL is non-restrictive.

HSQL [29, 30] is again a superset of SQL. The retrieval facilities are en-
hanced with facilities for coalescing (COALESCES, COALESCE ON), concurrent
products, timeslicing (FROMTIME t1 TOTIME t2), and unfolding (EXPAND). The
concurrent product provides built-in snapshot reducible semantics for joins (and
products), but not for, e.g., subqueries, aggregates, set difference, and integrity con-
straints. Like TOSQL, the design of HSQL takes TUC into consideration. For
the same reasons as TOSQL, it does not achieve complete satisfaction. HSQL is
interval preserving and non-restrictive. It does not support S-reducibility.

SQL–92 [23] provides only quite limited support for temporal data. SQL–92
is not temporal upward compatible with itself (legacy statements are not restricted
to the current time). The S-reducibility property is not satisfied (no built-in pro-
cessing of, e.g., temporal joins). Because SQL–92 does not treat time with special
semantics, it is trivially interval preserving and non-restrictive.

TempSQL [4, 16, 17] is an extension of SQL defined over relations where
attribute values are temporal assignments, i.e., partial functions from time into the
domain of the attribute. Temporal expressions[[. . .]], which extract the time do-
main of attribute values or relations, is a prominent feature of TemdSQL. Temporal
expressions can be used in (nested) expressions. The SELECT-FROM-WHERE
statement is extended with a WHILE clause that may be used for specifying the
time domain of a tuple [17, p. 39]. As discussed previously, TUC is only satisfied
for so-called classical users that see only the current state of all relations. When a
classical-user needs access to past states of a relation and is made a so-called sys-
tem user, the full application must be rewritten, breaking TUC. S-reducibility is not
provided. TempSQL is restrictive in the sense that set operations have an enforced,
built-in temporal semantics. TempSQL provides automatic coalescing, violating
interval preservation.

IXSQL [21] provides support for generic interval data in SQL. It extends
SQL–92 with a REFORMAT AS and a NORMALIZE ON clause. The reformat

840 SQL STANDARDIZATION AND BEYOND

clause is used to specify a sequence of UNFOLD and FOLD operations, which
convert a set of intervals into a set of constituent points, and vice versa. The NOR-
MALIZE operation is a syntactic abbreviation of the reformat clause, and it coa-
lesces a relation. For the same reason as for SQL–92, it does not satisfy TUC. No
support for S-reducibility is provided. IXSQL is non-restrictive and to some de-
gree, it is also interval preserving (if UNFOLD is used, intervals are not preserved
because interval boundaries are lost when unfolding a table).

ChronoSQL [8] was designed to illustrate how to carry over the predecessor of
our statement modifiers from a deductive to an SQL-based language. ChronoSQL
includes a REDUCE construct, with which it is possible to achieve S-reducibility.
TUC is not achieved. ChronoSQL is interval preserving, non-restrictive, and the
REDUCE is generally applicable.

As discussed earlier, TSQL2 [39] employs syntactic defaults. It adds a VALID
clause to SQL–92 for specifying the timestamp of the result. If the VALID clause
is omitted from a query, intersection semantics is assumed. By default TSQL2
returns valid time relations. To retrieve a snapshot relation, SELECT SNAPSHOT
has to be specified. TSQL2 neither satisfies TUC (valid-time relations are returned
by default) nor S-reducibility (subqueries and relations with duplicates violate this
[5]). TSQL2 is not interval preserving because coalesced instances are enforced.
While some operations come with a hard-wired implicit temporal semantics (e.g.,
set operations applied to temporal relations), TSQL2 is non-restrictive in the sense
that implicit timestamps can be rendered explicit.

The change proposals submitted to the SQL standardization committee [32,
31, 33] describe early work on temporal statement modifiers (cf. above). They were
designed to fulfill TUC and S-reducibility. Interval preservation is not guaranteed
because timestamps of snapshot reducible queries are left unspecified in the non-
deterministic definition of the language. Non-restrictiveness is achieved via non-
sequenced statements. Statement modifiers are not universal because sequenced
modifiers may only be applied to legacy, i.e., nontemporal, statements.

7 Summary and Research Directions

The paper discusses how to use temporal statement modifiers to manage tempo-
ral information. It takes as its outset a number of syntactic and semantic require-
ments, motivated by real-world concerns, that a temporal data model and query
language must satisfy to contend with legacy applications, permit the coexistence
of non-temporal and temporal data, and exploit the programmers’ expertise with the
non-temporal language of their choice. Care was taken to make the requirements
independent of any particular data model, although we explore them in the relevant
and challenging context of SQL. No existing model or language satisfies all of these

TEMPORAL STATEMENT MODIFIERS 841

requirements. In particular, this paper is the first one to formulate a comprehensive
set of requirements that combines salient features of temporal languages (snapshot
reducibility, temporal upward compatibility) with salient features of nontemporal
languages (interval preservation, non-restrictiveness).

The next step was to explore and exemplify how these requirements shape
a temporal extension of SQL. A statement modifier-based extension makes it pos-
sible to adopt a black-box approach to defining the new language, leading to a
concise definition of a comprehensive temporal query language that covers core as
well as advanced language features, e.g., views, integrity constraints, assertions,
data definition, aggregation, and coalescing. The language supports both point and
interval-based semantics, with intervals being preserved by default.

We emphasize the fact that it is possible to control time-related processing
via semantically defined statement modifiers. Not only is this possible but it is also
preferable over syntactic extensions because statement modifiers ensure compre-
hensive availability of temporal functionality. We are aware of no other approaches
that achieve comprehensive temporal support using language extensions that are es-
sentially independent of the complexity of the underlying non-temporal language.
The same (simple) statement modifier may be applied to an arbitrarily complex
query to yield built-in temporal processing.

The paper illustrates how to define the semantics of a temporal statement
modifier-extended SQL in terms of the semantics of SQL and a mapping from SQL
to relational algebra. For this purpose, valid-time, transaction-time, and bitemporal
counterparts of the standard relational algebra were defined.

The final step was to study properties of the temporal statement modifiers.
Specifically, we verified that the extended SQL satisfies the requirements posed at
the outset of the paper.

Several interesting directions for future research may be pointed out. First,
the approach may be generalized to other “dimensions,” such as those found in
spatial databases, leading to spatio-temporal databases. It also appears promising
to study how the proposed concepts generalize to databases annotated with other
types of multiple orthogonal dimensions, e.g., those found in data warehousing. In
doing so, an important challenge is to provide solutions that are general and yet
succeed in supporting well the semantics associated with the specific dimensions.
It may also prove interesting to generalize statement modifiers to multi-dimensional
frameworks.

The notion of temporal upward compatibility makes the implicit assumption
that the databases of existing DBMS’s contain snapshot data and that a temporal
dimension is added to data when the DBMS is replaced with a temporal DBMS.
However, this scenario is not exhaustive. Rather, it may be observed that a wide
variety of existing databases record time-varying data using regular attributes. The
ability to use the novel features of the temporal DBMS depend on the time-varying

842 SQL STANDARDIZATION AND BEYOND

data being recorded using the designated timestamp attributes. How to (semi-
automatically) migrate application code when the transition is made from using
regular attributes for capturing temporal aspects to using timestamp attributs with
built-in semantics is an open problem.

Yet another future direction is the study of efficient implementation tech-
niques. The current prototype illustrates the feasibility of the language using a
layered architecture [40]. This architecture can be used to identify bottlenecks of
current DB technology with respect to temporal database applications. The find-
ings may then prompt the development of new DBMS algorithms. This approach
has already been pursued for coalescing [9].

8 Acknowledgements

We greatly appreciate the contributions of Renato Busatto, Robert Marti, Rick
Snodgrass, and Andreas Steiner. Renato contributed to the formalization of interval
preservation, bitemporal negation, and the proof of Theorem 1. Robert took part
in early work on statement modifiers. Rick contributed significantly to the design
of the temporal extension when we jointly designed a different extension of SQL
that is being proposed for inclusion into the SQL standard. Andreas implemented
an initial, running prototype for the language proposed to the SQL standardization
committee.

This research was supported in part by the Danish Technical Research Council
through grant 9700780 and by the CHOROCHRONOS project, funded by the Euro-
pean Commission DG XII Science, Research and Development, as a Networks Ac-
tivity of the Training and Mobility of Researchers Programme, contract no. FMRX-
CT96-0056.

A Predicates and Functions on Timestamps

For completeness reason we give a brief overview of the constructs used for time-
stamp manipulation. In Table 6,tp andiv, possibly indexed, denote a time point of
typeTIMESTAMPand a time duration of typeINTERVAL, respectively. Also,per
is a shorthand forPERIOD ’ tp1 − tp2’ andgranule ∈ {YEAR,MONTH,WEEK,
DAY,HOUR,MINUTE,SECOND} denotes a granularity.

B Auxiliary Algebraic Operators

Table 7 defines the auxiliary operators that timeslice relations and turn timestamps
into regular, explicit attributes. Unlike the other algebraic operators defined in this
paper, these operators are overloaded to apply to valid-time, transaction-time, and
bitemporal relations, meaning that the type of the argument relation determines the

T
E

M
P

O
R

A
L

S
TAT

E
M

E
N

T
M

O
D

IF
IE

R
S

843

Syntax Semantics

[[PERIOD ’tp 1 − tp 2’]]temp TIMESTAMP’tp 1’ ,TIMESTAMP’tp 2’

[[FIRST (TIMESTAMP’tp 1’ ,TIMESTAMP’tp 2’)]]temp min(tp1, tp2)

[[LAST(TIMESTAMP’tp 1’ ,TIMESTAMP’tp 2’)]]temp max(tp1, tp2)

[[VTIME(r)]]temp TIMESTAMP’r .VT$S’ ,TIMESTAMP’r .VT$E’

[[TTIME(r)]]temp TIMESTAMP’r .TT$S’ ,TIMESTAMP’r .TT$E’

[[BEGIN(per)]]temp [[FIRST ([[per]]temp)]]temp
[[END(per)]]temp [[LAST([[per]]temp)]]temp
[[per1 PRECEDESper2]]temp [[END(per 1)]]temp < [[BEGIN(per 2)]]temp
[[per1 MEETSper2]]temp [[END(per 1)]]temp = [[BEGIN(per 2)−granule 1]]temp
[[per1 OVERLAPSper2]]temp [[END(per 1)]]temp ≥ [[BEGIN(per 2)]]temp ∧

[[END(per 2)]]temp ≥ [[BEGIN(per 1)]]temp
[[per1 CONTAINSper2]]temp [[BEGIN(per 2)]]temp ≥ [[BEGIN(per 1)]]temp ∧

[[END(per 2)]]temp ≤ [[END(per 1)]]temp
[[per + INTERVAL’ iv’]]temp [[BEGIN(per)]]temp + iv,

[[END(per)]]temp + iv
[[INTERSECT(per1, per2)]]temp max([[BEGIN(per 1)]]temp, [[BEGIN(per 2)]]temp),

min([[END(per 1)]]temp, [[END(per 2)]]temp)
[[DURATION(per, granule)]]temp [[END(per)]]temp −granule [[BEGIN(per)]]temp)

Table 6: Definition of Constructs for Timestamp Manipulation

84
4

S
Q

L
S

TA
N

D
A

R
D

IZ
AT

IO
N

A
N

D
B

E
Y

O
N

D

Function Semantics ifr is a snapshot relation
τvttp (r) r if tp = now; undefined, otherwise
τ tttp(r) r if tp = now; undefined, otherwise

Function Semantics ifr is a valid-time relation
τvttp (r) {〈t〉 | ∃V T (〈t||V T 〉 ∈ r ∧ VT overlaps tp)}
τ tttp(r) {〈t||V T 〉 | 〈t||V T 〉 ∈ r}
δvtper (r) {〈t||V T 〉 | ∃V T ′ (〈t||V T ′〉 ∈ r ∧ VT ′ overlaps per ∧ VT = intersect (V T ′, per))}
δttper (r) {〈t||V T 〉 | 〈t||V T 〉 ∈ r}
SNvt (r) {〈t, V T 〉 | 〈t||V T 〉 ∈ r}
SNtt (r) {〈t||V T 〉 | 〈t||V T 〉 ∈ r}

Function Semantics ifr is a transaction-time relation
τvttp (r) {〈t||T T 〉 | 〈t||T T 〉 ∈ r}
τ tttp(r) {〈t〉 | ∃T T (〈t||T T 〉 ∈ r ∧ T T overlaps tp)}
δvtper (r) {〈t||T T 〉 | 〈t||T T 〉 ∈ r}
δttper (r) {〈t||T T 〉 | ∃T T ′ (〈t||T T ′〉 ∈ r ∧ T T ′ overlaps per ∧ T T = intersect (T T ′, per))}
SNvt (r) {〈t||T T 〉 | 〈t||T T 〉 ∈ r}
SNtt (r) {〈t, T T 〉 | 〈t||T T 〉 ∈ r}

Function Semantics ifr is a bitemporal relation
τvttp (r) {〈t||T T 〉 | ∃V T (〈t||V T, T T 〉 ∈ r ∧ V T overlaps tp)}
τ tttp(r) {〈t||V T 〉 | ∃T T (〈t||V T, T T 〉 ∈ r ∧ T T overlaps tp)}
δvtper(r) {〈t||V T, T T 〉 | ∃V T ′ (〈t||V T ′, T T 〉 ∈ r ∧ VT ′ overlaps per ∧ VT = intersect (V T ′, per))}
δttper(r) {〈t||V T, T T 〉 | ∃T T ′ (〈t||V T, T T ′〉 ∈ r ∧ T T overlaps per ∧ T T = intersect (T T ′, per))}
SNvt (r) {〈t, V T ||T T 〉 | 〈t||V T, T T 〉 ∈ r}
SNtt (r) {〈t, T T ||VT 〉 | 〈t||V T, T T 〉 ∈ r}

Table 7: Timeslice and Snapshot Operators

TEMPORAL STATEMENT MODIFIERS 845

operation to be performed. This property was exploited to concisely define the
semantics of core statements, in Table 2.

The functions have variants for both valid and transaction time. For example,
the valid-time version of the first timeslice operation,τvttp , selects all tuples in the
argument relation with a timestamp that overlaps time pointtp. The time dimension
used in this selection is not present in the result relation. If valid time is not sup-
ported by the relation, the function degenerates to the identity function. The second
timeslice operation,δper , returns all argument tuples that overlap with periodper.
The timestamp of a result tuple is the intersection ofper with the tuple’s original
timestamp. The snapshot operationSN turns a time dimension into an explicit at-
tribute. This operation is not needed at the implementation level where all attributes
are explicit.

C The Bitemporal Relational Algebra

As the valid-time algebra was a natural generalization of the relational algebra, so
is the bitemporal algebra a natural generalization of the valid-time algebra, and it
satisfies the same snapshot reducibility properties as the valid-time algebra; it only
differs from this algebra in that it deals with bitemporal rectangles rather than with
periods. Bitemporal selection, projection, set union, and Cartesian product (see
Figure 7) are straightforward extensions.

σbic (r)
4= {〈t ||VT , T T 〉 | 〈t ||VT , T T 〉 ∈ r ∧ c(〈t ||VT , T T 〉)}

πbif (r)
4= {〈t1||VT , T T 〉 | ∃t2 (〈t2||VT , T T 〉 ∈ r ∧ t1 = f (〈t2||VT , T T 〉))}

r1 ∪bi r2 4= {〈t ||VT , T T 〉 | 〈t ||VT , T T 〉 ∈ r1 ∨ 〈t ||VT , T T 〉 ∈ r2}
r1×bi r2 4= {〈〈t1, V T1, T T1〉 ◦ 〈t2, V T2, T T2〉||VT , T T 〉 |

〈t1||VT1, T T1〉 ∈ r1 ∧ 〈t2||VT2, T T2〉 ∈ r2 ∧
VT = intersect(V T1, V T2) ∧ T T = intersect(T T1, T T2) ∧
VT1 overlaps V T2 ∧ T T1 overlaps T T2}

r1 \bi r2 4= {〈t ||VT , T T 〉 | ∃VT1, T T1(〈t ||VT1, T T1〉 ∈ r1 ∧
candidate_tuple(t, V T , T T , V T1, T T1, r2) ∧
non_overlapping(t, V T , T T , r2) ∧
unsplittable(t, V T , T T , V T1, T T1, r2))

Figure 7: The Bitemporal Algebra

Bitemporal difference is substantially more complex. It is defined in terms
of three auxiliary predicates, to be defined below. The idea behind the operator’s
definition is illustrated in Figure 8, where the large rectangle with the solid frame

846 SQL STANDARDIZATION AND BEYOND

represents the time region of anr1-tuple, and the black ones are rectangles associ-
ated with value-equivalentr2-tuples. The result of the differencer1 \bi r2 is a set
of value-equivalent tuples, one for each of the eleven white rectangles identified by
the dashed and solid lines in combination.

B

C

A

D

Figure 8: Bitemporal Difference

The so-called determining time lines associated withr2-tuples play a crucial
role in splittingr1-tuples and thus in defining the result tuples. Determining time
lines start at each vertex of anr2-tuple, and they extend until they are blocked by
a value-equivalentr2-tuple or until they reach the border of ther1-tuple. Before
explaining the issues in more detail, it is convenient to first introduce some termi-
nology. Each bitemporal tuple has associated a timestamp that encodes a rectan-
gular region in the space spanned by transaction time and valid time. This region,
we term the tuple’stime rectangle, and the rectangle corners are termedtime ver-
tices. Their coordinates are the tuple’stime coordinateswhich thus correspond to
the tuple’s transaction and valid time. The rectangle sides aretime edgesFinally,
a determining time lineis a vertical or horizontal line segment that originates from
some time vertex. We omit the modifier “time” from these terms when no confusion
results.

The definition in Figure 7 identifies three requirements to a result tupleX.

1. The time coordinates ofX are derived either from the time coordinates of a
(value-equivalent)r1-tuple, or from (value-equivalent)r2-tuples that satisfy
two restrictions:

(a) They must temporally overlap with ther1-tuple whose time rectangle
contains the time rectangle ofX, and

(b) the time vertices ofX must have direct access to the originatingr2-
tuple vertices, meaning that no value-equivalentr2-tuple lies between
originating and resulting vertices.

2. X does not temporally overlap with any value-equivalentr2-tuple.
3. No determining time lines defined byr2-tuples that are value-equivalent toX

cross its time rectangle.

TEMPORAL STATEMENT MODIFIERS 847

The first requirement, represented by the predicatecandidate_tuple, is de-
fined as a conjunction of four subformulas, each of which constrains one of the time
vertices of a tuple〈t ||V T, T T 〉 of r1 \bi r2.

candidate_tuple(t, V T , T T , V T1, T T1, r2) ≡
T T − = T T −1 ∨∃VT2, T T2(〈t ||VT2, T T2〉 ∈ r2 ∧ (T T − = T T −2 ∨ T T − = T T +2) ∧

T T −1 ≤ T T − < TT +1 ∧ VT −1 < VT +2 ∧ V T −2 < VT +1 ∧¬∃VT2, T T2(〈t ||VT2, T T2〉 ∈ r2 ∧ T T −2 < T T − < TT +2 ∧
(V T +2 < VT +2 ≤ VT − ∨ VT −2 > VT −2 ≥ V T +))) ∧

T T + = T T +1 ∨∃VT3, T T3(〈t ||VT3, T T3〉 ∈ r2 ∧ (T T + = T T −3 ∨ T T + = T T +3) ∧
T T −1 < T T + ≤ T T +1 ∧ VT −1 < VT +3 ∧ V T −3 < VT +1 ∧¬∃VT3, T T3(〈t ||VT3, T T3〉 ∈ r2 ∧ T T −3 < T T + < TT +3 ∧

(V T +3 < VT +3 ≤ VT − ∨ VT −3 > VT −3 ≥ V T +))) ∧
VT − = VT −1 ∨∃VT4, T T4(〈t ||VT4, T T4〉 ∈ r2 ∧ (V T − = V T −4 ∨ V T − = VT +4) ∧

VT −1 ≤ VT − < VT +1 ∧ T T −1 < TT +4 ∧ T T −4 < T T +1 ∧
¬∃VT4, T T4(〈t ||VT4, T T4〉 ∈ r2 ∧ VT −4 < VT − < VT +4 ∧

(T T +4 < TT +4 ≤ T T − ∨ T T −4 > TT −4 ≥ T T +))) ∧
VT + = VT +1 ∨∃VT5, T T5(〈t ||VT5, T T5〉 ∈ r2 ∧ (V T + = V T −5 ∨ V T + = VT +5) ∧

VT −1 < VT + ≤ V T +1 ∧ T T −1 < TT +5 ∧ T T −5 < T T +1 ∧¬∃VT5, T T5(〈t ||VT5, T T5〉 ∈ r2 ∧ VT −5 < VT + < VT +5 ∧
(T T +5 < TT +5 ≤ T T − ∨ T T −5 > TT −5 ≥ T T +)))

The first two lines of the first conjunct have agenerativepurpose, since they
identify a collection of candidate transaction-time start values for〈t ||V T, T T 〉. The
left-most diagram below illustrates all such candidate values for the relation de-
picted in Figure 8:

b c b ca b c d e f g d d ee

Not all time lines originating fromr2-tuples provide suitable time coordinates,

848 SQL STANDARDIZATION AND BEYOND

though. The subsequent three lines of the definition eliminate some of the undesir-
able ones. Specifically, the third line requires the time edge of anr2-tuple that
generates a candidate transaction time value to overlap the time rectangle of the
relevantr1-tuple. Time lines a, f and g above must then be dropped, as indicated in
the middle diagram.

The fourth and fifth lines account for the blocking effect ofr2-tuples on can-
didate time lines. In the example, the upper part of line d is inadequate. The lines
that meet all the restrictions, indicated in the right-most diagram, correspond to de-
termining time lines forr1 andr2, provided they are confined to the time rectangle
of ther1-tuple.

The remaining conjuncts ofcandidate_tuple impose equivalent constraints
on each of the other time coordinates ofr1 \bi r2-tuples.

Next, thenon overlappingof r1 \bi r2- andr2-tuples is enforced by the fol-
lowing predicate.

non_overlapping(t, V T , T T , r2) ≡
∀VT2, T T2(〈t ||VT2, T T2〉 ∈ r2⇒

(V T + ≤ VT −2 ∨ VT +2 ≤ VT − ∨ T T + ≤ T T −2 ∨ T T +2 ≤ T T −))

In the example, this predicate excludes the (aggregate) time rectangle ABCD in
Figure 8, since it contains the rectangle of anr2-tuple.

Finally, the partition of the time rectangle of anr1-tuple must bemaximal
according to the previous restrictions, i.e., there should not be any additional de-
termining time lines splitting a time rectangle of a tuple inr1 \bi r2. This can be
ensured by requiring that, whenever the time edge of anr2-tuple could originate an
additional splitting line, there should exist anotherr2-tuple blocking its effect:

unsplittable(〈t ||VT , T T 〉, 〈t ||VT1, T T1〉, r2) ≡
∀VT2, T T2, t t (〈t ||V T2, T T2〉 ∈ r2 ∧

(tt = T T −2 ∨ t t = T T +2)∧ T T − < tt < T T + ∧
(V T −1 < VT −2 < VT +1 ∨ VT −1 < VT +2 < VT +1)⇒∃VT2, T T2(〈t ||VT2, T T2〉 ∈ r2 ∧ T T −2 < tt < T T +2 ∧

(V T +2 < VT +2 ≤ VT − ∨ VT −2 > VT −2 ≥ V T +))) ∧
∀VT3, T T3, vt (〈t ||V T3, T T3〉 ∈ r2∧

(vt = V T −3 ∨ vt = V T +3) ∧ VT − < vt < VT + ∧
(T T −1 < TT −3 < T T +1 ∨ T T −1 < TT +3 < T T +1)⇒∃VT3, T T3(〈t ||VT3, T T3〉 ∈ r2 ∧ VT −3 < vt < V T +3 ∧

(T T +3 < T T +3 ≤ T T − ∨ T T −3 > T T −3 ≥ T T +)))

TEMPORAL STATEMENT MODIFIERS 849

Hence, ABCD in the figure also does not qualify as the time rectangle of anr1\bi r2-
tuple because various (unblocked) determining time lines split it into seven rectan-
gles.

Finally, we define coalescing of bitemporal relations. Transaction-time co-
alescing,coalbitt guarantees maximal transaction-time periods and is illustrated in
Figure 9. The five white rectangles illustrate the times of five value-equivalent

VTt

tt

vt

VTb

TTrTTl

Figure 9: Transaction Time Coalescing of a Bitemporal Relation

tuples in the uncoalesced relation. The gray tuple is one of the tuples resulting
from coalescing. (Transaction-time coalescing ensures maximal expansion in the
transaction-time dimension and yields no coalescing in the valid-time dimension.)

Formally, coalescing is defined as follows.

coalbitt (r)
4= {〈t ||VT , T T 〉 |

∃VT1, T Tr(〈t ||VT1, T Tr〉 ∈ r ∧ T T + = T T +r) ∧
∃VT2, T Tl(〈t ||VT2, T Tl〉 ∈ r ∧ T T − = T T −l) ∧∃VTt , T T3(〈t ||VTt , T T3〉 ∈ r∧

(V T + = VT −t ∨ VT + = V T +t) ∧ T T −3 < T T + ∧ T T +3 > TT −) ∧
∃VTb, T T4(〈t ||VTb, T T4〉 ∈ r∧

(V T − = VT +b ∨ VT − = V T −b) ∧ T T −4 < T T + ∧ T T +4 > TT −) ∧
¬∃VT5, T T5(〈t ||VT5, T T5〉 ∈ r∧

(V T − < VT +5 < VT + ∨ V T − < VT −5 < VT +) ∧
T T −5 ≤ T T + ∧ T T +5 ≥ T T −) ∧∀VT6, T T6(〈t ||VT6, T T6〉 ∈ r ∧
T T − ≤ T T −6 < TT + ∧ V T −6 ≤ V T − ∧ VT +6 ≥ VT + ⇒∃V T7, T T7(〈t ||VT7, T T7〉 ∈ r ∧ T T −7 < T T −6 ≤ T T +7 ∧

V T −7 ≤ VT − ∧ VT +7 ≥ VT +)) ∧¬∃VT8, T T8(〈t ||VT8, T T8〉 ∈ r∧
(T T −8 < T T − ≤ T T +8 ∨ T T −8 ≤ T T + < T T +8) ∧
V T −8 < VT + ∧ VT +8 > VT −)}

In the first two lines we search for two tuples defining the transaction-time start
(T T −l) and the transaction-time end (T T +r) of a coalesced tuple. In lines 3 and 4,

850 SQL STANDARDIZATION AND BEYOND

we do the same for valid-time start and end. Lines 5 and 6 ensure that no coalescing
in the valid-time dimension is done, i.e., the extension in the valid-time dimension
is as small as possible. Lines 7 to 9 ensure that there are no holes, i.e.,all tuples
with a transaction-time start contained in the final maximal transaction time must be
covered by another tuple. The last two lines ensure that we get maximal extensions
in transaction time, i.e., that no tuple exists that could possibly extend the tuple
further.

Valid-time coalescing of a bitemporal relationr, coalbivt (r), follows the same
principle, the only difference being that the roles of valid and transaction time are
reversed. The definition is thus omitted.

D Proof of Theorem 1

To prove Theorem 1, we consider each equivalence in turn. The two sides of the
equivalence for selection are defined as follows.

τvttp (σ
vt
c (r)) = {t | 〈t ||V T 〉 ∈ r ∧ c(〈t, V T 〉) ∧ V T overlaps tp}

σc(τ
vt
tp (r)) = {t | 〈t ||V T 〉 ∈ r ∧ V T overlaps tp ∧ c(t)}

To show that these definitions are equivalent, we first exploit the commutativity of
conjunction to rewrite “V T overlaps tp∧ c(t)” to “ c(t)∧VT overlaps tp.” What
remains is to prove thatc(〈t, V T 〉) andc(t) are equivalent. The same predicate
c occurs on both sides of the equality, and since the formulation of the theorem
disallows the use ofV T in predicatec, the equality and thus the first equivalence
follows.

The equivalence for projections follows similarly.

τvttp (π
vt
f (r)) = {t1 | ∃t2(〈t2||V T 〉 ∈ r ∧ t1 = f (〈t2, V T 〉))∧ V T overlaps tp}

πf (τ
vt
tp (r)) = {t1 | ∃t2(〈t2||V T 〉 ∈ r ∧ V T overlaps tp ∧ t1 = f (t2))}

The only difference with respect to selection is that we are dealing with a projection
function, not a selection predicate. Similarly to before, we first commute two terms
and then observe thatV T may be omitted as an argument off because the use of
f is disallowed in the theorem, meaning thatf (〈t2, V T 〉) andf (t2) are equivalent.

Considering the union operators, we once again apply the definitions of the
operators involved to the two sides.

τvttp (r1 ∪vt r2) = {t | (〈t ||V T 〉 ∈ r1 ∨ 〈t ||V T 〉 ∈ r2) ∧ V T overlaps tp}
τvttp (r1) ∪ τvttp (r2) = {t | (〈t ||V T 〉 ∈ r1 ∧ V T overlaps tp)∨

(〈t ||V T 〉 ∈ r2 ∧ V T overlaps tp)}
Transforming the first formula into disjunctive normal form proves the equivalence.

The equivalence involving the Cartesian products is somewhat more compli-
cated to prove.

TEMPORAL STATEMENT MODIFIERS 851

π−r1.V T ,r2.V T (τ
vt
tp (r1×vtc r2)) ={t1 ◦ t2 | 〈t1||V T1〉 ∈ r1 ∧ 〈t2||V T2〉 ∈ r2 ∧

VT1 overlaps V T2 ∧ V T = intersect(V T1, V T2) ∧ V T overlaps tp}
τvttp (r1)×c τ vttp (r2) =
{t1 ◦ t2 | 〈t1||V T1〉 ∈ r1 ∧ V T1 overlaps tp ∧ 〈t2||V T2〉 ∈ r2 ∧ V T2 overlaps tp}

After the usual initial reordering of the terms of the formula, we are left with the
proof of the equivalence between

“VT1 overlaps V T2 ∧ V T = intersect(V T1, V T2) ∧ V T overlaps tp”
and

“VT1 overlaps tp ∧ V T2 overlaps tp.”
We consider each formula in turn.

V T1 overlaps V T2 ∧ V T = intersect(V T1, V T2) ∧ V T overlaps tp
⇓

(elimination ofV T)
⇓

V T1 overlaps V T2 ∧ intersect(V T1, V T2) overlaps tp

⇓
(replace periods with points, cf. Table 6)

⇓
VT +1 > VT −2 ∧ VT +2 > VT −1 ∧

max(V T −1 , V T
−
2) < tp ∧min(V T +1 , V T

+
2) > tp

⇓
(max(A,B) < C ≡ A < C ∧ B < C)
(min(A,B) > C ≡ A > C ∧ B > C)

⇓
VT +1 > VT −2 ∧ VT +2 > VT −1 ∧

V T −1 < tp ∧ V T −2 < tp ∧ V T +1 > tp ∧ V T +2 > tp

Next we rewrite the second formula.

V T1 overlaps tp ∧ V T2 overlaps tp

⇓
(replace periods with points, cf. Table 6)

⇓
V T −1 < tp ∧ V T +1 > tp ∧ V T −2 < tp ∧ V T +2 > tp

⇓
(A < C ∧ B > C ⇒ B > A)

⇓
V T −1 < tp ∧ V T +1 > tp ∧ V T −2 < tp∧

V T +2 > tp ∧ V T +1 > VT −2 ∧ V T +2 > VT −1

Apart from the order of the terms, the rewritten formulas are identical.

852 SQL STANDARDIZATION AND BEYOND

The final equivalence involves valid-time difference:

τvttp (r1 \vt r2) = {t | φ1}
τvttp (r1) \ τvttp (r2) = {t | φ2}

whereφ1 is defined as

∃V T , VT1

〈t ||VT1〉 ∈ r1 ∧
(∃VT2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ V T +2 ∧ V T − = VT +2) ∨ VT − = V T −1) ∧
(∃VT3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ V T −3 ∧ V T + = VT −3) ∨ VT + = V T +1) ∧
VT − < VT + ∧
¬∃VT4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T) ∧
VT overlaps tp}

andφ2 is defined as

∃VT1(〈t ||VT1〉 ∈ r1 ∧ VT1 overlaps tp)︸ ︷︷ ︸
ψ1

∧ ¬∃VT2(〈t ||VT2〉 ∈ r2 ∧ VT2 overlaps tp)︸ ︷︷ ︸
ψ2

.

To prove the two sets equivalent, we have to show that the defining formulas are
equivalent, i.e.,φ1 ≡ φ2. We do so by proving two implicationsφ1 ⇒ φ2 and
φ1⇐ φ2 in turn.

A) (φ1⇒ φ2) With φ2 ≡ ψ1∧ψ2 we can rewriteφ1⇒ φ2 to (φ1⇒ ψ1)∧(φ1⇒
ψ2) and prove each of the conjuncts in turn. The proof is based on the following
theorems.

T1 σ1⇒ σ2 ⇒ (σ1 ∧ σ3)⇒ σ2

T2 σ1⇒ σ2 ⇒ (σ3 ∧ σ1)⇒ (σ3 ∧ σ2)

T3 σ1⇒ (σ2⇒ σ3) ≡ (σ1 ∧ σ2)⇒ σ3

T4 (σ1⇒ σ2) ∧ (σ3⇒ σ4) ⇒ (σ1 ∧ σ3)⇒ (σ2 ∧ σ4)

T5 σ1⇒ ∀v σ2 ≡ ∀v(σ1⇒ σ2) if v does not occur inσ1

T6 X ⊆ Y ≡ ∀z(z ∈ X⇒ z ∈ Y)
T7 VT2 ⊆ V T1 ≡ VT −1 ≤ VT −2 ∧ VT +2 ≤ V T +1
T8 tp ∈ V T ≡ VT overlaps tp

T9 If 1 ` (φ ⇒ ψ), then1 ` ((∃vφ)⇒ (∃vψ))
T10 1 ` ∀vφ iff 1 ` φ

The first sub-proof starts with two formulas that are trivially true.

TEMPORAL STATEMENT MODIFIERS 853

(1) (∃V T2(〈t ||VT2〉 ∈ r2 ∧ V T −1 ≤ V T +2 ∧ VT − = VT +2) ∨ V T − = VT −1) ⇒
V T −1 ≤ VT −

(2) (∃V T3(〈t ||VT3〉 ∈ r2 ∧ V T +1 ≥ V T −3 ∧ VT + = VT −3) ∨ V T + = VT +1) ⇒
V T + ≤ VT +1

We then apply the above theorems untilφ1⇒ ψ1 results. (With each intermediate
formula, we indicate the formulas and theorems that were used deriving it.)

(3) (∃V T2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ∧ VT − = V T +2) ∨ VT − = VT −1) ∧
(∃V T3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ VT −3 ∧ VT + = V T −3) ∨ VT + = VT +1) ⇒
VT ⊆ V T1 (1), (2), T4, T7

(4) (∃V T2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ∧ VT − = V T +2) ∨ VT − = VT −1) ∧
(∃V T3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ VT −3 ∧ VT + = V T −3) ∨ VT + = VT +1) ∧
V T − < VT + ∧
¬∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T) ⇒
VT ⊆ V T1 (3), T1

(5) (∃V T2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ∧ VT − = V T +2) ∨ VT − = VT −1) ∧
(∃V T3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ VT −3 ∧ VT + = V T −3) ∨ VT + = VT +1) ∧
V T − < VT + ∧
¬∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T) ∧
tp ∈ VT ⇒
tp ∈ V T1 (4), T6, T5, T10, T3

(6) 〈t ||VT1〉 ∈ r1 ∧
(∃V T2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ∧ VT − = V T +2) ∨ VT − = VT −1) ∧
(∃V T3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ VT −3 ∧ VT + = V T −3) ∨ VT + = VT +1) ∧
V T − < VT + ∧
¬∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T) ∧
V T overlaps tp ⇒
〈t ||VT1〉 ∈ r1 ∧ V T1 overlaps tp (5), T2, T8

The introduction of existential quantifiers (T9) completes the proof.
To proveφ1⇒ ψ2 we start out with the formula below:

¬∃VT4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T) ∧
VT overlaps tp ⇒
¬∃VT4(〈t ||VT4〉 ∈ r2 ∧ VT4 overlaps tp)

Again, it is easy to see that the formula is trivially true. Next, we applyT1 followed
by T9 to get

854 SQL STANDARDIZATION AND BEYOND

∃VT , V T1

〈t ||VT1〉 ∈ r1 ∧
(∃V T2(〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ∧ VT − = V T +2) ∨ VT − = VT −1) ∧
(∃V T3(〈t ||VT3〉 ∈ r2 ∧ VT +1 ≥ VT −3 ∧ VT + = V T −3) ∨ VT + = VT +1) ∧
V T − < VT + ∧
¬∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T4 overlaps V T)∧
V T overlaps tp ⇒
¬∃VT4(〈t ||VT4〉 ∈ r2 ∧ VT4 overlaps tp)

Renaming of a bound variable yieldsφ1⇒ ψ2.

B) (φ1 ⇐ φ2) We proveφ2 ⇒ φ1 by reduction to absurdity, i.e., we show that
¬φ1 ∧ φ2 leads to a contradiction. We start with¬φ1:

∀V T, V T1

(〈t ||V T1〉 ∈ r1 ∧
(∃V T2(〈t ||V T2〉 ∈ r2 ∧ V T −1 ≤ V T +2 ∧ VT − = V T +2) ∨ V T − = V T −1) ∧
(∃V T3(〈t ||V T3〉 ∈ r2 ∧ V T +1 ≥ V T −3 ∧ VT + = V T −3) ∨ V T + = V T +1) ∧
V T − < VT + ∧
V T overlaps tp⇒
∃V T4(〈t ||V T4〉 ∈ r2 ∧ V T overlaps V T4))

We first apply standard normalization rules [20, p.113] and quantifier elimi-
nation [13, p.49–58] to getφ3:

∀VT1(〈t ||VT1〉 ∈ r1 ∧ VT −1 ≤ tp < V T +1 ⇒
∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T +1 > VT −4 ∧ VT +4 > VT −1)) ∧

∀VT1, V T2(〈t ||VT1〉 ∈ r1 ∧ 〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ tp < VT −2 ≤ V T +1 ⇒
∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T −2 > VT −4 ∧ VT +4 > VT −1)) ∧

∀VT1, V T2(〈t ||VT1〉 ∈ r1 ∧ 〈t ||VT2〉 ∈ r2 ∧ VT −1 ≤ VT +2 ≤ tp < V T +1 ⇒
∃V T4(〈t ||VT4〉 ∈ r2 ∧ V T +1 > VT −4 ∧ VT +4 > VT +2)) ∧

∀VT1, V T2, V T3(〈t ||VT1〉 ∈ r1∧
〈t ||VT2〉 ∈ r2 ∧ 〈t ||VT3〉 ∈ r2 ∧ V T −1 ≤ VT +2 ≤ tp < VT −3 ≤ VT +1 ⇒
∃VT4(〈t ||VT4〉 ∈ r2 ∧ VT −3 > VT −4 ∧ V T +4 > VT +2))

Each conjunct ofφ3 is represented in the diagram below. The solid lines repre-
sent the (times of the) first part of a conjunct, i.e., the part before the implication,
whereas the grey rectangles indicate the time range that must be overlapped by

TEMPORAL STATEMENT MODIFIERS 855

yet anotherr2-tuple (the second part of the conjunct, i.e., the part that follows the
implication).

tp tp tp tp
r1

r2 �������� ������ �������� ������

conjunct 1. 2. 3. 4.

Fromψ1 and the first conjunct ofφ3, it follows that a) there is anr1-tuple x1 =
〈t ||V T1〉 such thattp ∈ V T1 and b) there is anr2-tuple that temporally overlaps
with x1. Since, according toψ2 no r2-tuple containstp, the overlap must be of
the form depicted in either the second or third diagram. Both cases imply that yet
anotherr2 tuple exists that overlaps the time period indicated by the gray rectangle.
Depending on the time period ofr2, we end up with a situation represented by
diagram two, three, or four. (Because ofψ2, another overlapping is impossible.)
Whatever situation it would imply yet anotherr2 tuple which is (timely) closer to
tp. No finite relationr2 can fulfill this requirement.

References

[1] G. Ariav. A Temporally Oriented Data Model.ACM Transactions on Data-
base Systems, 11(4):499–527, December 1986.

[2] M. H. Böhlen, R. Busatto, and C. S. Jensen. Point-Versus Interval-Based
Temporal Data Models. InProceedings of the 14th International Conference
on Data Engineering, Orlando, Florida, February, to appear 1998.

[3] J. Bair, M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Notions of Up-
ward Compatibility of Temporal Query Languages.Wirtschaftsinformatik,
39(1):25–34, February 1997.

[4] G. Bhargava and S. K. Gadia. Relational Database Systems with Zero In-
formation Loss. IEEE Transactions on Knowledge and Data Engineering,
5(1):76–87, February 1993.

[5] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness
of TSQL2. InRecent Advances in Temporal Databases, International Work-
shop on Temporal Databases, pages 153–172, Zürich, Switzerland, September
1995. Springer, Berlin.

[6] M. H. Böhlen, C. S. Jensen, and B. Skjellaug. Spatio-Temporal Database Sup-
port for Legacy Applications. InProceedings of the 1998 ACM Symposium on
Applied Computing, Marriott Marquis, Atlanta, Georgia, February, submitted
1998.

856 SQL STANDARDIZATION AND BEYOND

[7] M. Böhlen and R. Marti. On the Completeness of Temporal Database Query
Languages.Proceedings of the First International Conference on Temporal
Logic, pages 283–300, July 1994.

[8] M. Böhlen. Managing Temporal Knowledge in Deductive Databases. PhD
thesis, Departement für Informatik, ETH Zürich, Switzerland, 1994.

[9] M. H. Böhlen, R. T. Snodgrass, and M. D. Soo. Coalescing in Temporal Data-
bases. In T. M. Vijayaraman, A. Buchmann, C. Mohan, and N. L. Sarda,
editors,Proceedings of the Twenty-second International Conference on Very
Large Data Bases, pages 180–191. Morgan Kaufmann Publishers, Inc., Mum-
bai (Bombay), India, September 1996.

[10] J. Clifford, A. Croker, and A. Tuzhilin. On the Completeness of Query Lan-
guages for Grouped and Ungrouped Historical Data Models. In A. Tansel,
J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Tem-
poral Databases: Theory, Design, and Implementation, pages 496–533. Ben-
jamin/Cummings Publishing Company, 1993.

[11] J. Celko. SQL for Smarties: Advanced SQL Programming. Morgan Kauf-
mann, 1995.

[12] S. Ceri and G. Gottlob. Translating SQL Into Relational Algebra: Optimiza-
tion, Semantics, and Equivalence of SQL Queries.IEEE Transactions on
Software Engineering, 11(4):324–345, April 1985.

[13] C. C. Chang and H. J. Keisler.Model Theory. North-Holland, Amsterdam, 3
edition, 1990.

[14] S. K. Gadia. Weak Temporal Relations. InProceedings of the ACM Sympo-
sium on Principles of Database Systems, 1986.

[15] S. K. Gadia. A Homogeneous Relational Model and Query Languages for
Temporal Databases.ACM Transactions on Database Systems, 13(4):418–
448, December 1988.

[16] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data.
In R. T. Snodgrass, editor,Proceedings of the International Workshop on an
Infrastructure for Temporal Databases, Arlington, Texas, June 1993.

[17] S. K. Gadia and S. S. Nair. Temporal Databases: A Prelude to Parametric Data.
In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass,
editors,Temporal Databases: Theory, Design, and Implementation, pages 28–
66. Benjamin/Cummings Publishing Company, 1993.

[18] A. Van Gelder and R. W. Topor. Safety and Translation of Relational Calculus
Queries.ACM Transactions on Database Systems, 16(2):235–278, June 1991.

[19] C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal Models via
a Conceptual Model.Information Systems, 19(7):513–547, 1994.

TEMPORAL STATEMENT MODIFIERS 857

[20] J. W. Lloyd. Logic Programming. Symbolic Computation, Springer Verlag,
Berlin, 2nd edition, 1987.

[21] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data.
IEEE Transactions on Knowledge and Data Engineering, 9(3), May/June
1997.

[22] L. E. McKenzie and R. T. Snodgrass. Evaluation of Relational Algebras
Incorporating the Time Dimension in Databases.ACM Computing Surveys,
23(4):501–543, December 1991.

[23] J. Melton and A. R. Simon.Understanding the new SQL: A Complete Guide.
Morgan Kaufmann Publishers, San Mateo, California, 1993.

[24] S. B. Navathe and R. Ahmed. TSQL - A Language Interface for History Data-
bases. InProceedings of the Conference on Temporal Aspects in Information
Systems, pages 113–128. AFCET, May 1987.

[25] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query
Language.Information Systems, 49(2):147–175, 1989.

[26] S. Navathe and R. Ahmed. Temporal Extensions to the Relational Model and
SQL. In A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T.
Snodgrass, editors,Temporal Databases: Theory, Design, and Implementa-
tion, pages 92–109. Benjamin/Cummings Publishing Company, 1993.

[27] S. Nair and S. Gadia. Algebraic Optimization in a Relational Model for Tem-
poral Databases. In R. T. Snodgrass, editor,Proceedings of the International
Workshop on an Infrastructure for Temporal Databases, Arlington, Texas,
June 1993.

[28] R. T. Snodgrass and I. Ahn. A Taxonomy of Time in Databases. InProceed-
ings of the ACM SIGMOD International Conference on Management of Data,
1985.

[29] N. Sarda. Algebra and Query Language for a Historical Data Model.IEEE
Computer Journal, 33(1):11–18, February 1990.

[30] N. Sarda. HSQL: A Historical Query Language. In A. Tansel, J. Clifford,
S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal Data-
bases: Theory, Design, and Implementation. Benjamin/Cummings Publishing
Company, 1993.

[31] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Transac-
tion Time to SQL/Temporal. ANSI X3H2-96-152r, ISO–ANSI SQL/Temporal
Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-143, May 1996.

[32] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Valid
Time to SQL/Temporal. ANSI X3H2-96-151r1, ISO–ANSI SQL/Temporal
Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-142, May 1996.

858 SQL STANDARDIZATION AND BEYOND

[33] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner.Transitioning
Temporal Support in TSQL2 to SQL3. Proceedings of the Dagstuhl Seminar
on Temporal Databases. to appear 1998.

[34] B. Schueler. Update reconsidered. In G. M. Nijssen, editor,Architecture and
Models in Data Base Management Systems. North Holland Publishing Co.,
1977.

[35] M. D. Soo, C. J. Jensen, and R. T. Snodgrass. An Algebra for TSQL2. In R. T.
Snodgrass, editor,The TSQL2 Temporal Query Language, chapter 27, pages
505–546. Kluwer Academic Publishers, 1995.

[36] R. T. Snodgrass. The Temporal Query Language TQuel.ACM Transactions
on Database Systems, 12(2):247–298, June 1987.

[37] R. T. Snodgrass. Temporal Databases: Status and Research Directions.ACM
SIGMOD Record, 19(4):83–89, December 1990.

[38] R. T. Snodgrass. An Overview of TQuel. In A. Tansel, J. Clifford, S. Ga-
dia, S. Jajodia, A. Segev, and R. T. Snodgrass, editors,Temporal Data-
bases: Theory, Design, and Implementation, chapter 6, pages 141–182. Ben-
jamin/Cummings Publishing Company, 1993.

[39] R. T. Snodgrass.The TSQL2 Temporal Query Language. Kluwer Academic
Publishers, Boston, 1995.

[40] K. Torp, C. S. Jensen, and M. H. Böhlen. Layered Implementation of Tem-
poral DBMSs-Concepts and Techniques. InProceedings of the Fifth Interna-
tional Conference On Database Systems For Advanced Applications, DASFAA
’97, Melbourne, Australia, to appear April 1997.

[41] D. C. Tsichritzis and F. H. Lochovsky. Data models. InSoftware Series.
Prentice-Hall, 1982.

[42] D. Toman and D. Niwínski. First-Order Queries over Temporal Databases
Inexpressible in Temporal Logic. In P. Apers, M. Bouzeghoub, and G. Gar-
darin, editors,Advances in Database Technology — EDBT’96, 5th Interna-
tional Conference on Extending Database Technology, volume 1057 ofLec-
ture Notes in Computer Science, pages 307–324. Springer, March 1996.

[43] G. Wiederhold. How to Write a Schema for a Time Oriented Medical Record
Data Bank. Technical report, Standford University, 1973.

