
25
Transitioning Temporal Support in

TSQL2 to SQL3
Richard T. Snodgrass, Michael H. Böhlen,
Christian S. Jensen, and Andreas Steiner

This document summarizes the proposals before the SQL3 committees to al-
low the addition of tables with valid-time and transaction-time support into
SQL/Temporal, and explains how to use these facilities to migrate smoothly
from a conventional relational system to one encompassing temporal support.
Initially, important requirements to a temporal system that may facilitate such
a transition are motivated and discussed. The proposal then describes the lan-
guage additions necessary to add valid-time support to SQL3 while fulfilling
these requirements. The constructs of the language are divided into four lev-
els, with each level adding increased temporal functionality to its predecessor.
A prototype system implementing these constructs on top of a conventional
DBMS is publicly available.

615

616 SQL STANDARDIZATION AND BEYOND

1 Introduction

We introduce constructs that have been submitted to the ISO SQL3 committee as
change proposals to SQL/Temporal [8] to add valid-time and transaction-time sup-
port to SQL3 [14, 15]. These constructs are variants of those first defined in TSQL2
[13].

While temporal database research has a long history (cf. [17]), momentum
for a language designed with input from a substantial part of the community first
arose at a 1993 temporal infrastructure workshop [9]. The TSQL2 committee was
subsequently formed in July, 1993 in response to a general invitation sent to the
community. This committee consisted of Richard T. Snodgrass, Ilsoo Ahn, Gad
Ariav, Don Batory, James Clifford, Curtis E. Dyreson, Christian S. Jensen, Ramez
Elmasri, Fabio Grandi, Wolfgang Käfer, Nick Kline, Krishna Kulkarni, Ting Y. Cliff
Leung, Nikos Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo, and Sury-
narayana M. Sripada. The committee produced a preliminary language specification
the following January, which appeared in theACM SIGMOD Record[10]. Based
on responses to that specification, changes were made to the language, and the final
language specification and 28 commentaries were made available via anonymous
FTP in early October, 1994. A book describing the language and examining in de-
tail the design decisions [13] was released at the VLDB International Workshop on
Temporal Databases in September, 1995.

Richard Snodgrass started working with the ANSI and ISO SQL3 commit-
tees in late 1994. The first step was to propose a new part to SQL3, termed
SQL/Temporal [12]. This was formally approved in July, 1995. Jim Melton agreed
to edit this new part.

Discussions then commenced on adding valid-time support to SQL/Temporal.
While the ANSI committee was supportive of the overall approach, there were sev-
eral concerns voiced about the TSQL2 design. The major objections were as fol-
lows.

1. Rows in TSQL2 are timestamped with temporal elements [4, 7], which are
sets of periods, each of which extends from a starting instant to an ending
instant. Temporal elements are not bounded in size, which means that all
timestamped rows will also be unbounded in size.

2. Duplicates are not supported: TSQL2 disallows value-equivalent rows, and
temporal element timestamps, being sets, also do not permit duplicates. The
analogy is with the relational algebra, which is also based on sets, and hence
does not accommodate duplicates.

3. A table with temporal support is returned with a conventionalSELECTstate-
ment. To get a table without temporal support, theSNAPSHOTkeyword is
required. The committee felt that a conventional query should return a table

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 617

without temporal support.

4. There was no formal semantics for TSQL2.

5. There existed no implementation of the proposed constructs.

6. The keywordsVALID andTRANSACTIONwere judged to be too generic.

After many discussions with the committee and with others, the following
solutions were agreed upon. This process took well over a year to complete. These
modifications are reasonable, as the TSQL2 design and the change proposals had
differing objectives.

1. Rows would be timestamped with periods rather than temporal elements. This
enabled timestamps to be bounded in size.

2. Value-equivalent rows would be permitted, so that duplicates could be accom-
modated.

3. SNAPSHOTwas discarded. A conventional query returns a table with no tem-
poral support (this was later generalized to the highly desirable property of
temporal upward compatibility [1]). TheVALID clause was moved to before
theSELECTand later generalized to support sequenced queries (which were
developed as part of the ATSQL design [3]).

4. A formal semantics for the language was developed [3].

5. Michael Böhlen and Andreas Steiner produced a public domain prototype im-
plementation. Andreas has continued to evolve this prototype to be consistent
with the change proposals.

6. The keywords were changed toVALIDTIME andTRANSACTIONTIME.

Many other smaller changes were made to the language proposals and to
the wording of the change proposals to address concerns of the committee mem-
bers. The full story, including the change proposals themselves, can be found at
FTP.cs.arizona.edu/tsql/tsql2/sql3 .

The change proposals have been unanimously approved by the ANSI SQL3
committee (ANSI X3H2) and are under consideration by the ISO SQL3 committee
(ISO/IEC JTC 1/SC 21/WG 3 DBL).

In this paper, we first outline a four-level approach for the integration of time.
The language extensions are fairly minimal. Each level is described via a quick tour
consisting of a set of examples. These examples have been tested in a prototype
which is publicly available [16]. We examine valid-time support first, then consider
transaction-time and bitemporal support.

2 The Problem

Most databases store time-varying information. For such databases, SQL is of-
ten the language of choice for developing applications that utilize the information

618 SQL STANDARDIZATION AND BEYOND

in these databases. However, users also realize that SQL does not provide ade-
quate support for temporal applications. To illustrate this, the reader is invited to
attempt to formulate the following straightforward, realistic statements in SQL3.
An intermediate SQL programmer can express all of them in SQL for a non-time-
varying database in perhaps five minutes. However, even SQL experts find these
same queries challenging to do in severalhourswhen time-varying data is taken
into account.

• An employee table has five columns:name, eno , street , city , and
birthdate . The relatedsalary table has two columns:eno andamount
(as a monthly salary). We then store historical information in both tables by
adding a column,When, of data typePERIOD. Columnsalary.eno is a
foreign key foremployee.eno . This means that at each point in time, the
integer value in thesalary.eno column also occurs in theeno column of
employee at the same time. This cannot be expressed via SQL’s foreign
key constraint, which does not take time into account. The reader is invited to
attempt to formulate this constraint instead as an assertion.

• Consider the query “List those employees who have no salary.” This can eas-
ily be expressed in SQL, usingEXCEPTor NOT EXISTS, on the original
table. Things are just a little harder with theWhencolumn; aWHEREpred-
icate is required to extract the current employees and current salaries. Now
formulate the query “List those employees who have no salary, and indicate
when.” EXCEPTandNOT EXISTSwill not work, because they do not con-
sider time. This simple temporal query is challenging even to SQL experts.

• Consider the query “Give the number of employees making over $5,000 in
each city.” Again, this is a simple query in SQL on the original table. We
invite the reader to formulate the query “Givethe history ofthe number of em-
ployees making over $5,000 in each city” on the table with theWhencolumn.
This query is extremely difficult without temporal support in the language.
One approach is to expand each row in both tables into all the days that it
was valid, then count up the employees for each day. However, we would
like a solution that did not force such an expansion, and also used the periods
directly, as that approach is likely to be more efficient than a “point-based”
expansion would be.

• Now formulate the modification “Give Therese a salary of $6,000 for 1994.”
This modification is difficult in SQL because only a portion of many validity
periods needs be changed, with the information outside of 1994 retained.

Most users know only too well that while SQL is an extremely powerful lan-
guage for writing queries on the current state, the language provides much less help
when writing temporal queries, modifications, and constraints.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 619

3 Outline of the Solution

The problem with formulating these SQL statements is due in large part to the ex-
treme difficulty of specifying in SQL the correct values of the timestamp column(s)
of the result. The solution is to allow the DBMS to compute these values, moving
the complexity from the application code into the DBMS. With the language exten-
sions proposed here, the above queries can all be easily written by an intermediate
SQL programmer in a few minutes. We provide these SQL statements here; the
language constructs will be explained and exemplified in detail in the remainder of
the paper.

Both tables with valid-time support and temporal referential integrity can be
specified using theVALIDTIME reserved word.

CREATE TABLE employee
(ename VARCHAR(12),

eno INTEGER VALIDTIME PRIMARY KEY,
street VARCHAR(22), city VARCHAR(10),
birthday DATE)

AS VALIDTIME PERIOD(DATE)

CREATE TABLE salary
(eno INTEGER VALIDTIME PRIMARY KEY

VALIDTIME REFERENCES employee,
amount INTEGER)

AS VALIDTIME PERIOD(DATE)

Here we indicate that the table has valid-time support through “AS VALIDTIME
PERIOD(DATE)” and that the integrity constraints (primary key, referential in-
tegrity) are to hold for each point in time (day) through “VALIDTIME PRIMARY
KEY” and “VALIDTIME REFERENCES.”

For the query “List those employees who have no salary,” we are interested
only in the current employees. We use temporal upward compatibility to extract
this information from the historical information stored in the employee table.

SELECT ename
FROM employee
WHERE eno NOT IN (SELECT eno FROM salary)

This results in a conventional table, with one column.
We use sequenced valid semantics in the query “List those employees who

had no salary, and when.”

VALIDTIME SELECT ename
FROM employee
WHERE eno NOT IN (SELECT eno FROM salary)

620 SQL STANDARDIZATION AND BEYOND

The added “VALIDTIME ” reserved word specifies that the query is to be evaluated
at each point in time. At some times, an employee may not have a salary, whereas
at other times, the employee may have a salary. A one-column table results, but
now with valid-time support (i.e., the periods of time when each employee did not
have a salary are included).

The query “Give the number of highly paid employees in each city” is easy,
given temporal upward compatibility.

SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

Again, we just get the current count for each city, i.e., the number of employees
now in each city. To extract “the history ofthe number of highly-paid employees in
each city,” only a simple change is required.

VALIDTIME SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

For each city, a time-varying count will be returned.
Modifications work in similar ways. The modification “Give Therese a salary

of $6,000 for 1994” can be expressed by followingVALIDTIME with a period
expression.

VALIDTIME PERIOD ’[1994-01-01 - 1994-12-31]’
UPDATE salary
SET amount = 6000
WHERE eno IN

(SELECT eno
FROM employee
WHERE ename = ’Therese’)

Here again, we exploit our knowledge of SQL to first write the update ignoring
time, then change it in minor ways to take account of time.

These statements are reminiscent of the kinds of SQL statements that appli-
cation programmers are called to write all the time. The potential for increased
productivity is dramatic. Statements that previously took hours to write, or were
simply too difficult to express, can take only minutes to write with the extensions
discussed here.

We now return to the important question of migrating legacy databases. In the
next section, we formulate several requirements of SQL/Temporal to allow graceful
migration of applications from conventional to temporal databases.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 621

4 Migration

The potential users of temporal database technology are enterprises with applica-
tions1 that need to manage potentially large amounts of time-varying information.
These include financial applications such as portfolio management, accounting, and
banking; record-keeping applications, including personnel, medical records, and
inventory; and travel applications such as airline, train, and hotel reservations and
schedule management. It is most realistic to assume that these enterprises are al-
ready managing time-varying data and that the temporal applications are already in
place and working. Indeed, the uninterrupted functioning of applications is likely
to be of vital importance.

For example, companies usually have applications that manage the personnel
records of their employees. These applications manage large quantities of time-
varying data, and they may benefit substantially from built-in temporal support in
the DBMS [11]. Temporal queries that are shorter and more easily formulated are
among the potential benefits. This leads to improved productivity, correctness, and
maintainability.

This section explores the problems that may occur when migrating database
applications from an existing to a new DBMS, and it formulates a number of re-
quirements [1] to the new DBMS that must be satisfied in order to avoid different
potential problems when migrating. We proceed by identifying four successively
more general levels of queries and modifications.

4.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guarantee
that all application code without modification will work with the new system exactly
with the same functionality as with the existing system.

To explore the relationship between nontemporal and temporal data and que-
ries, we employ a series of figures that demonstrate increasing query and update
functionality. In Fig. 1, a conventional table is denoted with a rectangle. The current
state of this table is the rectangle in the upper-right corner. Whenever a modifica-
tion is made to this table, the previous state is discarded; hence, at any time only the
current state is available. The discarded prior states are denoted with dashed rect-
angles; the right-pointing arrows denote the modification that took the table from
one state to the next state.

When a queryq is applied to the current state of a table, a resulting table is
computed, shown as the rectangle in the bottom right corner. While this figure only

1We use “database application” non-restrictively, for denoting any software system that uses a DBMS as
a standard component.

622 SQL STANDARDIZATION AND BEYOND

q

...

Time

Figure 1: Level 1 evaluates an SQL3 query over a table without temporal support
and returns a table also without temporal support

concerns queries over single tables, the extension to queries over multiple tables is
clear.

Upward compatibility states that (1) all instances of tables in SQL3 are in-
stances of tables in SQL/Temporal, (2) all SQL3 modifications to tables in SQL3 re-
sult in the same tables when the modifications are evaluated according to SQL/Tem-
poral semantics, and (3) all SQL3 queries result in the same tables when the queries
are evaluated according to SQL/Temporal.

By requiring that SQL/Temporal is a strict superset (i.e., onlyaddinglanguage
constructs), it is relatively easy to ensure that SQL/Temporal is upward compatible
with SQL3.

Throughout, we provide examples of the various levels. In Sec. 5, we show
these examples expressed in SQL/Temporal.

Example 1 A company wishes to computerize its personnel records, so it creates
two tables, an employee table and a monthly salary table. Every employee must
have a salary. These tables are populated. A view identifies those employees with
a monthly salary greater than $3500. Then employee Therese is given a 10% raise.
Since the salary table has no temporal support, Therese’s previous salary is lost.
These schema changes and queries can be easily expressed in SQL3. 2

4.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the
data in one or more tables, the table can be defined with or altered to add valid-

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 623

time support (e.g., by using theCREATE TABLE. . . AS VALID orALTER . . .

ADD VALIDstatements). The distinction of a table having valid-time support is
orthogonal to the many other distinctions already present in SQL/Foundation, in-
cluding “base table” versus “derived table,” “created table” versus “declared table,”
“global table” versus “local table,” “grouped table” versus ungrouped table, or-
dered table versus table with implementation-dependent order, “subtable” versus
“supertable,” and “temporary table” versus “permanent table.” These distinctions
can be combined, subject to stated rules. For example, a table can be simultaneously
a temporary table, a table of degree 1, an inherently updatable table, a viewed table
and a table with valid-time support. In most of the SQL3 specification, it does not
matter what distinctions apply to the table in question. In those few places where it
does matter, the syntax and general rules specify the distinction.

It is undesirable to be forced to change the application code that accesses the
table without temporal support that is replaced by a table with valid-time support.
We formulate a requirement that states that the existing applications on tables with-
out temporal support will continue to work with no changes in functionality when
the tables they access are altered to add valid-time support. Specifically,tempo-
ral upward compatibilityrequires that each query will return the same result on an
associated snapshot database as on the temporal counterpart of the database. Fur-
ther, this property is not affected by modifications to those tables with valid-time
support.

Temporal upward compatibility is illustrated in Fig. 2. When valid-time sup-
port is added to a table, the history is preserved, and modifications over time are
retained. In this figure, the state to the far left was the current state when the table
was made temporal. All subsequent modifications, denoted by the arrows, result in
states that are retained, and thus are solid rectangles. Temporal upward compatibil-
ity ensures that the states will have identical contents to those states resulting from
modifications of the table without valid-time support.

The queryq is an SQL3 query. Due to temporal upward compatibility the
semantics of this query must not change if it is applied to a table with valid-time
support. Hence, the query only applies to the current state, and a table without
temporal support results.

Example 2 We make both the employee and salary tables temporal. This means
that all information currently in the tables is valid from today on. We add an em-
ployee. This modification to the two tables, consisting of two SQL3INSERT state-
ments, respects temporal upward compatibility. That means it is valid from now on.
Queries and views on these tables with newly-added valid-time support work ex-
actly as before. The SQL3 query to list where high-salaried employees live returns
the current information. Constraints and assertions also work exactly as before,
applying to the current state and checked on database modification. 2

624 SQL STANDARDIZATION AND BEYOND

q

...

Time

Figure 2: Level 2 evaluates an SQL3 query over a table with valid-time support and
returns a table with similar support

It is instructive to consider temporal upward compatibility in more detail.
When designing information systems, two general approaches have been advocated.
In the first approach, the system design is based on thefunctionof the enterprise that
the system is intended for (the “Yourdon” approach [19]); in the second, the design
is based on thestructureof the reality that the system is about (the “Jackson” ap-
proach [5]). It has been argued that the latter approach is superior because structure
may remain stable when the function changes while the opposite is generally not
possible. Thus, a more stable system design, needing less maintenance, is achieved
when adopting the second design principle. This suggests that the data needs of
an enterprise are relatively stable and only change when the actual business of the
enterprise changes.

Enterprises currently use non-temporal database systems for database man-
agement, but that does not mean that enterprises manage only non-temporal data.
Indeed, temporal databases are currently being managed in a wide range of ap-
plications, including, e.g., academic, accounting, budgeting, financial, insurance,
inventory, legal, medical, payroll, planning, reservation, and scientific applications.
Temporal data may be accommodated by non-temporal database systems in sev-
eral ways. For example, a pair of explicit time attributes may encode a valid-time
interval associated with a row.

Temporal database systems offer increased user-friendliness and productivity,
as well as better performance, when managing time-varying data, since they are op-
timized for such data. The typical situation, when replacing a non-temporal system
with a temporal system, is one where the enterprise is not changing its business, but

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 625

wants the extra support offered by the temporal system for managing its temporal
data. Thus, it is atypical for an enterprise to suddenly desire to record temporal in-
formation where it previously recorded only snapshot information. Such a change
would be motivated by a change in the business.

The typical situation is rather more complicated. The non-temporal database
system is likely to already manage temporal data, which is encoded using tables
without temporal support, in an ad hoc manner. When adopting the new system, up-
ward compatibility guarantees that it is not necessary to change the database schema
or application programs. However, without changes, the benefits of the added valid-
time support are also limited. Only when defining new tables or modifying existing
applications, can the new temporal support be exploited. The enterprise then grad-
ually benefits from the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant,
for several reasons. First, it provides an appealing intuitive notion of a table with
valid-time support: the semantics of queries and modification are retained from
tables without temporal support; the only difference is that intermediate states are
also retained. Second, in those cases where the original table contained no historical
information, temporal upward compatibility affords a natural means of migrating to
temporal support. In such cases, not a single line of the application need be changed
when the table is altered to be temporal. Third, conventional tables that do contain
temporal information and for which temporal support has been added can still be
queried and modified by conventional SQL3 statements in a consistent manner.

4.3 Sequenced Valid Extensions

The requirements covered so far have been aimed at protecting investments in
legacy code and at ensuring uninterrupted operation of existing applications when
achieving substantially increased temporal support. Upward compatibility guar-
antees that (non-historical) legacy application code will continue to work with-
out change when migrating, and temporal upward compatibility in addition allows
legacy code to coexist with new temporal applications following the migration.

The requirement in this section aims at protecting the investments in program-
mer training and at ensuring continued efficient, cost-effective application develop-
ment upon migration. This is achieved by exploiting the fact that programmers are
likely to be comfortable with SQL.

Sequenced valid semanticsstates that SQL/Temporal must offer, for each
query in SQL3, a temporal query that “naturally” generalizes this query, in a specific
technical sense. In addition, we require that the SQL/Temporal query be syntacti-
cally similar to the SQL3 query that it generalizes.

With this requirement satisfied, SQL3-like SQL/Temporal queries on tables
with temporal support have semantics that are easily (“naturally”) understood in

626 SQL STANDARDIZATION AND BEYOND

terms of the semantics of the SQL3 queries on tables without temporal support.
The familiarity of the similar syntax and the corresponding, naturally extended se-
mantics makes it possible for programmers to immediately and easily write a wide
range of temporal queries, with little need for expensive training.

Fig. 3 illustrates this property. We have already seen that an SQL3 query
q on a table with valid-time support applies the standard SQL3 semantics on the
current state of that table, resulting in a table without temporal support. This figure
illustrates a new query,q ′, which is an SQL/Temporal query. Queryq ′ is applied
to the table with valid-time support (the sequence of states across the top of the
figure), and results in a table also with valid-time support, which is the sequence of
states across the bottom.

q

...

=

...

q’ q q q q

Figure 3: Level 3 evaluates an SQL/Temporal query over a table with valid-time
support and returns a table with similar support

We would like the semantics ofq ′ to be easily understood by the SQL3 pro-
grammer. Satisfying sequenced semantics along with the syntactical similarity re-
quirement makes this possible. Specifically, the meaning ofq ′ is precisely that of
applying SQL3 queryq on each state of the input table (which must have temporal
support), producing a state of the output table for each such application. And when
q ′ also closely resemblesq syntactically, temporal queries are easily formulated
and understood. To generate queryq ′, one needs only prepend the reserved word
VALIDTIME to queryq.

Example 3 We ask for the history of the monthly salaries paid to employees. Ask-
ing that question for the current state (i.e., what is the salary for each employee) is
easy in SQL3; let us call this queryq. To ask for the history, we simply prepend
the keywordVALIDTIME to q to generate the SQL/Temporal query. Sequenced
semantics allows us to do this for all SQL3 queries. So let us try a harder one: list
the history ofthose employees for which no one makes a higher salary and lives in a

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 627

different city. Again the problem reduces to expressing the SQL3 query for the cur-
rent state. We then prependVALIDTIME to get the history. Sequenced semantics
also works for views, integrity constraints and assertions. 2

These concepts also apply to sequencedmodifications, illustrated in Fig. 4. A
valid-time modification destructively modifies states as illustrated by the curved ar-
rows. As with queries, the modification is applied on a state-by-state basis. Hence,
the semantics of the SQL/Temporal modification is a natural extension of the SQL
modification statement that it generalizes.

u

...

=u’ u u u u

Figure 4: Level 3 also evaluates an SQL/Temporal modification on a table with
valid-time support

Example 4 It turns out that a particular employee never worked for the company.
That employee is deleted from the database. Note that if we use an SQL3DELETE
statement, temporal upward compatibility requires deleting the information only
from the current (and future) states. By prepending the reserved wordVALIDTIME
to theDELETEstatement, we can remove that employee from every state of the
table.

Many people misspell the town Tucson as “Tuscon,” perhaps because the
name derives from an American Indian word in a language no longer spoken.
To modify the current state to correct this spelling requires a simple SQLUP-
DATEstatement; let’s call this statementu. To correct the spelling in all states,
both past and possibly future, we simply prepend the reserved wordVALIDTIME
to u. 2

4.4 Non-Sequenced Queries and Modifications

In a sequenced query, the information in a particular state of the resulting table
with valid-time support is derived solely from information in the state at that same
time of the source table(s). However, there are many reasonable queries that require
other states to be examined. Such queries are illustrated in Fig. 5, in which each
state of the resulting table requires information from possibly all states of the source
table.

In this figure, two tables with valid-time support are shown, one consisting of
the states across the top of the figure, and the other, the result of the query, con-

628 SQL STANDARDIZATION AND BEYOND

q

...

......

Figure 5: Level 4 evaluates a non-sequenced SQL/ Temporal query over a table
with valid-time support and returns a table with similar support

sisting of the states across the bottom of the figure. A single queryq performs the
possibly complex computation, with the information usage illustrated by the down-
ward pointing arrows. Whenever the computation of a single state of the result table
may utilize information from a state at a different time, that query is non-sequenced.
Such queries are more complex than sequenced queries, and they require new con-
structs in the query language.

Example 5 The query “Who was given salary raises?” requires locating two con-
secutive times, in which the salary of the latter time was greater than the salary of
the former time, for the same employee. Hence, it is a non-sequenced query.2

The concept of non-sequenced queries naturally generalizes to modifications.
Non-sequenced modificationsdestructively change states, with information retrieved
from possibly all states of the original table. In Fig. 6, each state of the table with
valid-time support is possibly modified, using information from possibly all states
of the table before the modification. Non-sequenced modifications include future
modifications.

...

Figure 6: Level 4 also evaluates a non-sequenced SQL/Temporal modification on a
table with valid-time support

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 629

Example 6 We wish to give employees a 5% raise if they have never had a raise
before. This is not a temporally upward compatible modification, because the mod-
ification of the current state uses information in the past. For the same reason, it is
not a sequenced update. So we must use a slightly more involved SQL/Temporal
UPDATEstatement. In fact, only the predicate “if they never had a raise” need be
nonsequenced; the rest of the update can be temporally upward compatible.2

Views and cursors can also be nonsequenced.

Example 7 We wish to define a snapshot view of thesalary table in which the
row’s timestamp period appears as an explicit column. We can also define a valid-
time view on this snapshot view that uses the explicit period column as an implicit
timestamp. 2

It is important to note that nonsequenced queries are very different from se-
quenced queries. In the latter, the query language is providing a temporal semantics;
in the former, the query language interprets the timestamp as simply another col-
umn. For the user, this means that in nonsequenced queries (modifications, asser-
tions, etc.) the period timestamps must be manipulated explicitly. The operations,
such as join and relational difference, are performed with respect to the periods
themselves, rather than on the individual states of the tables with temporal support.
Reserved words are used to syntactically differentiate temporally upward compati-
ble queries, sequenced queries, and non-sequenced queries, each of which applies
a distinct semantics.

4.5 Summary

In this section, we have formulated three important requirements that SQL/ Tem-
poral should satisfy to ensure a smooth transition of legacy application code. We
review each in turn.

Upward compatibility and temporal upward compatibility guarantee that legacy
application code needs no modification when migrating and that new temporal ap-
plications may coexist with existing applications. They are thus aimed at protecting
investments in legacy application code.

The requirement that there be a sequenced temporal extension of all existing
statements ensures that the extended query language is easy to use for program-
mers familiar with the existing query language. The requirement thus helps protect
investment in programmer training. It also turns out that this property makes the
semantics of tables with valid-time support straight-forward to specify and enables
a wide range of implementation alternatives [14].

These requirements induce four levels of temporal functionality, to be defined
in SQL/Temporal.

630 SQL STANDARDIZATION AND BEYOND

Level 1 This lowest level captures the minimum functionality necessary for the
query language to satisfy upward compatibility with SQL3. Thus, there is
support for legacy SQL3 statements, but there are no tables with valid-time
support and no temporal queries. Put differently, the functionality at this level
is identical to that of SQL3.

Level 2 This level adds to the previous level solely by allowing for the presence
of tables with valid-time support. The temporal upward compatibility re-
quirement is applicable to this subset of SQL/Temporal. This level adds no
new syntax for queries or modifications—only queries and modifications with
SQL3 syntax are possible.

Level 3 The functionality of Level 2 is enhanced with the possibility of giving se-
quenced temporal functionality to queries, views, constraints, assertions, and
modifications on tables with valid-time support. This level of functionality
is expected to provide adequate support for many applications. Starting at
this level, temporal queries exist, so SQL/Temporal must be a sequenced-
consistent extension of SQL3.

Level 4 Finally, the full temporal functionality normally associated with a tem-
poral language is added, specifically, non-sequenced temporal queries, asser-
tions, constraints, views, and modifications. These additions include temporal
queries and modifications that have no syntactic counterpart in SQL3.

5 Tables with Valid-Time Support in SQL3

This section informally introduces the new constructs of SQL/Temporal. These
constructs are an improved and extended version of those in the consensus tem-
poral query language TSQL2 [13]. The improvements concern guaranteeing the
properties listed in Sec. 4, to support easy migration of legacy SQL3 application
code [2]. The extensions concern views, assertions, and constraints (specifically
temporal upward compatible and sequenced and non-sequenced extensions) that
were not considered in the original TSQL2 design.

The presentation is divided into four levels, where each successive level adds
temporal functionality. The levels correspond to those discussed informally in the
previous section. Throughout, the functionality is exemplified with input to and cor-
responding output from a prototype system [16]. The reader may find it instructive
to execute the sample statements on the prototype.

5.1 Level 1: Upward Compatibility

Level 1 ensures upward compatibility (see Fig. 1), i.e., it guarantees that legacy
SQL3 statements evaluated over databases without temporal support return the re-

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 631

sult dictated by SQL3.

SQL3 Extensions

Obviously there are no syntactic extensions to SQL3 at this level.

A Quick Tour

The following statements are executed on January 1, 1995. A company creates two
tables, an employee table and a monthly salary table. Every employee must have a
salary. These schema changes can be easily expressed in SQL3.

CREATE TABLE employee
(ename VARCHAR(12), eno INTEGER PRIMARY KEY,

street VARCHAR(22), city VARCHAR(10),
birthday DATE)

CREATE TABLE salary
(eno INTEGER PRIMARY KEY REFERENCES employee,

amount INTEGER)

CREATE ASSERTION emp_has_sal CHECK
(NOT EXISTS (SELECT *

FROM employee AS e
WHERE NOT EXISTS (SELECT *

FROM salary AS s
WHERE e.eno = s.eno)))

These tables are populated.

INSERT INTO employee
VALUES (’Therese’, 5873, ’Bahnhofstrasse 121’,

’Zurich’, DATE ’1961-03-21’)
INSERT INTO employee
VALUES (’Franziska’, 6542, ’Rennweg 683’,

’Zurich’, DATE ’1963-07-04’)

INSERT INTO salary VALUES (6542, 3200)
INSERT INTO salary VALUES (5873, 3300)

A view identifies those employees with a monthly salary greater than $3500.

CREATE VIEW high_salary AS
SELECT * FROM salary WHERE amount > 3500

Employee Therese is given a 10% raise. Since the salary table has no temporal
support, Therese’s previous salary is lost.

632 SQL STANDARDIZATION AND BEYOND

UPDATE salary s
SET amount = 1.1 * amount
WHERE s.eno = (SELECT e.eno

FROM employee e
WHERE e.ename = ’Therese’)

COMMIT

5.2 Level 2: Temporal Upward Compatibility

Level 2 ensures temporal upward compatibility as depicted in Fig. 2. Temporal
upward compatibility is straightforward for queries. They are evaluated over the
current state of a database with valid-time support.

SQL3 Extensions

The create table statement is extended to define tables with valid-time support.
Specifically, this statement can be followed by the clause “AS VALIDTIME<date-
time field>”, e.g., “AS VALIDTIME PERIOD(DATE).” This specifies that the
table has valid-time support, with states indexed by particular days. The alter table
statement is extended to permit valid-time support to be added to a table without
such support or dropped from a table with valid-time support.

A table with valid-time support is conceptually a sequence of states indexed
with valid-time granules at the specified granularity. This is the view of a table
with valid-time support adopted in temporal upward compatibility and sequenced
semantics. At a more specific logical level, a table with valid-time support isalsoa
collection of rows associated with valid-time periods.

Indeed, our definition of the semantics of the addition to SQL/Temporal being
proposed satisfies temporal upward compatibility and sequenced semantics.

Quick Tour: Part 2

The following statements are executed on February 1, 1995.

ALTER TABLE salary ADD VALIDTIME PERIOD(DATE)
ALTER TABLE employee ADD VALIDTIME PERIOD(DATE)

The following statements are typed in the next day (February 2, 1995).

INSERT INTO employee
VALUES(’Lilian’, 3463, ’46 Speedway’,

’Tuscon’, DATE ’1970-03-09’)
INSERT INTO salary VALUES(3463, 3400)
COMMIT

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 633

The employee table contains the following rows. (In these examples, we
used open-closed (”[. . .) ”) for periods.)

ename eno street city birthday
Therese 5873 Bahnhofstrasse 121 Zurich 1961-03-21 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tuscon 1970-03-09 . . .

Valid
. . . [1995-02-01 - 9999-12-31)
. . . [1995-02-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31)

Note that the valid time extends to theend of time, which in SQL3 is the largest
date.

Thesalary table contains the following rows.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
5873 3630 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

We continue, still on February 2. Tables, views, and queries act like before,
because temporal upward compatibility is satisfied. To find out where the high-
salaried employees live, use the following.

SELECT ename, city
FROM high_salary AS s, employee AS e
WHERE s.eno = e.eno

Evaluated over the current state, this returns the employee Therese, in Zürich.

Assertions and referential integrity act like before, applying to the current
state. The following transaction will abort due to (1) a violation of thePRIMARY
KEYconstraint, (2) a violation of theemp_has_sal assertion and (3) a referential
integrity violation, respectively.

INSERT INTO employee
VALUES (’Eric’, 3463, ’701 Broadway’,

’Tucson’, DATE ’1988-01-06’)
INSERT INTO employee
VALUES (’Melanie’, 1234, ’701 Broadway’,

’Tucson’, DATE ’1991-03-08’)
INSERT INTO salary VALUES(9999, 4900)
COMMIT

634 SQL STANDARDIZATION AND BEYOND

5.3 Level 3: Sequenced Language Constructs

Level 3 adds syntactically similar, sequenced counterparts of existing queries, mod-
ifications, views, constraints, and assertions (see Fig. 3). Sequenced SQL/ Temporal
queries produce tables with valid-time support. The state of a result table at each
time is computed from the state of the underlying table(s) at the same time, via the
semantics of the contained SQL3 query. In this way, users are able to express tem-
poral queries in a natural fashion, exploiting their knowledge of SQL3. Temporal
views, assertions and constrains can likewise be naturally expressed.

SQL3 Extensions

Temporal queries, modifications, views, assertions, and constraints are signaled by
the reserved wordVALIDTIME . This reserved word can appear in a number of
locations.

Derived table in a from clause In the from clause, one can prependVALID -
TIME to a<query expression>.

View definition Temporal views can be specified, with sequenced semantics.

Assertion definition A sequenced assertion applies to each of the states of the
underlying table(s). This is in contrast to a snapshot assertion, which is only
evaluated on the current state. In both cases, the assertion is checked before a
transaction is committed.

Table and column constraints When specified withVALIDTIME , such con-
straints must apply to each state of the table with valid-time support.

Cursor expression Cursors can range over tables with valid-time support.

Single-row select Such a select can return a row with an associated valid time.

Modification statements When specified withVALIDTIME , the modification
applies to each state comprising the table with valid-time support.

In all cases, theVALIDTIME reserved word indicates that sequenced semantics is
to be employed.

An optional period expression afterVALIDTIME specifies that the valid-time
period of each row of the result is intersected with the value of the expression.
This allows one to restrict the result of a select statement, cursor expression, or
view definition to a specified period, and to restrict the time for which assertion
definitions, table constraints and column constraints are checked.

Quick Tour: Part 3

We evaluate the following statements on March 1, 1995.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 635

PrependingVALIDTIME to anySELECTstatement evaluates that query on
all states, in a sequenced fashion. The first query provides the history of the monthly
salaries paid to employees. This query is constructed by first writing the snapshot
query, then prependingVALIDTIME .

VALIDTIME SELECT ename, amount
FROM salary AS s, employee AS e
WHERE s.eno = e.eno

This evaluates to the following.

ename amount Valid
Franziska 3200 [1995-02-01 - 9999-12-31)
Therese 3630 [1995-02-01 - 9999-12-31)
Lilian 3400 [1995-02-02 - 9999-12-31)

List those for which no one makes a higher salary in a different city, over all
time.

VALIDTIME SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city)

This gives the following result.

ename Valid
Therese [1995-02-01 - 9999-12-31)
Franziska [1995-02-01 - 1995-02-02)

Therese is listed because the only person in a different city, Lilian, makes a lower
salary. Franziska is listed because for that one day, there was no one in a different
city (Lilian did not join the company until February 2).

The reserved wordVALIDTIME specifies that the semantics of the query to
which it is prepended is a sequenced semantics. Conceptually the query is evaluated
independently on every state of the underlying tables (cf. Fig. 3). This ensures that
the user’s intuition about SQL carries over to sequenced queries and modifications.

A formal semantics for sequenced queries has been developed [14, 3]. While
Fig. 3 provides the meaning of sequenced queries in terms ofstates, the formal
semantics is expressed in terms of manipulations on the period timestamps of the
underlying tables with valid-time support.

We then create a temporal view, similar to the non-temporal view defined
earlier. In fact, the only difference is the use of the reserved wordVALIDTIME .

636 SQL STANDARDIZATION AND BEYOND

CREATE VIEW high_salary_history AS
VALIDTIME SELECT * FROM salary WHERE s.salary > 3500

Finally, we define a temporal column constraint.

ALTER TABLE salary
ADD VALIDTIME CHECK (amount > 1000 AND amount < 12000)
COMMIT

Rather than being checked on the current state only, this constraint is checked on
each state of thesalary table. This is useful to restrictretroactivechanges [6],
i.e., changes to past states andpredictivechanges, i.e., changes to future states. This
constraint is satisfied for all states in the table.

Sequenced modifications are similarly handled. To remove employee number
5873 for all states of the database, we use the following statement.

VALIDTIME DELETE FROM employee WHERE eno = 5873
VALIDTIME DELETE FROM salary WHERE eno = 5873
COMMIT

To correct the common misspelling of Tucson, we use the following state-
ment.

VALIDTIME UPDATE employee
SET city = ’Tucson’
WHERE city = ’Tuscon’
COMMIT

This updates all incorrect values, at all times, including the past and future. Lillian’s
city is thus corrected.

5.4 Level 4: Non-Sequenced Language Constructs

Level 4 accounts for non-sequenced queries (see Fig. 5) and non-sequenced mod-
ifications (see Fig. 6). Many useful queries and modifications are in this category.
However, their semantics is necessarily more complicated than that of sequenced
queries, because non-sequenced queries cannot exploit that useful property. In-
stead, they must support the formulation of special-purpose user-defined temporal
relationships between implicit timestamps, datetime values expressed in the query,
and stored datetime columns in the database.

Nonsequenced SQL/Temporal queries can produce tables with or without
valid-time support, depending on whether the valid-time period of the resulting
rows is provided in the query. The state of a result table, if a table is without valid-
time support, or the state of a result table at each time, if a table has valid-time
support, is computed from potentially all of the states of the underlying table(s), at
any time. The semantics are quite simple. A nonsequenced evaluation treats a table

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 637

with valid-time support as a table without temporal support, but with an additional
column containing the timestamp. We again emphasize that this semantics is quite
different from temporally upward compatible semantics (where the query is evalu-
ated only on the current state) and from sequenced semantics (where the query is
effectively evaluated on each state independently).

SQL3 Extensions

Nonsequenced valid queries are signaled by the new reserved wordNONSE-
QUENCEDpreceding the reserved wordVALIDTIME . This applies analogously to
nonsequenced modifications, views, assertions, and constraints. This reserved word
can appear in a number of locations.

Derived table in a from clause In the from clause, one can prepend
NONSEQUENCED VALIDTIMEto a<query expression>. This results in
a table without temporal support, and is the means of removing the valid-time
support of a table.

View definition Nonsequenced views can be specified.

Assertion definition A nonsequenced assertion applies to the underlying table(s),
considered as snapshot tables with an additional explicit timestamp column.
This is in contrast to a snapshot assertion, which is only evaluated on the
current state. In both cases, the assertion is checked before a transaction is
committed.

Table and column constraints When specified with NONSEQUENCED
VALIDTIME , such constraints apply to the table with the valid timestamp
treated as an explicit column.

Cursor expression Cursors can range over the result of a nonsequenced select.

Single-row select A nonsequenced single-row select will return a row without
temporal support, even when evaluated over tables with valid-time support.

Modification statements When specified withNONSEQUENCED VALIDTIME,
the modification applies to the table considered as a snapshot table.

In all cases, theNONSEQUENCEDreserved word indicates that nonsequenced se-
mantics is to be employed.

The syntax of a<query expression> is extended to the following.{ {
NONSEQUENCED

}
VALIDTIME

{
<value expression>

} }
<query expression>

An optional period expression afterNONSEQUENCED VALIDTIMEspeci-
fies the valid-time period of each row of the result, and thus renders the resulting
table to have valid-time support. This enables a table without temporal support to
be converted into a table with valid-time support within a query or other statement.

638 SQL STANDARDIZATION AND BEYOND

For modification statements, the period expression afterVALIDTIME speci-
fies the temporal scope of the modification: the times at which the modification is
to be applied.

The value expression “VALIDTIME(<correlation name>) ” is available; it
evaluates to the valid-time period of the row associated with the correlation or table
name. This is required because valid-time periods of tables with valid-time support
are not explicit columns (the alternative violates temporal upward compatibility).

The following quick tour provides examples of these constructs.

Quick Tour: Part 4

This quick tour starts with the database as it was when we last left it, in the previous
quick tour. Theemployee table has the following contents.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid
. . . [1995-02-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31)

Thesalary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 9999-12-31)

A period expression afterVALIDTIME specifies the temporal scope of the
result. List those who were employed sometime during the first six months.

VALIDTIME PERIOD ’[1995-01-01 - 1995-07-01)’
SELECT ename FROM employee

This returns the following table.

ename Valid
Franziska [1995-02-01 - 1995-07-01)
Lilian [1995-02-02 - 1995-07-01)

On April 1, 1995, we give Lilian a 5% raise, starting immediately. This is a
temporally upward compatible modification, and so is already expressible in SQL.

UPDATE salary
SET amount = 1.05 * amount
WHERE eno = (SELECT S.eno

FROM salary AS S, employee as E
WHERE ename = ’Lilian’ AND E.eno = S.eno)

COMMIT

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 639

This results in the followingsalary table.

eno amount Valid
6542 3200 [1995-02-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

To determine who was given salaryraises, we must simultaneously consider
two consecutive states of thesalary table, before and after the raise. This requires
a nonsequenced query.

NONSEQUENCED VALIDTIME SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2)

MEETSensures that the valid-time period associated withS1 is immediately fol-
lowed by the valid-time period associated withS2. Since the valid-time period of a
row is not in an explicit column (as this would violate temporal upward compatibil-
ity), VALIDTIME() is used to extract the associated valid-time period. The result
is a table without temporal support, becauseNONSEQUENCEDis not followed by a
period expression.

ename
Lilian

If we instead wish to get back a table with valid-time support, i.e., “Who was given
salary raises, and when did they receive the higher salary?”, we place a<value
expression> after VALIDTIME to specify when each resulting row is valid. Our
first try is the following, in which the<value expression> extracts the valid time-
stamp ofS2.

NONSEQUENCED VALIDTIME VALIDTIME(S2) SELECT ename
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2)

Because an expression is associated withNONSEQUENCED VALIDTIME, the re-
sult will be a table with valid-time support, with a valid timestamp of the value of
the timestamp ofS2. However, this is not quite correct, because the period expres-
sion followingVALIDTIME can only mention the columns of the following select
statement, and the timestamp ofS2 is not available. So we put the value in the
select list and use an enclosing (sequenced) select statement to get rid of this extra
column.

640 SQL STANDARDIZATION AND BEYOND

VALIDTIME SELECT ename
FROM (NONSEQUENCED VALIDTIME S2valid

SELECT ename, VALIDTIME(S2) AS S2valid
FROM employee AS E, salary AS S1, salary AS S2
WHERE E.eno = S1.eno AND E.eno = S2.eno

AND S1.amount < S2.amount
AND VALIDTIME(S1) MEETS VALIDTIME(S2)) AS S

The inner query evaluates to two columns,ename andS2valid . TheNONSE-
QUENCED VALIDTIMEincludes a<value expression>, specifying that a table
with valid-time support is desired. The valid timestamp of each row is the same as
the value of theS2valid column. The outer query just projects out theename
column, retaining the valid timestamp. This query has the following result.

ename Valid
Lilian [1995-04-01 - 9999-12-31)

If we had desired the time when the person had received thelowersalary, we would
simply specifyVALIDTIME(S1) instead.

This query is admittedly more complex to specify than the sequenced queries
given in the previous section. In nonsequenced queries the user is doing all the work
of manipulating the timestamps, whereas in sequenced queries, the DBMS handles
the timestamps automatically, freeing the user from this concern. The reason that
nonsequenced queries are included is that some (very useful) queries cannot be
expressed using the sequenced semantics, the query just given being one example.

Following VALIDTIME with a period expression in a modification (whether
sequenced or not) specifies the temporal scope of the modification. Two applica-
tions of this are retroactive and future changes. Assume it is now May 1, 1995.
Franziska, employee 6542, will be taking a leave of absence the last half of the
year.

VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM salary
WHERE eno = 6542

VALIDTIME PERIOD ’[1995-07-01 - 1996-01-01)’
DELETE FROM employee
WHERE eno = 6542

COMMIT

Thesalary table now has the following contents.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 641

eno amount Valid
6542 3200 [1995-02-01 - 1995-07-01)
6542 3200 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Theemployee table has the following contents.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid
. . . [1995-02-01 - 1995-07-01)
. . . [1996-01-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31)

Note that these deletions split single periods into two, with a lapse between them.
Many modifications are greatly simplified in this way. Also note that previously
specified sequenced valid referential integrity and other constraints and assertions
must apply to each state. Hence, if the firstDELETEwas performed, but not the
second, theCOMMITwill abort because theemp_has_sal constraint is violated
for certain states, such as the one on August 1, 1995.

The period expression followingVALIDTIME is also allowed for assertions
and constraints. Assume that no employee may make less than 3000 during 1996.

CREATE ASSERTION salary_check
VALIDTIME PERIOD ’[1996-01-01 - 1997-01-01)’ CHECK

(NOT EXISTS (SELECT *
FROM salary
WHERE amount < 3000))

This is a sequenced assertion, and thus applies separately to each state in 1996.
Nonsequenced assertions and constraints apply to all states at once. To assert that
there is only one employee with a particular name, we use the following constraint
within theemployee table definition.

CONSTRAINT unique_name UNIQUE (ename)

This is interpreted with temporal upward compatible semantics, and so applies only
to the current state. If all we do is temporal upward compatible modifications, this
will be sufficient. However, if we perform future updates, violations may be missed.
To always check all states, a sequenced constraint is used.

CONSTRAINT unique_name_per_time VALIDTIME UNIQUE (ename)

This will ensure that at any time, each ename value is unique.

642 SQL STANDARDIZATION AND BEYOND

To ensure that each ename is unique,across all states simultaneously, a non-
sequenced constraint is required.

CONSTRAINT unique_name_over_all_time
NONSEQUENCED VALIDTIME UNIQUE (ename)

The aboveemployee table satisfies the first two constraints, but not the third (the
nonsequenced one), because there are two rows with an ename of Franziska.

As with VALIDTIME , NONSEQUENCED VALIDTIMEcan appear in a from
clause. To give employees a 5% raise if they never had a raise before, we first write
a temporal upward compatible modification (i.e., withoutVALIDTIME) to give the
raise.

UPDATE salary AS S
SET amount = 1.05 * amount

We can augment this statement to use a non-sequenced query in the from clause to
look for raises in the past.

UPDATE salary AS S
SET amount = 1.05 * amount
WHERE NOT EXISTS

(SELECT *
FROM (NONSEQUENCED VALIDTIME

SELECT *
FROM salary AS S1, salary AS S2
WHERE S1.amount < S2.amount

AND VALIDTIME(S1) MEETS VALIDTIME(S2)
AND S1.eno = S.eno) AS S3

)
AND S.eno = S3.eno

COMMIT

The NOT EXISTSwas added. Assume that the update was entered on June 1,
1995. The followingsalary table results.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

Since the update is evaluated with temporal upward compatible semantics, it changes
the salary for valid times after June 1.

Finally, we wish to define a snapshot view of thesalary table in which the
row’s timestamp appears as an explicit column, herewhen.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 643

CREATE VIEW snapshot_salary (eno, amount, when) AS
NONSEQUENCED VALIDTIME
SELECT S.*, VALIDTIME(S) FROM salary AS S

Coming around full circle, we can define a valid-time view onsnapshot_salary
that uses the explicit columnvalidtime as an implicit timestamp.

CREATE VIEW temporal_salary (eno, amount) AS
VALIDTIME SELECT eno, amount
FROM (NONSEQUENCED VALIDTIME when

SELECT * FROM snapshot_salary AS S) AS S2

This conversion can also be applied within queries and cursors.

6 Transaction-Time Support

Transaction time identifies when data was asserted in the database. If transaction
time is supported, the states of the database at all previous points of time are retained
and modifications are append-only.

Unlike valid time, transaction time cannot be entirely simulated with tables
with explicit timestamp columns. The reason is that tables with transaction-time
support areappend-only: they grow monotonically. Specifically, while the query
functionality can be simulated on tables with no temporal support, in the same way
that valid-time query functionality can be translated into queries on tables with no
temporal support, there is no way to restrict the user to modifications that ensure the
table is append-only. While one can revoke permission to useDELETE, it is still
possible for the user to corrupt the transaction timestamp via database updates and
insertions. This means that the user can never be sure that what the table says was
stored at some time in the past was actually in the table at that time. The only way
to ensure the consistency of the data is to have the DBMS maintain the transaction
timestamps automatically.

Many applications need to keep track of the past states of the database, often
for audit traceability requirements. Changes are not allowed on the past states;
that would prevent secure auditing. Instead, compensating transactions are used to
correct errors.

When an error is encountered, often the analyst will look at the state of the
database at a previous point in time to determine where and how the error occurred.

However, SQL-92 (nor the current SQL3 draft) does not support such modifi-
cations or queries well. The following example will illustrate the problems.

• Assume that we wish to keep track of the changes and deletions of theem-
ployee table. If standard SQL was used, this table would have six columns:
ename, eno , street , city , birthdate , andWhen(aPERIODindicat-
ing when the row was valid). To know when rows are inserted and (logically)

644 SQL STANDARDIZATION AND BEYOND

deleted, we add two more columns,InsertTime andDeleteTime , both
of the data typeTIMESTAMP. Of course, adding these two columns breaks the
referential integrity constraint betweensalary.eno andemployee.eno .
The reader is invited to write this referential integrity constraint to take into
account the three time columns.

• We ask “How many highly paid employees have been in each city?” This
query is quite complex to formulate in SQL.

• It turns out that one of the cities shows an unreasonable number of highly-paid
current employees (more than 25). When was the error introduced? Is this
inconsistency in the database widespread? How long has the database been
incorrect? The query “When did we think that there were many highly-paid
employees in Tuscon?” provides an initial answer, but is also very difficult to
express in SQL.

These queries are very challenging, even for SQL experts, when time is in-
volved.

Modifications are even more of a problem. A logical deletion must be imple-
mented as an update and an insertion, because we do not want to change the pre-
viously stored information. However, there is no way of preventing an application
from inadvertently corrupting past states (by incorrectly altering the values of the
InsertTime or DeleteTime columns), or a white-collar criminal from intentionally
“changing history” to cover up his tracks.

The solution is to have the DBMS maintain transaction time automatically,
so that the integrity of the previous states of the database is preserved. The query
language can also help out, by making it easy to write queries and modifications.

With the small syntactic additions proposed here, transaction time can be eas-
ily added.

ALTER TABLE employee ADD TRANSACTIONTIME

Because the DBMS is maintaining transaction time for us, for this table, we do not
have to worry about the integrity of the previous states. The DBMS simply would
not let us modify past states.

The previously specified sequenced valid referential integrity still applies, al-
ways on the current state of the database. No rephrasing of this integrity constraint
is necessary.

The query “How many highly paid employees have been in each city?” asks
for the history in valid time of the current transaction-time state. Hence, it is partic-
ularly easy to specify, by exploiting transaction-time upward compatibility.

VALIDTIME SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 645

To find where the error was made, we write the query “When did we think
that there are many highly-paid employees in Tucson?” This uses the current time
in valid time (“are”), but looks at past states of the database (“when did we think”).
This requires a sequenced transaction query, with valid-time upward compatibility.

TRANSACTIONTIME SELECT COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000

AND city = ’Tucson’
GROUP BY city
HAVING COUNT(*) > 25

By having the DBMS maintain transaction time, applications that need to re-
tain past states of tables for auditing purposes can have these past states maintained
automatically, correctly, and securely. As well, the proposed language extensions
enable queries to be written in minutes instead of hours.

The concepts of temporal upward compatibility(TUC), sequenced(SEQ), and
nonsequenced(NONSEQ)semantics apply orthogonally to valid time and transac-
tion time.

The semantics is dictated by three simple rules.

• The absence ofVALIDTIME (respectively,TRANSACTIONTIME) indicates
valid-time (resp., transaction-time) upward compatibility. The result does not
include valid-time (resp., transaction-time) support.

• VALIDTIME (respectively,TRANSACTIONTIME) indicates sequenced valid
(resp., transaction) semantics. An optional period expression temporally scopes
the result. The result includes valid-time (resp., transaction-time) support.

• NONSEQUENCEDdenotes nonsequenced valid (resp., transaction) semantics.
An optional period expression afterNONSEQUENCED VALIDTIMEprovides
a valid-time timestamp, yielding valid-time support in the result.

Example 8 Starting with the simple query “Which Tucson employees are paid
highly?” we can state queries that are different combinations ofTUC, SEQ, and
NONSEQin valid and transaction time. In the following, we indicate valid time,
then transaction time. Hence, “TUC/SEQ” means valid-time upward compatible
and sequenced transaction-time semantics.

TUC/TUC Which Tucson employees are current paid highly?
A table with no temporal support results.

SEQ/TUC Which Tucson employees are or were paid highly (as best known)?
Note the the employee had to be in Tucson at the same time they were highly
paid. A table with valid-time support results.

TUC/SEQ Who did we think are the highly-paid Tucson employees?
A table with transaction-time support results.

646 SQL STANDARDIZATION AND BEYOND

NONSEQ/TUC Which highly-paid employees lived at some time in Tucson, as
best known?
A table with no temporal support results.

TUC/NONSEQ When was it recorded that a Tucson employee is currently paid
highly?
A table with no temporal support results.

SEQ/SEQ When did we think that some Tucson employee was paid highly, at the
same time?
A table with both valid-time and transaction-time support results.

SEQ/NONSEQWhen did we correct the information to record that some Tucson
employee was paid highly?
A table with valid-time support results. For each transaction time, we get a
row with valid-time support, indicating when the employee is now considered
to be in Tucson and be highly paid.

NONSEQ/SEQWho was recorded, perhaps erroneously, to have resided in Tucson
at some time and was paid highly, perhaps at some other time?
Here we get a table with transaction-time support, indicating when the perhaps
erroneous data was in the table.

NONSEQ/NONSEQWhen did we correct the information, to record that some
Tucson employee was paid highly, perhaps at some other time?
Here a table with no temporal support results.

TUC in valid time translates in English to “at now;”SEQtranslates to “at
the same time;” andNONSEQtranslates to “at any time.”TUC in transaction time
translates to “as best known;”SEQtranslates to “when did we think. . . at the same
time;” andNONSEQtranslates to “when was it recorded that.”

This example illustrates that all combinations are meaningful and useful.2

While this example emphasized the orthogonally of valid and transaction
time, thatTUC, SEQ, andNONSEQcan be applied equally to both, there are still
some differences between the two types of time. First, valid time can have a preci-
sion specified by the user at table creation time. The transaction timestamps have
an implementation-dependent range and precision. Second, valid time extends into
the future, whereas transaction time always ends at now. Third, unlike a<value
expression> following NONSEQUENCED VALIDTIME, a<value expression> is
not permitted afterNONSEQUENCED TRANSACTIONTIME, because it is not pos-
sible to compute a transaction timestamp. Such a timestamp may only be inferred
via a sequenced transaction query. Finally, during modifications the DBMS pro-
vides the transaction time of facts, in contrast with the valid time, which is provided
by the user. This derives from the different semantics of transaction time and valid

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 647

time. Specifically, when a fact is (logically) deleted from a table with transaction-
time support, its transaction stop time is set automatically by the DBMS to the
current time. When a fact is inserted into the table, its transaction start time is set
by the DBMS, again to the current time. An update is treated, concerning the trans-
action timestamps, as a deletion followed by an insertion. The transaction times
that a set of modification transactions give to the modified rows must be consistent
with the serialization order of those transactions.

The following examples will emphasize the parallel between valid-time and
transaction-time support. Specifically, temporal upward compatibility guarantees
that conventional, nontemporal queries, updates, etc. work as before, with the same
semantics. Since the history of the database is recorded in tables with both valid-
time and transaction-time support, we can find out when corrections were made,
using a nonsequenced transaction query. Modifications take effect at the current
transaction time. However, we can still specify the scope of the change in valid
time, both before and after now (retroactive and postactive changes, respectively).
Finally, arbitrarily complex queries in transaction time can be expressed with non-
sequenced transaction queries. As always, the concepts also apply to views, cursors,
constraints, and assertions.

Quick Tour: Part 5

This quick tour starts with the database as it was when we last left it, at the end of the
previous quick tour. Theemployee table has the following contents. Recall that
closed-open periods are used here for the valid-time and transaction-time periods.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid
. . . [1995-02-01 - 1995-07-01)
. . . [1996-01-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31)

Thesalary table has the following contents.

eno amount Valid
6542 3200 [1995-02-01 - 1995-06-01)
6542 3360 [1995-06-01 - 1995-07-01)
6542 3360 [1996-01-01 - 9999-12-31)
3463 3400 [1995-02-02 - 1995-04-01)
3463 3570 [1995-04-01 - 9999-12-31)

We can alter theemployee table to be a table with both valid-time and

648 SQL STANDARDIZATION AND BEYOND

transaction-time support, by adding transaction-time support. Assume that the cur-
rent date is July 1, 1995.

ALTER TABLE employee ADD TRANSACTIONTIME
COMMIT

Sinceemployee was a table with valid-time support, this statement converts it to
the following table with both valid-time and transaction-time support. Recall that
an the ending bound of the transaction-time period equal to the end of time simply
indicates that the row still logically resides in the table, i.e., has not been logically
deleted.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

We retain thesalary table as a table with valid-time support.
Temporal upward compatibility guarantees that conventional, nontemporal

queries, updates, integrity constraints, etc. work as before, with the same semantics.
We can list those for which (currently, as best known) no one makes a higher salary
in a different city.

SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2
WHERE e2.eno = s2.eno

AND s2.amount > s1.amount
AND e1.city <> e2.city)

This takes a timeslice in both valid time and transaction time at now, and returns
the result: Lilian.

We can also ask, for all time, when this is true, by simply prepending “VALID-
TIME.”

VALIDTIME SELECT ename
FROM employee AS e1, salary AS s1
WHERE e1.eno = s1.eno

AND NOT EXISTS (SELECT ename
FROM employee AS e2, salary AS s2

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 649

WHERE e2.eno = s2.eno
AND s2.amount > s1.amount
AND e1.city <> e2.city)

This returns a table with valid-time support, evaluated with sequenced valid seman-
tics, after the current transaction timeslice has been taken.

ename Valid
Franziska [1995-02-01 - 1995-02-02)
Lilian [1995-02-02 - 1995-04-01)
Lilian [1995-04-01 - 9999-12-31)

There are two rows for Lilian, because two rows ofsalary participated in com-
puting the result. Interestingly, Franziska satisfied the where condition for exactly
one day, before Lilian was hired.

Temporally upward compatible modifications also work as before. Assume it
is now August 1, 1995. Franziska just moved.

UPDATE employee
SET street = ’Niederdorfstrasse 2’
WHERE ename = ’Franziska’
COMMIT

This update yields the followingemployee table. Note that although Franziska is
at the new address starting on August 1, 1995, since she wo not be an employee for
the next five months, her new address is recorded from January 1, 1996 onward.

ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
. . . [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 9999-12-31)

Since the history of the database is recorded in tables with both valid-time
and transaction-time support, we can find out when corrections were made, using a
nonsequenced transaction query. Assume it is now September 1, 1995.

The query “When was the street corrected, and what were the old and new
values?” combines nonsequenced transaction semantics with sequenced valid se-
mantics.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME
SELECT e1.ename, e1.street AS old_street,

650 SQL STANDARDIZATION AND BEYOND

e2.street AS new_street,
BEGIN(TRANSACTIONTIME(e2)) AS trans_time

FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno

AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)

This yields the following table with valid-time support. Thetrans_time column
specifies when the change was made; the implicit timestamp indicates the valid-time
period of the fact that was changed.

ename old_street new_street trans_time
Franziska Rennweg 683 Niederdorfstrasse 2 1995-08-01 . . .

Valid
. . . [1996-01-01 - 9999-12-31)

To extract all the information from theemployee table, we can use a se-
quenced valid/sequenced transaction query.

VALIDTIME AND TRANSACTIONTIME SELECT * FROM employee

Modifications take effect at the current transaction time. However, we can still
specify the scope of the change in valid time, both before and after now (retroactive
and postactive changes, respectively).

Assume it is now October 1, 1995. Lilian moved last June 1.

VALIDTIME PERIOD ’[1995-06-01 - 9999-12-31)’
UPDATE employee
SET street = ’124 Alberca’
WHERE ename = ’Lilian’
COMMIT

This update yields the followingemployee table.
ename eno street city birthday
Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Rennweg 683 Zurich 1963-07-04 . . .

Franziska 6542 Niederdorfstrasse 2 Zurich 1963-07-04 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Lilian 3463 46 Speedway Tucson 1970-03-09 . . .

Lilian 3463 124 Alberca Tucson 1970-03-09 . . .

Valid Transaction
. . . [1995-02-01 - 1995-07-01) [1995-07-01 - 9999-12-31)
. . . [1996-01-01 - 9999-12-31) [1995-07-01 - 1995-08-01)
. . . [1996-01-01 - 9999-12-31) [1995-08-01 - 9999-12-31)
. . . [1995-02-02 - 9999-12-31) [1995-07-01 - 1995-10-01)
. . . [1995-02-02 - 1995-06-01) [1995-10-01 - 9999-12-31)
. . . [1995-06-01 - 9999-12-31) [1995-10-01 - 9999-12-31)

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 651

Finally, arbitrarily complex queries in transaction time can be expressed with
nonsequenced transaction queries.

The query, “When was an employee’s address for 1995 corrected?”, involves
nonsequenced transaction semantics and sequenced valid semantics, with a tempo-
ral scope of 1995. Assume that it is November 1, 1995.

NONSEQUENCED TRANSACTIONTIME AND VALIDTIME
PERIOD ’[1995-01-01 - 1996-01-01)’

SELECT e1.ename, e1.street AS old_street,
e2.street AS new_street,
BEGIN(TRANSACTIONTIME(e2)) AS trans_time

FROM employee AS e1, employee AS e2
WHERE e1.eno = e2.eno

AND TRANSACTIONTIME(e1) MEETS TRANSACTIONTIME(e2)
AND e1.street <> e2.street

This evaluates to the following result, which has an explicit column denoting the
date the change was made, and an implicit valid time indicating the time in reality
in question.

ename old_street new_street trans_time
Lilian 46 Speedway 124 Alberca 1995-10-01 . . .

Valid
. . . [1995-06-01 - 1996-01-01)

Note that the period from February through May is not included in the valid time,
as the street did not change for that period.

As always, the concepts also apply to views, cursors, constraints, and asser-
tions.

In Sec. 5.3 we gave an example of a sequenced constraint (VALIDTIME
CHECK (amount > 1000 AND amount < 12000)) on thesalary table.
This constraint must hold independently on every (valid-time) state of the table. In
Sec. 5.4 we gave a series of valid-time constraints on theename column of the
employee table. Those alternatives apply orthogonally to the transaction time.
As an example, the assertion, “An entry in the security table can never be updated.
It can only be deleted, and a new entry, with another key value, inserted.”, can be
expressed with a nonsequenced transaction semantics, stating in effect that the key
value is unique over all transaction time.

CREATE TABLE security (
keyvalue NUMERIC(8)

NONSEQUENCED TRANSACTIONTIME UNIQUE,
...

)

652 SQL STANDARDIZATION AND BEYOND

7 Comparison with the UK Proposal

We end by comparing the above constructs, termed the US proposal, with the UK
proposal [18], which has been incorporated into Part 7, SQL/Temporal [8], by ap-
plying them to the simple case study introduced in Secs. 3 and 6. This comparison
will revisit and exemplify many of the salient points made earlier. These examples
illustrate that SQL/Temporal could be extended in a minimal fashion along the lines
discussed in this paper to provide much better support for temporal applications.

1. An employee table has five columns,ename, eno , street , city , and
birthdate . The related salary table has two columns,eno andamount .
Columnsalary.eno is a foreign key referencing the columnemployee.
eno .
SQL without time:

CREATE TABLE employee
(ename VARCHAR(12), eno INTEGER PRIMARY KEY,

street VARCHAR(22), city VARCHAR(10),
birthday DATE)

CREATE TABLE salary
(eno INTEGER PRIMARY KEY REFERENCES employee,

amount INTEGER)

US proposal with time: (discussed in this paper):

CREATE TABLE employee
(ename VARCHAR(12),

eno INTEGER VALIDTIME PRIMARY KEY,
street VARCHAR(22), city VARCHAR(10),
birthday DATE)

AS VALIDTIME PERIOD(DATE)

CREATE TABLE salary
(eno INTEGER VALIDTIME PRIMARY KEY

VALIDTIME REFERENCES employee,
amount INTEGER)

AS VALIDTIME PERIOD(DATE)

“AS VALIDTIME PERIOD(DATE)” specifies that an unnamed column,
maintained by the DBMS, will contain the row’s timestamp. “VALIDTIME ”
specifies that the integrity constraints (primary key, referential integrity) are
to apply at each instant (in this case, each day).

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 653

UK proposal with time:

CREATE TABLE employee
(ename VARCHAR(12), eno INTEGER,

street VARCHAR(22), city VARCHAR(10),
birthday DATE,
When PERIOD(DATE))

CREATE TABLE salary
(eno INTEGER,

amount INTEGER, When PERIOD(DATE))

The UK proposal does not have support for referential integrity for such ta-
bles, nor for primary key constraints (addingWhen to the primary key does
not work). Additional syntax is needed. Currently the only way to do this is
with complexASSERTIONs, left as an exercise for the reader.

2. “List the history of those employees who haveor hadno salary.”
SQL without time:

SELECT ename
FROM employee
WHERE eno NOT IN (SELECT eno FROM salary)

US proposal:

VALIDTIME SELECT ename
FROM employee
WHERE eno NOT IN (SELECT eno FROM salary)

To get the history ofanyquery using the US proposal, simply prependVALID-
TIME. The change proposal and public-domain prototype demonstrate that
the semantics may be implemented via a period-based algebra. The large
body of performance-related research in temporal databases is applicable to
implementing this semantics.
UK proposal:

WITH E1 AS (SELECT eno, ename,
EXPAND(When) AS EW FROM employee)

WITH S1 AS (SELECT eno,
EXPAND(When) AS EW FROM salary)

SELECT ename, PERIOD [When, When] AS When
FROM E1, TABLE(E1.EW) AS E2(When)
WHERE eno NOT IN (SELECT S1.eno

FROM S1, TABLE(S1.EW) AS S2(When)
WHERE S2.When = E2.When)

NORMALIZE ON When

654 SQL STANDARDIZATION AND BEYOND

The semantics ofEXPANDis to duplicate each row of the argument table
for each granule (day) in theWhen period. Once this table has been ex-
panded, perform theNOT IN individually, for each day (examining only
thosesalary rows valid on the day in question), thenNORMALIZEthe
Whencolumn back to a period (collecting contiguous days into a single pe-
riod).
If each row is valid on average for one year, then the result of the equijoin of
E1 andE2 will have 360timesthe number of rows ofemployee , with a dra-
matic decrease in performance. Changing the granularity to second generates
additional tuples on the order of a factor 105, which could seriously affect per-
formance. The approach of usingEXPANDINGdoes not work here, because
the aggregate should be evaluated between theEXPANDand theNORMAL-
IZE .
The UK committee has provided a construct,EXCEPT EXPANDING, which
can also be used to express this particular special case. The user can take the
original SQL query, above, and map it into the relational algebra, withNOT
IN being mapped to relation difference.

πename(employee FG (πeno (employee)− πeno (salary)))

Then the user can map this back into SQL.

SELECT ename
FROM employee
WHERE eno IN (SELECT eno FROM employee

EXCEPT SELECT eno FROM salary)

As a third step, the user can map this into a temporal query usingEXPAND
andNORMALIZE.

WITH E1 AS (SELECT ename, eno,
EXPAND(When) AS EW FROM employee),

E2 AS (SELECT eno,
EXPAND(When) AS EW
FROM (SELECT eno FROM employee

EXCEPT EXPANDING(When)
SELECT eno FROM salary) AS E3)

SELECT ename, PERIOD [E3.When, E3.When] AS When
FROM E1, TABLE(E1.EW) AS E3(When)
WHERE E1.eno IN (SELECT eno

FROM E2, TABLE(E2.EW) AS E4(When)
WHERE E1.eno = E2.eno

AND E3.When = E4.When)
NORMALIZE ON When

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 655

This trick of usingEXCEPTcan also be applied with the US proposal, but
omitting the complex third step and theEXPANDs andNORMALIZEs entirely.

VALIDTIME SELECT ename
FROM employee
WHERE eno IN (SELECT eno FROM employee

EXCEPT SELECT eno FROM salary)

All of the UK alternatives have the problem (not shared by the US alternatives)
that if the left-hand table has duplicates, thenNORMALIZEwill automatically
remove them, yielding an incorrect result (the original SQL query did not
specifyDISTINCT). It is an exercise to the reader to show how this English
query can be correctly expressed using an explicitWhencolumn. Itis possible
to do so, but it is exceedingly difficult.
There have been essentially no results published on how to optimize queries
with expansion or normalize operations. Also, no general procedure has been
provided for converting an arbitrary, non-temporal query into its temporal
analogue using the UK constructs. Finally, whileEXCEPT EXPANDINGhas
been provided, no other expanding variants have been defined for other rela-
tional operators. In contrast, in the US proposal a sequenced variant ofany
query can be specified by prepending theVALIDTIME reserved word.

3. “Give the history of the number of highly-paid employees in each city.”
SQL without time:

SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

US proposal:

VALIDTIME SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

TheVALIDTIME specifies that we are interested in the time-varying count.
The syntax is declarative. The semantics is specified on a row-by-row basis;
changing the granularity from day to second will not impact its performance.
UK proposal:

WITH E1 AS (SELECT eno, city,
EXPAND(When) AS EW FROM employee),

S1 AS (SELECT eno,
EXPAND(When) AS EW
FROM salary
WHERE amount > 5000)

656 SQL STANDARDIZATION AND BEYOND

SELECT city, COUNT(*),
PERIOD [E2.When, E2.When] AS When

FROM E1, TABLE(E1.EW) AS E2(When), S1,
TABLE(S1.EW) AS S2(When)

WHERE E2.When = S2.When AND E1.eno = S1.eno
GROUP BY city, When
NORMALIZE ON When

The syntax is procedural: first expand, then execute the select, then normal-
ize. TheEXPANDoperator generates aSET of DAYs, which is then used to
duplicate the rows ofemployee , one for each day each row is valid (the join
in the from clause). TheGROUP BYensures that theCOUNTis performed
separately for each day. TheNORMALIZEconverts the many rows, one for
each day, into periods.

4. “Give Therese a salary of $6,000 for 1994.”
SQL without time:

UPDATE salary
SET amount = 6000
WHERE eno IN (SELECT eno

FROM employee
WHERE ename = ’Therese’)

US proposal:

VALIDTIME PERIOD ’[1994-01-01 - 1994-12-31]’
UPDATE salary
SET amount = 6000
WHERE eno IN (SELECT eno

FROM employee
WHERE ename = ’Therese’)

UK proposal:
The UK proposal has no support for this operation. Instead, each row must be
examined to determine the overlap with 1994, and adjusted with anUPDATE
and twoINSERT statements. This is left as an exercise for the reader.

5. To know when rows are inserted and (logically) deleted, we add transaction-
time support.
US proposal:

ALTER TABLE employee ADD TRANSACTIONTIME
ALTER TABLE salary ADD TRANSACTIONTIME

Since transaction time is automatically managed by the DBMS, system in-
tegrity is ensured. Due to temporal upward compatibility, the integrity con-
straints work as before, as do updates, such as the one above.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 657

UK proposal:

ALTER TABLE employee
ADD COLUMN InsertTime TIMESTAMP(3)
DEFAULT CURRENT_TIMESTAMP

ALTER TABLE employee
ADD COLUMN DeleteTime TIMESTAMP(3)
DEFAULT NULL

ALTER TABLE salary A
DD COLUMN InsertTime TIMESTAMP(3)
DEFAULT CURRENT_TIMESTAMP

ALTER TABLE salary
ADD COLUMN DeleteTime TIMESTAMP(3)
DEFAULT NULL

There is no support for transaction time in the UK proposal. There is no
way to ensure that the application correctly manages the information in these
two columns. System integrity can easily be compromised. Adding these
two columns also breaks the primary key and referential integrity constraints.
Such constraints must be reformulated as complex assertions that take the
three time columns into account.
Updates are more complicated when these additional columns are present.

6. “How many highly-paid employees are in each city?”
SQL without time:

SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

US proposal:

SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

This still works, because the default is to take the currently valid data that has
not been deleted or updated (temporally upward compatible in both valid and
transaction time).

658 SQL STANDARDIZATION AND BEYOND

UK proposal:

WITH E1 AS (SELECT eno, city
FROM employee
WHERE DeleteTime IS NULL

AND CURRENT_DATE OVERLAPS When),
S1 AS (SELECT eno

FROM salary
WHERE DeleteTime IS NULL

AND CURRENT_DATE OVERLAPS When
AND amount > 5000)

SELECT city, COUNT(*)
FROM E1, S1
WHERE E1.eno = S1.eno
GROUP BY city

Since temporal upward compatibility is not satisfied by the UK proposal, the
user must explicitly select the current information.
To get thehistoryof the number of highly-paid employees in each city, some
changes are required.
US proposal:

VALIDTIME SELECT city, COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno AND amount > 5000
GROUP BY city

We retain temporal upward compatibility in transaction time (i.e., the data that
has not been deleted or updated), but specify sequenced valid semantics to get
the history, viaVALIDTIME .
UK proposal:

WITH E1 AS (SELECT eno, city, EXPAND(When) AS EW
FROM employee
WHERE DeleteTime IS NULL),

S1 AS (SELECT eno, EXPAND(When) AS EW
FROM salary
WHERE DeleteTime IS NULL

AND amount > 5000)
SELECT city, COUNT(*),
PERIOD [E2.When, E2.When] AS When
FROM E1, TABLE(E1.EW) AS E2(When), S1,

TABLE(S1.EW) AS S2(When),
WHERE E1.eno = S1.eno AND E2.When = S2.When
GROUP BY city, When
NORMALIZE ON When

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 659

The user must explicitly select the currently stored information in transaction
time (“WHERE DeleteTime IS NULL ”) and mustEXPANDand NOR-
MALIZE to compute the aggregate.

7. “When did we think that there were many (> 25) highly-paid employees in
Tucson?”
US proposal:

TRANSACTIONTIME SELECT COUNT(*)
FROM employee, salary
WHERE employee.eno = salary.eno

AND amount > 5000
AND city = ’Tucson’

GROUP BY city
HAVING COUNT(*) > 25

TRANSACTIONTIMEspecifies that we wish to look over past states of the
table. VALIDTIME is not specified, as we want to know only about the in-
formation about current employees. The execution is on a row-by-row basis,
and is independent of both the valid time and transaction time granularities.
UK proposal:

WITH E1 AS (SELECT eno, EXPAND(WhenP) AS EW
FROM (SELECT eno,

PERIOD(InsertTime, DeleteTime)
AS WhenP

FROM employee
WHERE

CURRENT_TIMESTAMP OVERLAPS When
AND city = ’Tucson’) AS ET),

S1 AS (SELECT eno, EXPAND(WhenP) AS EW
FROM (SELECT eno,

PERIOD(InsertTime, DeleteTime)
AS WhenP

FROM salary
WHERE CURRENT_DATE OVERLAPS When

AND amount > 5000) AS ET)
SELECT COUNT(*),

PERIOD [E2.When, E2.When] AS When
FROM E1, TABLE(E1.EW) AS E2(When), S1,

TABLE(S1.EW) AS S2(When)
WHERE E1.eno = S1.eno AND E2.When = S2.When
GROUP BY When
HAVING COUNT(*) > 25
NORMALIZE ON When

660 SQL STANDARDIZATION AND BEYOND

The transaction time granularity is generally no coarser than a millisecond.
Compared with the US proposal, this query will expand into 3·1010 times the
number of rows in theemployee table. Thesalary table will be similarly
exploded, then a join on the two tables taken. It is not clear how to optimize
this query, as the result could change at any millisecond: the aggregate must
be computed for each millisecond. It is doubtful that the UK query can even
be computed with currently known query optimization/evaluation technology.

8 Summary

In this paper, we first outlined several desirable features of SQL/Temporal relative
to SQL3: upward compatibility, temporal upward compatibility, and sequenced se-
mantics. A series of four levels of increasing functionality was elaborated. The
specific syntactic additions were outlined and examples given to illustrate these
constructs. The extensions involve (a) the use of theVALIDTIME andTRANSAC-
TIONTIME reserved words, to indicate valid-time, resp. transaction-time, support
(in the case of schema specification statements) and sequenced semantics (in the
case of queries, modifications, views, cursors, assertions and constraints), (b) the
use of theNONSEQUENCEDreserved word for nonsequenced semantics, and (c)
the use of a period expression to temporally scope sequenced and nonsequenced
queries, modifications, views, cursors, constraints, and assertions. In the change
proposals now before the SQL3 committees [14, 15], we provide a formal seman-
tics, in terms of the formal semantics of SQL3, that satisfied the sequenced se-
mantics correspondence between temporal queries and snapshot queries, and also
provide the semantics for nonsequenced queries. In those change proposals we also
list alternative implementation approaches which vary in the degree of implemen-
tation difficulty and the achievable performance. The implementation alternatives
all compute the result by manipulating periods, and thus their performance is inde-
pendent of the granularity of the underlying tables.

We also introduced tables with transaction-time support, sequenced transac-
tion semantics, nonsequenced transaction semantics, scoping on transaction time
via an optional period expression, and modification semantics. The specific syntac-
tic additions were outlined and examples given to illustrate these constructs.

We end by listing some of the advantages of the approach espoused here.

• Upward compatibility is assured, permitting existing constructs to operate ex-
actly as before.

• Only three new reserved words,NONSEQUENCED, VALIDTIME , andTRANS-
ACTIONTIME, are required.

• Satisfaction of temporal upward compatibility ensures that existing applica-
tions do not break when tables without temporal support have such support

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 661

added.

• The availability of sequenced semantics ensures that temporal queries, mod-
ifications, views, assertions, and constraints are easy to formalize, write and
implement.

• Nonsequenced semantics permits tables with temporal support to be converted
to tables without such support, with explicit timestamp columns, and for tem-
poral support to be added to tables, even within a query.

• A simple period expression permits the temporal scope to be specified.

• The transaction-time extensions are compatible with, and orthogonal to, those
for valid time.

• A public-domain prototype [16] demonstrates the practical viability of the
proposed constructs. The quick tour was validated on this prototype.

We note that none of these benefits accrue from the UK proposal.

Acknowledgments

The inspiration for the constructs described here and proposed for incorporation into
SQL/Temporal is the TSQL2 language. The participation of the TSQL2 Language
Design Committee, which included Ilsoo Ahn, Gad Ariav, Don S. Batory, James
Clifford, Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Wolfgang Käfer, Nick
Kline, Krishna Kulkarni, T.Y. Cliff Leung, Nikos Lorentzos, John F. Roddick, Arie
Segev, Michael D. Soo and Surynarayana M. Sripada, was critical.

David Toman provided helpful comments on a previous draft. We also ap-
preciate the extensive feedback from the ANSI and ISO SQL3 committees, which
helped shape the specifics of this proposal.

This research was supported in part by the National Science Foundation through
grants ISI-9202244 and IRI-9632569, by grants from IBM, the AT&T Founda-
tion, and DuPont, by the Danish Technical and Natural Science Research Councils
through grants 9700780 and 9400911, respectively, and by the CHOROCHRONOS
project, funded by the European Commission DG XII Science, Research and De-
velopment, as a Networks Activity of the Training and Mobility of Researchers
Programme, contract no. FMRX-CT96-0056.

References

[1] Bair, J., M. Böhlen, C.S. Jensen, and R.T. Snodgrass, “Notions of Upward
Compatibility of Temporal Query Languages,”Business Informatics(in Ger-
man,Wirtschaftsinformatik) 39(1):25–34, February 1997.

662 SQL STANDARDIZATION AND BEYOND

[2] Böhlen, M. H., C. S. Jensen and R. T. Snodgrass,. “Evaluating the Complete-
ness of TSQL2,” inProceedings of the VLDB International Workshop on Tem-
poral Databases. Ed. J. Clifford and A. Tuzhilin. Springer Verlag, September
1995, pp. 153–172.

[3] Böhlen, M. H. and C. S. Jensen.Seamless Integration of Time into SQL. Tech-
nical Report R-962049, Aalborg University, Department of Computer Science,
Denmark, December 1996.

[4] Gadia, S. K. “A Homogeneous Relational Model and Query Languages for
Temporal Databases.”ACM Transactions on Database Systems13(4):418–
448, December 1988.

[5] Jackson, M. A.System Development. Prentice-Hall International Series in
Computer Science. Prentice-Hall International, Inc., 1983.

[6] Jensen, C. S. and R. Snodgrass, “Temporal Specialization and Generaliza-
tion.” IEEE Transactions on Knowledge and Data Engineering6(6):954–974,
December 1994.

[7] Jensen, C. S., J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes and S. Jajodia
(eds). “A Glossary of Temporal Database Concepts.”ACM SIGMOD Record
23(1):52–64, March 1994.

[8] Melton, J. (ed.)SQL/Temporal. July, 1997. (ISO/IEC JTC 1/SC 21/WG 3
DBL-LGW-013.)

[9] Pissinou, N., R. T. Snodgrass, R. Elmasri, I. S. Mumick, M. T. Özsu, B. Per-
nici, A. Segev, and B. Theodoulidis, “Towards an Infrastructure for Tempo-
ral Databases: Report of an Invitational ARPA/NSF Workshop,”SIGMOD
Record23(1):35–51, March, 1994.

[10] Snodgrass, R.T., I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyre-
son, R. Elmasri, F. Grandi, C.S. Jensen, W. Käfer, N. Kline, K. Kulkarni,
T.Y.C. Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo, and S.M. Sri-
pada. “TSQL2 Language Specification,”ACM SIGMOD Record23(1):65–86,
March, 1994.

[11] Snodgrass, R. T. and H. Kucera.Rationale for Temporal Support in SQL3.
1994. (ISO/IEC JTC1/SC21/WG3 DBL SOU-177, SQL/MM SOU-02.)

[12] Snodgrass, R. T., K. Kulkarni, H. Kucera and N. Mattos.Proposal for a
new SQL Part—Temporal. 1994. (ISO/IEC JTC1/SC21/WG3 DBL RIO-75,
X3H2-94-481.)

[13] Snodgrass, R. T. (editor), Ilsoo Ahn, Gad Ariav, Don Batory, James Clifford,
Curtis E. Dyreson, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolf-
gang Käfer, Nick Kline, Krishna Kulkarni, T. Y. Cliff Leung, Nikos Lorentzos,
John F. Roddick, Arie Segev, Michael D. Soo and Suryanarayana M. Sripada.
The Temporal Query Language TSQL2. Kluwer Academic Pub., 1995.

TRANSITIONING TEMPORAL SUPPORT IN TSQL2 TO SQL3 663

[14] Snodgrass, R. T., M. H. Böhlen, C. S. Jensen and A. Steiner.Adding Valid
Time to SQL/Temporal, change proposal, ANSI X3H2-96-501r2, ISO/IEC
JTC 1/SC 21/WG 3 DBL-MAD-146r2, November 1996, 77 pages. At URL:
<ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/mad146.ps >

(version current November 21, 1996).

[15] Snodgrass, R. T., M. H. Böhlen, C. S. Jensen and A. Steiner.Adding Transac-
tion Time to SQL/Temporal, change proposal, ANSI X3H2-96-502r2, ISO/IEC
JTC1/SC21/WG3 DBL MAD-147r2, November 1996, 47 pages. At URL:
<ftp://ftp.cs.arizona.edu/tsql/tsql2/sql3/mad147.ps >

(version current November 21, 1996).

[16] Steiner, A. and M. H. Böhlen. The TimeDB Temporal Database Prototype,
Version 1.07, November 1996. At URL:<http://www.cs.auc.dk/-
research/DBS/tdb/TimeCenter > or at URL:<ftp:// ftp.cs.-
arizona.edu/tsql/timecenter/TimeDB.tar.gz > (version cur-
rent March 26, 1997).

[17] Tsotras, V. J. and A. Kumar. “Temporal Database Bibliography Update,”ACM
SIGMOD Record25(1):41–51, March, 1996.

[18] UK SQL Committee,Expanded Table Operations. 1996. (ISO/IEC JTC1/-
SC21/WG3 DBL MCI-67)

[19] Yourdon, E.Managing the System Life Cycle. Yourdon Press, 1982.

