
27
Adding Transaction Time to

SQL/Temporal
Richard T. Snodgrass, Michael H. Böhlen,
Christian S. Jensen, and Andreas Steiner

Transaction time identifies when data was asserted in the database. If transac-
tion time is supported, the states of the database at all previous points of time
are retained. This change proposal specifies the addition of transaction time,
in a fashion consistent with that already proposed for valid time. In particu-
lar, constructs to create tables with valid-time and transaction-time support and
query such tables with temporal upward compatibility, sequenced semantics,
and nonsequenced semantics, orthogonally for valid and transaction time, is de-
fined. These constructs also can be used in modifications, assertions, cursors,
and views.

753

754 SQL STANDARDIZATION AND BEYOND

1 Introduction

Transaction time identifies when data was asserted in the database. If transaction
time is supported, the states of the database at all previous points of time are retained
and updates are append-only.

Unlike valid time, transaction time cannot be entirely simulated with tables
with explicit timestamp columns. The reason is that tables with transaction-time
support areappend-only: they grow monotonically. While the query functionality
can be simulated on table with no temporal support, in the same way that valid-time
query functionality can be translated into queries on table with no temporal support,
there is no way to restrict the user to modifications that ensure the table is append-
only. While one can revoke permission to useDELETE, it is still possible for the
user to corrupt the transaction timestamp via database updates and insertions. This
means that the user can never be sure that what the table says was stored at some
time in the past was actually in the table at that time. The only way to ensure the
consistency of the data is to have the DBMS maintain the transaction timestamps
automatically.

This change proposal adds transaction-time support to SQL/Temporal. These
facilities augment the valid-time support proposed earlier [3]. Transaction-time
support provides the following features.

• Both valid-time and transaction-time support are optional.

• Tables with transaction-time support can be converted, via a view or within a
query or cursor, to a conventional table with an additional period column, if
the user prefers to manipulate the data in that fashion.

• Temporal upward compatible, sequenced, and nonsequenced queries can all
be expressed on tables with valid-time and transaction-time support, orthogo-
nally.

2 The Problem

Many applications need to keep track of the past states of the database, often for au-
diting requirements. Changes are not allowed on the past states; that would prevent
secure auditing. Instead, compensating transactions are used to correct errors.

When an error is encountered, often the analyst will look at the state of the
database at a previous point in time to determine where and how the error occurred.

However, SQL currently does not support such modifications or queries well.
The following example will illustrate the problems.

• Assume that we wish to keep track of the changes and deletions of the Em-
ployee table discussed in the previous change proposal [3]. This table has
four columns: Name, Manager, Dept, and When (aPERIODindicating when

ADDING TRANSACTION TIME TO SQL/TEMPORAL 755

the row was valid). To know when rows are inserted and (logically) deleted,
we add two more columns, InsertTime and DeleteTime, both of the data type
TIMESTAMP. Of course, adding these two columns breaks the referential in-
tegrity constraint between Manager and Name (the manager must also be an
employee). The reader is invited to write this referential integrity constraint
to take into account the three time columns.

• We find out that the telephone bill for a department is unusually high, so we
ask “How many employees have been in each department” to get a start. This
query is quite complex to formulate in SQL.

• It turns out that one of the departments shows an unreasonable number of
current employees (more than 25). When was the error introduced? Is this
inconsistency in the database widespread? How long has the database been
incorrect? The query “When did we think that departments are overly large?”
provides an initial answer, but is also very difficult to express in SQL.

These queries are very challenging, even for SQL experts, when time is in-
volved.

Modifications are even more of a problem. A logical deletion must be imple-
mented as an update and an insertion, because we don’t want to change the previ-
ously stored information. However, there is no way of preventing an application
from inadvertently corrupting past states (by incorrectly altering the values of the
InsertTime or DeleteTime columns), or a white-collar criminal from intentionally
“changing history” to cover up his tracks.

3 Outline of the Solution

The solution is to have the DBMS maintain transaction time automatically, so that
the integrity of the previous states of the database is preserved. The query language
can also help out, by making it easy to write queries and modifications.

With the small syntactic additions proposed here, transaction time can be eas-
ily added.

ALTER TABLE Employee ADD TRANSACTIONTIME

Because the DBMS is maintaining transaction time for us, for this table, we don’t
have to worry about the integrity of the previous states. The DBMS simply won’t
let us modify past states.

The previously specified sequenced valid referential integrity still applies, al-
ways on the current state of the database. No rephrasing of this integrity constraint
is necessary.

The query “How many employees have been in each department?” asks for
the history in valid time of the current transaction-time state. Hence, it is particu-
larly easy to specify, by exploiting transaction-time upward compatibility.

756 SQL STANDARDIZATION AND BEYOND

VALIDTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

To find where the error was made, we write the query “When did we think that
departments are overly large?” This uses the current time in valid time (the current
departments), but looks at past states of the database. This requires a sequenced
transaction query, with valid-time upward compatibility.

TRANSACTIONTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept
HAVING COUNT(*) > 25

By having the DBMS maintain transaction time, applications that need to re-
tain past states of tables for auditing purposes can have these past states maintained
automatically, correctly, and securely. As well, the proposed language extensions
enable queries to be written in minutes instead of hours.

4 Transaction Time

As we saw in the previous change proposal [3], valid time concerns the time when a
fact is true in reality. The valid time of a fact is the wall clock time at which the fact
was true in the modeled reality, independent of the recording of that fact in some
database. Valid times can be in the future, if it is known that some fact will become
true at a specified time in the future.

Orthogonally to valid time, transaction time can be associated with facts. The
transaction time of a row, which is a period, specifies when that row was consid-
ered to be logically stored in the database. If the row (Tony, 10000, LeeAnn) was
stored in the database on March 15, 1992 (say, with anINSERT statement) and
removed from the database on June 1, 1992 (say, with aDELETEstatement), then
the transaction time of that row would be the period from March 15, 1992 to June
1, 1992.

Since transaction time is orthogonal to valid time, a table can have no temporal
support, only valid-time support, only transaction-time support, and both valid- and
transaction-time support.

Example 1 Consider a table with both valid-time and transaction-time support re-
cording employee information, such as “Jake works for the shipping department.”
We assume that the precision of the timestamps is one day for both valid time and
transaction time (though in reality the precision of transaction time is probably a
fraction of a second).

ADDING TRANSACTION TIME TO SQL/TEMPORAL 757

Figure 1 gives a sample table that illustrates Jake’s interesting employment
history. Jake was hired by the company as temporary help in the Shipping depart-
ment for the interval from June 10 to June 15, and this fact became current in the
database at June 5.

Later, the Personnel department discovers that Jake had really been hired from
June 5 to June 20, and the database is corrected on June 10. Later, the Personnel
department is informed that the correction was itself incorrect; Jake really was hired
for the original time interval, June 10 to June 15, and the correction took effect in
the database on June 15. Finally, on June 20, the Personnel department determines
that, while the period of validity was correct, Jake was not in the Shipping depart-
ment, but in theLoadingdepartment (!). Consequently, the fact (Jake, Shipping) is
removed from the current state and the fact (Jake, Loading) is inserted. In the table,
we represent the current time in transaction time internally with a value of the end
of time. As we will see, users will never encounter transaction times greater than
CURRENT_TIMESTAMP.

Emp Dept Valid Transaction
Time Time

Jake Shipping [1995-06-10 - 1995-06-16) [1995-06-05 - 1995-06-10)
Jake Shipping [1995-06-05 - 1995-06-21) [1995-06-10 - 1995-06-15)
Jake Shipping [1995-06-10 - 1995-06-16) [1995-06-15 - 1995-06-20)
Jake Loading [1995-06-10 - 1995-06-16) [1995-06-20 - 9999-12-31)

Figure 1: A Table With Both Valid-Time and Transaction-Time Support

With this table with both valid-time and transaction-time support, we can ask
many interesting queries. Some queries take a vertical slice at a particular transac-
tion time, determining what was recorded in the database at that time.

• As best known, who worked in the various departments?
Jake worked in the Loading department.

• As recorded in the database on June 18, 1995 (perhaps erroneously), who
worked in the various departments?
Jake worked in the Shipping department.

• Rolling back the database to June 12, 1995, how long did we think Jake was
scheduled to work?
Jake was scheduled to work 16 days, from June 5 to June 20.

Other queries take a horizontal slice at a particular valid time.

• Concerning June 12, 1995, who worked then, as best known now?
Jake worked in the Loading department then.

• What erroneous data was corrected concerning June 12, 1995?

758 SQL STANDARDIZATION AND BEYOND

We thought Jake was working in the Shipping department on June 12 (this
data was stored on June 5), but his department was corrected on June 20 to
the Loading department. 2

The concepts of temporal upward compatibility(TUC), sequenced(SEQ), and
nonsequenced(NONSEQ)semantics apply orthogonally to valid time and transac-
tion time.

Example 2 Assume that we have an employee table with attributes Name, Salary,
and Manager. We can state queries that are different combinations ofTUC, SEQ,
andNONSEQin valid and transaction time. In the following, we indicate valid time,
then transaction time. Hence, “TUC/SEQ” means valid-time upward compatible
and sequenced transaction-time semantics.

TUC/TUC Who currently makes more than their manager, as best known?
A table with no temporal support results.

SEQ/TUC Who at any time makes or made more than their manager did (at the
same time, as best known)?
A table with valid-time support results.

TUC/SEQ Who did we think makes more than their manager today?

NONSEQ/TUC Who made more than their manager did (at any time), as best
known?
A table with no temporal support results.

TUC/NONSEQ When was it recorded that someone currently makes more than
their manager?
A table with no temporal support results.

SEQ/SEQ When did we think that someone, at some time, made more than their
manager, at the same time?
A table with both valid-time and transaction-time support results.

SEQ/NONSEQWhen did we correct the information to record that someone, at
some time, made more than their manager, at the same time?
A table with valid-time support results. For each transaction time, we get a
row with valid-time support, indicating when the employee is now considered
to make more than their manager.

NONSEQ/SEQWho was recorded, perhaps erroneously, to have made more than
their manager did at any time?
Here we get a table with transaction-time support, indicating when the perhaps
erroneous data was in the table.

NONSEQ/NONSEQWhen did we correct the information, to record that someone
made more than their manager did, at any time?
Here a table with no temporal support results.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 759

TUC in valid time translates in English to “at now”;SEQ translates to “at
the same time’; andNONSEQtranslates to “at any time.”TUC in transaction time
translates to “as best known”;SEQtranslates to “when did we think. . . at the same
time”; andNONSEQtranslates to “when was it recorded that.”

This example illustrates that all combinations are meaningful. 2

While this example emphasized the orthogonally of valid and transaction
time, thatTUC, SEQ, andNONSEQcan be applied equally to both, there are still
some differences between the two types of time.

First, valid time can have a precision specified by the user at table creation
time. The transaction timestamps have an implementation-dependent range and
precision. Second, valid time extends into the future, whereas transaction time al-
ways ends at now. Finally, during modifications the DBMS provides the transaction
time, in contrast with the valid time of facts, which are provided by the user. This
derives from the different semantics of transaction time and valid time. Specifi-
cally, when a fact is (logically) deleted from a table with transaction-time support,
its transaction stop time is set automatically by the DBMS to the current time. When
a fact is inserted into the table, its transaction start time is set by the DBMS, again to
the current time. An update is treated, concerning the transaction-time timestamps,
as a deletion followed by an insertion. The transaction times that a set of modifica-
tion transactions give to the modified rows must be consistent with the serialization
order of those transactions.

Example 3 We can alter the employee table discussed in [3] to be a table with both
valid-time and transaction-time support, by adding transaction-time support.2

Temporal upward compatibility guarantees that conventional, nontemporal queries,
updates, etc. work as before, with the same semantics.

Since the history of the database is recorded in tables with both valid-time
and transaction-time support, we can find out when corrections were made, using a
nonsequenced transaction query.

Example 4 The query “When was the street corrected, and what were the old and
new values?”, combines nonsequenced transaction semantics (since this involves
two transaction states: before and after the correction) with sequenced valid seman-
tics. 2

Example 5 To extract all the information from the employee table, we can use
a sequenced valid/sequenced transaction query. Such queries can have arbitrarily
complex predicates. “When did we think that someone lived somewhere for more
than six months?” 2

Modifications take effect at the current transaction time. However, we can still
specify the scope of the change in valid time, both before and after now (retroactive
and postactive changes, respectively).

760 SQL STANDARDIZATION AND BEYOND

Example 6 Lilian moved last June 1. 2

Finally, arbitrarily complex queries in transaction time can be expressed with
nonsequenced transaction queries.

Example 7 The query “When was an employee’s address for 1995 corrected?” in-
volves nonsequenced transaction semantics and sequenced valid semantics, with a
temporal scope of 1995. 2

As always, the concepts also apply to views, cursors, constraints, and asser-
tions.

Example 8 The assertion “An entry in the security table can never be updated. It
can only be deleted, and a new entry, with another key value, inserted.” can be
expressed with a nonsequenced transaction semantics, stating in effect that the key
value is unique over all transaction time. 2

5 Supporting Transaction-Time in SQL3

This section informally introduces the new constructs of SQL/Temporal. We build
upon the examples given in the previous change proposal [3].

5.1 SQL3 Extensions

We employ a new reserved word,TRANSACTIONTIME, whose use parallels that
of VALIDTIME . This reserved word can appear in a number of locations.

Table creation The create table statement is extended to define tables with either
or both of valid-time and transaction-time support, through the use of “AS
TRANSACTIONTIME”.

Temporal upward compatibility TUC is ensured through the semantics of the
language; no new syntax is needed. A transaction-time or table with both
valid-time and transaction-time support is transaction timesliced to now to
retrieve the data as best known.

Sequenced transaction semantics Sequenced transaction semantics is specified
by prepending the reserved wordTRANSACTIONTIME, as with sequenced
valid semantics. This applies to queries, views, cursors, assertions, and con-
straints.

Nonsequenced transaction semantics Nonsequenced transaction semantics is
specified by prependingNONSEQUENCED TRANSACTIONTIME, as with
valid time.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 761

Assertion definition A sequenced transaction applies individually to each state
of the underlying table(s). A nonsequenced transaction assertion applies si-
multaneously to all of the states of the underlying table(s). This is in contrast
to a snapshot assertion, which is evaluated only on the current state. In both
cases, the assertion is checked before a transaction is committed. The fact that
tables with transaction-time support are append-only presents an opportunity
to optimize the checking of such assertions.

Derived table in a from clause In the from clause, one can also specifyTRANS-
ACTIONTIME. This is the means of converting a table with transaction-time
support to a table with no temporal support, as will be illustrated in the fol-
lowing quick tour.

Table and column constraints When specified withNONSEQUENCED TRANS-
ACTIONTIME, such constraints must apply to all states in transaction time,
together, of a table with transaction-time support.

Cursor expression Cursors can range over the result of a nonsequenced trans-
action select. Note however that rows that are not current cannot be updated.

Optional period expression An optional period expression afterTRANSAC-
TIONTIME (without NONSEQUENCED) specifies that the transaction-time
period of the result is intersected with the value of the expression. This al-
lows one to restrict the result of a select statement, assertion definition, table
constraint, column constraint, cursor expression, or view definition to a spec-
ified period.

Value expression The value expression “TRANSACTIONTIME(<correlation
name>) ” evaluates to the transaction-time period of the row associated with
the correlation or table name. This is required because transaction-time pe-
riods of tables with transaction-time support are not explicit columns (the
alternative violates temporal upward compatibility).

Fetch statement The transaction-time period associated with a row with trans-
action-time support can be placed in a local variable in embedded SQL.

5.2 Overview of the Semantics

The semantics is dictated by three simple rules.

• The absence ofVALIDTIME (respectively,TRANSACTIONTIME) indicates
valid-time (resp., transaction-time) upward compatibility. The result does not
include valid-time (resp., transaction-time) support.

• VALIDTIME (respectively,TRANSACTIONTIME) indicates sequenced valid
(resp., transaction) semantics. An optional period expression temporally
scopes the result. The result includes valid-time (resp., transaction-time) sup-
port.

762 SQL STANDARDIZATION AND BEYOND

• NONSEQUENCEDdenotes nonsequenced valid (resp., transaction) semantics.
An optional period expression afterNONSEQUENCED VALIDTIMEprovides
a valid-time timestamp, yielding valid-time support in the result.

The following quick tour provides examples of these constructs.

5.3 A Quick Tour

This quick tour starts with the database as it was when we last left it, at the end
of the previous quick tour [3]. Theemployee table has the following contents.
Recall that closed-open periods are used here for the valid-time and transaction-
time periods.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 -

1995-07-01)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 -

9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 -

9999-12-31)

Thesalary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

We can alter theemployee table to be a table with both valid-time and
transaction-time support, by adding transaction-time support. Assume that the cur-
rent date is July 1, 1995.

ALTER TABLE employee ADD TRANSACTIONTIME;
COMMIT;

Sinceemployee was a table with valid-time support, this statement converts it
to the following table with both valid-time and transaction-time support. Recall
that an the ending bound of the transaction-time period of the end of time in the
representation simply indicates that the row still logically resides in the table, i.e.,
has not been logically deleted.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

ADDING TRANSACTION TIME TO SQL/TEMPORAL 763

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

We retain thesalary table as a table with valid-time support.
Temporal upward compatibility guarantees that conventional, nontemporal

queries, updates, etc. work as before, with the same semantics. We can list those
for which (currently, as best known) no one makes a higher salary in a different city.

SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city)

This takes a timeslice in both valid time and transaction time at now, and returns
the result: Lilian.

We can also ask, for all time, when this is true, by simply prepending “VALID-
TIME”.

VALIDTIME SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city)

This returns a table with valid-time support, evaluated with sequenced valid seman-
tics, after the current transaction timeslice has been taken.

ename Valid
Franziska [1995-02-01 - 1995-02-02)
Lilian [1995-02-02 - 1995-04-01)
Lilian [1995-04-01 - 9999-12-31)

There are two rows for Lilian, because two rows ofsalary participated in com-
puting the result. Interestingly, Franziska satisfied the where condition for exactly
one day, before Lilian was hired.

Temporally upward compatible modifications also work as before. Assume it
is now August 1, 1995. Franziska just moved.

764 SQL STANDARDIZATION AND BEYOND

UPDATE employee
SET street = ’Niederdorfstrasse 2’
WHERE ename = ’Franziska’;
COMMIT;

This update yields the followingemployee table. Note that although Franziska is
at the new address starting on August 1, 1995, since she won’t be an employee for
the next five months, her new address is recorded from January 1, 1996 onward.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
. . . [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

Since the history of the database is recorded in tables with both valid-time
and transaction-time support, we can find out when corrections were made, using a
nonsequenced transaction query. Assume it is now September 1, 1995.

The query “When was the street corrected, and what were the old and new
values?” combines nonsequenced transaction semantics with sequenced valid se-
mantics.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME
SELECT e1.ename, e1.street AS old_street,

e2.street AS new_street,
BEGIN(TRANSACTIONTIME(e2)) AS trans_time

FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno

AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

This yields the following table with valid-time support. Thetrans_time column
specifies when the change was made; the implicit timestamp indicates the valid-time
period of the fact that was changed.

ename old_street new_street trans_time Valid
Franziska Rennweg 683 Niederdorfstrasse 21995-08-01 [1996-01-01 -

9999-12-31)

To extract all the information from theemployee table, we can use a se-
quenced valid/sequenced transaction query. “When did we think that someone lived
somewhere for more than six months?”.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 765

VALIDTIME AND TRANSACTIONTIME SELECT ename, street
FROM employee
WHERE INTERVAL(VALIDTIME(employee) MONTH) >

INTERVAL ’6’ MONTH

ename street
Franziska Rennweg 683 . . .

Franziska Niederdorfstrasse 2 . . .

Lilian 46 Speedway . . .

Valid Transaction
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
. . . [1996-01-01 - 9999-12-31) [1995-08-01 - 1995-09-01)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 1995-09-01)

Notice that in the result, the ending transaction time for data in the current state is
always the current time, rather than the end of time, reflecting information currently
known.

Modifications take effect at the current transaction time. However, we can still
specify the scope of the change in valid time, both before and after now (retroactive
and postactive changes, respectively).

Assume it is now October 1, 1995. Lilian moved last June 1.

VALIDTIME PERIOD ’[1995-06-01 - 9999-12-31)’
UPDATE employee
SET street = ’124 Alberca’
WHERE ename = ’Lilian’
COMMIT;

This update yields the followingemployee table.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Lilian 3463 124 Alberca Tucson 1970-03-09 . . .

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
. . . [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 1996-10-01)
. . . [1995-02-02 - 1995-06-01) [1995-10-01 - 9999-12-31)
. . . [1995-06-01 - 9999-12-31) [1995-10-01 - 9999-12-31)

766 SQL STANDARDIZATION AND BEYOND

Finally, arbitrarily complex queries in transaction time can be expressed with
nonsequenced transaction queries.

The query, “When was an employee’s address for 1995 corrected?”, involves
nonsequenced transaction semantics and sequenced valid semantics, with a tempo-
ral scope of 1995. Assume that it is November 1, 1995.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME
PERIOD ’[1995-01-01 - 1996-01-01)’

SELECT e1.ename, e1.street AS old_street,
e2.street AS new_street,

BEGIN(TRANSACTIONTIME(e2)) AS trans_time
FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno

AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)
AND e1.street <> e2.street

This evaluates to the following result, which has an explicit column denoting the
date the change was made, and an implicit valid time indicating the time in reality
in question.

ename old_street new_street trans_time Valid
Lilian 46 Speedway124 Alberca 1995-10-01 [1995-06-01 - 1996-01-

01)
Note that the period from February through May is not included in the valid time,
as the street didn’t change for that period.

As always, the concepts also apply to views, cursors, constraints, and asser-
tions.

The assertion, “An entry in the security table can never be updated. It can only
be deleted, and a new entry, with another key value, inserted.”, can be expressed
with a nonsequenced transaction semantics, stating in effect that the key value is
unique over all transaction time.

CREATE TABLE security (
keyvalue NUMERIC(8) NONSEQUENCED

TRANSACTIONTIME UNIQUE,
...

)

6 Formal Semantics of SQL/Temporal

We provide a denotational mapping of queries with these language extensions to
temporal relational and relational algebra expressions.

We use〈t ||V T 〉, 〈t ||T T 〉, and〈t ||V T, T T 〉 to denote a tuple variable ranging
over a table with valid-time support, with transaction-time support, and with both

ADDING TRANSACTION TIME TO SQL/TEMPORAL 767

valid-time and transaction-time support, respectively. The vertical double-bar “||”
is used to separate transaction and valid-time from explicit attributes.

Finally, we use four simple auxiliary functions:τvt , τ tt , partSize2evt , and
partSize2ett . The timeslice operationτc computes the timeslice of a table at time
c, i.e., it selects all tuples with a timestamp that overlaps chrononc. SN turns
an implicit time dimension into an explicit attribute. Both functions are defined
for valid and transaction time. Table 1 gives their semantics over all possible table
types. Note thatSN , which converts an implicit dimension into an explicit attribute,
is not needed at the implementation level, where a time dimension is represented
simply as an extra column.

snapshot
τvtc (r) {〈t〉 | 〈t〉 ∈ r}
τ ttc (r) {〈t〉 | 〈t〉 ∈ r}
SNvt (r) {〈t〉 | 〈t〉 ∈ r}
SNtt (r) {〈t〉 | 〈t〉 ∈ r}

valid time transaction time
τvtc (r) {〈t〉 | 〈t ||VT 〉 ∈ r ∧ VT overlaps c} {〈t ||T T 〉 | 〈t ||T T 〉 ∈ r}
τ ttc (r) {〈t ||VT 〉 | 〈t ||VT 〉 ∈ r} {〈t〉 | 〈t ||T T 〉 ∈ r ∧ T T overlaps c}
SNvt (r) {〈t, V T 〉 | 〈t ||VT 〉 ∈ r} {〈t ||T T 〉 | 〈t ||T T 〉 ∈ r}
SNtt (r) {〈t ||VT 〉 | 〈t ||VT 〉 ∈ r} {〈t, T T 〉 | 〈t ||T T 〉 ∈ r}

valid and transaction time
τvtc (r) {〈t ||VT , T T 〉 | 〈t ||VT , T T 〉 ∈ r ∧ V T overlaps c}
τ ttc (r) {〈t ||VT , T T 〉 | 〈t ||VT , T T 〉 ∈ r ∧ T T overlaps c}
SNvt (r) {〈t, V T ||T T 〉 | 〈t ||VT , T T 〉 ∈ r}
SNtt (r) {〈t, T T ||VT 〉 | 〈t ||VT , T T 〉 ∈ r}

Table 1: Snapshot Functions and Functions to Convert a Time Dimension into an
Explicit Column

Table 2 gives the denotational semantics for the basic statements.
[[<SQL–92>]]standard evaluates to the standard relational algebra expression which
corresponds to<SQL–92>. [[<SQL–92>]]X, whereX ∈ {vt, tt, bi}, is equivalent
to [[<SQL–92>]]standard except that every nontemporal relational algebra operator
(e.g.,1, σ, π) is replaced by the corresponding temporal relational algebra operator
(e.g.,1X, σX, πX). The semantics of these algebraic operators is a straightforward
extension of the semantics given for the valid-time temporal algebra in [3].

Table 2 does not show the semantics of temporal scoping in transaction time,
so we provide this semantics here. (We gave the semantics for temporal scoping in
valid time in the previous change proposal [3].)

768 SQL STANDARDIZATION AND BEYOND

[[<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]standard (τ ttnow(τvtnow(r1)), . . . , τ ttnow(τvtnow(rn)))

[[VT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]vt (τ ttnow(r1), . . . , τ ttnow(rn))

[[NSEQVT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]standard (τ ttnow(partSize2evt (r1)), . . . , τ ttnow(partSize2evt (rn)))

[[TT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]tt (τ vtnow(r1), . . . , τ vtnow(rn)

[[NSEQTT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]standard (τ vtnow(partSize2ett (r1)), . . . , τ vtnow(partSize2ett (rn)))

[[VTAND TT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]bi(r1, . . . , rn)

[[VTAND NSEQTT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]vt (partSize2ett (r1), . . . , partSize2ett (rn))

[[NSEQVTAND TT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]tt (partSize2evt(r1), . . . , partSize2evt(rn))

[[NSEQVTAND NSEQTT<SQL–92>]]SQL/T (r1, . . . , rn) 4=
[[<SQL–92>]]standard (partSize2ett (partSize2evt(r1)), . . . ,

partSize2ett (partSize2evt (rn)))

Table 2: Denotational Semantics

[[TRANSACTIONTIMEp <SQL–92>]]SQL/T (r1, . . . , rn) 4=
{〈t || T T 〉 |〈t || T T ′〉 ∈ [[TRANSACTIONTIME<SQL–92>]]SQL/T (r1, . . . , rn)

∧ T T = T T ′ ∩ [[p]] ∧ T T 6= ∅}
Example 9 The first example is a nontemporal query, i.e., a query evaluated with
standard semantics. Assume thatp and q are tables with both valid-time and
transaction-time support. The queryQ1

NONSEQUENCED VALIDTIME SELECT p.X
FROM p, q
WHERE p.X = q.X

ADDING TRANSACTION TIME TO SQL/TEMPORAL 769

is equivalent to the relational algebra expression

[[Q1]]SQL/TEMPORAL(p, q) =
πp.Xσp.X=q.X(SNvt (τ ttnow(p)× SNvt(τ ttnow(q)))) . 2

Example 10 The second example is the queryQ2 evaluated with temporal seman-
tics.

VALIDTIME AND TRANSACTIONTIME
SELECT p.X
FROM p, q
WHERE p.X = q.X

is equivalent to the temporal relational algebra expression

[[Q2]]SQL/TEMPORAL(p, q) = πbip.X(p 1bip.X=q.X q) .
Note that apart from the superscripts, which are added to relational algebra opera-
tors, the translation between SQL queries and relational algebra expressions has not
changed at all. 2

7 Summary

This change proposal builds on the previous change proposal [3], introducing trans-
action time as well as tables with transaction-time support, sequenced transaction
semantics, nonsequenced transaction semantics, scoping on transaction time via an
optional period expression, and modification semantics. The specific syntactic addi-
tions were outlined and examples given to illustrate these constructs. We sketched a
formal semantics, in terms of the formal semantics of SQL3, for the new constructs.

We end by listing some of the advantages of the approach espoused here.

• Only one new reserved word is required to support transaction time.

• The extensions are compatible with, and orthogonal to, those for valid time.

• A simple period expression permits the transaction-time scope to be specified.

• Nonsequenced transaction semantics permits tables with transaction-time sup-
port to be converted to tables with no temporal support with an explicit time-
stamp column, even within a query.

• A public-domain prototype [4] demonstrates the practical viability of the pro-
posed constructs. The quick tour was validated on this prototype.

8 Proposed Language Extensions

The syntax is given as extensions to “Database Language SQL — Part 7: Tempo-
ral,” [2] as well as the previous change proposal [3].

770 SQL STANDARDIZATION AND BEYOND

9 Clause 3 Definitions, notations, and conventions

9.1 Subclause 3.1 Definitions

1) Add the following terms.

n) row with transaction-time support : A row with transaction-time support is a
row with an associated transaction time, which is a value of a period data type,
with elements of the transaction-time precision, which is implementation-
defined.

o) transaction time of a row with transaction-time support: The transaction
time of a row with transaction-time support is the period P such that BE-
GIN(P) denotes the time at which the row was inserted and END(P) denotes
the time when the row was updated or (logically) deleted.
Note to proposal reader: It follows that a propositionP , together with an
associated valid timeT V and an associated transaction timeT T , is equivalent
to the proposition “ ‘P is true duringT V ’ was asserted duringT T ”.

p) table has transaction-time support: A table with transaction-time support
is one in which each row is a row with transaction-time support.

q) transaction-time state of a table with transaction-time support at a trans-
action time: The transaction-time state of a table with transaction-time sup-
port, TT, at a specified time, T, is the table without transaction-time support
comprising rows with identical values for the fields of the rows of TT associ-
ated with transaction times that overlap T.

r) current transaction-time state of a table with transaction-time support:
The current transaction-time state of a table with transaction-time support is
the transaction-time state of that table at transaction time CURRENT_TIME-
STAMP.

10 Clause 4 Concepts

10.1 Subclause 4.3 Tables

1) Add the following Item to the table descriptor:

– An indication of whether the table has transaction-time support or does not
have transaction-time support.

10.2 Subclause 4.4 Integrity constraints

2) Add the following two Items to the constraint descriptor:

ADDING TRANSACTION TIME TO SQL/TEMPORAL 771

– An indication of whether the constraint is specified without TRANSACTION-
TIME, with TRANSACTIONTIME but without NONSEQUENCED, or with
NONSEQUENCED TRANSACTIONTIME.

– The transaction-time period, if any, associated with the constraint.

10.3 Subclass 4.5 Meaning of statements on tables with temporal support

3) Insert these two paragraphs at the end of this Subclause.
The meaning of queries on tables with transaction-time support is parallel to

and orthogonal with those queries on tables with valid-time support. The concepts
of temporal upward compatibility, sequenced transaction, and nonsequenced trans-
action apply consistently to queries, integrity constraints, assertions, views, and
cursors.

Modifications on tables with transaction-time support are always performed
on the current transaction-time state of the table, with the resulting rows of the new
state having a transaction-time period P such that BEGIN(P) is CURRENT_TIME-
STAMP, thereby ensuring the append-only nature of transaction-time support. For
updates and deletions, the ending bound of the transaction times of the rows that are
affected are set to the value of CURRENT_TIMESTAMP. For rows that have not
been updated or deleted, the ending bound is always CURRENT_TIMESTAMP.

11 Clause 5 Lexical elements

11.1 Subclause 5.1<token> and<separator>

1) In the Format, add the following new alternative to<reserved word>:∣∣ TRANSACTIONTIME

Language opportunity: It might be reasonable to also allow TRANSTIME as a
shorter synonym.

12 Clause 6 Scalar expressions

12.1 Section 6.4<period value function>

1) In the Format, add the following new alternative to<period primary>:∣∣ <transactiontime function>

2) In the Format, add the following two BNF productions:

772 SQL STANDARDIZATION AND BEYOND

<transactiontime function> ::=
TRANSACTIONTIME<left paren>

<transactiontime argument><right paren>

<transactiontime argument> ::=
<item qualifier>∣∣ <value expression>

3) Insert the following two Syntax Rules:

1. (Insert this SR) The data type of<transactiontime function> shall be<period
type>, with an element precision of the transaction-time precision.

2. (Insert this SR) The<value expression> of a <transactiontime function>
shall be of row type RT. If RT does not have transaction-time support, then it
shall have a field named TRANSACTIONTIME of a period data type, with
an element precision of the transaction-time precision.

Note to proposal reader: The precision of a table with transaction-time support was
specified in Subclause 3.1, “Definitions” as implementation-defined.
4) Insert the following General Rules:

1. (Insert this GR) Case:

a) If <transactiontime argument> is <item qualifier>, then let R be the
row of T for which<transactiontime function> VF is evaluated.

b) If <transactiontime argument> is <value expression>, then let R be
the resulting row.

2. (Insert this GR) Case:

a) If R has transaction-time support, then the value of the<transactiontime
function> is the transaction-time period of R.

b) If R does not have transaction-time support, then the value of the
<transactiontime function> is the value of the field of R named TRANS-
ACTIONTIME.

3. (Insert this GR) Let the value of the<transactiontime function> be T. If
LAST(T) is the end of time, then replace LAST(T) with CURRENT_TIME-
STAMP in the transaction-time precision.

Note to proposal reader: The end of time was specified in Subclause 3.1, “Defini-
tions”.
Language opportunity: It would be helpful if this function were also available in
PSM.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 773

13 Clause 7 Query Processing

13.1 Subclause 7.4<query expression>

1) In the Format, replace the<time option> BNF production with:

<time option> ::=
<validtime option> [AND <transactiontime option>]∣∣ <transactiontime option> [AND <validtime option>]

Note to proposal reader: This adds an optional<transaction option> either before
or following the<validtime option> to<time option>.
2) Add the following BNF production:

<transactiontime option> ::=
[NONSEQUENCED] TRANSACTIONTIME [<value expression>]

Note to proposal reader: This syntax is symmetric with that for<validtime option>.
3) Add the following Syntax Rules:

1. (Insert this SR) The data type of<value expression> of <transactiontime
option> shall be<period type>, with an element precision of the transaction-
time precision.
NOTE 7 - Subclause 6.3, “<item reference>” restricts the scope of column
names in<value expression>.

2. (Insert this SR) If TRANSACTIONTIME is specified and NONSEQUENCED
is not specified in the<transactiontime option> that is contained in the<time
option> that is simply contained in<query expression>, then each exposed
table, query, or correlation name that is contained in the<query expres-
sion body>without an intervening<from clause> shall identify a table with
transaction-time support.
Note to proposal reader: This ensures that sequenced transaction queries are
only evaluated “over” tables with transaction-time support.

3. (Insert this SR) If TRANSACTIONTIME is specified in the<time option> of
a<query expression>Q, then either Q shall be simply contained in a<from
clause> or Q shall be the outermost<query expression>.
Note to proposal reader: TRANSACTIONTIME is allowed in the same places
that VALIDTIME is permitted.

4. (Insert this SR) If NONSEQUENCED is specified in a<transactiontime op-
tion> TO that is contained in<time option>, thenTO shall not contain a
<value expression>.

5. (Insert this SR) Let T be the result of the<query expression>.
Case:

774 SQL STANDARDIZATION AND BEYOND

a) If TRANSACTIONTIME is specified NONSEQUENCED is not speci-
fied in the<transactiontime option> that is contained in<time option>,
then T shall be a table with transaction-time support.

b) Otherwise, T shall be a table without transaction-time support.

4) Insert the following General Rules:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is specified and NONSEQUENCED is not
specified in the<transactiontime option> that is contained in<time
option>, then the result of<temporal query expression body> TQEB
during each transaction time granule T of the transaction-time precision
is the result of the<query expression body> of TQEB with each leaf
generally underlying table with transaction-time support with no inter-
vening<from clause> replaced with its state at transaction time T. If
<value expression> VE is specified in the<transactiontime option>
that is contained in<time option>, then for each row R resulting from
the initial evaluation of TQEB,
Case:

i) If the value of VE and the transaction-time period VP of R overlap,
then the resulting transaction-time period of R is the result of
(VE P_INTERSECT VP).

ii) Otherwise, R is not included in the final result of TQEB.

b) If NONSEQUENCED TRANSACTIONTIME is specified in<time op-
tion>, then the result of<temporal query expression body> TQEB is
the result of the<query expression body> of TQEB with each leaf gen-
erally underlying table with transaction-time support with no interven-
ing<from clause> replaced with a table with no transaction-time sup-
port with rows with identical values for the columns. The descriptor
of that table is the same as the description of the table DT from which
it is derived, with the inclusion of a column descriptor whose column
name is TRANSACTIONTIME, whose data type is a<period type>
with an element precision of the transaction-time precision, and whose
ordinal position is one greater than the degree of DT. The value of this
additional column for each row is the original transaction-time period
of the corresponding row in DT. If<value expression> is specified in
the<transactiontime option> of <time option>, then the transaction-
time period of the row of the result of TQEB is the value of<value
expression>.

c) Otherwise, the result of<temporal query expression body> TQEB is
the result of the<query expression body> of TQEB with each of its

ADDING TRANSACTION TIME TO SQL/TEMPORAL 775

leaf generally underlying tables with transaction-time support with no
intervening<from clause> replaced with its current transaction-time
state.

Note to proposal reader: This semantics is identical to that for valid-time.
Language opportunity: It would be nice if<value expression> that is contained
in the<transactiontime option> that is contained in<time option> also be allowed
to be of a datetime data type, interpreted as a period containing one granule. This
would allow statements of the form
TRANSACTIONTIME DATE ’1996-01-01’ SELECT .

13.2 Subclause 7.5<query specification>

1) Replace both SRs with the following.

1. (Replace SR4b) Otherwise, the<select list> "*" is equivalent to a<value
expression> sequence in which each<value expression> is a column refer-
ence that references a column of T and each column of T, other than any col-
umn named VALIDTIME or TRANSACTIONTIME, is referenced exactly
once. The columns other than those named VALIDTIME or TRANSAC-
TIONTIME are referenced in the ascending sequence of their ordinal position
within T.

2. (Replace SR 5) If the<select sublist>
<item qualifier>.*
is specified, then let Q be the<item qualifier> of that <select sublist>.
Q shall be a<table name> or <correlation name> exposed by a<table
reference> immediately contained in the<from clause> of T. Let TQ be
the table associated with Q. That<select sublist> is equivalent to a<value
expression> sequence in which each<value expression> is a column ref-
erence CR that references a column of TQ that is not a common column of
a<joined table> and does not have the name VALIDTIME or TRANSAC-
TIONTIME. Each column of TQ that is not a referenced common column
shall be referenced exactly once. The columns shall be referenced in the as-
cending sequence of their ordinal positions within TQ.

Note to proposal reader: This adds the TRANSACTIONTIME column to the ex-
ceptions.

14 Clause 10 Schema definition and manipulation

14.1 Subclause 10.2<table definition>

1) In the Format, replace the<temporal definition> BNF production with:

776 SQL STANDARDIZATION AND BEYOND

<temporal definition> ::=
AS VALIDTIME [<period type>] [AND TRANSACTIONTIME]∣∣ AS TRANSACTIONTIME [AND VALIDTIME [<period type>]]

Note to proposal reader: This augments the production for the non-terminal<tem-
poral definition> with an additional, optional clause to specify that the new table is
to be a table with transaction-time support. No<period type> for transaction time
can be specified, as that is supplied by the implementation.
2) Add the following General Rules:

1. (Add to GR3)

h) Whether the table has transaction-time support or does not have trans-
action-time support.

Note to proposal reader: This Item is added to the table descriptor.

2. (Insert this GR) If<temporal definition> is specified, then the descriptor for
the table indicates that the table has transaction-time support.
Note to proposal reader: Otherwise, the table does not have transaction-time
support.

14.2 Subclause 10.3<column definition>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
1) Add the following Syntax Rules.

1. (Insert this SR) If TRANSACTIONTIME is specified in<time option>, then
T shall be a table with transaction-time support.

2. (Insert this SR) The<value expression> that is contained in the<trans-
actiontime option> that is contained in<time option> shall be a<literal>.

3. (Insert this SR) If TRANSACTIONTIME is specified and NONSEQUENCED
is not specified in the<transactiontime option> that is contained in<time
option>,
Case:

a) If <column constraint> is <references specification>, then the table
identified by<table name> simply contained in the<referenced ta-
ble and columns> of <references specification> shall be a table with
transaction-time support.

b) If <column constraint> is<check constraint definition>, then each ta-
ble associated with an exposed<table name>,<query expression>, or
<correlation name> contained in the<column constraint> without an
intervening<from clause> shall be a table with transaction-time sup-
port.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 777

14.3 Subclause 10.4<table constraint definition>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
For constraints and assertions, there are four cases:

1. CHECK

• works on anything

• only considers current state

2. TRANSACTIONTIME CHECK

• works only on tables with transaction-time support

• the assertion must be true for the state at every transaction time

3. TRANSACTIONTIME<period exp> CHECK

• like TRANSACTIONTIME CHECK, but only considers the times in
<period exp> (a simple example isTRANSACTIONTIME PERIOD
’[1995-01-01 - 1995-12-31]’ CHECK)

4. NONSEQUENCED TRANSACTIONTIME CHECK

• works on anything

• acts like tables with transaction-time support have an explicit (unnamed)
timestamp column; all rows are considered at once

NONSEQUENCED TRANSACTIONTIME<period exp> CHECKis not allowed.
End of note.
1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is specified in<time option>, then
T shall be a table with transaction-time support.

2. (Insert this SR) The<value expression> that is contained in the<transaction-
time option> that is contained in<time option> shall be a literal.

3. (Insert this SR) If TRANSACTIONTIME is specified and NONSEQUENCED
is not specified in the<transactiontime option> that is contained in the<time
option> that is immediately contained in<table constraint definition>, then
each exposed table, query, or correlation name contained in the<table cons-
traint> without an intervening<from clause> shall identify a table with
transaction-time support.

4. (Insert this SR) If<transactiontime option> TO that is contained in<column
constraint definition> contains NONSEQUENCED, then TO shall not con-
tain<value expression>.

2) Add the following General Rules:

778 SQL STANDARDIZATION AND BEYOND

1. (Append to GR2) The table constraint descriptor includes an indication of
whether the constraint has transaction-time support or does not have trans-
action-time support, as well as the transaction-time period, if any, of the table
constraint, if the table constraint has transaction-time support.

2. (Insert this GR) Case:

a) If TRANSACTIONTIME is specified and NONSEQUENCED is not
specified in the<transactiontime option> that is contained in<time
option>, then
Case:

i) If <value expression> V is contained in the<transactiontime
option> of <time option>, then<temporal table constraint> is
satisfied if the contained<table constraint> is satisfied for each
time granule TG of the value of V, with each leaf generally un-
derlying table with transaction-time support with no intervening
<from clause> replaced with its state at transaction time TG.

ii) Otherwise,<temporal table constraint> is satisfied if the con-
tained<table constraint> is satisfied for each time granule TG
in the transaction-time precision, with each leaf generally underly-
ing table with transaction-time support with no intervening<from
clause> replaced with its state at transaction time TG.

b) If NONSEQUENCED TRANSACTION is specified in<time option>,
then<temporal table constraint> is satisfied if the contained<table
constraint> is satisfied when each leaf generally underlying table with
transaction-time support with no intervening<from clause> is replaced
with a table with no transaction-time support with rows with identical
values for the columns. The descriptor of that table is the same as the
description of the table DT from which it is derived, with the inclusion
of a column descriptor whose column name is TRANSACTIONTIME,
whose data type is a<period type> with an element precision of the
transaction-time precision, and whose ordinal position is one greater
than the degree of DT. The value of this additional column for each row
is the original transaction-time period of the corresponding row in DT.

c) Otherwise,<temporal table constraint> is satisfied if the contained
<table constraint> is satisfied when each of its leaf generally under-
lying tables with transaction-time support with no intervening<from
clause> is replaced with its current transaction-time state.

14.4 Subclause 10.5<alter table statement>

1) In the Format, add the following two new alternatives to<alter table action>:

ADDING TRANSACTION TIME TO SQL/TEMPORAL 779

∣∣ <add transaction definition>∣∣ <drop transaction definition>

2) Add the following Syntax Rule:

1. (Add this SR) If<add column definition>,<alter column definition>,<drop
column definition>, <add supertable clause>, <drop supertable clause>,
<add table constraint definition>, or <drop table constraint definition> is
specified, then T shall not be a table with transaction-time support.

Language opportunity: Schema modifications of tables with transaction-time sup-
port requires versioning of the schema base tables, which will be addressed in a
future change proposal.

14.5 Subclause 10.9<add valid definition>

1) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.8, “<convert valid definition>”.

Function

Add transaction-time support to a table.

Format

<add transaction definition> ::=
ADD TRANSACTIONTIME

Syntax Rules

1. (Insert this SR) Let T be the table identified by the<table name> that is im-
mediately contained in the<alter table statement> that immediately contains
<add transaction definition>.

2. (Insert this SR) T shall not have transaction-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Transaction-time support is added to each row R of T, by asso-
ciating with R a transaction time P such that BEGIN(P) is CURRENT_TIME-
STAMP and END(P) is the end of time in the transaction-time precision. The
descriptor of T is altered to indicate that T has transaction-time support.

780 SQL STANDARDIZATION AND BEYOND

14.6 Subclause 10.10<drop transaction definition>

1) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.9, “<add transaction definition>”.

Function

Drop transaction-time support from a table.

Format

<drop valid definition> ::=
DROP TRANSACTIONTIME

Syntax Rules

1. (Insert this SR) Let T be the table identified by the<table name> that is im-
mediately contained in the<alter table statement> that immediately contains
<drop transaction definition>.

2. (Insert this SR) T shall be a table with transaction-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If T has valid-time support, then transaction-time support is removed
from T by replacing T with the result of

VALIDTIME SELECT * FROM T

b) Otherwise, transaction-time support is removed from T by replacing T
with the result of

SELECT * FROM T

The descriptor of T is altered to indicate that T does not have transaction-time
support.
Note to proposal reader: That is, only the current state is retained. Previously
stored transaction-time states are no longer accessible.

14.7 Subclause 10.9<assertion definition>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
1) Add the following Syntax Rules:

ADDING TRANSACTION TIME TO SQL/TEMPORAL 781

1. (Insert this SR) If TRANSACTIONTIME is specified and NONSEQUENCED
is not specified in the<transactiontime option> that is contained in<time
option>, then each exposed table, query, or correlation name contained in the
<search condition> without an intervening<from clause> shall identify a
table with transaction-time support.

2. (Insert this SR) The<value expression> contained in the<transactiontime
option> contained in<time option> shall be a<literal>.

2) Append the following sentence to General Rule 4:

The assertion descriptor includes an indication of whether the assertion has
transaction-time support or does not have transaction-time support, as well as the
transaction-time period, if any, of the assertion, if the assertion has transaction-time
support.

3) Add the following General Rule:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is specified and NONSEQUENCED is not
specified in the<transactiontime option> that is contained in<time
option>, then

Case:

i) If <value expression> V is contained in the<transactiontime
option> that is contained in<time option>, then<triggered
assertion> is satisfied if the contained<search condition> is sat-
isfied for each time granule TG of the value of V, with each leaf
generally underlying table with transaction-time support with no
intervening<from clause> replaced with its state at transaction
time TG.

ii) Otherwise, <triggered assertion> is satisfied if the contained
<search condition> is satisfied for each time granule TG of the
transaction-time precision, with each leaf generally underlying ta-
ble with transaction-time support with no intervening<from
clause> replaced with its state at transaction time TG.

b) If NONSEQUENCED TRANSACTION is specified in<time option>,
then<triggered assertion> is satisfied if the contained<search condi-
tion> is satisfied when each leaf generally underlying table with trans-
action-time support with no intervening<from clause> is replaced with
a table with no transaction-time support with rows with identical values
for the columns. The descriptor of that table is the same as the de-
scription of the table DT from which it is derived, with the inclusion

782 SQL STANDARDIZATION AND BEYOND

of a column descriptor whose column name is TRANSACTIONTIME,
whose data type is a<period type> with an element precision of the
transaction-time precision, and whose ordinal position is one greater
than the degree of DT. The value of this additional column for each row
is the original transaction-time period of the corresponding row in DT.

c) Otherwise,<triggered assertion> is satisfied if the contained<search
condition> is satisfied when each of its leaf generally underlying ta-
bles with transaction-time support with no intervening<from clause>
is replaced with its current transaction-time state.

15 Clause 12 Data manipulation

15.1 Subclause 12.2<select statement: single row>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is specified and NONSEQUENCED
is not specified in the<transactiontime option> that is contained in<time
option>, then each exposed<table name>,<query expression>, or<correla-
tion name> contained in the<table expression> without an intervening
<from clause> shall identify a table with transaction-time support.

2. (Insert this SR) If TRANSACTIONTIME is specified in a<time option>
of a<query expression> Q that is contained in the<table expression> of
<select statement: single row>, then Q shall be simply contained in a<from
clause>.

3. (Insert this SR) Case:

a) If TRANSACTIONTIME is specified and NONSEQUENCED is not
specified in the<transactiontime option> that is contained in<time
option>, then T shall be a table with transaction-time support.

b) If NONSEQUENCED TRANSACTIONTIME is specified in<time op-
tion>, then

Case:

i) If <value expression> is specified in the<transactiontime option>
of <time option>, then T shall be a table with transaction-time
support.

ii) Otherwise, T shall be a table without transaction-time support.

c) Otherwise, T shall be a table without transaction-time support.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 783

Note to proposal reader: Subclause 6.1 “<item reference>” restricts the
scope of column names in the<value expression> that is contained in the
<transactiontime option> that is contained in the<time option>.

2) Add the following General Rule:

1. (Insert this GR) Case:

a) If TRANSACTIONTIME is specified and NONSEQUENCED is not
specified in the<transactiontime option> that is contained in<time
option>, then the result of<table expression> TE during each trans-
action time granule TG of the transaction-time precision is the result of
TE, in accordance with General Rule 6 of this Subclause, with each leaf
generally underlying table with transaction-time support with no inter-
vening<from clause> replaced with its state at transaction time TG.
If <value expression>VE is specified in the<transactiontime option>
that is contained in<time option>, then for each row R resulting from
the initial evaluation of TE,
Case:

i) If the value of VE and the transaction-time period VP of R overlap,
then the resulting transaction-time period of R is the result of
(VE P_INTERSECT VP).

ii) Otherwise, R is not included in the final result of TE.

b) If NONSEQUENCED TRANSACTIONTIME is specified in<time op-
tion>, then the the result of<table expression> TE is the result of TE,
in accordance with General Rule 6 of this Subclause, with each leaf
generally underlying table with transaction-time support with no inter-
vening<from clause> replaced with a table with no transaction-time
support with rows with identical values for the columns. The descriptor
of that table is the same as the description of the table DT from which
it is derived, with the inclusion of a column descriptor whose column
name is TRANSACTIONTIME, whose data type is a<period type>
with an element precision of the transaction-time precision, and whose
ordinal position is one greater than the degree of DT. The value of this
additional column for each row is the original transaction-time period of
the corresponding row in DT. If<value expression> is specified in the
<transactiontime option> of <time option>, then the transaction-time
period of the row of the result has the value of<value expression>.

c) Otherwise, the result of<table expression> TE is the result of TE, in
accordance with General Rule 6 of this Subclause, with each of its leaf
generally underlying tables with transaction-time support with no inter-
vening<from clause> replaced with its current transaction-time state.

784 SQL STANDARDIZATION AND BEYOND

15.2 Subclause 12.3<delete statement: positioned>

1) Add the following Syntax Rule:

1. (Insert this SR) TRANSACTIONTIME shall not be specified in<time op-
tion>.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, then to logically
delete a row, the ending bound of the transaction time of the row is set to
CURRENT_TIMESTAMP in the transaction-time precision.

15.3 Subclause 12.4<delete statement: searched>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
1) Add the following Syntax Rules:

1. (Insert this SR) If TRANSACTIONTIME is specified in<time option>, then
T shall be a table with transaction-time support.

2. (Insert this SR) If TRANSACTIONTIME is specified in a<time option>
of a<query expression> Q that is contained in the<search condition> of
<delete statement: searched>, then Q shall be simply contained in a<from
clause>.

3. (Insert this SR) A<value expression> shall not be contained in the<trans-
actiontime option> of <time option>.

2) Add the following General Rules at the end of the General Rules:

1. (Insert this GR) Case:

a) If NONSEQUENCED TRANSACTIONTIME is specified in<time op-
tion>, then the<search condition> SC is satisfied if SC is satisfied,
in accordance with General Rule 13 of this Subclause, when each leaf
generally underlying table with transaction-time support with no inter-
vening<from clause> is replaced with a table with no transaction-time
support with rows with identical values for the columns. The descriptor
of that table is the same as the description of the table DT from which
it is derived, with the inclusion of a column descriptor whose column
name is TRANSACTIONTIME, whose data type is a<period type>
with an element precision of the transaction-time precision, and whose
ordinal position is one greater than the degree of DT. The value of this
additional column for each row is the original transaction-time period
of the corresponding row in DT. If the<search condition> is satisfied,
then the row is marked for deletion.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 785

b) Otherwise, the<search condition> SC is satisfied if SC is satisfied, in
accordance with General Rule 13 of this Subclause, when each of its
leaf generally underlying tables with transaction-time support with no
intervening<from clause> is replaced with its current transaction-time
state. If the<search condition> is satisfied for the relevant row, then
the row is marked for deletion.

2. (Insert this GR) If T is a table with transaction-time support, then to logically
delete a row, the ending bound of the transaction time of the row is set to
CURRENT_TIMESTAMP in the transaction-time precision.

15.4 Subclause 12.5<insert statement>

1) Add the following Syntax Rule:

1. (Insert this SR) The result of<insert columns and source> shall be a table
without transaction-time support.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, then each row of
the result of<insert columns and source> shall be associated with a transac-
tion time P such that BEGIN(P) is CURRENT_TIMESTAMP and END(P) is
the end of time in the transaction-time precision.

15.5 Subclause 12.6<update statement: positioned>

1) Add the following Syntax Rule:

1. (Insert this SR) TRANSACTIONTIME shall not be specified in<time op-
tion>.

2) Add the following General Rule:

1. (Insert this GR) If T is a table with transaction-time support, the ending bound
of the transaction time of the current row is set to CURRENT_TIMESTAMP
in the transaction-time precision. Let NR be a row with column values iden-
tical to the current row, with an associated transaction time P such that BE-
GIN(P) is CURRENT_TIMESTAMP and END(P) is the end of time in the
transaction-time precision. Perform the update on NR, then insert NR into T.

15.6 Subclause 12.7<update statement: searched>

Note to proposal reader: TRANSACTIONTIME is now allowed in<time option>.
1) Add the following Syntax Rules

1. (Insert this SR) If TRANSACTIONTIME is specified in<time option>, then
T shall be a table with transaction-time support.

786 SQL STANDARDIZATION AND BEYOND

2. (Insert this SR) If TRANSACTIONTIME is specified in a<time option>
of a<query expression> Q that is contained in the<search condition> of
<update statement: searched>, then Q shall be simply contained in a<from
clause>.

3. (Insert this SR) A<value expression> shall not be contained in the<trans-
actiontime option> of <time option>.

2) Add the following General Rules:

1. (Insert this GR) Case:

a) If NONSEQUENCED TRANSACTIONTIME is specified in<time op-
tion>, then the<search condition> SC is satisfied if SC is satisfied,
in accordance with General Rule 23 of this Subclause, when each leaf
generally underlying table with transaction-time support with no inter-
vening<from clause> is replaced with a table with no transaction-time
support with rows with identical values for the columns. The descriptor
of that table is the same as the description of the table DT from which
it is derived, with the inclusion of a column descriptor whose column
name is TRANSACTIONTIME, whose data type is a<period type>
with an element precision of the transaction-time precision, and whose
ordinal position is one greater than the degree of DT. The value of this
additional column for each row is the original transaction-time period
of the corresponding row in DT.

b) Otherwise, the<search condition> SC is satisfied if SC is satisfied, in
accordance with General Rule 23 of this Subclause, when each of its
leaf generally underlying tables with transaction-time support with no
intervening<from clause> is replaced with its current transaction-time
state.

2. (Insert this GR) If T is a table with transaction-time support, the ending bound
of the transaction time of the current row is set to CURRENT_TIMESTAMP
in the transaction-time precision. Let NR be a row with column values iden-
tical to the current row, with an associated transaction time P such that BE-
GIN(P) is CURRENT_TIMESTAMP and END(P) is the end of time in the
transaction-time precision. Perform the update on NR, then insert NR into T.

16 Clause 12 Information Schema and Definition Schema

16.1 Subclause 12 Information Schema

Subclause 12.1.1 TABLES view

1) Replace the TABLES view with the following.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 787

CREATE VIEW TABLES
AS SELECT TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, TABLE_TYPE,
VALIDTIME_SUPPORT, VALIDTIME_PRECISION,
TRANSACTIONTIME_SUPPORT

FROM DEFINITION_SCHEMA.TABLES
WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (SELECT TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE GRANTEE IN (’PUBLIC’, CURRENT_USER)
UNION
SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE GRANTEE IN (’PUBLIC’,

CURRENT_USER))
AND TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds one column: TRANSACTIONTIME_SUPPORT.

Subclause 12.1.2 VIEWS view

1) Replace the VIEWS view with the following.

CREATE VIEW VIEWS
AS SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CASE WHEN (TABLE_CATALOG,
TABLE_SCHEMA, CURRENT_USER)

IN (SELECT CATALOG_NAME,
SCHEMA_NAME,
SCHEMA_OWNER

FROM
DEFINITION_SCHEMA.SCHEMATA)

THEN VIEW_DEFINITION
ELSE NULL

END AS VIEW_DEFINITION,
CHECK_OPTION, IS_UPDATABLE,
VALIDTIME_SUPPORT, VALIDTIME_PRECISION,

TRANSACTIONTIME_SUPPORT
FROM DEFINITION_SCHEMA.VIEWS

788 SQL STANDARDIZATION AND BEYOND

WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)
IN (SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM TABLES)

AND TABLE_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds one column: TRANSACTIONTIME_SUPPORT.

Subclause 12.1.3 TABLE_CONSTRAINTS view

1) Replace the TABLE_CONSTRAINTS view with the following.

CREATE VIEW TABLE_CONSTRAINTS
AS SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_TYPE,
IS_DEFERRABLE, INITIALLY_DEFERRED,
VALIDTIME_SUPPORT, VALIDTIME_PERIOD,
TRANSACTIONTIME_SUPPORT,
TRANSACTIONTIME_PERIOD

FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS
JOIN
DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))
WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: TRANSACTIONTIME_SUPPORT
and TRANSACTIONTIME_PERIOD.

Subclause 12.1.4 ASSERTIONS view

1) Replace the ASSERTIONS view with the following.

CREATE VIEW ASSERTIONS
AS SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
IS_DEFERRABLE, INITIALLY_DEFERRED,

ADDING TRANSACTION TIME TO SQL/TEMPORAL 789

VALIDTIME_SUPPORT, VALIDTIME_PERIOD,
TRANSACTIONTIME_SUPPORT,
TRANSACTIONTIME_PERIOD

FROM DEFINITION_SCHEMA.ASSERTIONS
JOIN
DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))
WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: TRANSACTIONTIME_SU-
PPORT and TRANSACTIONTIME_PERIOD.

16.2 Subclause 12.2 Definition Schema

Subclause 12.2.2 TABLES base table

1) Replace the TABLES table with the following.

CREATE TABLE TABLES
(
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_TYPE_NOT_NULL NOT NULL,
CONSTRAINT TABLE_TYPE_CHECK

CHECK (TABLE_TYPE IN
(’BASE TABLE’, ’VIEW’,

’GLOBAL TEMPORARY’,
’LOCAL TEMPORARY’)),

CONSTRAINT CHECK_TABLE_IN_COLUMNS
CHECK ((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM COLUMNS)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN

790 SQL STANDARDIZATION AND BEYOND

(’STATE’,’NONE’)),
VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,
TRANSACTIONTIME_SUPPORT

INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN
(’STATE’,’NONE’)),

CONSTRAINT TABLES_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT TABLES_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (TABLE_CATALOG,

TABLE_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT TABLES_CHECK_NOT_VIEW
CHECK (NOT EXISTS

(SELECT TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME

FROM TABLES
WHERE TABLE_TYPE = ’VIEW’
EXCEPT
SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM VIEWS))

)

Note to proposal reader: This adds one column: TRANSACTIONTIME_SUPPORT.
2) Add the following Item to the Description:

1. The values of TRANSACTIONTIME_SUPPORT have the following mean-
ings:

STATE The table being described has transaction-time support.

NONE The table being described does not have transaction-time support.

Subclause 12.2.3 VIEWS base table

1) Replace the VIEWS table with the following.

CREATE TABLE VIEWS

ADDING TRANSACTION TIME TO SQL/TEMPORAL 791

(
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,
CHECK_OPTION INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CHECK_OPTION_NOT_NULL NOT NULL
CONSTRAINT CHECK_OPTION_CHECK

CHECK (CHECK_OPTION IN
(’CASCADED’, ’LOCAL’, ’NONE’)),

IS_UPDATABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT IS_UPDATABLE_NOT_NULL NOT NULL
CONSTRAINT IS_UPDATABLE_CHECK

CHECK (IS_UPDATABLE IN
(’YES’, ’NO’)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA. CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN
(’STATE’,’NONE’)),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,
TRANSACTIONTIME_SUPPORT

INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN
(’STATE’,’NONE’)),

CONSTRAINT VIEWS_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEWS_IN_TABLES_CHECK
CHECK ((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = ’VIEW’)),

CONSTRAINT VIEWS_IS_UPDATABLE_CHECK_OPTION_CHECK
CHECK ((IS_UPDATABLE,

CHECK_OPTION) NOT IN

792 SQL STANDARDIZATION AND BEYOND

(VALUES (’NO’, ’CASCADED’),
(’NO’, ’LOCAL’)))

)

Note to proposal reader: This adds one column: TRANSACTIONTIME_SUPPORT.
2) Add the following Item to the Description:

1. The values of TRANSACTIONTIME_SUPPORT have the following mean-
ings:

STATE The table being described has transaction-time support.

NONE The table being described does not have transaction-time support.

Subclause 12.2.4 TABLE_CONSTRAINTS base table

1) Replace the TABLE_CONSTRAINTS table with the following.

CREATE TABLE TABLE_CONSTRAINTS
(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CONSTRAINT_TYPE_NOT_NULL NOT NULL
CONSTRAINT CONSTRAINT_TYPE_CHECK

CHECK (CONSTRAINT_TYPE IN
(’UNIQUE’, ’PRIMARY KEY’,

’FOREIGN KEY’, ’CHECK’)),

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT
TABLE_CONSTRAINTS_TABLE_CATALOG_NOT_NULL NOT NULL,

TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT
TABLE_CONSTRAINTS_TABLE_SCHEMA_NOT_NULL NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT
TABLE_CONSTRAINTS_TABLE_NAME_NOT_NULL NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
TABLE_CONSTRAINTS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
TABLE_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL

ADDING TRANSACTION TIME TO SQL/TEMPORAL 793

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’,’NONE’)),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,
TRANSACTIONTIME_SUPPORT

INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’, ’NONE’)),

TRANSACTIONTIME_PERIOD
INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLE_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME),

CONSTRAINT TABLE_CONSTRAINTS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE,

INITIALLY_DEFERRED) IN
(VALUES (’NO’, ’NO’),

(’YES’, ’NO’),
(’YES’, ’YES’))),

CONSTRAINT TABLE_CONSTRAINTS_CHECK_VIEWS
CHECK (TABLE_CATALOG <> ANY

(SELECT CATALOG_NAME FROM SCHEMATA)
OR
((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE <> ’VIEW’))),

CONSTRAINT TABLE_CONSTRAINTS_UNIQUE_CHECK
CHECK (1 =

(SELECT COUNT (*)
FROM
(SELECT CONSTRAINT_CATALOG,

794 SQL STANDARDIZATION AND BEYOND

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’)
UNION ALL
SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM REFERENTIAL_CONSTRAINTS
UNION ALL
SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM CHECK_CONSTRAINTS) AS X
WHERE (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME)

= (X.CONSTRAINT_CATALOG,
X.CONSTRAINT_SCHEMA,
X.CONSTRAINT_NAME))),

CONSTRAINT UNIQUE_TABLE_PRIMARY_KEY_CHECK
CHECK (UNIQUE (SELECT TABLE_CATALOG,

TABLE_SCHEMA,
TABLE_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE

= ’PRIMARY KEY’))
)

Note to proposal reader: This adds two columns: TRANSACTIONTIME_SU-
PPORT and TRANSACTIONTIME_PERIOD.
2) Add the following Items to the Description:

1. The values of TRANSACTIONTIME_SUPPORT have the following mean-
ings:

SEQUENCED The table constraint being described was specified with TRANS-
ACTIONTIME and without NONSEQUENCED.

NONSEQUENCED The table constraint being described was specified with
NONSEQUENCED TRANSACTIONTIME.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 795

NONE TRANSACTIONTIME was not specified in the table constraint being
described.

2. The value of TRANSACTIONTIME_PERIOD is the value of the<value
expression> contained in the<transactiontime option> associated with the
table constraint being described.

Subclause 12.2.6 ASSERTIONS base table

1) Replace the TABLE_ASSERTIONS table with the following.

CREATE TABLE ASSERTIONS
(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT
ASSERTIONS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
ASSERTIONS_INITIALLY_DEFERRED_NOT_NULL NOT NULL,

CHECK_TIME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ASSERTIONS_CHECK_TIME_CHECK

CHECK (CHECK_TIME IN
(’IMMEDIATE’, ’DEFERRED’)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’,’NONE’)),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,
TRANSACTIONTIME_SUPPORT

INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT TRANSACTIONTIME_SUPPORT_CHECK

CHECK (TRANSACTIONTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’,’NONE’)),

TRANSACTIONTIME_PERIOD
INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT ASSERTIONS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,

796 SQL STANDARDIZATION AND BEYOND

CONSTRAINT_NAME),

CONSTRAINT ASSERTIONS_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME)

REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT ASSERTIONS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT ASSERTIONS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE,

INITIALLY_DEFERRED) IN
VALUES ((’NO’, ’NO’),

(’YES’, ’NO’),
(’YES’, ’YES’)))

)

Note to proposal reader: This adds two columns: TRANSACTIONTIME_SU-
PPORT and TRANSACTIONTIME_PERIOD.
2) Add the following Items to the Description:

1. The values of TRANSACTIONTIME_SUPPORT have the following mean-
ings:

SEQUENCED The assertion being described was specified with TRANSAC-
TIONTIME and without NONSEQUENCED.

NONSEQUENCED The assertion being described was specified with NON-
SEQUENCED TRANSACTIONTIME.

NONE TRANSACTIONTIME was not specified in the assertion being de-
scribed.

2. The value of TRANSACTIONTIME_PERIOD is the value of the<value
expression> contained in the<transactiontime option> associated with the
assertion being described.

17 Annex A (informative) Implementation-defined elements

1) Add the following item to the list of implementation-defined elements.

ADDING TRANSACTION TIME TO SQL/TEMPORAL 797

1) (Insert this Item) Subclause 3.1, “Definitions”: The precision of the trans-
action-time period of rows with transaction-time support is implementation-
defined.

18 Acknowledgments

This change proposal presents an improved and extended version of some of the
constructs in TSQL2, which was designed by a committee consisting of Richard
T. Snodgrass (chair), Ilsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis
E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Käfer,
Nick Kline, Krishna Kulkarni, T.Y. Cliff Leung, Nikos Lorentzos, John F. Roddick,
Arie Segev, Michael D. Soo and Surynarayana M. Sripada. Their participation in
the TSQL2 design was critical.

We thank Mike Sykes and Krishna Kulkarni for help with the definition of
transaction time, and Jim Melton for general help with writing change proposals.
This revision benefited from suggestions from Mike Sykes and Hugh Darwin.

The first author was supported in part by NSF grant ISI-9202244 and by grants
from IBM, the AT&T Foundation, and DuPont. The second and third authors were
supported in part by the Danish Natural Science Research Council, grant 9400911.
In addition, the third author was supported by grants 11–1089–1 and 11–0061–1,
also provided by the Danish Natural Science Research Council.

References

[1] Melton, J. (ed.)SQL/Foundation. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3
DBL-MCI-007.)

[2] Melton, J. (ed.)SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3
DBL-MCI-012.)

[3] Snodgrass, R. T., M. H. Böhlen, C. S. Jensen and A. SteinerAdding Valid
Time to SQL/Temporal, ANSI X3H2-96-501r2, ISO/IEC JTC 1/SC 21/WG 3
DBL-MAD-146r2, November, 1996.

[4] Steiner, A. and M. H. Böhlen. The TimeDB Temporal Database
Prototype, Version 1.07, November, 1996. Available atftp://
www.iesd.auc.dk/general/DBS/tdb/TimeCenter or atftp://
ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz .

