
26
Adding Valid Time to SQL/Temporal

Richard T. Snodgrass, Michael H. Böhlen,
Christian S. Jensen, and Andreas Steiner

This change proposal specifies the addition of tables with valid-time support
into SQL/Temporal, and explains how to use these facilities to migrate smoothly
from a conventional relational system to a temporal system. Initially, important
requirements to a temporal system that may facilitate such a transition are moti-
vated and discussed. The proposal then describes the language additions neces-
sary to add valid-time support to SQL3 while fulfilling these requirements. The
constructs of the language are divided into four levels, with each level adding
increased temporal functionality to its predecessor. The proposal formally de-
fines the semantics of the query language by providing a denotational semantics
mapping to well-defined algebraic expressions. Several alternatives for imple-
menting the language constructs are listed. A prototype system implementing
these constructs on top of a conventional DBMS is publicly available.

665

666 SQL STANDARDIZATION AND BEYOND

“Be liberal with ideas, but conservative about their execution.” (Pres-
per Eckert, 1919–1995)

1 Introduction

This change proposal introduces additions to SQL/Temporal to add valid-time sup-
port to SQL3. We outline a four-level approach for the integration of time. We
motivate and discuss each level in turn, and we define the syntactic extensions that
correspond to each level. We will see that the extensions are fairly minimal. Each
level is described via a quick tour consisting of a set of examples. These examples
have been tested in a prototype which is publicly available [14].

The proposed language constructs ensure temporal upward compatibility, se-
quenced valid semantics, and non-sequenced semantics, important properties that
will be discussed in detail in Section 5.

2 The Problem

Most databases store time-varying information. For such databases, SQL is of-
ten the language of choice for developing applications that utilize the information
in these databases. However, users also realize that SQL does not provide ade-
quate support for temporal applications. To illustrate this, the reader is invited to
attempt to formulate the following straightforward, realistic statements in SQL3.
An intermediate SQL programmer can express all of them in SQL for a non-time-
varying database in perhaps five minutes. However, even SQL experts find these
same queries challenging to do in severalhourswhen time-varying data is taken
into account.

• An Employee table has three columns: Name, Manager and Dept. We then
store historical information by adding a fourth column, When, of data type
PERIOD. Manager is a foreign key for Employee.Name. This means that
at each point in time, the character string value in the Manager column also
occurs in the Name column (probably in a different row) at the same time.
This cannot be expressed via SQL’s foreign key constraint, which doesn’t
take time into account. Formulate this constraint instead as an assertion.

• Consider the query “List those employees who are not managers.” This can
easily be expressed in SQL, usingEXCEPTor NOT EXISTS, on the original,
three-column table. Things are just a little harder with the When column; a
where predicate is required to extract the current employees. Now formulate
the query “List those employees who were not managers, and indicate when.”
EXCEPTandNOT EXISTSwon’t work, because they don’t consider time.
This simple temporal query is challenging even to SQL experts.

ADDING VALID TIME TO SQL/TEMPORAL 667

• Consider the query “Give the number of employees in each department.”
Again, this is a simple query in SQL. Formulate the query “Givethe history
of the number of employees in each department.” This query is extremely
difficult without temporal support in the language.

• Now formulate the modification “Change the manager of the tools department
for 1994 to Bob.” This modification is difficult in SQL because only a portion
of many validity periods needs be changed, with the information outside of
1994 retained.

Most users know only too well that while SQL is an extremely powerful lan-
guage for writing queries on the current state, the language provides much less help
when writing temporal queries, modifications, and constraints.

3 Outline of the Solution

The problem with formulating these SQL statements is due to the extreme difficulty
of specifying in SQL the correct values of the timestamp column(s) of the result.
The solution is to allow the DBMS to compute these values, moving the complexity
from the application code into the DBMS. With the language extensions proposed in
this change proposal, the above queries can all be easily written by an intermediate
SQL programmer in about five minutes.

Referential integrity can be specified using sequenced valid semantics (which
will be defined, exemplified, and provided a formal definition later in this docu-
ment):

CREATE TABLE Employee(
Name VARCHAR(30),
Manager VARCHAR(30) VALIDTIME REFERENCES

Employee (Name),
Dept VARCHAR(20)) AS VALIDTIME PERIOD(DATE)

Here we indicate that the table has valid-time support through “AS VALIDTIME
PERIOD(DATE)” and that the referential integrity is to hold for each point in time
through “VALIDTIME REFERENCES”.

For the query “List those employees who are not managers,” we are interested
only in the current employees. We use temporal upward compatibility to extract
this information from the historical information stored in the Employee table.

SELECT Name FROM Employee EXCEPT
SELECT Manager FROM Employee

This results in a conventional table, with one column.
We use sequenced valid semantics in the query “List those employees who

were not managers, and when.”

668 SQL STANDARDIZATION AND BEYOND

VALIDTIME SELECT Name FROM Employee EXCEPT
SELECT Manager FROM Employee

The added “VALIDTIME ” reserved word specifies that the query is to be evaluated
at each point in time. At some times, an employee may not be a manager, whereas
at other times, the employee is a manager. A one-column table results, but this time
with valid-time support (i.e., the periods of time when each was not a manager is
included).

The query “Give the number of employees in each department” is easy given
temporal upward compatibility.

SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

Again, we just get the current count for each department. To extract “the history of
the number of employees in each department”, only a simple change is required.

VALIDTIME SELECT Dept, COUNT(*)
FROM Employee
GROUP BY Dept

For each department, a time-varying count will be returned.
Modifications work in similar ways. The modification “Change the manager

of the tools department for 1994 to Bob” can be expressed by followingVALID-
TIME with a period expression.

VALIDTIME PERIOD ’[1994-01-01 - 1994-12-31]’
UPDATE Employee
SET Manager = ’Bob’
WHERE Dept = ’Tools’

Here again, we exploit our knowledge of SQL to first write the update ignoring
time, then change it in minor ways to take account of time.

These statements are reminiscent of the kinds of SQL statements that appli-
cation programmers are called to write all the time. The potential for increased
productivity is dramatic. Statements that previously took hours to write, or were
simply too difficult to express, can take only minutes to write with the extensions
discussed here.

4 Scope

Research on temporal databases has identified several properties crucial to tem-
poral database systems, including support for valid-time, transaction time, tempo-
ral aggregates, indeterminacy, time granularity, user-defined calendars, vacuuming,
and schema versioning. This document is the second in a series that will propose

ADDING VALID TIME TO SQL/TEMPORAL 669

constructs for SQL/Temporal drawn from the consensus temporal query language
TSQL2 [13]. The first [12], which was accepted in July, 1995, concerned thePE-
RIOD data type.

The present change proposal addresses support for valid-time, specifically
temporal upward compatibility, sequenced valid, and nonsequenced valid support.
The next proposal will add support for transaction time. Future proposals will con-
cern time granularities, temporal indeterminacy, and other features relevant to SQL3
that are fully supported in TSQL2. However, it is important that each proposal be
comprehensive in its motivation of the additions, its presentation of the syntactic
changes, and its specification of the semantics of the new constructs. For this rea-
son, each change proposal should be separately considered and evaluated by the
SQL3 standards committees.

While the language additions proposed here are modest, the productivity gains
made available to the application programmer are significant. In particular, we will
show how adding a single reserved word will convert any conventional (termed
snapshot) query into a temporal query that extracts the history of the aspect being
queried. This permits users to express rather complex temporal queries easily, by
first formulating them as snapshot queries, then adding the reserved word. This
parallel will be exploited in the semantics, permittinganySQL3 query to be ren-
dered temporal. Moreover the syntactic modification not only holds for queries but
also for view definitions, insert statements, delete statements, update statements,
cursor declarations, table constraint definitions, column constraint definitions, and
the definition of assertions.

We now return to the important question of migrating legacy databases. In the
next section, we formulate several requirements of SQL/Temporal to allow graceful
migration of applications from conventional to temporal databases.

5 Migration

The potential users of temporal database technology are enterprises with applica-
tions1 that need to manage potentially large amounts of time-varying information.
These include financial applications such as portfolio management, accounting, and
banking; record-keeping applications, including personnel, medical records, and
inventory; and travel applications such as airline, train, and hotel reservations and
schedule management. It is most realistic to assume that these enterprises are al-
ready managing time-varying data and that the temporal applications are already in
place and working. Indeed, the uninterrupted functioning of applications is likely
to be of vital importance.

1We use “database application” non-restrictively, for denoting any software system that uses a DBMS as
a standard component.

670 SQL STANDARDIZATION AND BEYOND

For example, companies usually have applications that manage the personnel
records of their employees. These applications manage large quantities of time-
varying data, and they may benefit substantially from built-in temporal support in
the DBMS [11]. Temporal queries that are shorter and more easily formulated are
among the potential benefits. This leads to improved productivity, correctness, and
maintainability.

This section explores the problems that may occur when migrating database
applications from an existing to a new DBMS, and it formulates a number of re-
quirements to the new DBMS that must be satisfied in order to avoid different po-
tential problems when migrating. Formal definitions of these requirements may be
found in Appendix A.

5.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guarantee
that all application code without modification will work with the new system exactly
with the same functionality as with the existing system.

To explore the relationship between nontemporal and temporal data and que-
ries, we employ a series of figures that demonstrate increasing query and update
functionality. In Figure 1, a conventional table is denoted with a rectangle. The
current state of this table is the rectangle in the upper-right corner. Whenever a
modification is made to this table, the previous state is discarded; hence, at any
time only the current state is available. The discarded prior states are denoted with
dashed rectangles; the right-pointing arrows denote the modification that took the
table from one state to the next state.

When a queryq is applied to the current state of a table, a resulting table is
computed, shown as the rectangle in the bottom right corner. While this figure only
concerns queries over single tables, the extension to queries over multiple tables is
clear.

Upward compatibility states that (1) all instances of tables in SQL3 are in-
stances of tables in SQL/Temporal, (2) all SQL3 modifications to tables in SQL3 re-
sult in the same tables when the modifications are evaluated according to SQL/Tem-
poral semantics, and (3) all SQL3 queries result in the same tables when the queries
are evaluated according to SQL/Temporal.

By requiring that SQL/Temporal is a strict superset (i.e., onlyaddingcon-
structs and semantics), it is relatively easy to ensure that SQL/Temporal is upward
compatible with SQL3.

Throughout, we provide examples of the various levels. In Section 6, we show
these examples expressed in SQL/Temporal.

Example 1 A company wishes to computerize its personnel records, so it creates
two tables, an employee table and a monthly salary table. Every employee must

ADDING VALID TIME TO SQL/TEMPORAL 671

q

...

Time

Figure 1: Level 1 evaluates an SQL3 query over a table without temporal support
and returns a table also without temporal support

have a salary. These tables are populated. A view identifies those employees with
a monthly salary greater than $3500. Then employee Therese is given a 10% raise.
Since the salary table has no temporal support, Therese’s previous salary is lost.
These schema changes and queries can be easily expressed in SQL3. 2

5.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the
data in one or more tables, the table can be defined with or altered to add valid-
time support (e.g., by using theCREATE TABLE. . . AS VALID orALTER . . .

ADD VALIDstatements). The distinction of a table having valid-time support is
orthogonal to the many other distinctions already present in SQL/Foundation, in-
cluding “base table” versus “derived table”, “created table” versus “declared table”,
“global table” versus “local table”, “grouped table” versus ungrouped table, or-
dered table versus table with implementation-dependent order, “subtable” versus
“supertable”, and “temporary table” versus “permanent table”. These distinctions
can be combined, subject to stated rules. For example, a table can be simultane-
ously a temporary table, a table of degree 1, an inherently updatable table, a viewed
table, and a table with valid-time support. In most of the SQL3 specification, it
doesn’t matter what distinctions apply to the table in question. In those few places
where it does matter, the syntax and general rules specify the distinction.

It is undesirable to be forced to change the application code that accesses the
table without temporal support that is replaced by a table with valid-time support.
We formulate a requirement that states that the existing applications on tables with-

672 SQL STANDARDIZATION AND BEYOND

out temporal support will continue to work with no changes in functionality when
the tables they access are altered to add valid-time support. Specifically,tempo-
ral upward compatibilityrequires that each query will return the same result on an
associated snapshot database as on the temporal counterpart of the database. Fur-
ther, this property is not affected by modifications to those tables with valid-time
support.

Temporal upward compatibility is illustrated in Figure 2. When valid-time
support is added to a table, the history is preserved, and modifications over time are
retained. In this figure, the state to the far left was the current state when the table
was made temporal. All subsequent modifications, denoted by the arrows, result in
states that are retained, and thus are solid rectangles. Temporal upward compatibil-
ity ensures that the states will have identical contents to those states resulting from
modifications of the table without valid-time support.

q

...

Time

Figure 2: Level 2 evaluates an SQL3 query over a table with valid-time support and
returns a table with similar support

The queryq is an SQL3 query. Due to temporal upward compatibility the
semantics of this query must not change if it is applied to a table with valid-time
support. Hence, the query only applies to the current state, and a table without
temporal support results.

Example 2 We make both the employee and salary tables temporal. This means
that all information currently in the tables is valid from today on. We add an em-
ployee. This modification to the two tables, consisting of two SQL3INSERT state-
ments, respects temporal upward compatibility. That means it is valid from now on.
Queries and views on these tables with newly-added valid-time support work ex-
actly as before. The SQL3 query to list where high-salaried employees live returns

ADDING VALID TIME TO SQL/TEMPORAL 673

the current information. Constraints and assertions also work exactly as before,
applying to the current state and checked on database modification. 2

It is instructive to consider temporal upward compatibility in more detail.
When designing information systems, two general approaches have been advocated.
In the first approach, the system design is based on thefunctionof the enterprise that
the system is intended for (the “Yourdon” approach [16]); in the second, the design
is based on thestructureof the reality that the system is about (the “Jackson” ap-
proach [5]). It has been argued that the latter approach is superior because structure
may remain stable when the function changes while the opposite is generally not
possible. Thus, a more stable system design, needing less maintenance, is achieved
when adopting the second design principle. This suggests that the data needs of
an enterprise are relatively stable and only change when the actual business of the
enterprise changes.

Enterprises currently use non-temporal database systems for database man-
agement, but that does not mean that enterprises manage only non-temporal data.
Indeed, temporal databases are currently being managed in a wide range of ap-
plications, including, e.g., academic, accounting, budgeting, financial, insurance,
inventory, legal, medical, payroll, planning, reservation, and scientific applications.
Temporal data may be accommodated by non-temporal database systems in sev-
eral ways. For example, a pair of explicit time attributes may encode a valid-time
interval associated with a row.

Temporal database systems offer increased user-friendliness and productivity,
as well as better performance, when managing data with temporal. The typical
situation, when replacing a non-temporal system with a temporal system, is one
where the enterprise is not changing its business, but wants the extra support offered
by the temporal system for managing its temporal data. Thus, it is atypical for an
enterprise to suddenly desire to record temporal information where it previously
recorded only snapshot information. Such a change would be motivated by a change
in the business.

The typical situation is rather more complicated. The non-temporal database
system is likely to already manage temporal data, which is encoded using tables
without temporal support, in an ad hoc manner. When adopting the new system, up-
ward compatibility guarantees that it is not necessary to change the database schema
or application programs. However, without changes, the benefits of the added valid-
time support are also limited. Only when defining new tables or modifying existing
applications, can the new temporal support be exploited. The enterprise then grad-
ually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant,
for several reasons. First, it provides an appealing intuitive notion of a table with
valid-time support: the semantics of queries and modification are retained from

674 SQL STANDARDIZATION AND BEYOND

tables without temporal support; the only difference is that intermediate states are
also retained. Second, in those cases where the original table contained no historical
information, temporal upward compatibility affords a natural means of migrating to
temporal support. In such cases, not a single line of the application need be changed
when the table is altered to be temporal. Third, conventional tables that do contain
temporal information and for which temporal support has been added can still be
queried and modified by conventional SQL3 statements in a consistent manner.

5.3 Sequenced Valid Extensions

The requirements covered so far have been aimed at protecting investments in
legacy code and at ensuring uninterrupted operation of existing applications when
achieving substantially increased temporal support. Upward compatibility guar-
antees that (non-historical) legacy application code will continue to work with-
out change when migrating, and temporal upward compatibility in addition allows
legacy code to coexist with new temporal applications following the migration.

The requirement in this section aims at protecting the investments in program-
mer training and at ensuring continued efficient, cost-effective application develop-
ment upon migration. This is achieved by exploiting the fact that programmers are
likely to be comfortable with SQL.

Sequenced valid semanticsstates that SQL/Temporal must offer, for each
query in SQL3, a temporal query that “naturally” generalizes this query, in a specific
technical sense. In addition, we require that the SQL/Temporal query be syntacti-
cally similar to the SQL3 query that it generalizes.

With this requirement satisfied, SQL3-like SQL/Temporal queries on tables
with temporal support have semantics that are easily (“naturally”) understood in
terms of the semantics of the SQL3 queries on tables without temporal support.
The familiarity of the similar syntax and the corresponding, naturally extended se-
mantics makes it possible for programmers to immediately and easily write a wide
range of temporal queries, with little need for expensive training.

Figure 3 illustrates this property. We have already seen that an SQL3 query
q on a table with valid-time support applies the standard SQL3 semantics on the
current state of that table, resulting in a table without temporal support. This figure
illustrates a new query,q ′, which is an SQL/Temporal query. Queryq ′ is applied
to the table with valid-time support (the sequence of states across the top of the
figure), and results in a table also with valid-time support, which is the sequence of
states across the bottom.

We would like the semantics ofq ′ to be easily understood by the SQL3 pro-
grammer. Satisfying sequenced semantics along with the syntactical similarity re-
quirement makes this possible. Specifically, the meaning ofq ′ is precisely that of
applying SQL3 queryq on each state of the input table (which must have temporal

ADDING VALID TIME TO SQL/TEMPORAL 675

q

...

=

...

q’ q q q q

Figure 3: Level 3 evaluates an SQL/Temporal query over a table with valid-time
support and returns a table with similar support

support), producing a state of the output table for each such application. And when
q ′ also closely resemblesq syntactically, temporal queries are easily formulated
and understood. To generate queryq ′, one needs only prepend the reserved word
VALIDTIME to queryq.

Example 3 We ask for the history of the monthly salaries paid to employees. Ask-
ing that question for the current state (i.e., what is the salary for each employee) is
easy in SQL3; let us call this queryq. To ask for the history, we simply prepend
the keywordVALIDTIME to q to generate the SQL/Temporal query. Sequenced
semantics allows us to do this for all SQL3 queries. So let us try a harder one: list
the history ofthose employees for which no one makes a higher salary and lives in a
different city. Again the problem reduces to expressing the SQL3 query for the cur-
rent state. We then prependVALIDTIME to get the history. Sequenced semantics
also works for views, integrity constraints and assertions. 2

These concepts also apply to sequencedmodifications, illustrated in Figure 4.
A valid-time modification destructively modifies states as illustrated by the curved
arrows. As with queries, the modification is applied on a state-by-state basis.
Hence, the semantics of the SQL/Temporal modification is a natural extension of
the SQL modification statement that it generalizes.

Example 4 It turns out that a particular employee never worked for the company.
That employee is deleted from the database. Note that if we use an SQL3DELETE
statement, temporal upward compatibility requires deleting the information only
from the current (and future) states. By prepending the reserved wordVALIDTIME
to theDELETEstatement, we can remove that employee from every state of the
table.

676 SQL STANDARDIZATION AND BEYOND

u

...

=u’ u u u u

Figure 4: Level 3 also evaluates an SQL/Temporal modification on a table with
valid-time support

Many people misspell the town Tucson as “Tuscon”, perhaps because the
name derives from an American Indian word in a language no longer spoken. To
modify the current state to correct this spelling requires a simple SQLUPDATE
statement; let’s call this statementu. To correct the spelling in all states, both past
and possibly future, we simply prepend the reserved wordVALIDTIME to u. 2

5.4 Non-Sequenced Queries and Modifications

In a sequenced query, the information in a particular state of the resulting table
with valid-time support is derived solely from information in the state at that same
time of the source table(s). However, there are many reasonable queries that require
other states to be examined. Such queries are illustrated in Figure 5, in which each
state of the resulting table requires information from possibly all states of the source
table.

q

...

......

Figure 5: Level 4 evaluates a non-sequenced SQL/Temporal query over a table with
valid-time support and returns a table with similar support

In this figure, two tables with valid-time support are shown, one consisting of
the states across the top of the figure, and the other, the result of the query, con-
sisting of the states across the bottom of the figure. A single queryq performs the

ADDING VALID TIME TO SQL/TEMPORAL 677

possibly complex computation, with the information usage illustrated by the down-
ward pointing arrows. Whenever the computation of a single state of the result table
may utilize information from a state at a different time, that query is non-sequenced.
Such queries are more complex than sequenced queries, and they require new con-
structs in the query language.

Example 5 The query “Who was given salary raises?” requires locating two con-
secutive times, in which the salary of the latter time was greater than the salary of
the former time, for the same employee. Hence, it is a non-sequenced query.2

The concept of non-sequenced queries naturally generalizes to modifications.
Non-sequenced modificationsdestructively change states, with information retrieved
from possibly all states of the original table. In Figure 6, each state of the table with
valid-time support is possibly modified, using information from possibly all states
of the table before the modification. Non-sequenced modifications include future
modifications.

...

Figure 6: Level 4 also evaluates a non-sequenced SQL/Temporal modification on a
table with valid-time support

Example 6 We wish to give employees a 5% raise if they have never had a raise
before. This is not a temporally upward compatible modification, because the mod-
ification of the current state uses information in the past. For the same reason, it is
not a sequenced update. So we must use a slightly more involved SQL/Temporal
UPDATEstatement. In fact, only the predicate “if they never had a raise” need be
nonsequenced; the rest of the update can be temporally upward compatible.2

Views and cursors can also be nonsequenced.

Example 7 We wish to define a snapshot view of thesalary table in which the
row’s timestamp period appears as an explicit column. We can also define a valid-
time view on this snapshot view that uses the explicit period column as an implicit
timestamp. 2

678 SQL STANDARDIZATION AND BEYOND

5.5 Summary

In this section, we have formulated three important requirements that SQL/Temporal
should satisfy to ensure a smooth transition of legacy application code. We review
each in turn.

Upward compatibility and temporal upward compatibility guarantee that lega-
cy application code needs no modification when migrating and that new temporal
applications may coexist with existing applications. They are thus aimed at protect-
ing investments in legacy application code.

The requirement that temporal statements be a sequenced extension of the
existing statements guarantees that the query language is easy to use for program-
mers familiar with the existing query language. The requirement thus helps protect
investment in programmer training. It also turns out that this property makes the
semantics of tables with valid-time support straight-forward to specify, as shown in
Section 7, and enables a wide range of implementation alternatives, some of which
are listed in Section 8.2.

These requirements induce four levels of temporal functionality, to be defined
in SQL/Temporal.

Level 1 This lowest level captures the minimum functionality necessary for the
query language to satisfy upward compatibility with SQL3. Thus, there is
support for legacy SQL3 statements, but there are no tables with valid-time
support and no temporal queries. Put differently, the functionality at this level
is identical to that of SQL3.

Level 2 This level adds to the previous level solely by allowing for the presence
of tables with valid-time support. The temporal upward compatibility re-
quirement is applicable to this subset of SQL/Temporal. This level adds no
new syntax for queries or modifications—only queries and modifications with
SQL3 syntax are possible.

Level 3 The functionality of Level 2 is enhanced with the possibility of giving se-
quenced temporal functionality to queries, views, constraints, assertions, and
modifications on tables with valid-time support. This level of functionality
is expected to provide adequate support for many applications. Starting at
this level, temporal queries exist, so SQL/Temporal must be a sequenced-
consistent extension of SQL3.

Level 4 Finally, the full temporal functionality normally associated with a tem-
poral language is added, specifically, non-sequenced temporal queries, asser-
tions, constraints, views, and modifications. These additions include temporal
queries and modifications that have no syntactic counterpart in SQL3.

ADDING VALID TIME TO SQL/TEMPORAL 679

6 Tables with Valid-Time Support in SQL3

This section informally introduces the new constructs of SQL/Temporal. These
constructs are an improved and extended version of those in the consensus tem-
poral query language TSQL2 [13]. The improvements concern guaranteeing the
properties listed in Section 5, to support easy migration of legacy SQL3 application
code [3]. The extensions concern views, assertions, and constraints (specifically
temporal upward compatible and sequenced and non-sequenced extensions) that
were not considered in the original TSQL2 design.

The presentation is divided into four levels, where each successive level adds
temporal functionality. The levels correspond to those discussed informally in the
previous section. Throughout, the functionality is exemplified with input to and
corresponding output from a prototype system [14]. The reader may find it instruc-
tive to execute the sample statements on the prototype. In the examples, executable
statements are displayed intypewriter style on a line of their own starting
with the prompt “>”.

6.1 Level 1: Upward Compatibility

Level 1 ensures upward compatibility (see Figure 1), i.e., it guarantees that legacy
SQL3 statements evaluated over databases without temporal support return the re-
sult dictated by SQL3.

SQL3 Extensions

Obviously there are no syntactic extensions to SQL3 at this level.

A Quick Tour

The following statements are executed on January 1, 1995. A company creates two
tables, an employee table and a monthly salary table. Every employee must have a
salary. These schema changes can be easily expressed in SQL3.

> CREATE TABLE employee(ename VARCHAR(12),
eno INTEGER PRIMARY KEY,
street VARCHAR(22),
city VARCHAR(10),
birthday DATE);

> CREATE TABLE salary(eno INTEGER REFERENCES
employee(eno),

amount INTEGER);

680 SQL STANDARDIZATION AND BEYOND

> CREATE ASSERTION emp_has_sal CHECK
(NOT EXISTS (SELECT *

FROM employee AS e
WHERE NOT EXISTS (SELECT *

FROM salary AS s
WHERE e.eno = s.eno)));

These tables are populated.

> INSERT INTO employee
VALUES (’Therese’, 5873, ’Bahnhofstrasse 121’,

’Zurich’, DATE ’1961-03-21’);
> INSERT INTO employee

VALUES (’Franziska’, 6542, ’Rennweg 683’,
’Zurich’, DATE ’1963-07-04’);

> INSERT INTO salary VALUES (6542, 3200);
> INSERT INTO salary VALUES (5873, 3300);

A view identifies those employees with a monthly salary greater than $3500.

> CREATE VIEW high_salary AS
SELECT * FROM salary WHERE amount > 3500;

Employee Therese is given a 10% raise. Since the salary table has no temporal
support, Therese’s previous salary is lost.

> UPDATE salary s
SET amount = 1.1 * amount
WHERE s.eno = (SELECT e.eno

FROM employee e
WHERE e.ename = ’Therese’);

> COMMIT;

6.2 Level 2: Temporal Upward Compatibility

Level 2 ensures temporal upward compatibility as depicted in Figure 2. Temporal
upward compatibility is straightforward for queries. They are evaluated over the
current state of a database with valid-time support.

SQL3 Extensions

The create table statement is extended to define tables with valid-time support.
Specifically, this statement can be followed by the clause “AS VALIDTIME
<datetime field>”, e.g., “AS VALIDTIME PERIOD(DATE)”. This specifies that

ADDING VALID TIME TO SQL/TEMPORAL 681

the table has valid-time support, with states indexed by particular days. The alter ta-
ble statement is extended to permit valid-time support to be added to a table without
such support or dropped from a table with valid-time support.

A table with valid-time support is conceptually a sequence of states indexed
with valid-time granules at the specified granularity. This is the view of a table
with valid-time support adopted in temporal upward compatibility and sequenced
semantics. At a more specific logical level, a table with valid-time support isalsoa
collection of rows associated with valid-time periods.

Indeed, our definition of the semantics of the addition to SQL/Temporal being
proposed satisfies temporal upward compatibility and sequenced semantics.

A Quick Tour

The following statements are executed on February 1, 1995.

> ALTER TABLE salary ADD VALIDTIME PERIOD(DATE);
> ALTER TABLE employee ADD VALIDTIME PERIOD(DATE);

The following statements are typed in the next day (February 2, 1995).

> INSERT INTO employee
VALUES(’Lilian’, 3463, ’46 Speedway’,

’Tuscon’, DATE ’1970-03-09’);
> INSERT INTO salary VALUES(3463, 3400);
> COMMIT;

The employee table contains the following rows. (In these examples, we
used open-closed (”[. . .) ”) for periods.)

ename eno street city birthday Valid
Therese 5873 Bahnhofstrasse

121
Zurich 1961-03-21 [1995-02-01 -

9999-12-31)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 -

9999-12-31)
Lilian 3463 46 Speedway Tuscon 1970-03-09 [1995-02-02 -

9999-12-31)

Note that the valid time extends to theend of time, which in SQL3 is the largest
date.

Thesalary table contains the following rows.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
5873 3630 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

682 SQL STANDARDIZATION AND BEYOND

We continue, still on February 2. Tables, views, and queries act like before,
because temporal upward compatibility is satisfied. To find out where the high-
salaried employees live, use the following.

> SELECT ename, city
FROM high_salary AS s, employee AS e
WHERE s.eno = e.eno;

Evaluated over the current state, this returns the employee Therese, in Zürich.
Assertions and referential integrity act like before, applying to the current

state. The following transaction will abort due to (1) a violation of thePRIMARY
KEYconstraint, (2) a violation of theemp_has_sal assertion and (3) a referential
integrity violation, respectively.

> INSERT INTO employee
VALUES (’Eric’, 3463, ’701 Broadway’,

’Tucson’, DATE ’1988-01-06’);
> INSERT INTO employee

VALUES (’Melanie’, 1234, ’701 Broadway’,
’Tucson’, DATE ’1991-03-08’);

> INSERT INTO salary VALUES(9999, 4900);
> COMMIT;

6.3 Level 3: Sequenced Language Constructs

Level 3 adds syntactically similar, sequenced counterparts of existing queries, mod-
ifications, views, constraints, and assertions (see Figure 3). Sequenced SQL/Tem-
poral queries produce tables with valid-time support. The state of a result table at
each time is computed from the state of the underlying table(s) at the same time,
via the semantics of the contained SQL3 query. In this way, users are able to ex-
press temporal queries in a natural fashion, exploiting their knowledge of SQL3.
Temporal views, assertions and constrains can likewise be naturally expressed.

SQL3 Extensions

Temporal queries, modifications, views, assertions, and constraints are signaled by
the reserved wordVALIDTIME . This reserved word can appear in a number of
locations; Section 10 supplies the details.

Derived table in a from clause In the from clause, one can prependVALID-
TIME to a<query expression>.

View definition Temporal views can be specified, with sequenced semantics.

Assertion definition A sequenced assertion applies to each of the states of the
underlying table(s). This is in contrast to a snapshot assertion, which is only

ADDING VALID TIME TO SQL/TEMPORAL 683

evaluated on the current state. In both cases, the assertion is checked before a
transaction is committed.

Table and column constraints When specified withVALIDTIME , such con-
straints must apply to all states of the table with valid-time support.

Cursor expression Cursors can range over tables with valid-time support.

Single-row select Such a select can return a row with an associated valid time.

Fetch statement The period associated with a row with valid-time support can
be placed in a local variable in embedded SQL.

Modification statements When specified withVALIDTIME , the modification
applies to each state comprising the table with valid-time support.

In all cases, theVALIDTIME reserved word indicates that sequenced semantics is
to be employed.

A Quick Tour

We evaluate the following statements on March 1, 1995.
PrependingVALIDTIME to anySELECTstatement evaluates that query on

all states, in a sequenced fashion. The first query provides the history of the monthly
salaries paid to employees. This query is constructed by first writing the snapshot
query, then prependingVALIDTIME .

> VALIDTIME
SELECT ename, amount
FROM salary AS s, employee AS e
WHERE s.eno = e.eno;

This evaluates to the following.

ename amount Valid
Franziska 3200 [1995-02-01 - 9999-12-31)
Therese 3630 [1995-02-01 - 9999-12-31)
Lilian 3400 [1995-02-02 - 9999-12-31)

List those for which no one makes a higher salary in a different city, over all
time.

> VALIDTIME
SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno
AND NOT EXISTS (SELECT ename

FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city);

684 SQL STANDARDIZATION AND BEYOND

This gives the following result.

ename Valid
Therese [1995-02-01 - 9999-12-31)
Franziska [1995-02-01 - 1995-02-02)

Therese is listed because the only person in a different city, Lilian, makes a lower
salary. Franziska is listed because for that one day, there was no one in a different
city (Lilian didn’t join the company until February 2).

We then create a temporal view, similar to the non-temporal view defined
earlier. In fact, the only difference is the use of the reserved wordVALIDTIME .

> CREATE VIEW high_salary_history AS
VALIDTIME SELECT * FROM salary

WHERE s.salary > 3500;

Finally, we define a temporal column constraint.

> ALTER TABLE salary ADD
VALIDTIME CHECK (amount > 1000

AND amount < 12000);
> COMMIT;

Rather than being checked on the current state only, this constraint is checked on
each state of thesalary table. This is useful to restrictretroactivechanges [6],
i.e., changes to past states andproactivechanges, i.e., changes to future states. This
constraint is satisfied for all states in the table.

Sequenced modifications are similarly handled. To remove employee #5873
for all states of the database, we use the following statement.

> VALIDTIME DELETE FROM employee
WHERE eno = 5873;

> VALIDTIME DELETE FROM salary
WHERE eno = 5873;

> COMMIT;

To correct the common misspelling of Tucson, we use the following state-
ment.

> VALIDTIME UPDATE employee
SET city = ’Tucson’
WHERE city = ’Tuscon’;

> COMMIT;

This updates all incorrect values, at all times, including the past and future. Lillian’s
city is thus corrected.

ADDING VALID TIME TO SQL/TEMPORAL 685

6.4 Level 4: Non-Sequenced Language Constructs

Level 4 accounts for non-sequenced queries (see Figure 5) and non-sequenced mod-
ifications (see Figure 6). Many useful queries and modifications are in this category.
However, their semantics is necessarily more complicated than that of sequenced
queries, because non-sequenced queries cannot exploit that useful property. In-
stead, they must support the formulation of special-purpose user-defined temporal
relationships between implicit timestamps, datetime values expressed in the query,
and stored datetime columns in the database.

Nonsequenced SQL/Temporal queries can produce tables with or without
valid-time support, depending on whether the valid-time period of the resulting
rows is provided in the query. The state of a result table, if a table is without valid-
time support, or the state of a result table at each time, if a table has valid-time
support, is computed from potentially all of the states of the underlying table(s), at
any time. The semantics are quite simple. A nonsequenced evaluation treats a table
with valid-time support as a table without temporal support, but with an additional
column containing the timestamp.

SQL3 Extensions

Nonsequenced valid queries are signaled by the new reserved wordNONSE-
QUENCEDpreceding the reserved wordVALIDTIME . This applies analogously to
nonsequenced modifications, views, assertions, and constraints. This reserved word
can appear in a number of locations; Section 10 supplies the details.

Derived table in a from clause In the from clause, one can prependNONSE-
QUENCED VALIDTIMEto a<query expression>. This results in a table
without temporal support, and is the means of removing the valid-time sup-
port of a table.

View definition Nonsequenced views can be specified.

Assertion definition A nonsequenced assertion applies simultaneously to all of
the states of the underlying table(s). This is in contrast to a snapshot assertion,
which is only evaluated on the current state. In both cases, the assertion is
checked before a transaction is committed.

Table and column constraints When specified withNONSEQUENCED VA-
LIDTIME , such constraints must apply to the table with valid-time support
as a whole.

Cursor expression Cursors can range over the result of a nonsequenced select.

Single-row select A nonsequenced single-row select will return a row without
temporal support, even when evaluated over tables with valid-time support.

686 SQL STANDARDIZATION AND BEYOND

Modification statements When specified with NONSEQUENCED VALID-
TIME, the modification applies simultaneously to all states comprising the
table with valid-time support.

In all cases, theNONSEQUENCEDreserved word indicates that nonsequenced se-
mantics is to be employed.

This portion includes other useful, related constructs.

• An optional period expression afterVALIDTIME specifies that the valid-time
period of each row of the result is intersected with the value of the expression.
This allows one to restrict the result of a select statement, cursor expression,
or view definition to a specified period, and to restrict the time for which
assertion definitions, table constraints and column constraints are checked.

• An optional period expression afterNONSEQUENCED VALIDTIMEspeci-
fies the valid-time period of each row of the result, and thus renders the re-
sulting table to have valid-time support. This enables a table without temporal
support to be converted into a table with valid-time support within a query or
other statement.

• For modification statements, the period expression afterVALIDTIME and
VALIDTIME NONSEQUENCEDspecifies the temporal scope of the modi-
fication: the times at which the modification is to be applied.

• The value expression “VALIDTIME(<correlation name>) ” evaluates to the
valid-time period of the row associated with the correlation or table name.
This is required because valid-time periods of tables with valid-time support
are not explicit columns (the alternative violates temporal upward compatibil-
ity).

The following quick tour provides examples of these constructs.

A Quick Tour

This quick tour starts with the database as it was when we last left it, in the previous
quick tour. Theemployee table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 -

9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 -

9999-12-31)

Thesalary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

ADDING VALID TIME TO SQL/TEMPORAL 687

A period expression afterVALIDTIME specifies the temporal scope of the
result. List those who were employed sometime during the first six months.

> VALIDTIME PERIOD ’[1995-01-01 - 1995-07-01)’
SELECT ename FROM employee;

This returns the following table.

ename Valid
Franziska [1995-02-01 - 1995-07-01)
Lilian [1995-02-02 - 1995-07-01)

On April 1, 1995, we give Lilian a 5% raise, starting immediately. This is a
temporally upward compatible modification, and so is already expressible in SQL.

> UPDATE salary
SET amount = 1.05 * amount
WHERE eno = (SELECT S.eno

FROM salary AS S, employee as E
WHERE ename = ’Lilian’

AND E.eno = S.eno);
> COMMIT;

This results in the followingsalary table.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

To determine who was given salaryraises, we must simultaneously consider
two consecutive states of thesalary table, before and after the raise. This requires
a nonsequenced query.

> NONSEQUENCED VALIDTIME SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2);

MEETSensures that the valid-time period associated withS1 is immediately fol-
lowed by the valid-time period associated withS2. Since the valid-time period of a
row is not in an explicit column (as this would violate temporal upward compatibil-
ity), VALIDTIME() is used to extract the associated valid-time period. The result
is a table without temporal support, becauseNONSEQUENCEDis not followed by a
period expression.

ename
Lilian

688 SQL STANDARDIZATION AND BEYOND

If we instead wish to get back a table with valid-time support, i.e., “Who was given
salary raises, and when did they receive the higher salary?”, we place a<value
expression> after VALIDTIME to specify when each resulting row is valid. Our
first try is the following.

> NONSEQUENCED VALIDTIME VALIDTIME(S2) SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2);

This isn’t quite correct, because the period expression followingVALIDTIME can
only mention the columns of the following select statement. So we put the value in
the select list, and use an enclosing (sequenced) select statement to get rid of this
extra column.

> VALIDTIME SELECT ename
FROM (NONSEQUENCED VALIDTIME S2valid

SELECT ename, VALIDTIME(S2) AS S2valid
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2)) AS S;

This query has the following result.

ename Valid
Lilian [1995-04-01 - 9999-12-31)

If we had desired the time when the person had received thelowersalary, we would
simply specifyVALIDTIME(S1) instead.

Following VALIDTIME with a period expression in a modification (whether
sequenced or not) specifies the temporal scope of the modification. Two applica-
tions of this are retroactive and future changes. Assume it is now May 1, 1995.
Franziska, employee 6542, will be taking a leave of absence the last half of the
year.

> VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM salary
WHERE eno = 6542;

> VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM employee
WHERE eno = 6542;

> COMMIT;

ADDING VALID TIME TO SQL/TEMPORAL 689

Thesalary table now has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-07-01)
6542 3200 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Theemployee table has the following contents.

ename eno street city birthday Valid
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1995-02-01 -

1995-07-01)
Franziska 6542 Rennweg 683 Zurich 1963-07-04 [1996-01-01 -

9999-12-31)
Lilian 3463 46 Speedway Tucson 1970-03-09 [1995-02-02 -

9999-12-31)

Note that these deletions split single periods into two, with a lapse between them.
Many modifications are greatly simplified in this way. Also note that previously
specified sequenced valid referential integrity and other constraints and assertions
must apply to each state. Hence, if the firstDELETEwas performed, but not the
second, theCOMMITwill abort because theemp_has_sal constraint is violated
for certain states, such as the one on August 1, 1995.

The period expression followingVALIDTIME is also allowed for assertions
and constraints. Assume that no employee may make less than 3000 during 1996.

> CREATE ASSERTION salary_check
VALIDTIME PERIOD ’[1996-01-01 - 1997-01-01)’ CHECK

(NOT EXISTS (SELECT * FROM salary
WHERE amount < 3000));

This is a sequenced assertion, and thus applies separately to each state (at least,
those in 1996). Nonsequenced assertions and constraints apply to all states at once.
To assert that there is only one employee with a particular name, we use the follow-
ing constraint within theemployee table definition.

> CONSTRAINT unique_name UNIQUE (ename)

This is interpreted with temporal upward compatible semantics, and so applies only
to the current state. If all we do is temporal upward compatible modifications, this
will be sufficient. However, if we perform future updates, violations may be missed.
To always check all states, a sequenced constraint is used.

> CONSTRAINT unique_name_per_time
VALIDTIME UNIQUE (ename)

This will ensure that at any time, each ename value is unique.

690 SQL STANDARDIZATION AND BEYOND

To ensure that each ename is unique,across all states simultaneously, a non-
sequenced constraint is required.

> CONSTRAINT unique_name_over_all_time
NONSEQUENCED VALIDTIME UNIQUE (ename)

The aboveemployee table satisfies the first two constraints, but not the third (the
nonsequenced one), because there are two rows with an ename of Franziska.

As with VALIDTIME , NONSEQUENCED VALIDTIMEcan appear in a from
clause. To give employees a 5% raise if they never had a raise before, we first write
a temporal upward compatible modification (i.e., withoutVALIDTIME) to give the
raise.

> UPDATE salary AS S
SET amount = 1.05 * amount;

We can augment this statement to use a non-sequenced query in the from clause to
look for raises in the past.

> UPDATE salary AS S
SET amount = 1.05 * amount
WHERE NOT EXISTS

(SELECT *
FROM (NONSEQUENCED VALIDTIME SELECT *

FROM salary AS S1, salary AS S2
WHERE S1.amount < S2.amount

AND VALIDTIME(S1) MEETS VALIDTIME(S2)
AND S1.eno = S.eno
AND S2.eno = S.eno) AS S3

);
> COMMIT;

The NOT EXISTSwas added. Assume that the update was entered on June 1,
1995. The followingsalary table results.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Since the update is evaluated with temporal upward compatible semantics, if
changes the salary for valid times after June 1.

Finally, we wish to define a snapshot view of thesalary table in which the
row’s timestamp appears as an explicit column.

ADDING VALID TIME TO SQL/TEMPORAL 691

> CREATE VIEW snapshot_salary (eno, amount, when) AS
NONSEQUENCED VALIDTIME SELECT S.*, VALIDTIME(S)

FROM salary AS S;

Coming around full circle, we can define a valid-time view onsnapshot_sala-
ry that uses the explicit columnvalidtime as an implicit timestamp.

> CREATE VIEW temporal_salary (eno, amount) AS
VALIDTIME SELECT eno, amount
FROM (NONSEQUENCED VALIDTIME when

SELECT * FROM snapshot_salary AS S) AS S2;

This conversion can also be applied within queries and cursors.

7 Formal Semantics of SQL/Temporal

In this section, we provide a formal semantics for the constructs introduced into
SQL/Temporal, expressed in terms of the relational algebraic semantics for SQL3.

We use〈t ||VT〉 to denote a row in a table with valid-time support. The vertical
double-bar “||” is used to separate valid-time from explicit attributes. IfV T is a
period, thenV T − is its beginning bound andV T + is its ending bound.

7.1 Translating SQL/Temporal Queries to Relational Algebra Expressions

We first provide the semantics of an SQL3 query over tables without temporal sup-
port. In the definition given next, letr1, . . . , rn denote tables without temporal sup-
port. We base the definition of the semantics on the semantics of SQL3, expressed
in terms of the relational algebra.

[[<SQL–92>]]SQL/T(r1, . . . , rn)
4= [[<SQL–92>]]standard(r1, . . . , rn)

Here, [[<SQL–92>]]standard, which evaluates to the relational algebra expression
that corresponds to<SQL–92>, is assumed to be given. This definition satisfies
upward compatibility.

Example 8 We start with a non-temporal query, i.e., a query evaluated with stan-
dard semantics. Assumep andq are both tables without temporal support. The
queryQ1

SELECT p.X
FROM p, q
WHERE p.X = q.X

is equivalent to the relational algebra expression

[[Q1]]SQL/T (p, q) = [[Q1]]standard (p, q) = πp.X(p 1p.X=q.X q). 2

692 SQL STANDARDIZATION AND BEYOND

The semantics of an SQL3 query over a combination of snapshot and tables
with valid-time support is very similar. For every table with valid-time support
ri appearing as an argument, replace it withτvtnow(ri) on the right hand side. The
valid-timeslice operatorτvtc extracts the current snapshot state from a table with
valid-time support.

τvtc (r)
4= {t | ∃V T (〈t ||VT 〉 ∈ r ∧ V T − ≤ c ∧ c < V T +)}

Example 9 We now examine a non-temporal query over a combination of tables
with and without temporal support, with standard semantics. Assumep is a table
without temporal support andt is a table with valid-time support. The queryQ1

SELECT p.X
FROM p, t
WHERE p.X = t.X

is equivalent to the relational algebra expression

[[Q1]]SQL/T (p, t) = [[Q1]]standard (p, τvtnow(t)) = πp.X(p 1p.X=t.X (τvtnow(t))). 2
This definition satisfies temporal upward compatibility.

Next, we define the semantics of sequenced SQL/Temporal additions in terms
of the snapshot semantics. This allows these extensions to be consistent with all
snapshot constructs defined in SQL3.

[[VALIDTIME <SQL–92>]]SQL/T(r1, . . . , rn)
4= [[<SQL–92>]]temporal(r1, . . . , rn)

In this definition,[[<SQL–92>]]temporal is equivalent to[[<SQL–92>]]standard, ex-
cept that every non-temporal relational algebra operator (e.g.,1, σ, π) is replaced
by a corresponding temporal relational algebra operator (e.g.,1

vt , σ vt , πvt). We
provide definitions of the temporal algebra in Section 7.3.

Example 10 An SQL/Temporal queryQ2 = VALIDTIME Q1 is evaluated with
temporal semantics, due to its leading valid clause. Bothp andq must be tables
with valid-time support. Thus,

VALIDTIME SELECT p.X
FROM p, q
WHERE p.X = q.X

is equivalent to the temporal relational algebra expression

[[Q2]]SQL/T (p, q) = [[VALIDTIME Q1]]SQL/T (p, q)
= [[Q1]]temporal(p, q) = πvtp.X(p 1vtp.X=q.X q).

Note that apart from thevt -superscripts, which are added to relational algebra op-
erators, the translation between SQL queries and relational algebra expressions has
not changed at all. 2

ADDING VALID TIME TO SQL/TEMPORAL 693

The definitions above satisfy sequenced semantics if the temporal relational
operators are sequenced with respect to their conventional relational counterparts.
The next step is to define a temporal relational algebra with this property.

7.2 The Conventional Relational Algebra

As a precursor to defining the temporal relational algebra, we review Codd’s rela-
tional algebra.

σc(r)
4= {t | t ∈ r ∧ c(t)}

πf (r)
4= {t1 | t2 ∈ r ∧ t1 = f (t2)}

r1 ∪ r2 4= {t | t ∈ r1 ∨ t ∈ r2}
r1 1c r2

4= {t1 ◦ t2 | t1 ∈ r1 ∧ t2 ∈ r2 ∧ c(〈t1 ◦ t2〉)}
r1 \ r2 4= {t | t ∈ r1 ∧ t 6∈ r2}
AGagg,f (r)

4= {t ◦ a | t ∈ r ∧ a = agg({t1|t1 ∈ r ∧ f (t1) = f (t)})}
In this formalism,c is a predicate,f is a list of attributes (for the aggregate op-
erator, a list of theGROUP BYattributes), andagg is a function (e.g.,sum3) that
when applied to a set of rows returns the single value of the aggregate (e.g.,SUM)
evaluated over the indicated attribute (e.g., the third attribute).

Observe that the algebra defined above is based on sets and thus does not per-
mit duplicates. We have chosen to assume a set-based framework in the semantics
given here because this yields a short definition where the general approach stands
out more clearly. The complications that follow from giving up the set-based basis
have been explored in the past and are omitted. We emphasize that the proposed ad-
ditions to SQL/Temporal do not impact the data model of SQL3 and are not strictly
set based.

7.3 The Temporal Relational Algebra

The next step is to define the temporal relational algebra operators. Informally, each
definition respects sequenced semantics. In addition to that, the algebra features
two properties which we would like to point out. First, the algebra preserves the
periods entered into the database, i.e., itmattersfor the query results whether we
store, e.g., one row with a valid-time period of 10−20 or two (value-equivalent)
rows with valid-time periods 10−15 and 16−20, respectively. Second, care was
taken to only consider end points of valid-time periods of rows when implementing
the operators—intermediate time points are never used. This allows for an efficient
(essentially, granularity independent) implementation.

In Figure 7, the constructorintersect (over two periods) returns a period con-
taining those chronons in both underlying periods, and the predicateoverlaps (over

694 SQL STANDARDIZATION AND BEYOND

two periods) returns true if the two periods overlap and false, otherwise. Both op-
erations are easily expressed as operations on the beginning and ending bounds of
periods. The symbol “◦” denotes concatenation. The definition ofAGvt is espe-
cially complex. It determinesconstant periods, during which no row starts or ends
[10]. A constant period can go from the start of one row to the start of another, from
the start of one row to the end of another, or from the end of one row to the end of
another.

σvtc (r)
4= {〈t ||V T 〉 | 〈t ||V T 〉 ∈ r ∧ c(〈t ||VT 〉)}

πvtf (r)
4= {〈t1||V T 〉 | 〈t2||V T 〉 ∈ r ∧ t1 = 〈f (t2)||V T 〉}

r1 ∪vt r2 4= {〈t ||V T 〉 | 〈t ||V T 〉 ∈ r1 ∨ 〈t ||V T 〉 ∈ r2}
r1 1

vt
c r2

4= {〈〈t1, V T1〉 ◦ 〈t2, V T2〉||V T 〉 | 〈t1||V T1〉 ∈ r1∧
〈t2||V T2〉 ∈ r2 ∧ c(〈t1, V T1〉 ◦ 〈t2, V T2〉) ∧
V T = intersect(V T1, V T2)∧ V T1 overlaps V T2}

r1 \vt r2 4= {〈t ||V T 〉 | 〈t ||V T1〉 ∈ r1 ∧
(∃V T2(〈t ||V T2〉 ∈ r2 ∧ V T −1 ≤ V T +2 ∧ V T − = V T +2)∨
V T − = V T −1) ∧
(∃V T3(〈t ||V T3〉 ∈ r2 ∧ V T +1 ≥ V T −3 ∧ V T + = V T −3)∨
V T + = V T +1) ∧
V T − < VT + ∧
¬∃V T4(〈t ||V T4〉 ∈ r2 ∧ V T +4 > VT − ∧ V T −4 < VT +)}

AGvtagg,f (r)
4= {〈t ◦ a||V T 〉 | 〈t ||V T1〉 ∈ r ∧ 〈t2||V T2〉 ∈ r ∧ f (t) = f (t2) ∧

((V T − = V T −1 ∧ V T + = V T −2)∨
(V T − = V T −1 ∧ V T + = V T +2)∨
(V T − = V T +1 ∧ V T + = V T +2)) ∧ V T − < VT + ∧¬∃〈t4||V T4〉 ∈ r(f (t) = f (t4)∧
((V T − < VT −4 < VT +) ∨ (V T − < VT +4 < VT +))) ∧
a = agg({t3| 〈t3||V T3〉 ∈ r ∧

V T3 overlaps V T ∧ f (t) = f (t3)})}

Figure 7: Semantics of the temporal algebra

7.4 Nonsequenced Semantics

WhenNONSEQUENCED VALIDTIMEis used, each table with valid-time support
is converted to a table without temporal support via theSN function.

SN(r)
4= {〈t, V T 〉 | 〈t || V T 〉 ∈ r}

ADDING VALID TIME TO SQL/TEMPORAL 695

Then, the query is evaluated with the conventional semantics. Assume in the fol-
lowing that all the tables are tables with valid-time support.

[[NONSEQUENCED VALIDTIME<SQL–92>]]SQL/T (r1, . . . , rn)
4= [[<SQL–92>]]standard(SN(r1), . . . , SN(rn))

Example 11 LetQ be the following non-temporal query.

SELECT p.X
FROM p, q
WHERE p.X = q.X

Assume thatp is a table without temporal support andq is a valid-time table. To
evaluate this query according to temporal upward compatibility, we timesliceq as
of now.

[[Q]]SQL/T (p, q) = [[Q]]standard (p, τvtnow(q)) = πp.X(p 1p.X=q.X τvtnow(q)).
Now consider the SQL/Temporal queryQ2 = NONSEQUENCED VALID-

TIME Q. q is converted to a table without temporal support with an additional
column, containing the valid-time period of the row, then the query is evaluated
according to the standard SQL semantics.

[[Q2]]SQL/T (p, q) = [[NONSEQUENCED VALIDTIMEQ]]SQL/T (p, q)
= [[Q]]standard (p, SN(q))
= πp.X(p 1p.X=q.X SN(q)).

Completing this example, let’s examine sequenced valid semantics. Assume
thatp is also a table with valid-time support (sequenced semantics requires all un-
derlying tables to be tables with valid-time support). ConsiderQ3 = VALIDTIME
Q.

[[Q3]]SQL/T (p, q) = [[VALIDTIME Q]]SQL/T (p, q)
= [[Q]]temporal(p, q)
= πvtp.X(p 1

vt
p.X=q.X q).

Note that apart from thevt -superscripts, which are added to relational algebra op-
erators, the translation between SQL queries and relational algebra expressions for
all three types of queries has not changed at all. 2

The semantics ofVALIDTIME(c) are quite simple. Ifc is associated with a
row 〈t || V T 〉 of a table with valid-time support, then

[[VALIDTIME (c)]] = V T .
If a period expression followsVALIDTIME , the result of the select statement

is restricted to the period specified. This can be accomplished by an extension of
the timeslice operatorτ to take a period expression as its subscript.

696 SQL STANDARDIZATION AND BEYOND

[[VALIDTIME p <SQL–92>]]SQL/T (r1, . . . , rn) 4=
{〈t || V T 〉 |〈t || V T ′〉 ∈ [[VALIDTIME <SQL–92>]]SQL/T (r1, . . . , rn)

∧V T = V T ′ ∩ [[p]] ∧ V T 6= ∅}
If a period expression followsNONSEQUENCED VALIDTIME, a valid-time

table results, with the valid-time period as specified. Assume in the following that
all the tables are tables with valid-time support.

[[NONSEQUENCED VALIDTIMEp <SQL–92>]]SQL/T (r1, . . . , rn)
= { 〈t || [[p]]〉 |

t ∈ ([[NONSEQUENCEDVALIDTIME<SQL–92>]]SQL/T (r1, . . . , rn)}

8 A Foundation for Implementing the Extensions

We first provide a mapping of temporal relational operations to conventional rela-
tional algebra expressions. We then list a range of alternatives for implementing the
temporal relational operators.

8.1 Implementing the Temporal Algebra

Here, we give the conventional algebraic equivalents for the temporal algebraic
operators. We emphasize that conventional operators range over a different domain
(tables without temporal support) than do temporal operators (tables with valid-time
support). In Figure 8, the setAri contains the explicit attributes of tableri , anda is
the attribute appended byAG.

A “ vt ” superscript on a table indicates that it is a table with valid-time support;
those tables without such a superscript are tables without temporal support, each
with an explicitV T column. The auxiliary functionSN(r) = {〈t,VT〉 | 〈t ||VT〉 ∈
r} maps a table with valid-time support into a table without temporal support with
valid-time being an explicit attribute. It is assumed that tables with valid-time sup-
port are mapped into tables without temporal support usingSN before conventional
algebraic operators are applied. Note that functionSN is not needed at the imple-
mentation level. However, it is required here because Codd’s relational algebra
operators are only well-defined over tables without temporal support. Finally, there
is a rename operator,ρi(r) that gives tabler the namei. Again, the aggregate oper-
ator is the most complex. The relational difference and the outer Cartesian product
are the analogs of “¬∃” in the calculus; the inner Cartesian product and unions (to
computet2) are the analogs of the two row variables in the calculus.

Example 12 We continue by mapping the temporal algebraic equivalent of the
SQL/Temporal queryQ2 = VALIDTIME Q1 into the snapshot algebra. Here,
we assume that the tablep has a single column,X, and that the tableq has two

ADDING VALID TIME TO SQL/TEMPORAL 697

σvtc (r
vt) ; σc(r)

πvtf (r
vt) ; πf,V T (r)

rvt1 ∪vt rvt2 ; r1 ∪ r2
rvt1 1

vt
c r

vt
2 ; πAr1 ,V Tr1,Ar2,V Tr2,V T=intersect (V Tr1,V Tr2)(

r1 1c∧V Tr1 overlaps V Tr2 r2)

rvt1 \vt rvt2 ; t2 \ πAt2,V Tt2(t2 1At2=Ar2∧V Tt2 overlaps V Tr2 r2)
t2 = t1 ∪ πAr1,period(V T +r2 ,V T−t1)(

t1 1At1=Ar2∧V T −t1≤VT
+
r2∧V T+r2<VT +t1 r2)

t1 = r1 ∪ πAr1 ,period(V T−r1 ,V T −r2)(
r1 1Ar1=Ar2∧V T−r1<VT−r2∧V T −r2≤VT+r1 r2)

AGvtagg,f (r
vt) ; AGagg,f (t2− πA1,A2,a,V T

−
1 ,V T

+
1
(

σf (A1)=f (A2) ∧((V T −1 <V T−2 <VT+1)∨(V T −1 <VT+2 <VT +1))(
ρ1(t2)× ρ2(r))))

t2 = πA1,a,period(V T
−
1 ,V T

−
2)
(t1)∪

πA1,a,period(V T
−
1 ,V T

+
2)
(t1)∪

πA1,a,period(V T
+
1 ,V T

+
2)
(t1)

t1 = πA1,a,V T1,V T2(σf (A1)=f (A2)(ρ1(r))× ρ2(r))

Figure 8: Snapshot equivalents of the the temporal algebra operators

columns,X andY.

[[Q2]]SQL/T (p, q) = [[VALIDTIME Q1]]SQL/T (p, q) = [[Q1]]temporal (p, q)
= πvtp.X(p 1

vt
p.X=q.X q)

= πXp,V T (πXp,V Tp,Xq ,Yq,V Tq,V T=intersect (V Tp,V Tq)(
SN(p) 1p.X=q.X∧V Tp overlaps V Tq SN(q)))

= πXp,V T=intersect (V Tp,V Tq)(
SN(p) 1p.X=q.X∧V Tp overlaps V Tq SN(q))

2

8.2 Alternatives for Implementing SQL/Temporal

The transformations from the temporal algebra to the conventional algebra gives us
several options for implementing SQL/Temporal.

1. Map temporal queries into temporal algebra, then into regular algebra, ac-
cording to Figure 8, then back into SQL.

698 SQL STANDARDIZATION AND BEYOND

2. Map temporal queries into temporal algebra, then, according to Figure 7, di-
rectly into SQL.

3. Map temporal queries directly into SQL, utilizing the temporal algebra im-
plicitly in the query rewrite phase (this is what the prototype does).

Example 13 Continuing with the previous example, the SQL/Temporal queryQ2

on tables with valid-time support can be mapped to an SQL3 query on tables with-
out temporal support where the implicit timestamps are now placed in explicit at-
tributes.

SELECT p.X, p.VT INTERSECT_P q.VT AS VT
FROM p, q
WHERE p.X = q.X AND p.VT OVERLAPS q.VT

Here, we use theOVERLAPSpredicate and theINTERSECT_Poperator already
present in SQL/Temporal. 2

Finally, we point out some possibilities for query optimization.

1. Map temporal queries into temporal algebra, optimize as with SQL algebra
(with existing transformations and/or new cost formulas), then map back in
SQL.

2. Map temporal queries into temporal algebra, then into SQL algebra, then op-
timize, then evaluate.

3. Map temporal queries into temporal algebra, then optimize (again, using new
cost formulas), then evaluate the temporal algebra directly, with the concomi-
tant increase in performance.

8.3 Implementing Temporal Assertions and Constraints

The general approach to checking an assertion is to negate it and then execute it as
a query [2]. If the query result is empty, i.e., if no rows are returned, the assertion
is respected, otherwise it is violated.

Example 14 To check the assertionemp_has_sal from Section 6.1 we execute
the query

SELECT *
FROM employee AS e
WHERE NOT EXISTS (SELECT *

FROM salary AS s
WHERE e.eno = s.eno)

A non-empty result indicates a violation of the assertion. 2

ADDING VALID TIME TO SQL/TEMPORAL 699

Temporal assertions and constraints, specified withVALIDTIME , can be checked
in a similar way, with aVALIDTIME SELECTstatement.

First, note that database systems have to improve the sketched mechanism to
achieve acceptable performance. Well-known techniques include incremental con-
sistency checking, simplification of assertions, and special-purpose checking algo-
rithms for, e.g., column constraints. Second, it becomes obvious how important it
is to addressall aspects of a query language when transitioning from a nontemporal
to a temporal database system. Negation, which might be used rarely in queries
asked by users, is crucial for answering assertions because these usually involve
some form of implication, i.e., involve negation. In our approach, it is no harder to
state a temporal negation than it is to state a temporal join. This makes specification
(and implementation) of assertions particularly elegant.

8.4 Implementing Nonsequenced Semantics

Interestingly, supporting nonsequenced semantics is much easier than supporting
sequenced semantics.

Assume as before that a table with valid-time support isrepresentedat the
physical level as a conventional table with an additional column (of name VALID-
TIME) containing the valid time. Then a nonsequenced query can be evaluated as
before, with no special treatment.VALIDTIME() simply returns the value of the
new column. The optional period expression is treated as an additional column in
the evaluation of a nonsequenced query.

A major advantage of nonsequenced semantics is its ease of implementation.
The disadvantage of nonsequenced semantics is that the user is responsible for han-
dling the time dimension explicitly, which is whysequencedsemantics is so impor-
tant.

9 Summary

In this change proposal, we first outlined several desirable features of SQL/Temporal
relative to SQL3: upward compatibility, temporal upward compatibility, and se-
quenced semantics. A series of four levels of increasing functionality was elab-
orated. The specific syntactic additions were outlined and examples given to il-
lustrate these constructs. The extensions involve (a) the use of theVALIDTIME
reserved words, to indicate valid-time support (in the case of schema specification
statements) and sequenced semantics (in the case of queries, modifications, views,
assertions and constraints), (b) the use of theNONSEQUENCEDreserved word for
nonsequenced semantics, and (c) the use of a period expression to temporally scope
sequenced and nonsequenced queries, modifications, views, cursors, constraints,
and assertions. We provided a formal semantics, in terms of the formal semantics

700 SQL STANDARDIZATION AND BEYOND

of SQL3, that satisfied the sequenced semantics correspondence between temporal
queries and snapshot queries, and also provided the semantics for nonsequenced
queries. Finally, we listed alternative implementation approaches which vary in the
degree of implementation difficulty and the achievable performance efficiency, and
showed that implementing nonsequenced semantics is straightforward.

Appendix A provides formal definitions of the properties discussed in Sec-
tion 5.

We end by listing some of the advantages of the approach espoused here.

• Upward compatibility is assured, permitting existing constructs to operate ex-
actly as before.

• Only two new reserved words,NONSEQUENCEDandVALIDTIME , are re-
quired.

• Satisfaction of temporal upward compatibility ensures that existing applica-
tions do not break when tables without temporal support have such support
added.

• Satisfaction of sequenced semantics ensures that temporal queries, modifica-
tions, views, assertions, and constraints are easy to specify, formalize, and
implement.

• Nonsequenced semantics permits tables with valid-time support to be con-
verted to tables without such support, with an explicit timestamp column, and
such for valid-time support to be added to tables, even within a query.

• Since the semantics is defined in terms of the non-temporal semantics, the
extensions are compatible withall the facilities of SQL3.

• A simple period expression permits the temporal scope to be specified.

• A prototype implementation exists [14]; this prototype was invaluable in re-
fining the language additions.

• Transaction time support will require few syntactic or semantic extensions,
and will be fully compatible and consistent with these valid-time features.

10 Proposed Language Extensions

The syntax is given as extensions to “Database Language SQL — Part 7: Temporal”
[8].

11 Clause 3 Definitions, notations, and conventions

11.1 Subclause 3.1 Definitions

1) Add the following terms.

ADDING VALID TIME TO SQL/TEMPORAL 701

g) row with valid-time support : A row with valid-time support is a row with
an associated valid time, which is a value of a period data type.

h) valid time of a row with valid-time support : The valid time of a row with
valid-time support is a period during which the values in the fields of the row
are known to be valid.
Note to proposal reader: The valid-time period is not required to be maximal.

i) table with valid-time support : A table with valid-time support is one in
which each row is a row with valid-time support.
Note to proposal reader: The SRs and GRs ensure that the valid-time periods
of all rows of a table are of a period data type of the same element type and
precision.

j) valid-time state of a table with valid-time support at a valid time: The
valid-time state of a table with valid-time support TV at a specified valid time
T is the table without valid-time support comprising rows with identical values
for the fields of the rows of TV associated with valid times that overlap T.

k) current valid-time state of a table with valid-time support: The current
valid-time state of a table with valid-time support is the valid-time state of
that table at valid time CURRENT_TIMESTAMP.

l) precision of a table with valid-time support: The precision of a table with
valid-time support is the precision of the element type of the period type of
the associated valid time of its rows.

m) the end of time: The end of time is the maximum datetime value, 9999-12-31
23:59:59.999999....

12 Clause 4 Concepts

1) Insert the following Subclause, “Tables”, to SQL/Temporal immediately follow-
ing Subclause 4.2.3, “Period predicates”.

12.1 Subclause 4.3 Tables

Every table descriptor also includes:

– An indication of whether the table has valid-time support or does not have
valid-time support.

– The valid-time precision of the table, if the table has valid-time support.

2) Insert the following Subclause, “Integrity constraints”, to SQL/Temporal imme-
diately following Subclause 4.3, “Tables”.

702 SQL STANDARDIZATION AND BEYOND

12.2 Subclause 4.4 Integrity constraints

Every constraint descriptor also includes:

– An indication of whether the constraint is specified without VALIDTIME,
with VALIDTIME but without NONSEQUENCED, or with NONSE-
QUENCED VALIDTIME.

– The valid-time period, if any, associated with the constraint.

1) Insert the following Subclause, “Meaning of statements on tables with valid-
time support”, to SQL/Temporal immediately following Subclause 4.4, “Integrity
constraints”.

12.3 Subclause 4.5 Meaning of statements on tables with temporal support

Temporal upward compatible queries (i.e., SELECT without VALIDTIME) treat
each underlying table that has valid-time support as a table without valid-time sup-
port, by using instead the current valid-time state of the table. Hence, a query
evaluated with temporal upward compatibility on a table with valid-time support
will use only the current valid-time state in the evaluation.

Sequenced valid queries (i.e., VALIDTIME SELECT) apply only on tables
with valid-time support, and result in tables with valid-time support. The meaning
of sequenced valid queries is defined in terms of the meaning of queries on tables
without valid-time support. Let Q be a sequenced valid query, with Q = VALID-
TIME Q1, where Q1 is a query without VALIDTIME. The meaning of Q1 on tables
without temporal support is already defined by this International Standard. Let R
be the valid-time table that is the result of Q on one or more tables with valid-time
support. For all times T, the state of R at time T is the result of Q1 according
to the General Rules in Subclause 7.4, “<query expression>” on the states of the
underlying tables at time T. Any R that satisfies this property is a valid result of Q.

Nonsequenced valid queries (i.e., NONSEQUENCED VALIDTIME SE-
LECT) treat each underlying table that has valid-time support as a table without
valid-time support, but with an additional unnamed column whose value for a row
in the table is the valid-time period associated with the corresponding row in the
original table. With this substitution, the General Rules in Subclause 7.4, “<query
expression>” apply.

The<value expression> following VALIDTIME is used in two ways. Within
a nonsequenced valid query, it supplies the valid-time period of the computed rows.
In a sequenced valid query, it specifies the “temporal scope” of the query: the result
is computed with sequenced valid semantics, then the valid-time periods of the
result are intersected with the value of the<value expression> to determine the
final valid-time period.

ADDING VALID TIME TO SQL/TEMPORAL 703

These same concepts (temporal upward compatibility, sequenced valid, and
nonsequenced valid) also apply to integrity constraints, assertions, views, cursors
and modification statements.
Note to proposal reader: Very informally, what is going on is that the SQL3 seman-
tics of a query Q is treated as a black box. Put a query and a database (conventional,
without valid-time support) in one side, and out comes a (carefully specified) table
(without valid-time support) on the other side.

The semantics of the nonsequenced, sequenced, and temporally upward com-
patible queries, modifications, etc., are specified by using this black box.

The advantages are numerous. (1) We don’t have to modify each page of the
specification; instead, the additions to the specification are small and isolated. (2)
As SQL3 grows, with new constructs, the temporal query variants still work fine.
(3) The intuition of the user is aided by the fact that a temporal version of a query
is defined in terms of the original, nontemporal version of the query.

This section provides some intuition behind the general rules of Subclause 7.4,
“<query expression>” as well as the subclauses for integrity constraints, assertions,
and modification statements. Suggestions for improvements would be welcomed.
End of note.

13 Clause 5 Lexical elements

13.1 Subclause 5.1<token> and<separator>

1) In the Format, add the following two new alternatives to<reserved word>:∣∣ NONSEQUENCED∣∣ VALIDTIME

14 Clause 6 Scalar expressions

1) Insert the following two Subclauses, “<item reference>” and “<table refe-
rence>”, to SQL/Temporal immediately preceding Subclause 6.2, “<set function
specification>”.

14.1 Subclause 6.1<item reference>

Function

Reference a column, parameter, or variable.

Format

No additional Format items.

704 SQL STANDARDIZATION AND BEYOND

Syntax Rules

1. (Replace SR4) If IR does not contain an<item qualifier>, then
Case:

a) If IR is contained within the scope of one or more exposed<table or
query name>s, <correlation name>s, or<routine>s whose associ-
ated tables or<parameter list>s include a column or parameter whose
<identifier> is IN, then

i) Let the phrase possible qualifiers denote those exposed<table or
query name>s,<correlation name>s, and<routine name>s.

ii) Case:

1) If the most local scope contains exactly one possible qualifier,
then the qualifier IQ equivalent to that unique exposed<table
or query name>,<correlation name>, or<routine name> is
implicit.

2) If there is more than one possible qualifier with the most local
scope, then:

a) Each possible qualifier shall be a<table or query name>
or a<correlation name> of a<table reference> that is di-
rectly contained in a<joined table> JT.

b) CN shall be a common column name in JT.

c) The implicit qualifier IQ is implementation-dependent. The
scope of IQ is that which IQ would have had if JT had been
replaced by the<table reference>:
(JT) AS IQ

iii) Let V be the table or parameter list associated with IQ.

b) If IR is contained in a<value expression> of a<time option> that is
simply contained in a<query expression>QE, then

i) The implicit qualifier IQ is implementation-dependent. The scope
of IQ is that which IQ would have had if the<query expression
body>QEB of QE had been replaced by the<table reference>:
(QEB) AS IQ

ii) Let V be the table associated with IQ.

Note to proposal reader: The original SR4 appears as Case a. This adds
Case b.

Access Rules

No additional Access Rules.

ADDING VALID TIME TO SQL/TEMPORAL 705

General Rules

No additional General Rules.

14.2 Subclause 6.2<table reference>

Function

Reference a table.

Format

No additional Format items.

Syntax Rules

1. (Replace SR2a) If a<table reference> TR is contained in a<from clause>
FC with no intervening<derived table>, then the scope clause SC of TR is
the<select statement: single row> SS or innermost<query specification>
that contains FC. The scope of the exposed<correlation name> or exposed
<table or query name> of TR is the<select list>, <from clause>, <where
clause>,<group by clause>, and<having clause> of SC, together with the
<join condition> of all<joined table>s contained in SC that contain TR and
the<time option> of SS.
Note to proposal reader: This adds “and the<time option> of SS” to the
scope.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

14.3 Subclause 6.5<period value expression>

1) In the Format, add the following new alternative to<period primary>:∣∣ <validtime function>

2) In the Format, add the following two BNF productions:

<validtime function> ::=
VALIDTIME <left paren><validtime argument> <right paren>

<validtime argument> ::=<item qualifier>
∣∣<value expression>

706 SQL STANDARDIZATION AND BEYOND

Note to proposal reader: An<item qualifier> is either a<table name> or a<cor-
relation name>.
3) Insert the following Syntax Rules:

1. (Insert this SR) Case:

a) If T has valid-time support, then let P be the valid-time precision of T.

b) If T does not have valid-time support, then it shall have a field named
VALIDTIME of a period data type. Let P be the precision of the element
type of this field.

2. (Insert this SR) The<value expression> of a<validtime function> shall be
of row type RT.
Case:

a) If RT has valid-time support, then let P be the valid-time precision of
RT.

b) If RT does not have valid-time support, then it shall have a field named
VALIDTIME of a period data type. Let P be the precision of the element
type of this field.

Note to proposal reader: The VALIDTIME field comes from a nonsequenced
select.

3. (Insert this SR) The data type of<validtime function> shall be<period
type>, with a precision of P.

4) Insert the following two General Rules:

1. (Insert this GR) Case:

a) If <validtime argument> is<item qualifier>, then let R be the row of
T for which<validtime function> VF is evaluated.

b) If <validtime argument> is <value expression>, then let R be the re-
sulting row.

2. (Insert this GR) Case:

a) If R has valid-time support, then the value of the<validtime function>
is the valid-time period of R.

b) If R does not have valid-time support, then the value of the<validtime
function> is the value of the field of R named VALIDTIME.

Language opportunity: It would be helpful if this function were also available in
PSM to apply to values of type ROW.

ADDING VALID TIME TO SQL/TEMPORAL 707

15 Clause 7 Query expressions

1) Insert the following two new Subclauses, “<query expression>” and “<query
specification>”, to SQL/Temporal immediately following Subclause 7.3, “<period
value constructor>”.

15.1 Subclause 7.4<query expression>

Function

Specify a table.

Format

<query expression> ::= [<with clause>] <temporal query expression body>

<temporal query expression body> ::=
[<time option>] <query expression body>

Note to proposal reader: This adds an optional<time option> to <query ex-
pression>.

<time option> ::=<validtime option>

<validtime option> ::=
[NONSEQUENCED] VALIDTIME [<value expression>]

Note to proposal reader: The<time option> is expanded in the transaction-time
change proposal, in a similar fashion to<validtime option> proposed here. There
are five cases:

1. SELECT

• works on anything

• evaluates to a table with no temporal support

2. VALIDTIME SELECT

• works only on tables with valid-time support

• evaluates to a table with valid-time support

3. VALIDTIME <period exp> SELECT

• like VALIDTIME SELECT, but only returns timestamps within<pe-
riod exp> (a simple example isVALIDTIME PERIOD ’[1995-01-
01 - 1995-12-31]’ SELECT)

4. NONSEQUENCED VALIDTIME SELECT

• works on anything

708 SQL STANDARDIZATION AND BEYOND

• acts like tables with valid-time support have an explicit timestamp col-
umn

• evaluates to a table with no temporal support

5. NONSEQUENCED VALIDTIME<period exp> SELECT

• like NONSEQUENCED VALIDTIME SELECT, but uses the<period
exp> as a timestamp, and thus returns a table with valid-time support

To convert a table with valid-time support to a table with no temporal support,
useSELECT(if only the current state is of interest) orNONSEQUENCED VALID-
TIME SELECT.

To convert a table without valid-time support to a table with valid-time sup-
port, useNONSEQUENCED VALIDTIME<period exp> SELECT.
End of note.
Syntax Rules

1. (Replace SR1b) For all i between 1 and n, the scope of the<query name>
WQN that is immediately contained in WLEi is the<query expression> that
is immediately contained in every<with list element>WLEk, where k ranges
from i+1 to n, and the<temporal query expression body> that is immediately
contained in<query expression>. A<table or query name> that is contained
in this scope that immediately contains WQN is a query name in scope.
Note to proposal reader: This simply replaces<query expression body>with
<temporal query expression body>.

2. (Add to SR5) d)<time option> is not specified in the<temporal query ex-
pression body> that is contained in<query expression>.
Note to proposal reader: This specifies that if<time option> is specified, the
result of<query expression> is not inherently updatable. See the language
opportunity, below.

3. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in the<validtime option> that is contained in the<time option>
that is simply contained in<query expression>, then each exposed table,
query, or correlation name that is contained in the<query expression body>
without an intervening<from clause> shall identify a table with valid-time
support and with identical precision P.
Note to proposal reader: This ensures that sequenced valid queries are only
evaluated “over” tables with valid-time support.

4. (Insert this SR) If VALIDTIME is specified in the<validtime option> of a
<query expression> Q, then either Q shall be simply contained in a<from
clause> or Q shall be the outermost<query expression>.
Note to proposal reader: VALIDTIME is allowed in only two places: prepen-
ded to the outermost<query expression>, or immediately within a<from

ADDING VALID TIME TO SQL/TEMPORAL 709

clause>. The reason is that the<time option> applies to the entire<query
expression>, evaluated on the exposed tables, queries, and correlation names,
which are specified in the<from clause>s of the query.

5. (Insert this SR) The data type of the<value expression> that is contained in
the<validtime option> that is contained in<time option> shall be<period
type>.
NOTE 6 - Subclause 6.3, “<item reference>” restricts the scope of column
names in<value expression>.

6. (Insert this SR) Let T be the result of the<query expression>.
Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
<validtime option>, then T shall be a table with valid-time support
and with precision P. The precision of the<value expression> that is
contained in the<valid option> of <time option> shall be P.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then

Case:

i) If <value expression> is specified in the<validtime option> of
<time option>, then T shall be a table with valid-time support and
with a precision of that of<value expression>.

ii) Otherwise, T shall be a table without valid-time support.

c) Otherwise, T shall be a table without valid-time support.

Note to proposal reader: If NONSEQUENCED VALIDTIME is speci-
fied, the precision of the<value expression> of <validtime option> is
arbitrary.

Access Rules

No additional Access Rules.

General Rules

1. (Replace GR1a) For every<with list element>WLE, let WQN be the<query
name> immediately contained in WLE. Let WQE be the<temporal query
body> immediately contained in WLE. Let WLT be the table resulting from
evaluation of WQE, with each column name replaced by the corresponding
element of the<with column list>, if any, immediately contained in WLE.
Note to proposal reader: This simply replaces<query expression> with
<temporal query expression body>.

710 SQL STANDARDIZATION AND BEYOND

2. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified
in <validtime option>, then the result of<temporal query expression
body> TQEB during each valid time granule T of precision P is the
result of the<query expression body> of TQEB with each leaf gener-
ally underlying table with valid-time support with no intervening<from
clause> replaced with its state at valid time T. If<value expression>
VE is specified in the<validtime option> that is contained in<time
option>, then for each row R resulting from the initial evaluation of
TQEB,
Case:

i) If the value of VE and the valid-time period VP of R overlap, then
the resulting valid-time period of R is the result of
(VE P_INTERSECT VP).

ii) Otherwise, R is not included in the final result of TQEB.

Note to proposal reader: P_INTERSECT is intersection on periods, as
defined in Subclause 6.5, “<period value expression>”, in SQL/Tem-
poral.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
the result of<temporal query expression body> TQEB is the result of
the<query expression body> of TQEB with each leaf generally under-
lying table with valid-time support with no intervening<from clause>
replaced with a table with no valid-time support with rows with identical
values for the columns. The descriptor of that table is the same as the
description of the table DT from which it is derived, with the inclusion
of a column descriptor whose column name is VALIDTIME, whose data
type is a<period type>with a precision of that of the valid-time period
of DT, and whose ordinal position is one greater than the degree of DT.
The value of this additional column for each row is the original valid-
time period of the corresponding row in DT. If<value expression> is
specified in the<validtime option> of <time option>, then the valid-
time period of the row of the result of TQEB is the value of<value
expression>.

c) Otherwise, the result of<temporal query expression body> TQEB is
the result of the<query expression body> of TQEB with each of its leaf
generally underlying tables with valid-time support with no intervening
<from clause> replaced with its current valid-time state.

Language opportunity: It may be possible to allow temporal query expressions to
be updatable.

ADDING VALID TIME TO SQL/TEMPORAL 711

Language opportunity: It would be nice if<value expression> that is contained
in the<validtime option> that is contained in<time option> also be allowed to be
of a datetime data type, interpreted as a period containing one granule. This would
allow statements of the formVALIDTIME DATE ’1996-01-01’ SELECT .

15.2 Subclause 7.5<query specification>

Function

Specify a table derived from the result of a<table expression>.

Format

No additional Format items.

Syntax Rules

1. (Replace SR4b) Otherwise, the<select list> "*" is equivalent to a<value
expression> sequence in which each<value expression> is a column ref-
erence that references a column of T and each column of T, other than any
column named VALIDTIME, is referenced exactly once. The columns other
than those named VALIDTIME are referenced in the ascending sequence of
their ordinal position within T.
Note to proposal reader: The VALIDTIME column comes from a nonse-
quenced select, and should not be included in “*”. This ensures that a table
with valid-time support not also include an explicit column named VALID-
TIME, thereby rendering the value of the VALIDTIME function (see Sub-
clause 6.5<period value expression>) ambiguous.

2. (Replace SR 5) If the<select sublist>
<item qualifier>.*
is specified, then let Q be the<item qualifier> of that <select sublist>.
Q shall be a<table name> or <correlation name> exposed by a<table
reference> immediately contained in the<from clause> of T. Let TQ be
the table associated with Q. That<select sublist> is equivalent to a<value
expression> sequence in which each<value expression> is a column refer-
ence CR that references a column of TQ that is not a common column of a
<joined table> and does not have the name VALIDTIME. Each column of
TQ that is not a referenced common column shall be referenced exactly once.
The columns shall be referenced in the ascending sequence of their ordinal
positions within TQ.

Access Rules

No additional Access Rules.

712 SQL STANDARDIZATION AND BEYOND

General Rules

No additional General Rules.

16 Clause 10 Schema definition and manipulation

1) Insert this new Subclause, “<table definition>”, to SQL/Temporal immediately
following Subclause 10.1, “<default clause>”.

16.1 Subclause 10.2<table definition>

Function

Define a persistent base table, a created local temporary table, or a global temporary
table.

Format

<table definition> ::=
CREATE [<table scope>] TABLE <table name>

{ <table element list>
∣∣<subtable clause> [<table element list>] }

[<temporal definition>]
[ON COMMIT <table commit action> ROWS]

Note to proposal reader: This augments the production for the non-terminal<table
definition> with an additional, optional clause to specify that the new table is to be
a table with valid-time support.

<temporal definition> ::= AS VALIDTIME [<period type>]

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

1. (Add to GR3)

f) Whether the table has valid-time support or does not have valid-time
support.

g) If the table has valid-time support, then the valid-time precision of the
table.

ADDING VALID TIME TO SQL/TEMPORAL 713

Note to proposal reader: These two items are added to the table descriptor.

2. (Insert this GR) If<temporal definition> is specified, then the descriptor for
the table indicates that the table has valid-time support with a precision of the
element type of<period type>.
Note to proposal reader: Otherwise, the table does not have valid-time sup-
port.

16.2 Subclause 10.3<column definition>

2) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.2, “<table definition>”.

Function

Define a column of a table.

Format

<column constraint definition> ::=
[<constraint name definition>] <temporal column constraint>

<temporal column constraint> ::=
[<time option>] <column constraint> [<constraint attributes>]

Note to proposal reader: This adds an optional<time option> to column con-
straints.
Syntax Rules

1. (Insert this SR) If VALIDTIME is specified in<validtime option> contained
in <time option>, then T shall be a table with valid-time support.

2. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in<validtime option> that is contained in<time option>,
Case:

a) If <column constraint> is <references specification>, then the table
identified by<table name> that is simply contained in the<referenced
table and columns> of <references specification> shall be a table with
valid-time support.

b) If <column constraint> is<check constraint definition>, then each ta-
ble associated with an exposed<table name>, <query expression>,
or <correlation name> that is contained in the<column constraint>
without an intervening<from clause> shall be a table with valid-time
support and with identical precision.

714 SQL STANDARDIZATION AND BEYOND

3. (Insert this SR) The precision of<value expression> VE that is contained
in the<validtime option> of <time option> shall be the precision of T. VE
shall be a<literal>.

4. (Insert this SR) If NONSEQUENCED VALIDTIME is specified in the<time
option> that is contained in<column constraint definition> , then VO shall
not contain<value expression>.

5. (Insert this SR) If<time option> is specified, then the<column constraint>
shall not be NOT NULL.
Note to proposal reader: This restriction might be lifted in the future, along
with various other schema manipulation restrictions. See the language oppor-
tunity, below.

6. (Insert this SR) The<temporal column constraint> TCC is equivalent to a
<temporal table constraint> with a<time option> of the<time option> of
TCC and a<table constraint> that is equivalent to the<column constraint>
that is contained in TCC.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Language opportunity: It may be possible to allow<time option> with NOT
NULL, but the implications on nullability and functional dependencies should be
carefully considered.

16.3 Subclause 10.4<table constraint definition>

3) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.3, “<column definition>”.

Function

Specify an integrity constraint.

Format

<table constraint definition> ::=
[<constraint name definition>] [<time option>] <temporal table constraint>

ADDING VALID TIME TO SQL/TEMPORAL 715

<temporal table constraint> ::=
<table constraint> [<constraint attributes>]

Note to proposal reader: This adds an optional<time option>. For constraints and
assertions, there are four cases:

1. CHECK

• works on anything

• only considers current state

2. VALIDTIME CHECK

• works only on tables with valid-time support

• the constraint/assertion must be true for the state at every valid time

3. VALIDTIME <period exp> CHECK

• like VALIDTIME CHECK, but only considers the times in<period exp>
(a simple example isVALIDTIME PERIOD ’[1995-01-01 -
1995-12-31]’ CHECK)

4. NONSEQUENCED VALIDTIME CHECK

• works on anything

• acts like tables with valid-time support have an explicit timestamp col-
umn; all rows are considered at once

NONSEQUENCED VALIDTIME<period exp> CHECKis not allowed.
End of note.

Syntax Rules

1. (Insert this SR) Let T be the table defined by the<table definition> contain-
ing this<table constraint definition>.

2. (Insert this SR) If VALIDTIME is specified in the<validtime option> that is
contained in<time option>, then T shall be a table with valid-time support
with precision P. The precision of<value expression> VE that is contained
in the<valid option> that is contained in<time option> shall be P. VE shall
be a<literal>.

3. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in<table constraint definition>, then each exposed table, query,
or correlation name that is contained in the<table constraint> without an
intervening<from clause> shall identify a table with valid-time support and
with identical valid-time period precision.

4. (Insert this SR) If<validtime option> VO that is contained in<column con-
straint definition> contains NONSEQUENCED, then VO shall not contain
<value expression>.

716 SQL STANDARDIZATION AND BEYOND

Access Rules

No additional Access Rules.

General Rules
1. (Append to GR2) The table constraint descriptor includes an indication of

whether the constraint has valid-time support or does not have valid-time sup-
port, as well as the valid-time period, if any, of the table constraint, if the table
constraint has valid-time support.

2. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
<validtime option>, then
Case:

i) If <value expression> V is contained in the<validtime option>
of<time option>, then<temporal table constraint> is satisfied if
the contained<table constraint> is satisfied for each time granule
TG of the value of V, with each leaf generally underlying table
with valid-time support with no intervening<from clause> re-
placed with its state at valid time TG.

ii) Otherwise,<temporal table constraint> is satisfied if the con-
tained<table constraint> is satisfied for each time granule TG of
precision P, with each leaf generally underlying table with valid-
time support with no intervening<from clause> replaced with its
state at valid time TG.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
<temporal table constraint> is satisfied if the contained<table const-
raint> is satisfied when each leaf generally underlying table with valid-
time support with no intervening<from clause> is replaced with a ta-
ble with no valid-time support with rows with identical values for the
columns. The descriptor of that table is the same as the description of
the table DT from which it is derived, with the inclusion of a column
descriptor whose column name is VALIDTIME, whose data type is a
<period type> with an element precision of that of the valid-time pe-
riod of DT, and whose ordinal position is one greater than the degree
of DT. The value of this additional column for each row is the original
valid-time period of the corresponding row in DT.

c) Otherwise,<temporal table constraint> is satisfied if the contained
<table constraint> is satisfied when each of its leaf generally under-
lying tables with valid-time support with no intervening<from clause>
is replaced with its current valid-time state.

ADDING VALID TIME TO SQL/TEMPORAL 717

16.4 Subclause 10.5<alter table statement>

4) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.4, “<table constraint definition>”.

Function

Change the definition of a table.

Format

<alter table action> ::=
!! All alternatives from ISO/EIC 9075∣∣ <add valid definition>∣∣ <drop valid definition>∣∣ <convert valid definition>

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

16.5 Subclause 10.6<add valid definition>

5) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.5, “<alter table statement>”.

Function

Add valid-time support to a table.

Format

<add valid definition> ::= ADD VALIDTIME [<period type>]

718 SQL STANDARDIZATION AND BEYOND

Syntax Rules

1. (Insert this SR) Let T be the table identified by the<table name> that is im-
mediately contained in the<alter table statement> that immediately contains
<add valid definition>.

2. (Insert this SR) T shall be a table without valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Valid-time support is added to each row of T, by associating
with that row a valid-time period from the current timestamp to the end of
time with a precision of the element type of<period type>. The descriptor
of T is altered to indicate that T has valid-time support, of the precision of the
element type of<period type>.

16.6 Subclause 10.7<drop valid definition>

6) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.6, “<add valid definition>”.

Function

Drop valid-time support from a table.

Format

<drop valid definition> ::= DROP VALIDTIME

Syntax Rules

1. (Insert this SR) Let T be the table identified by the<table name> that is im-
mediately contained in the<alter table statement> that immediately contains
<drop valid definition>.

2. (Insert this SR) T shall be a table with valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Valid-time support is removed from T, by replacing T with
the result of

ADDING VALID TIME TO SQL/TEMPORAL 719

SELECT * FROM T
Note to proposal reader: That is, only the current valid-time state is retained.
The descriptor of T is altered to indicate that T does not have valid-time sup-
port.

16.7 Subclause 10.8<convert valid definition>

7) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.7, “<drop valid definition>”.

Function

Change the valid-time precision of a table.

Format

<convert valid definition> ::= ALTER VALIDTIME TO <period type>

Syntax Rules

1. (Insert this SR) Let T be the table identified by the<table name> that is im-
mediately contained in the<alter table statement> that immediately contains
<convert valid definition>.

2. (Insert this SR) T shall be a table with valid-time support.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) T is converted to the new precision specified effectively by
the execution of the following statements. Let TC be the columns of T, and
let P be the<period type>. The descriptor of T is altered to indicate that T
has a valid-time precision of that of the element type of P.

CREATE TABLE Temp (TC) AS VALIDTIME P

INSERT INTO Temp
VALIDTIME SELECT (TC)
FROM (NONSEQUENCED VALIDTIME CAST(when AS P)

SELECT *, VALIDTIME(T) AS when
FROM T) AS T2

DROP TABLE T

720 SQL STANDARDIZATION AND BEYOND

CREATE TABLE T (TC) AS VALIDTIME P

INSERT INTO T
VALIDTIME SELECT * FROM Temp

DROP TABLE Temp

16.8 Subclause 10.9<assertion definition>

8) Insert this new Subclause to SQL/Temporal immediately following Subclause
10.8, “<convert valid definition>”.

Function

Specify an integrity constraint by means of an assertion and specify when the as-
sertion is to be checked.

Format

<triggered assertion> ::=
[<time option>]

CHECK<left paren> <search condition><right paren>

Note to proposal reader: This adds an optional<time option>.

Syntax Rules

1. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in the<validtime option> that is contained in<time option>, then
each exposed table, query, or correlation name that is contained in the<search
condition> without an intervening<from clause> shall identify a table with
valid-time support of precision P. The precision of the<value expression>
that is contained in the<validtime option> that is contained in<time option>
shall be P. VE shall be a<literal>.

2. (Insert this SR) If NONSEQUENCED VALIDTIME is specified in the<valid
option> VO contained in the<time option> TO of <triggered assertion>,
then VO shall not contain<value expression>.

Access Rules

No additional Access Rules.

General Rules

1. (Append to GR4) The assertion descriptor includes an indication of whether
the assertion has valid-time support or does not have valid-time support, as

ADDING VALID TIME TO SQL/TEMPORAL 721

well as the valid-time period, if any, of the assertion, if the assertion has valid-
time support.

2. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
the<validtime option> that is contained in<time option>, then

Case:

i) If <value expression> V is contained in the<validtime option>
that is contained in<time option>, then<triggered assertion> is
satisfied if the contained<search condition> is satisfied for each
time granule TG of the value of V, with each leaf generally un-
derlying table with valid-time support with no intervening<from
clause> replaced with its state at valid time TG.

ii) Otherwise, <triggered assertion> is satisfied if the contained
<search condition> is satisfied for each time granule TG of pre-
cision P, with each leaf generally underlying table with valid-time
support with no intervening<from clause> replaced with its state
at valid time TG.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
<triggered assertion> is satisfied if the contained<search condition>
is satisfied when each leaf generally underlying table with valid-time
support with no intervening<from clause> is replaced with a table with
no valid-time support with rows with identical values for the columns.
The descriptor of that table is the same as the description of the table
DT from which it is derived, with the inclusion of a column descrip-
tor whose column name is VALIDTIME, whose data type is a<period
type>with a precision of that of the valid-time period of DT, and whose
ordinal position is one greater than the degree of DT. The value of this
additional column for each row is the original valid-time period of the
corresponding row in DT.

c) Otherwise,<triggered assertion> is satisfied if the contained<search
condition> is satisfied when each of its leaf generally underlying tables
with valid-time support with no intervening<from clause> is replaced
with its current valid-time state.

17 Clause 11 Period manipulation rules

1) Insert this new Clause to SQL/Temporal immediately before Clause 11, “Dy-
namic SQL”.

722 SQL STANDARDIZATION AND BEYOND

2) Insert the following new Subclause, “Rules for period manipulation in modifica-
tion statements”, to SQL/Temporal at the beginning of Clause 11, “Data manipula-
tion”.

17.1 Section 11.1 Rules for period manipulation in modification statements

Function

Specify rules for period manipulation in modification statements.

General Rules

1. To remove a period RP from the valid-time period P of a row R of a table T,
Case:

a) If BEGIN(RP)≤ BEGIN(P)≤ LAST(RP)< LAST(P), then replace the
beginning bound of P for row R with END(RP).

b) If BEGIN(RP)≤BEGIN(P) and LAST(RP)≥ LAST(P), then mark row
R for deletion.

c) If BEGIN(P)< BEGIN(RP) and LAST(RP)< LAST(P), then replace
the ending bound of P for row R with BEGIN(RP). Let NP be a period of
precision of that of P, such that BEGIN(NP) is END(RP) and END(NP)
is END(P). A new row, with column values identical to R, and with an
associated valid-time period of NP, is inserted into T.

d) If BEGIN(P)< BEGIN(RP)≤ LAST(P) and LAST(RP)≥ LAST(P),
then replace the ending bound of P for row R with BEGIN(RP).

Note to proposal reader: If RP and P do not overlap, then do nothing.

2. To update the valid-time period P of a row R of a table T for a period UP,
where PP is the precision of P,
Case:

a) If BEGIN(UP)≤ BEGIN(P)≤ LAST(UP)< LAST(P), then replace the
beginning bound of P for row R with END(UP). Let NP be the period
of precision of PP, such that BEGIN(NP) is BEGIN(P) and END(NP) is
END(UP). A new row NR, with column values identical to R, and with
an associated valid-time period of NP, is inserted into T. Perform the
update only on NR.

b) If BEGIN(UP)≤ BEGIN(P) and LAST(UP)≥ LAST(P), then perform
the update on R.

c) If BEGIN(P)< BEGIN(UP) and LAST(UP)< LAST(P), then replace
the ending bound of P for row R with BEGIN(UP). Let NP be a period

ADDING VALID TIME TO SQL/TEMPORAL 723

of precision PP, such that BEGIN(NP) is END(UP) and END(NP) is
END(P). Two new rows, NR1 and NR2, with column values identical to
R, and with an associated valid-time periods of UP and NP, respectively,
are inserted into T. The update is performed only on NR1.

d) If BEGIN(P)< BEGIN(UP)≤ LAST(P) and LAST(UP)≥ LAST(P),
then replace the ending bound of P for row R with BEGIN(UP). Let NP
be a period of precision PP, such that BEGIN(NP) is BEGIN(UP) and
END(NP) is END(P). A new row NR, with column values identical to
R, and with an associated valid-time period of NP, is inserted into T. The
update is performed only on NR.

Note to proposal reader: If P and UP do not overlap, then do nothing.

18 Clause 12 Data manipulation

1) Insert this new Clause to SQL/Temporal immediately following Clause 11, “‘Pe-
riod manipulation rules”.

2) Insert the following new Subclause, “<select statement: single row>”, to
SQL/Temporal at the beginning of Clause 12, “Date manipulation”.

18.1 Subclause 12.2<select statement: single row>

Function

Retrieve values from a specified row of a table.

Format

<select statement: single row> ::=
[<time option>]
SELECT [<set quantifier>] <select list>
INTO <select target list>
<table expression>

Note to proposal reader: This adds an optional<time option>.

Syntax Rules

1. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in the<validtime option> that is contained in<time option>, then
each exposed<table name>, <query expression>, or<correlation name>
that is contained in the<table expression> without an intervening<from

724 SQL STANDARDIZATION AND BEYOND

clause> shall identify a table with valid-time support and with identical pre-
cisions P.

2. (Insert this SR) If VALIDTIME is specified in the<validtime option> that is
contained in the<time option> of a<query expression>Q that is contained
in the<table expression> of<select statement: single row>, then Q shall be
simply contained in a<from clause>.

3. (Insert this SR) Let T be the result of<select statement: single row>.
Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
the<validtime option> that is contained in<time option>, then T shall
be a table with valid-time support and with precision P. The precision
of <value expression> of the<validtime option> that is contained in
<time option> shall be P.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then

Case:

i) If <value expression> is specified in the<validtime option> of
<time option>, then T shall be a table with valid-time support and
with a precision of that of<value expression>.

ii) Otherwise, T shall be a table without valid-time support.

c) Otherwise, T shall be a table without valid-time support.

Note to proposal reader: Subclause 6.2 “<table reference>” restricts the
scope of column names in the<value expression> that is contained in the
<validtime option> that is contained in the<time option>.
Note to proposal reader: If NONSEQUENCED is specified, then the preci-
sion of the<value expression> that is contained in the<valid option> that
is contained in<time option> is arbitrary.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
the<validtime option> that is contained in<time option>, then the
result of<table expression> TE during each valid time granule TG of
precision P is the result of TE, in accordance with the General Rules of

ADDING VALID TIME TO SQL/TEMPORAL 725

Subclause 7.7, “<table expression>”, with each leaf generally under-
lying table with valid-time support with no intervening<from clause>
replaced with its state at valid time TG. If<value expression> VE is
specified in the<validtime option> that is contained in<time option>,
then for each row R resulting from the initial evaluation of TE,

Case:

i) If the value of VE and the valid-time period VP of R overlap, then
the resulting valid-time period of R is the result of
(VE P_INTERSECT VP).

ii) Otherwise, R is not included in the final result of TE.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
the the result of<table expression> TE is the result of TE, in accor-
dance with the General Rules of Subclause 7.7, “<table expression>”,
with each leaf generally underlying table with valid-time support with
no intervening<from clause> replaced with a table with no valid-time
support with rows with identical values for the columns. The descriptor
of that table is the same as the description of the table DT from which
it is derived, with the inclusion of a column descriptor whose column
name is VALIDTIME, whose data type is a<period type> with a pre-
cision of that of the valid-time period of DT, and whose ordinal position
is one greater than the degree of DT. The value of this additional column
for each row is the original valid-time period of the corresponding row
in DT. If <value expression> is specified in the<validtime option> of
<time option>, then the valid-time period of the row of the result has
the value of<value expression>.

c) Otherwise, the result of<table expression>TE is the result of TE, in ac-
cordance with the General Rules of Subclause 7.7, “<table expression>,
with each of its leaf generally underlying tables with valid-time support
with no intervening<from clause> replaced with its current valid-time
state.

18.2 Subclause 12.3<delete statement: positioned>

3) Insert this new Subclause to SQL/Temporal immediately following Subclause
12.2, “<select statement: single row>”.

Function

Delete a row of a table.

726 SQL STANDARDIZATION AND BEYOND

Format

<delete statement: positioned> ::=
[<time option>]
DELETE [FROM<table reference>]

WHERE CURRENT OF<cursor name>

Note to proposal reader: This augments the production for<delete statement:
positioned> with an additional, optional<time option> clause. For deletions and
updates, there are four cases:

1. DELETE

• works on anything

• when applied to a table with valid-time support, deletes for times from
now to the end of time

2. VALIDTIME DELETE

• works only on tables with valid-time support

• applies to the state at each time

3. VALIDTIME <period exp> DELETE

• like VALIDTIME DELETE, but only considers the times in<period
exp> (a simple example isVALIDTIME PERIOD ’[1995-01-01
- 1995-12-31]’ DELETE)

4. NONSEQUENCED VALIDTIME DELETE

• works only on tables with valid-time support

• acts like the table has an explicit timestamp column (in the<search
condition>, if present)

5. NONSEQUENCED VALIDTIME<period exp> DELETE

• like NONSEQUENCED VALIDTIME DELETE, but only considers the
times in<period exp>

End of note.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the<delete statement: posi-
tioned>.

2. (Insert this SR) If VALIDTIME is specified in<time option>, then T shall
be a table with valid-time support.

ADDING VALID TIME TO SQL/TEMPORAL 727

3. (Insert this SR) The precision of<value expression> that is contained in the
<validtime option> that is contained in<time option> shall be the precision
of T.

4. (Insert this SR) The scope of the<table reference> is the entire<delete
statement: positioned>.
Note to proposal reader: This SR is required because<time option> may
refer to columns from<table reference>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is specified in<time option>, then

Case:

i) If a <value expression> is specified in the<validtime option> of
<time option>, then the value of<value expression> is removed
from the valid-time period of the row, in accordance with Gen-
eral Rule 1 of Subclause 11.1, “Rules for period manipulation in
modification statements”.

ii) Otherwise, the row is marked for deletion.

b) Otherwise,

Case:

i) If T is a table with valid-time support, then the period from the
current timestamp to end of time in the precision of T is removed
from the valid-time period of the row, in accordance with Gen-
eral Rule 1 of Subclause 11.1, “Rules for period manipulation in
modification statements”.

ii) Otherwise, the row is marked for deletion.

18.3 Subclause 12.4<delete statement: searched>

4) Insert this new Subclause to SQL/Temporal immediately following Subclause
12.3, “<delete statement: positioned>”.

Function

Delete rows of a table.

728 SQL STANDARDIZATION AND BEYOND

Format

<delete statement: searched> ::=
[<time option>]
DELETE FROM<table reference>

[WHERE<search condition>]

Note to proposal reader: This augments the production for<delete statement:
searched> with an additional, optional clause.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the<delete statement: searched>.

2. (Insert this SR) If VALIDTIME is specified in<time option>, then T shall
be a table with valid-time support with precision P.

3. (Insert this SR) If VALIDTIME is specified in a<time option> of a<query
expression> Q that is contained in the<search condition> of <delete state-
ment: searched>, then Q shall be simply contained in a<from clause>.

4. (Insert this SR) The precision of<value expression> that is contained in the
<validtime option> that is contained in<time option> shall be P.

5. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in<correlation name> that is contained in the<search condition>
without an intervening<from clause> shall identify a table with valid-time
support and with precision P.

6. (Insert this SR) The scope of the<table reference> is the entire<delete state-
ment: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
the<validtime option> that is contained in<time option>, then let
PS be the set of those time granules TG of precision P for which the
<search condition> is satisfied, in accordance with General Rule 5 of
this Subclause, with each leaf generally underlying table with valid-
time support with no intervening<from clause> replaced with its state
at valid time TG.
Case:

ADDING VALID TIME TO SQL/TEMPORAL 729

i) If <value expression> VE is specified in the<valid option> of
<time option>, then for each maximally contiguous period MCP
in PS, if MCP and the value of VE overlap, then the result of
(MCP P_INTERSECT VE)
is removed from the valid-time period of the row, as well as from
the valid-time period of new rows that were inserted in the pro-
cessing of previous periods from PS for this row, as specified in
General Rule 1 of Subclause 11.1, “Rules for period manipulation
in modification statements”.

ii) Otherwise, for each maximally contiguous period MCP in PS,
MCP is removed from the valid-time period of the row, as well
as from the valid-time period of new rows that were inserted in the
processing of previous periods from PS for this row, as specified in
General Rule 1 of Subclause 11.1, “Rules for period manipulation
in modification statements”.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
the<search condition> SC is satisfied if SC is satisfied, in accordance
with General Rule 5 of this Subclause, when each leaf generally under-
lying table with valid-time support with no intervening<from clause>
is replaced with a table with no valid-time support with rows with iden-
tical values for the columns. The descriptor of that table is the same as
the description of the table DT from which it is derived, with the inclu-
sion of a column descriptor whose column name is VALIDTIME, whose
data type is a<period type> with a precision of that of the valid-time
period of DT, and whose ordinal position is one greater than the degree
of DT. The value of this additional column for each row is the original
valid-time period of the corresponding row in DT.
Case:

i) If a <value expression> is specified in the<validtime option>
that is contained in<time option> and the<search condition> is
satisfied, then the value of<value expression> is removed from
the valid-time period of the row, as specified in General Rule 1
of Subclause 11.1, “Rules for period manipulation in modification
statements”.

ii) Otherwise, if the<search condition> is satisfied, then the row is
marked for deletion.

c) Otherwise, the<search condition> SC is satisfied if SC is satisfied, in
accordance with General Rule 5 of this Subclause, when each of its leaf
generally underlying tables with valid-time support with no interven-
ing <from clause> is replaced with its current valid-time state. If the

730 SQL STANDARDIZATION AND BEYOND

<search condition> is satisfied for the relevant row and T is a table with
valid-time support, the period from the current timestamp to the end of
time in the precision of T is removed from the valid-time period of the
row, as specified in General Rule 1 of Subclause 11.1, “Rules for period
manipulation in modification statements”.

18.4 Subclause 12.5<insert statement>

5) Insert this new Subclause to SQL/Temporal immediately following Subclause
12.4, “<delete statement: searched>”.

Function

Create new rows in a table.

Format

No additional Format items.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the<insert statement>.

2. (Insert this SR) Let R be the result of<insert columns and source>.

3. (Insert this SR) If T is a table with valid-time support with precision P and if R
is a table with valid-time support, then R shall have a valid-time precision of P.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) If R is a table without valid-time support, then valid-time
support is added to each row of T, by associating with that row a valid-time
period from the current timestamp to the end of time with a precision of P.

18.5 Subclause 12.6<update statement: positioned>

6) Insert this new Subclause to SQL/Temporal immediately following Subclause
12.7, “<insert statement>”.

ADDING VALID TIME TO SQL/TEMPORAL 731

Function

Update a row of a table.

Format

<update statement: positioned> ::=
[<time option>]
UPDATE [<table reference>]

SET<set clause list>
WHERE CURRENT OF<cursor name>

Note to proposal reader: This adds an optional<time option>.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the<update statement: posi-
tioned>.

2. (Insert this SR) If VALIDTIME is specified in<time option>, then T shall
be a table with valid-time support with precision P.

3. (Insert this SR) The precision of<value expression> that is contained in the
<validtime option> that is contained in<time option> shall be P.

4. (Insert this SR) The scope of the<table reference> is the entire<update
statement: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is specified in<time option>,

Case:

i) If <value expression> is specified, then the valid-time period of
the row is updated for the value of the<value expression>, in ac-
cordance with General Rule 2 of Subclause 11.1, “Rules for period
manipulation in modification statements”.

ii) Otherwise, the update is performed on the row.

b) Otherwise,

732 SQL STANDARDIZATION AND BEYOND

Case:

i) If T is a table with valid-time support, then the valid-time period
of the row is updated for the period from the current timestamp
to the end of time in the precision of T, in accordance with Gen-
eral Rule 2 of Subclause 11.1, “Rules for period manipulation in
modification statements”.

ii) Otherwise, the update is performed on the row.

18.6 Subclause 12.7<update statement: searched>

7) Insert this new Subclause to SQL/Temporal immediately following Subclause
12.6, “<update statement: positioned>”.

Function

Update rows of a table.

Format

<update statement: searched> ::=
[<time option>]
UPDATE<table reference>

SET<set clause list>
[WHERE<search condition>]

Note to proposal reader: This adds an optional<time option>.

Syntax Rules

1. (Insert this SR) Let T be the subject table of the<update statement:
searched>.

2. (Insert this SR) If VALIDTIME is specified in<time option>, then T shall
be a table with valid-time support with precision P.

3. (Insert this SR) If VALIDTIME is specified in a<time option> of a<query
expression>Q that is contained in the<search condition> of <update state-
ment: searched>, then Q shall be simply contained in a<from clause>.

4. (Insert this SR) The precision of<value expression> that is contained in the
<validtime option> that is contained in<time option> shall be P.

5. (Insert this SR) If VALIDTIME is specified and NONSEQUENCED is not
specified in the<validtime option> that is contained in<time option>, then
each exposed<table name>, <query expression>, or <correlation name>

ADDING VALID TIME TO SQL/TEMPORAL 733

that is contained in the<search condition> without an intervening<from
clause> shall identify a table with valid-time support and with precision P.

6. (Insert this SR) The scope of the<table reference> is the entire<delete state-
ment: positioned>.

Access Rules

No additional Access Rules.

General Rules

1. (Insert this GR) Case:

a) If VALIDTIME is specified and NONSEQUENCED is not specified in
the<validtime option> that is contained in<time option>, then let
PS be the set of those valid time granules TG of precision P for which
the<search condition> is satisfied, in accordance with General Rule 5
of this Subclause, with each leaf generally underlying table with valid-
time support with no intervening<from clause> replaced with its state
at valid time TG.

Case:

i) If <value expression> VE is specified in the<valid option> of
<time option>, then for each maximally contiguous period MCP
in PS, if MCP and the value of VE overlap, then the valid-time
period of the row, as well as of new rows that were inserted in the
processing of previous periods from PS for this row, are updated
for the result of
(MCP P_INTERSECT VE),
in accordance with General Rule 2 of Subclause 11.1, “Rules for
period manipulation in modification statements”.

ii) Otherwise, for each maximally contiguous period MCP in PS, the
valid-time period of the row, as well as of new rows that were
inserted in the processing of previous periods from PS for this
row, are updated for MCP in accordance with General Rule 2 of
Subclause 11.1, “Rules for period manipulation in modification
statements”.

b) If NONSEQUENCED VALIDTIME is specified in<time option>, then
the<search condition> SC is satisfied if SC is satisfied, in accordance
with General Rule 5 of this Subclause, when each leaf generally under-
lying table with valid-time support with no intervening<from clause>

734 SQL STANDARDIZATION AND BEYOND

is replaced with a table with no valid-time support with rows with iden-
tical values for the columns. The descriptor of that table is the same as
the description of the table DT from which it is derived, with the inclu-
sion of a column descriptor whose column name is VALIDTIME, whose
data type is a<period type> with a precision of that of the valid-time
period of DT, and whose ordinal position is one greater than the degree
of DT. The value of this additional column for each row is the original
valid-time period of the corresponding row in DT.
Case:

i) If <value expression> is specified and the<search condition>
is satisfied, then the valid-time period of the row is updated for
the value of the<value expression>, in accordance with in Gen-
eral Rule 2 of Subclause 11.1, “Rules for period manipulation in
modification statements”.

ii) Otherwise, if the<search condition> is satisfied, then the update
is performed on the row.

c) Otherwise, the<search condition> SC is satisfied if SC is satisfied, in
accordance with General Rule 5 of this Subclause, when each of its leaf
generally underlying tables with valid-time support with no intervening
<from clause> is replaced with its current valid-time state.
Case:

i) If T is a table with valid-time support and the<search condition>
is satisfied, then the valid-time period of the row is updated for
the period from the current timestamp to the end of time, in the
precision of T, according to General Rule 2 of Subclause 11.1,
“Rules for period manipulation in modification statements”.

ii) Otherwise, if the<search condition> is satisfied, then the update
is performed on the row.

19 Clause 12 Information Schema and Definition Schema

19.1 Subclause 12 Information Schema

1) Insert the following new Table, “TABLES view”, to SQL/Temporal immediately
preceding Subclause 12.2, “Definition Schema”.

Subclause 12.1.1 TABLES view

Function

Identify the tables defined in this catalog that are accessible to a given user.

ADDING VALID TIME TO SQL/TEMPORAL 735

Definition

CREATE VIEW TABLES
AS SELECT TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, TABLE_TYPE,
VALIDTIME_SUPPORT, VALIDTIME_PRECISION

FROM DEFINITION_SCHEMA.TABLES
WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (SELECT TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME

FROM DEFINITION_SCHEMA.TABLE_PRIVILEGES
WHERE GRANTEE IN (’PUBLIC’, CURRENT_USER)
UNION
SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM DEFINITION_SCHEMA.COLUMN_PRIVILEGES
WHERE GRANTEE IN (’PUBLIC’,

CURRENT_USER))
AND TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PRECISION.

Leveling Rules

No additional Leveling Rules.

Subclause 12.1.2 VIEWS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.1,
“TABLES view”.

Function

Identify the viewed tables defined in this catalog that are accessible to a given user.

Definition

CREATE VIEW VIEWS
AS SELECT TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

CASE WHEN (TABLE_CATALOG,

736 SQL STANDARDIZATION AND BEYOND

TABLE_SCHEMA, CURRENT_USER)
IN (SELECT CATALOG_NAME,

SCHEMA_NAME,
SCHEMA_OWNER

FROM
DEFINITION_SCHEMA.SCHEMATA)

THEN VIEW_DEFINITION
ELSE NULL

END AS VIEW_DEFINITION,
CHECK_OPTION, IS_UPDATABLE,
VALIDTIME_SUPPORT, VALIDTIME_PRECISION

FROM DEFINITION_SCHEMA.VIEWS
WHERE (TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME)

IN (SELECT TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME

FROM TABLES)
AND TABLE_CATALOG

= (SELECT CATALOG_NAME
FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PRECISION.

Leveling Rules

No additional Leveling Rules.

Subclause 12.1.3 TABLE_CONSTRAINTS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.2,
“VIEWS view”.

Function

Identify the table constraints defined in this catalog that are owned by a given user.

Definition

CREATE VIEW TABLE_CONSTRAINTS
AS SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
CONSTRAINT_TYPE,

ADDING VALID TIME TO SQL/TEMPORAL 737

IS_DEFERRABLE, INITIALLY_DEFERRED,
VALIDTIME_SUPPORT, VALIDTIME_PERIOD

FROM DEFINITION_SCHEMA.TABLE_CONSTRAINTS
JOIN
DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))
WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PERIOD.

Leveling Rules

No additional Leveling Rules.

Subclause 12.1.4 ASSERTIONS view

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.1.3,
“TABLE_CONSTRAINTS view”.

Function

Identify the assertions defined in this catalog that are owned by a given user.

Definition

CREATE VIEW ASSERTIONS
AS SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA, CONSTRAINT_NAME,
IS_DEFERRABLE, INITIALLY_DEFERRED,
VALIDTIME_SUPPORT, VALIDTIME_PERIOD

FROM DEFINITION_SCHEMA.ASSERTIONS
JOIN
DEFINITION_SCHEMA.SCHEMATA S
ON ((CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA)

= (S.CATALOG_NAME, S.SCHEMA_NAME))
WHERE SCHEMA_OWNER = CURRENT_USER

AND CONSTRAINT_CATALOG
= (SELECT CATALOG_NAME

FROM INFORMATION_SCHEMA_CATALOG_NAME)

738 SQL STANDARDIZATION AND BEYOND

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PERIOD.

Leveling Rules

No additional Leveling Rules.

19.2 Subclause 12.2 Definition Schema

1) Insert the following new Table, “TABLES base table”, to SQL/Temporal imme-
diately following Subclause 12.2.1, “DATA_TYPE_DESCRIPTOR base table”.

Subclause 12.2.2 TABLES base table

Function

The TABLES table contains one row for each table including views. It effectively
contains a representation of the table descriptors.

Definition

CREATE TABLE TABLES
(
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT TABLE_TYPE_NOT_NULL NOT NULL,
CONSTRAINT TABLE_TYPE_CHECK

CHECK (TABLE_TYPE IN
(’BASE TABLE’, ’VIEW’,

’GLOBAL TEMPORARY’,
’LOCAL TEMPORARY’)),

CONSTRAINT CHECK_TABLE_IN_COLUMNS
CHECK ((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM COLUMNS)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN

ADDING VALID TIME TO SQL/TEMPORAL 739

(’STATE’,’NONE’)),
VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLES_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG,

TABLE_SCEMA, TABLE_NAME),

CONSTRAINT TABLES_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (TABLE_CATALOG, TABLE_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT TABLES_CHECK_NOT_VIEW
CHECK (NOT EXISTS

(SELECT TABLE_CATALOG,
TABLE_SCHEMA, TABLE_NAME

FROM TABLES
WHERE TABLE_TYPE = ’VIEW’
EXCEPT
SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM VIEWS))

)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PRECISION.

Description

1. The values of VALIDTIME_SUPPORT have the following meanings:

STATE The table being described has valid-time support.

NONE The table being described does not have valid-time support.

2. The value of VALIDTIME_PRECISION is the valid-time precision of the
table being described.

Subclause 12.2.3 VIEWS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.2,
“TABLES base table”.

Function

The VIEWS table contains one row for each row in the TABLES table with a TA-
BLE_TYPE of ’VIEW’. Each row describes the query expression that defines a

740 SQL STANDARDIZATION AND BEYOND

view. The table effectively contains a representation of the view descriptors.

Definition

CREATE TABLE VIEWS
(
TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
VIEW_DEFINITION INFORMATION_SCHEMA.CHARACTER_DATA,
CHECK_OPTION INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CHECK_OPTION_NOT_NULL NOT NULL
CONSTRAINT CHECK_OPTION_CHECK

CHECK (CHECK_OPTION IN
(’CASCADED’, ’LOCAL’, ’NONE’)),

IS_UPDATABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT IS_UPDATABLE_NOT_NULL NOT NULL
CONSTRAINT IS_UPDATABLE_CHECK

CHECK (IS_UPDATABLE IN
(’YES’, ’NO’)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA. CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN
(’STATE’,’NONE’)),

VALIDTIME_PRECISION INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT VIEWS_PRIMARY_KEY
PRIMARY KEY (TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME),

CONSTRAINT VIEWS_IN_TABLES_CHECK
CHECK ((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME
FROM TABLES
WHERE TABLE_TYPE = ’VIEW’)),

CONSTRAINT VIEWS_IS_UPDATABLE_CHECK_OPTION_CHECK
CHECK ((IS_UPDATABLE,

CHECK_OPTION) NOT IN

ADDING VALID TIME TO SQL/TEMPORAL 741

(VALUES (’NO’, ’CASCADED’),
(’NO’, ’LOCAL’)))

)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PRECISION.

Description

1. The values of VALIDTIME_SUPPORT have the following meanings:

STATE The view being described has valid-time support.

NONE The view being described does not have valid-time support.

2. The value of VALIDTIME_PRECISION is the valid-time precision of the
view being described.

Subclause 12.2.4 TABLE_CONSTRAINTS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.3,
“VIEWS base table”.

Function

The TABLE_CONSTRAINTS table has one row for each table constraint associ-
ated with a table. It effectively contains a representation of the table constraint
descriptors.

Definition

CREATE TABLE TABLE_CONSTRAINTS
(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_TYPE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT CONSTRAINT_TYPE_NOT_NULL NOT NULL
CONSTRAINT CONSTRAINT_TYPE_CHECK

CHECK (CONSTRAINT_TYPE IN
(’UNIQUE’, ’PRIMARY KEY’,

’FOREIGN KEY’, ’CHECK’)),

TABLE_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT

742 SQL STANDARDIZATION AND BEYOND

TABLE_CONSTRAINTS_TABLE_CATALOG_NOT_NULL NOT NULL,
TABLE_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER

CONSTRAINT
TABLE_CONSTRAINTS_TABLE_SCHEMA_NOT_NULL NOT NULL,

TABLE_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER
CONSTRAINT
TABLE_CONSTRAINTS_TABLE_NAME_NOT_NULL NOT NULL,

IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
TABLE_CONSTRAINTS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRE INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
TABLE_CONSTRAINTS_INITIALLY_DEFERRED_NOT_NULL
NOT NULL,

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

CHECK (VALIDTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’,’NONE’)),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT TABLE_CONSTRAINTS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME),

CONSTRAINT TABLE_CONSTRAINTS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE, INITIALLY_DEFERRED)

IN
(VALUES (’NO’, ’NO’),

(’YES’, ’NO’),
(’YES’, ’YES’))),

CONSTRAINT TABLE_CONSTRAINTS_CHECK_VIEWS
CHECK (TABLE_CATALOG <> ANY

(SELECT CATALOG_NAME FROM SCHEMATA)
OR
((TABLE_CATALOG,

TABLE_SCHEMA, TABLE_NAME) IN
(SELECT TABLE_CATALOG,

ABLE_SCHEMA, TABLE_NAME
FROM TABLES

ADDING VALID TIME TO SQL/TEMPORAL 743

WHERE TABLE_TYPE <> ’VIEW’))),

CONSTRAINT TABLE_CONSTRAINTS_UNIQUE_CHECK
CHECK (1 =

(SELECT COUNT (*)
FROM
(SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE IN

(’UNIQUE’, ’PRIMARY KEY’)
UNION ALL
SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM REFERENTIAL_CONSTRAINTS
UNION ALL
SELECT CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME

FROM CHECK_CONSTRAINTS) AS X
WHERE (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME)

= (X.CONSTRAINT_CATALOG,
X.CONSTRAINT_SCHEMA,
X.CONSTRAINT_NAME))),

CONSTRAINT UNIQUE_TABLE_PRIMARY_KEY_CHECK
CHECK (UNIQUE (SELECT TABLE_CATALOG,

TABLE_SCHEMA,
TABLE_NAME

FROM TABLE_CONSTRAINTS
WHERE CONSTRAINT_TYPE

= ’PRIMARY KEY’))
)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PERIOD.

744 SQL STANDARDIZATION AND BEYOND

Description

1. The values of VALIDTIME_SUPPORT have the following meanings:

SEQUENCED The table constraint being described was specified with VA-
LIDTIME and without NONSEQUENCED.

NONSEQUENCED The table constraint being described was specified with
NONSEQUENCED VALIDTIME.

NONE VALIDTIME was not specified in the table constraint being described.

2. The value of VALIDTIME_PERIOD is the value of the<value expression>
contained in the<validtime option> associated with the table constraint be-
ing described.

Subclause 12.2.5 ASSERTIONS base table

1) Insert this new Table to SQL/Temporal immediately following Subclause 12.2.4,
“TABLE_CONSTRAINTS base table”.

Function

The ASSERTIONS table has one row for each assertion. It effectively contains a
representation of the assertion descriptors.

Definition

CREATE TABLE ASSERTIONS
(
CONSTRAINT_CATALOG INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_SCHEMA INFORMATION_SCHEMA.SQL_IDENTIFIER,
CONSTRAINT_NAME INFORMATION_SCHEMA.SQL_IDENTIFIER,
IS_DEFERRABLE INFORMATION_SCHEMA.CHARACTER_DATA

CONSTRAINT
ASSERTIONS_IS_DEFERRABLE_NOT_NULL NOT NULL,

INITIALLY_DEFERRED INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT
ASSERTIONS_INITIALLY_DEFERRED_NOT_NULL NOT NULL,

CHECK_TIME INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT ASSERTIONS_CHECK_TIME_CHECK

CHECK (CHECK_TIME IN
(’IMMEDIATE’, ’DEFERRED’)),

VALIDTIME_SUPPORT INFORMATION_SCHEMA.CHARACTER_DATA
CONSTRAINT VALIDTIME_SUPPORT_CHECK

ADDING VALID TIME TO SQL/TEMPORAL 745

CHECK (VALIDTIME_SUPPORT IN
(’SEQUENCED’,’NONSEQUENCED’,’NONE’)),

VALIDTIME_PERIOD INFORMATION_SCHEMA.CARDINAL_NUMBER,

CONSTRAINT ASSERTIONS_PRIMARY_KEY
PRIMARY KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME),

CONSTRAINT ASSERTIONS_FOREIGN_KEY_CHECK_CONSTRAINTS
FOREIGN KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA,
CONSTRAINT_NAME)

REFERENCES CHECK_CONSTRAINTS,

CONSTRAINT ASSERTIONS_FOREIGN_KEY_SCHEMATA
FOREIGN KEY (CONSTRAINT_CATALOG,

CONSTRAINT_SCHEMA)
REFERENCES SCHEMATA,

CONSTRAINT ASSERTIONS_DEFERRED_CHECK
CHECK ((IS_DEFERRABLE,

INITIALLY_DEFERRED) IN
VALUES ((’NO’, ’NO’),

(’YES’, ’NO’),
(’YES’, ’YES ’)))

)

Note to proposal reader: This adds two columns: VALIDTIME_SUPPORT and
VALIDTIME_PERIOD.

Description

1. The values of VALIDTIME_SUPPORT have the following meanings:

SEQUENCED The assertion being described was specified with VALID-
TIME and without NONSEQUENCED.

NONSEQUENCED The assertion being described was specified with NON-
SEQUENCED VALIDTIME.

NONE VALIDTIME was not specified in the assertion being described.

2. The value of VALIDTIME_PERIOD is the value of the<value expression>

746 SQL STANDARDIZATION AND BEYOND

contained in the<validtime option> associated with the assertion being de-
scribed.

20 Acknowledgments

This change proposal was written by the four authors listed on the title page. The
first author was supported in part by NSF grant ISI-9202244 and by grants from
IBM, the AT&T Foundation, and DuPont. The second and third authors were sup-
ported in part by the Danish Natural Science Research Council, grant 9400911.
In addition, the third author was supported by grants 11–1089–1 and 11–0061–1,
also provided by the Danish Natural Science Research Council. The document was
produced in part during visits by the first author to Aalborg University and by the
second author to the University of Arizona.

This change proposal presents an improved and extended version of some of
the constructs in TSQL2, which was designed by a committee consisting of Richard
T. Snodgrass (chair), Ilsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis
E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Käfer,
Nick Kline, Krishna Kulkanri, T.Y. Cliff Leung, Nikos Lorentzos, John F. Roddick,
Arie Segev, Michael D. Soo and Suryanarayana M. Sripada. Their participation in
the TSQL2 design was critical.

We thank Curtis Dyreson for helpful comments, and Hugh Darwen and Mike
Sykes for their suggested changes. Jim Melton provided extensive help on all of the
proposed language extensions; the authors greatly appreciate the time Jim took to
explain the intricacies of writing change proposals. Jim and Krishna Kulkarni also
provided corrections to a later draft. This revision benefited from suggestions from
Mike Sykes and Hugh Darwin. Finally, we thank the other ANSI and ISO members
for their suggestions.

A Formal Definition of Compatibility Properties

We have adopted the convention that a data model consists of two components,
namely a set of data structures and a language for querying the data structures [15].
Notationally, M = (DS, QL) then denotes a data model,M, consisting of a data
structure component,DS, and a query language component,QL. Thus,DS is the set
of all databases, schemas, and associated instances, expressible byM, andQL is the
set of all queries inM that may be formulated on some database inDS. We usedb
to denote a database andq to denote a query.

ADDING VALID TIME TO SQL/TEMPORAL 747

A.1 Upward Compatibility

One data model is syntactically upward compatible with another data model if all
data structures and legal query expressions of the latter model are contained in the
former model.

Definition 1 (syntactical upward compatibility) LetM1 = (DS1,QL1) andM2 =
(DS2,QL2) be two data models. ModelM1 is syntactically upward compatible
with modelM2 if

• ∀db2 ∈ DS2 (db2 ∈ DS1) and

• ∀q2 ∈ QL2 (q2 ∈ QL1). 2

When transitioning from one system to a new system, it is important that the
new data model contains the existing data model. If that is the case, all existing
application code will remain syntactically correct.

For a query expressionq and an associated databasedb, both legal elements
of QL andDS of data modelM = (DS,QL), define〈〈q(db)〉〉M as the result
of evaluatingq on db in data modelM. With this notation, we can precisely de-
scribe the requirements to a new model that guarantee uninterrupted operation of
all application code. In addition to the previous syntactical requirement, we add the
requirement that all queries expressible in the existing model must evaluate to the
same results in the existing and new models.

Definition 2 (upward compatibility) LetM1 = (DS1,QL1) andM2 = (DS2,

QL2) be two data models. ModelM1 is upward compatiblewith modelM2 if

• M1 is syntactically upward compatible withM2, and

• ∀db2 ∈ DS2 (∀q2 ∈ QL2 (〈〈q2(db2)〉〉M2 = 〈〈q2(db2)〉〉M1)). 2

This concept captures the conditions that need to be satisfied in order to allow
a smooth transition from a current system, with data modelM2, to a new system,
with data modelM1.

A.2 Temporal Upward Compatibility

Intuitively, the requirement is that a queryq will return the same result on an asso-
ciated snapshot databasedb as on the counterpart of the database with valid-time
support,T (db). Further, modifications should not affect this. The precise defini-
tions given next is explained in the following.

Definition 3 (temporal upward compatibility) LetMT = (DST ,QLT) andMS =
(DSS,QLS) be temporal and snapshot data models, respectively. Also, letT be an
operator that changes the support of a table without temporal support to the table
with valid-time support with the same explicit attributes. Next, letu1, u2, . . . , un

748 SQL STANDARDIZATION AND BEYOND

denote modification operations. With these definitions, modelMT is temporal up-
ward compatiblewith modelMS if

• MT is upward compatible withMS and

• ∀dbS ∈ DSS (∀qS ∈ QLS (〈〈qS(un(un−1(. . . (u1(dbS) . . .))))〉〉MS

= (〈〈qS(un(un−1(. . . (u1(T (dbS))))))〉〉MT
))). 2

Assume that, when moving to the new system, some of the existing (snapshot)
tables are transformed into tables with valid-time support, usingALTER, without
changing the existing set of (explicit) attributes. This transformation is denoted by
T in the definition. Then the same sequence of modification statements, denoted
by theui in the definition, is applied to the snapshot and the temporal databases.
Next, consider any query in the snapshot model. Such queries are also allowed in
the temporal model, due to upward compatibility being required. The definition
states that any such query evaluated on the resulting temporal database, using the
semantics of the temporal query language, yields the same result as when evaluated
on the resulting snapshot database, now using the semantics of the snapshot query
language.

A.3 Sequenced Valid Semantics

We first define the notion of sequenced valid semantics among query languages.
We user and rvt for denoting an instance without and with valid-time support,
respectively. Similarly,db anddbvt are sets of table instances without and with
valid-time support, respectively.

The definition uses a valid-timeslice operatorτ
Mv,M
c (e.g., [9, 1]) which takes

as arguments a table with valid-time supportrvt (in the data modelMvt) and a
valid-time granulec and returns a table without temporal supportr (in the data
modelM) containing all rows valid at timec. In other words,r consists of all rows
of rvt whose valid time includes the time granulec, but without the valid time. This
operator was already introduced in Section 7.1; here, we simply have emphasized
the models involved by using them as superscripts.

Definition 4 (sequenced valid semantics) LetM = (DS,QL) be a snapshot rela-
tional data model, and letMvt = (DSvt ,QLvt) be a valid-time data model. Data
modelMvt is sequenced valid with respect todata modelM if

∀q ∈ QL (∃qvt ∈ QLvt (∀dbvt ∈ DSvt (∀c (τMv,M
c (qvt (dbvt))

= q(τMv,M
c (dbvt)))))). 2

Graphically, sequenced valid semantics implies that for all query expressions
q in the snapshot model, there must exist a queryqvt in the temporal model so that
for all dbvt and for allc, the commutativity diagram shown in Figure 9 holds.

ADDING VALID TIME TO SQL/TEMPORAL 749

?

-

?

-

dbvt

τ
Mv,M
c (dbvt)

qvt (dbvt)

q(τ
Mv,M
c (dbvt)) = τMv,M

c (qvt (dbvt))

qvt

q

timeslices atc timeslice atc

Figure 9: sequenced valid semantics of queryqvt with respect to queryq at a
chrononc

We require that each queryq in the snapshot model has a counterpartqvt in
the temporal model that is sequenced valid with respect to it. Observe thatqvt being
sequenced valid with respect toq poses no syntactical restrictions onqvt . It is thus
possible forqvt to be quite different fromq, andqvt might be very involved. This is
undesirable, as we would like the temporal model to be a straight-forward extension
of the snapshot model. Consequently, we require thatqvt andq be syntactically
identical.

Definition 5 (syntactically identical sequenced-valid extension) LetM = (DS,

QL) be a snapshot data model, and letMvt = (DSvt ,QLvt) be a valid-time data
model. Data modelMvt is a syntactically identical sequenced-valid extensionof
modelM if both of the following conditions hold.

1. Data modelMvt is sequenced valid with respect to data modelM and

2. Each query inQLvt that is sequenced valid with respect to a query inQL is
syntactically identical to that query. 2

If the valid-time data model treats tables with valid-time support as such, it
is possible to use the same syntactical constructs (i.e.,qvt andq are identical) for
querying tables with and without valid-time support. In this case, the type of support
determines the meaning of the syntactical construct.

However, the identity property is incompatible with also requiring temporal
upward compatibility. This latter property requires that a query from the snapshot
model, when applied to a database with valid-time support, returns a table without
temporal support. The property just defined requires the snapshot query to return a
table with valid-time support when evaluated on the database with valid-time sup-
port.

Thus, not both of these properties can be satisfied by a temporal data model
and the snapshot model it generalizes.

Our solution is to slightly relax the identity requirement, leading to the prop-
erty defined below. With that property satisfied, the temporal queries may still

750 SQL STANDARDIZATION AND BEYOND

exploit the programmers’ intuition about the snapshot query language as much as
possible.

Definition 6 (syntactically similar sequenced-valid extension) LetM = (DS,QL)
be a snapshot data model, and letMvt = (DSvt ,QLvt) be a valid-time data model.
Data modelMvt is asyntactically similar sequenced-valid extensionof modelM if
both of the following conditions hold.

1. Data modelMvt is sequenced valid with respect to data modelM and

2. For each queryqvt in QLvt that is sequenced valid with respect to a queryq

in QL, qvt = S1qS2, whereS1 andS2 are text strings that depend onQLvt

but not onqvt . 2

This property is consistent with temporal upward compatibility; the language de-
signer simply has to select at least one ofS1 or S2 as being non-empty. For the
addition to SQL/Temporal proposed here,S1 is simply “VALIDTIME ”, andS2 is
the empty string.

A.4 Properties of SQL/Temporal

We have developed a formal denotational semantics for SQL/Temporal, in terms of
the semantics of SQL3. This semantics allowed us to prove the following important
properties.

• SQL/Temporal is upward compatible with SQL3.

• SQL/Temporal is temporally upward compatible with SQL3.

• TheVALIDTIME reserved word prepended to theSELECTstatement ensures
(syntactically similar) sequenced valid semantics [1, 3].

• SQL/Temporal is temporally ungrouped [4].

References

[1] Böhlen, M. H. and Marti R.On the Completeness of Temporal Database
Query Languages, in Proceedings of the First International Conference on
Temporal Logic. D. M. Gabbay and H. J. Ohlbach, eds. Lecture Notes in Arti-
ficial Intelligence 827. Springer-Verlag, July 1994, pp. 283-300.

[2] Böhlen, M. H.Valid-Time Integrity Constraints, Aalborg University, October,
1995, 21 pages.

[3] Böhlen, M. H., C. S. Jensen and R. T. Snodgrass.Evaluating the Completeness
of TSQL2, in Proceedings of the VLDB International Workshop on Tempo-
ral Databases. Ed. J. Clifford and A. Tuzhilin. VLDB. Springer Verlag, Sep.
1995.

ADDING VALID TIME TO SQL/TEMPORAL 751

[4] Clifford, J., A. Croker and A. Tuzhilin.On Completeness of Historical Rela-
tional Query Languages. ACM Transactions on Database Systems, 19, No. 1,
Mar. 1994, pp. 64–116.

[5] Jackson, M. A.System Development. Prentice-Hall International Series in
Computer Science. Prentice-Hall International, Inc., 1983.

[6] Jensen, C. S. and R. Snodgrass.Temporal Specialization and Generalization.
IEEE Transactions on Knowledge and Data Engineering, 6, No. 6 (1994), pp.
954–974.

[7] Melton, J. (ed.)SQL/Foundation. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3
DBL-MCI-007.)

[8] Melton, J. (ed.)SQL/Temporal. July, 1996. (ISO/IEC JTC 1/SC 21/WG 3
DBL-MCI-0012.)

[9] Schueler, B.Update Reconsidered, in Architecture and Models in Data Base
Management Systems. Ed. G. M. Nijssen. North Holland Publishing Co.,
1977.

[10] Snodgrass, R. T., S. Gomez and E. McKenzie.Aggregates in the Temporal
Query Language TQuel. IEEE Transactions on Knowledge and Data Engi-
neering, 5, Oct. 1993, pp. 826–842.

[11] Snodgrass, R. T. and H. Kucera.Rationale for Temporal Support in SQL3.
1994. (ISO/IEC JTC1/SC21/WG3 DBL SOU-177, SQL/MM SOU-02.)

[12] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos.Proposal for a
new SQL Part—Temporal. 1994. (ISO/IEC JTC1/SC21/WG3 DBL RIO-75,
X3H2-94-481.)

[13] Snodgrass, R. T. (editor)The Temporal Query Language TSQL2. Kluwer Aca-
demic Pub., 1995.

[14] Steiner, A. and M. H. Böhlen. The TimeDB Temporal Data-
base Prototype, Version 1.07, November, 1996. Available at
http://www.iesd.auc.dk/general/DBS/tdb/TimeCenter or
at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.-
tar.gz .

[15] Tsichritzis, D.C. and F.H. Lochovsky.Data Models. Software Series. Prentice-
Hall, 1982.

[16] Yourdon, E.Managing the System Life Cycle. Yourdon Press, 1982.

