
24
Notions of Upward Compatibility of

Temporal Query Languages
John Bair, Michael H. Böhlen, Christian S. Jensen, and

Richard T. Snodgrass

Migrating applications from conventional to temporal database management
technology has received scant mention in the research literature. This paper
formally defines three increasingly restrictive notions ofupward compatibility
which capture properties of a temporal SQL with respect to conventional SQL
that, when satisfied, provide for a smooth migration of legacy applications to
a temporal system. The notions of upward compatibility dictate the semantics
of conventional SQL statements and constrain the semantics of extensions to
these statements. The paper evaluates the seven extant temporal extensions to
SQL, all of which are shown to complicate migration through design decisions
that violate one or more of these notions. We then outline how SQL–92 can be
systematically extended to become a temporal query language that satisfies all
three notions.

Keywords: upward compatibility, temporal upward compatibility, temporal
query language, TSQL2, SQL

589

590 SQL STANDARDIZATION AND BEYOND

1 Introduction

A wide range of database applications manage time-varying information. These
include financial applications such as portfolio management, accounting, and bank-
ing; record-keeping applications, including personnel, medical-record, and inven-
tory; and travel applications such as airline, train, and hotel reservations and sched-
ule management. In fact, it is difficult to identify a database application that does
not involve time-varying data.

Currently, such applications typically use conventional relational systems.
However, research in temporal data models and query languages [26, 18, 25] clearly
demonstrates that applications that manage temporal data may benefit substantially
from built-in temporal support in the database management system (DBMS). The
potential benefits from such support are several. Application code is substantially
simplified. Due to faster development of code, which is also easier to comprehend
and thus maintain, higher programmer productivity results. With built-in support,
more data processing may be left to the DBMS, leading to much better performance.

There is, however, still a chasm between the approaches now used for devel-
oping such applications and the new approaches that have been proposed by the
temporal database research community. While 1200 papers on temporal databases
have appeared, over 300 during the last two years alone [27], legacy systems and the
migration of such systems to new technologies has been almost totally overlooked.

This paper considersupward compatibility, which has been claimed to offer
several potential advantages (this is related to the notion of ‘seamless’, as in “the
transition from classical databases to [a temporal] model should be conceptually
and literally seamless.” [9, p. 51]). In the context of migrating from a conventional
DBMS to a temporal DBMS, upward compatibility offers an evolutionary means of
introducing new technology. It provides a business enterprise with an upgrade path
that preserves its investment in legacy databases. Implementers can incrementally
build new features on top of existing products, by gradually learning and incorpo-
rating new language elements into their applications.

We assume that the DBMS interface is captured in a data model and thus
talk about the migration of application code using an existing data model to us-
ing a new data model. We examine what it means for a temporal data model and
query language to be upwardly compatible with a conventional data model, such as
SQL. While the term has been used informally, we could find no formal definition
(the same holds for the term ‘seamless’). This paper examines the issues behind
this intuitive idea, and formalizes several increasingly restrictive notions of upward
compatibility, specifically, syntactic upward compatibility, upward compatibility,
and temporal upward compatibility. We evaluate the seven extant temporal exten-
sions to SQL, including two designed by us. We show that all seven violate one
or more of these useful properties. Finally, we demonstrate how SQL–92 can be

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 591

extended to a temporal data model while simultaneously satisfying all three notions
of upward compatibility.

2 Characterizing Upward Compatibility

We adopt the convention that a data model consists of three components, namely a
set of data structures, a set of constraints on those data structures, and a language for
updating and querying the data structures [28]. In this paper we emphasize the data
structures and the data manipulation language. As we progress, it should be clear
that the definitions and discussions of this section also apply to integrity constraints,
although for simplicity we will not address these explicitly. Notationally,M =
(DS, QL)then denotes a data model,M, consisting of a data structure component,
DS, and a query language component,QL. Thus,DS is the set of all databases,
schemas, and associated instances, expressible byM, andQL is the set of all query
and modification statements inM that may be applied to some database inDS. We
usedb to denote a database; a statement is denoted bys and is either a queryq or a
modificationm (e.g., in SQL–92, anyINSERT, DELETE, or UPDATEstatement).

As the existing model is given, the focus is on formulating requirements to
the new data model. The definitions are conceptually applicable to the transition
from any data model to a new data model. However, we have found it convenient to
assume that the transition is from a non-temporal to a temporal data model, specifi-
cally from the SQL–92 standard [14] to (some) Temporal SQL.

2.1 Upward Compatibility

Perhaps the most important concern in ensuring a smooth transition of application
code from an existing data model to a new data model is to guarantee that all appli-
cation code without modification will work with the new system exactly the same
as with the existing system. The next two definitions are intended to capture what
is needed for that to be possible.

We define a data model to besyntactic upward compatiblewith another data
model if all the data structures and legal query language statements of the latter
model are contained in the former model.

Definition 1 LetM1 = (DS1,QL1) andM2 = (DS2,QL2) be two data models.
ModelM1 is syntactically upward compatiblewith modelM2 if

• ∀db2 ∈ DS2 (db2 ∈ DS1) and

• ∀s2 ∈ QL2 (s2 ∈ QL1). 2

The first condition states that all data structures of the (existing) modelM2 must
be contained in the data structure component of the (new) modelM1; the second

592 SQL STANDARDIZATION AND BEYOND

condition states the same property, but for the query language component instead
of for the data structures.

Note that this relationship between the two data models is asymmetric, thus
providing credence to the adjective ‘upward’.

Next, for a data model to beupward compatiblewith another data model, we
add the requirement that all statements expressible in the existing language must
evaluate to the same result in both models.

For a query language expressions and an associated databasedb, both legal
elements ofQL andDS of data modelM = (DS,QL), define〈〈s(db)〉〉M as the
result of applyings to db in data modelM. With this notation, we can precisely
describe the requirements to a new model that guarantee uninterrupted operation of
all application code.

Definition 2 LetM1 = (DS1,QL1) andM2 = (DS2,QL2) be two data models.
ModelM1 is upward compatiblewith modelM2 if

• M1 is syntactically upward compatible withM2, and

• ∀db2 ∈ DS2 (∀s2 ∈ QL2 (〈〈s2(db2)〉〉M2 = 〈〈s2(db2)〉〉M1)). 2

The first condition, syntactic upward compatibility, implies that all existing data-
bases and query language statements in the old system are also legal in the new
system. The second condition in the definition states that for all data structures and
associated query language statements in the (existing) modelM2, evaluating them
in the (new and existing) models gives identical results. It thus guarantees that all
existing statements compute the same results in the new system as in the old system.
Thus, the bulk of legacy application code is not affected by the transition to a new
system.

Figure 1 illustrates the relationship between Temporal SQL and SQL–92. In
the figure, a conventional table is denoted with a rectangle. (In this paper, we use the
terminology adopted in SQL: table, row, and column, rather than the terminology
introduced by Codd [7]: relation, tuple, and attribute.) The current state of this table
is the rectangle in the upper-right corner. Whenever a modification is made to this
table, the previous state is discarded; hence, at any time only the current state is
available. The discarded prior states are denoted with dashed rectangles; the right-
pointing arrows denote the modifications that took the table from one state to the
next.

When a queryq is applied to the current state of a table, a resulting table is
computed, shown as the rectangle in the bottom right corner. While this figure only
concerns queries over single tables, the extension to queries over multiple tables is
clear.

Upward compatibility states that (1) all instances of tables in SQL–92 are
instances of tables in Temporal SQL, (2) all SQL–92 modifications to tables in

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 593

m...

Time

q

m m m m

Figure 1: Upward Compatible Queries

SQL–92 result in the same tables when the modifications are evaluated according
to Temporal SQL semantics, and (3) all SQL–92 queries result in the same tables
when the queries are evaluated according to Temporal SQL.

By requiring that Temporal SQL is a strict superset (i.e., onlyaddingcon-
structs and semantics), it is relatively easy to ensure that Temporal SQL is upward
compatible with SQL–92.

2.2 Temporal Upward Compatibility

The above minimal requirements are essential to ensure a smooth transition to a new
temporal data model, but they do not address all aspects of migration. Specifically,
assume that an existing data model has been replaced with a new temporal model.
No application code has been modified, and all tables are thus snapshot tables.
Upward compatibility ensures that all applications work as before, under the new
temporal model.

Now, an existing or new application needs support for the temporal dimension
of the data in one or more of the existing tables. This is best achieved by chang-
ing the snapshot table to become a temporal table (e.g., by using a statement of
Temporal SQL).

It is undesirable to be forced to change the application code that accesses the
snapshot table that is replaced by a temporal table. We thus formulate a require-
ment stating that the existing applications on snapshot tables must continue to work
with no changes in functionality when the tables they access are altered to become
temporal. Specifically,temporal upward compatibilityrequires that each query will
return the same result on an associated snapshot database as on the temporal coun-
terpart of the database. Further, this property is not affected by modifications to
those temporal tables. The precise definition is given next and is explained in the
following.

594 SQL STANDARDIZATION AND BEYOND

Definition 3 Let MT = (DST ,QLT) andMS = (DSS,QLS) be temporal and
snapshot data models, respectively. Also, letT be an operator that changes the type
of a snapshot table to the temporal table with the same explicit columns. Next, let
m1, m2, . . . , mn (n ≥ 0) denote modification operations. With these definitions,
modelMT is temporal upward compatiblewith modelMS if

• MT is upward compatible withMS ,

• ∀dbS ∈ DSS (T (dbS) ∈ DST), and

• ∀dbS ∈ DSS (∀m1, . . . , mn(n ≥ 0)
(∀qS ∈ QLS (〈〈qS(mn(mn−1(. . . (m1(dbS) . . .))))〉〉MS

=
(〈〈qS(mn(mn−1(. . . (m1(T (dbS))))))〉〉MT

)))). 2

First, upward compatibility is required. The second condition states that when ap-
plying the type-change operator to any data structure (e.g., table) of the snapshot
model, the result is a legal data structure in the temporal model. This is required
for the third condition to be meaningful. To understand this condition, consider
the two sides of the equality sign in the second line. On the two sides, the same
sequence of modification statements is applied to a snapshot data structure and its
temporalised counterpart, respectively. Then the same query from the snapshot
model is applied to the two results of the modifications. The results of the queries
when evaluated in the snapshot model and the temporal model, respectively, must
be identical. The first line simply states that this must hold for all (meaningful)
combinations of data structures, finite sequences of snapshot-model modification
statements, and snapshot-model query language statements. We proceed to provide
a more intutive and less technical explanation of this definition.

Assume that, when moving to the new system, some of the existing (snapshot)
tables are transformed into temporal tables without changing the existing set of
(explicit) columns. This transformation is denoted byT in the definition. Then
the same sequence of modification statements, denoted by themi in the definition,
is applied to the snapshot and the temporal databases. Next, consider any query
in the snapshot model. Such queries are also allowed in the temporal model, due
to upward compatibility being required. The definition states that any such query
evaluated on the resulting temporal database, using the semantics of the temporal
query language, yields the same result as when evaluated on the resulting snapshot
database, now using the semantics of the snapshot query language.

Temporal upward compatibility is illustrated in Figure 2. When temporal sup-
port is added to a table, the history is preserved, and modifications over time are re-
tained. In this figure, the rightmost dashed state was the current state when the table
was made temporal. All subsequent modifications, denoted by the arrows, result in
states that are retained, and thus are solid rectangles. Temporal upward compatibil-
ity ensures that the states will have identical contents to those states resulting from
modifications of the snapshot table.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 595

m...

Time

q

...m m T m m

Figure 2: Temporal Upward Compatibility

The queryq is an SQL–92 query. Due to temporal upward compatibility the
semantics of this query must not change if it is applied to a temporal table. Hence,
the query only applies to the current state, and a snapshot table results.

There is one unfortunate ramification to the above definition. Any extension
that adds constructs involving new reserved keywords will violate upward compat-
ibility, as well as temporal upward compatibility. The reason is that the user may
have previously used that keyword as an identifier. Query language statements that
use the keyword as an identifier will, in the extension, be disallowed.

Reserved words are added in all temporal query languages. This phenomenon
also holds for non-temporal query languages. SQL–89 defined some 115 reserved
words; SQL–92 added 112 reserved words, and the draft standard SQL3 adds an-
other 97 reserved words.

To avoid being overly restrictive, we consider upward compatibility and tem-
poral upward compatibility to be satisfied even when reserved words are added, as
long as the semantics of all statements that do not use the new reserved words is
retained in the temporal model.

3 Temporal Database Management Using SQL–92

As an initial application of these notions, we first consider an approach employed
frequently to implement a temporal application: emulating a time-varying table
with a conventional table. As we will see, this approach does not ensure temporal
upward compatibility, leading to a number of difficulties.

The underlying model will be SQL–92, that is,QL2 is the set of SQL–
92 queries and modifications. Let us return to theEmployee table, which has
three columns,Name, Manager , andDept . In SQL–92, one can require that
all managers be employees, by stating thatManager is a foreign key forEm-

596 SQL STANDARDIZATION AND BEYOND

ployee.Name . We can easily express queries such as “List those employees who
are not managers,” as well as modifications, such as “Change the manager of the
tools department to Bob.”

To store historical information, we wish to emulate time-varying information,
and so we will use the same model, SQL–92, that is,QLT will be the set of SQL–
92 queries and modifications. We also need an operator that changes the type of a
snapshot table to a ‘temporal’ table. We will defineT to be the following SQL–92
schema modification statements.

ALTER TABLE Employee ADD COLUMN Start DATE
ALTER TABLE Employee ADD COLUMN Stop DATE

The T operator must also initialize the value of theStart column to be the
valueCURRENT_DATEand the value of theStop column to be the valueDATE
’9999-12-31’ , the largestDATEvalue. This transforms theEmployee table
into a ‘temporal’ table (in the data modelMT , which is SQL–92).

ModelMT is certainly upward compatible withMS , as all databases inMT =
MS = SQL–92. Interestingly, though, SQL–92, along with the transformation op-
erator just defined, isnot temporally upward compatible with itself. As but a simple
example, letqS be the query “SELECT * FROM Employee”. It is certainly not
the case that〈〈qS(dbS)〉〉SQL−92 = 〈〈qS(T (dbS)〉〉SQL−92. Even the schemas do not
match: the schema for the result of〈〈qS(dbS)〉〉SQL−92 has three columns,Name,
Manager , andDept , while the schema for the result of〈〈qS(T (dbS)〉〉SQL−92 has
five columns, includingStart andStop .

This violation of temporal upward compatibility has important practical ram-
ifications. Assume that we have a 50,000-line application that manages theEm-
ployee table and other tables in a personnel database, allowing employees to
be added and dropped, and the information about employees to be modified and
queried in various ways. When this table is extended to store time-varying informa-
tion, via the transformationT discussed above, many portions of this application
break.

• The constraint that all managers are employees can no longer be expressed
via SQL–92’s foreign key constraint, which fails to take time into account. In-
stead, this constraint must be replaced with a complex assertion that includes
in its predicate theStart andStop columns.

• All queries must be examined, and most must be modified. Consider the query
“List those employees who are not managers.” A where predicate is now
required to extract thecurrentmanagers. Also, any query that mentions ‘* ’
must be modified, because theEmployee table now has a different number
of columns.

• Modifications must also be altered to take into account theStart andStop
columns. The modification “Change the manager of the tools department to

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 597

Bob” is now quite more involved than before.

In contrast, assume that instead of attempting to emulate the time-varying
aspect using conventional tables, we use a temporal data model that is provably
temporally upward compatible with SQL–92. We would be assured thatnot a single
line of our 50,000-line application would have to be altered when transformationT

was applied to render theEmployee table time-varying.

4 Temporal Query Languages

As we just saw, the fact that an emulation of temporal tables using SQL–92 is
not temporally upward compatible has several unfortunate ramifications in practice.
We now turn to the temporal extensions to SQL that have been defined to date.
Following an overview of the evaluation, we consider each temporal SQL in turn.

4.1 Overview of Temporally Extended SQL’s

We are aware of seven temporal data models that extend SQL. We consider each
of these in turn, starting with the earliest models, examining whether or not each
model satisfies the requirements of upward compatibility (UC) and temporal up-
ward compatibility (TUC) with respect to some variant of SQL, e.g., SQL–89,
SQL–92, SQL3, or SQL dialects of commercial DBMSs.

Ideally, we prefer to be able to independently prove that a particular temporal
data model satisfies or violates a requirement. However, the available documen-
tation of the models often is not adequately comprehensive for this to be possi-
ble. With two exceptions, only the integration of the temporal query facilities with
“core” subsets of SQL are documented, and which particular SQL dialect that is
being extended is also not always mentioned. This makes it hard to determine
whether models are (temporal) upward compatible with “the” full SQL or some
subset of “an” SQL.

Aspects related to the use of regular SQL statements—modifications, in parti-
cular—on temporal tables or a combination of temporal and non-temporal tables are
typically not defined. This makes it hard to verify temporal upward compatibility.

Finally, the definition of the syntax of several of the models is quite informal
and incomplete. The semantics of the models are, at best, informal and, at worst,
indicated by a few examples.

For the cases where we cannot prove that a temporal data model satisfies or
violates a requirement, we will report the model as satisfying (or violating) a re-
quirement if its designers claim that the property is satisified and we have not been
able to disprove the claim with the available documentation. In addition, we will
report satisfaction simply if we cannot prove dissatisfaction, again given the avail-

598 SQL STANDARDIZATION AND BEYOND

able documentation. Thus, we associate the following numbers with our findings,
to indicate the confidence in the findings.

1. Neither satisfaction nor violation is claimed, nor can be proven.

2. Satisfaction claimed, but the claim cannot be proven nor invalidated.

3. Independently proven.

Clearly, the highest level of confidence is desired.
Table 1 gives an overview of our conclusions. As can be seen, different lan-

guages have different levels of satisfiability and different reasons for non-satisfiabili-
ty. The first three models are documented rather sparsely for our purposes, but their
designers emphasize that they satisfy upward compatibility. They do not satisfy
temporal upward compatibility. The next model, TempSQL, introduces a concept
of different types of users that may be used to obtain satisfaction of both compati-
bilities in certain circumstances. The subsequent model, IXSQL, is different from
all the other models in that it does not provide support for implicit time; rather, it
adds a parameterized abstract interval data type and associated facilities for modi-
fication and queries to SQL. ChronoSQL is one of the newer temporal models. The
final model has been documented much more extensively than its predecessors, but
its semantics are still given in an informal SQL-standards format. Note that no
language satisfies both notions of upward compatibility.

4.2 Description of Temporally Extended SQL’s

Next, we describe each of the temporally extended SQL’s in some detail.

TOSQL

TOSQL [2] temporally extends a subset of an early version of SQL [1]. The ex-
tension is based on the TODM data model. The syntax of TOSQL is given in a
BNF-like format. This syntax does not include modification statements, integrity
constraints, nested queries, and queries involving aggregates usingHAVING, etc.
Hence, it appears that TOSQL is upward compatible with asubset ofSQL, and is
perhaps upward compatible with the full language.

It appears that the designer had a notion of temporal upward compatibility in
mind when he wrote the following.

“The default options are defined such that a query that omits the tem-
poral portion retains the standard meaning of the corresponding SQL
SELECT statement.” [2, p. 513]

An example two pages later states the interpretation of a conventional SQL SE-
LECT statement “is to specify that the query relates tocurrent assignments, and
uses the most up-to-date data about it.” [2, p. 515]. The “current assignments”

U
P

W
A

R
D

C
O

M
P

AT
IB

ILIT
Y

O
F

T
E

M
P

O
R

A
L

Q
U

E
R

Y
LA

N
G

U
A

G
E

S
599

Language Reference UC TUC Comments

TOSQL [2] yes2 no3 Only a subset of SQL is considered.
TSQL [15] [16]

[17]
yes2 no3 Not all snapshot tables can be made temporal. Some

SQL views cannot be defined on temporal tables. Au-
tomatic coalescing violates TUC.

HSQL [21] [22] yes2 no3 SQL queries on temporal tables return temporal tables.
TempSQL [3] [8] [9] yes2 yes3

(classical)
no3

(system)

Only a subset of SQL is considered. TUC is satis-
fied only for classical users. Means of specifying user
types and defaults are not given.

IXSQL [12] [10] yes2 no3 Extension of SQL with a parameterized interval ADT
with accompanying query-language facilities is pro-
posed.

ChronoSQL [5] yes3 no3 Only a subset of SQL is considered. Does not restrict
TUC queries to the current state.

TSQL2 [25] yes3 no3 Full syntax given. Semantics defined informally in
SQL-standard style.

Table 1: Summary of UC and TUC Compliance

600 SQL STANDARDIZATION AND BEYOND

refers tonow in valid time; the “most up-to-date data” refers tonow in transaction
time.

The key phrase though is “that omits the temporal portion”. The timestamp of
a table in TOSQL appears as a column named RT. A non-time-varying table would
not have such a column. The conversion operatorT in Definition 3 would add this
column. The problem is with queries involving ‘* ’. Such queries onT (dbS) would
return a different number of columns than queries directly ondbS . Hence, temporal
upward compatibility is not satisfied.

TSQL

Navathe and Ahmed’stemporal relational model, TSQL, supports, in addition to
conventional tables, row timestamping for valid time by attaching two mandatory
timestamp columns,Time-start(Ts) andTime-end(Te) to every time-varying rela-
tional schema [13, 15, 16, 17]. These timestamp columns correspond to the lower
and upper bounds of time intervals in which rows are continuously valid.

It is stated that TSQL is upward compatible with SQL.

“All legal SQL statements are also valid in TSQL, and such statements
have identical semantics in the absence of a reference to time. [...] SQL,
a subset of TSQL, remains directly applicable to non-time-varying rela-
tions in 1NF.” [17, p. 99].

A simplified, 1.5 page BNF-like syntax is given for TSQL [15]. Statements
such as updates, inserts, deletes, and view definitions are not addressed in the syntax
or elsewhere in the documentation. Also, the use of regular SQL queries on tempo-
ral tables is not touched upon. While this makes it hard to examine the satisfaction
of TUC, there are several indications that TUC is not satisfied.

In TSQL’s data model, only tables that are in the so-called time normal form
are allowed [15, p. 116]. Briefly, for a table to be in time normal form, it must
be in Boyce-Codd normal form (disregarding the timestamp columns), and the non-
key, non-timestamp columns must all be synchronous (i.e., they must change values
simultaneously). As there are no such normal form requirements on snapshot tables,
it follows that theT operator that turns a snapshot table into a temporal table is not
defined for all snapshot tables. Also, regular SQL view definitions on temporal
tables are not allowed when they lead to views that are not in time normal form.
This is often the case for views that are joins.

Lastly, TSQL performs automatic coalescing ofvalue-equivalentrows (i.e.,
rows with identical non-timestamp column values) that have consecutive or over-
lapping timestamps. This facility leads to a violation of TUC. For example, assume
that we start out with an empty snapshot table,R, and insert two identical rows.
ThenSELECT * FROM Ryields two rows. Now, we simultaneously insert the
two rows intoT (R). The most reasonable assumption is that these two rows will be

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 601

given timestamps that result in them being coalesced into one row. Now,SELECT
* FROMT (R) yields one row.

HSQL

As the previous data model, Sarda’s HDBMS also supports valid time; however,
unlike the data model mentioned previously, HDBMS represent valid time in a
valid-time table as a single non-atomic, implicit column [21, 22]. HSQL1 is the
query language of HDBMS.

It is emphasized that HSQL is upward compatible with respect to SQL (SQL–
89, in fact).

“HSQL is a superset of the popular query language SQL.” [22, p. 123]
“In fact, the standard clauses of SQL have identical meanings in HSQL.”
[22, p. 125]

Concerning TUC, the effects of the standard SQL insert, delete, and update
statements are consistent with satisfying this requirement. However, a querySE-
LECT * FROM RwhereR is a temporal table returnsRand not the current (snap-
shot) state ofR, as would be required in order to satisfy TUC [22, pp. 126–127].

TempSQL

Gadia’s TempSQL is based on a N1NF temporal data model that is value time-
stamped [3, 8, 9]. A column of a row may have more than one (timestamped) value.
The union of the timestamps of the values of each column must be the same for all
columns throughout the entire row, resulting in a homogeneous temporal table.

Conventional tables are seen as temporal tables valid at a single time instant.
Thus, each column value of each row in such a temporal table is timestamped with
the same instant. Integration of snapshot tables into the data model this way is
proposed partly in order to obtain upward compatibility.

“By integrating it into our framework, we establish a smooth bridge for
industry and its user community for migrating from classical databases
to temporal databases. [...] We provide a framework for a smooth transi-
tion for industry, requiring no loss of investment in application programs
developed by its user community.” [9, p. 32]

The particular SQL that is being extended is not identified. No BNF is given.
Further, only a subset of those facilities normally associated with SQL are men-
tioned, with several important aspects, e.g., advanced query facilities, integrity and

1In another paper, Sarda gave this extension to SQL the name TSQL [20]. We use HSQL because it was
used in the most recent paper.

602 SQL STANDARDIZATION AND BEYOND

embedded queries, ignored. With these reservations, it is our contention that Temp-
SQL is upward compatible with SQL. Determining whether temporal upward com-
patibility is satisfied is more difficult for this model than any of the other models.

TempSQL supports several types of users, e.g., system users and classical
users, of a temporal DBMS. While system users have unrestricted access to the
database, classical users can only access the currently valid values in the database.
Thus, classical users see the current snapshots of temporal tables. Assuming that
T is a temporal table, the querySELECT * FROM TreturnsT when issued by a
system user and the current snapshot ofT when issued by a classical user.

The absence of language syntax for specifying user types at the level of in-
dividual statements leads us to assume that, as indicated by the name, user types
are fixed for individual users, and on a per-applications basis. (No information is
given on how the mechanisms for different types of users interact with embedded
application programs.) Had the intention been to be able to designate individual
language statements as classical or temporal, we feel that the language should have
provided syntax for this. We thus think about user types as being similar to ordinary
SQL privileges. This seems reasonable, as user types do restrict access to data.

The choice of the default user type matters. If all users, and thus applications,
are classical by default, then it is possible to avoid modifying the legacy applications
when transitioning to a TempSQL system. Having the default user type be system
leads to a violation of temporal upward compatibility—legacy applications then
need to be modified to indicate that they are classical.

The next issue to consider is that of the application of legacy SQL modifica-
tion statements on temporal tables. As the effects of such statements persist in the
current states (i.e., the states of the temporal tables valid at the (ever-increasing) cur-
rent time), the statements are consistent with TempSQL satisfying temporal upward
compatibility.

Our conclusion is that for classical users, temporal upward compatibility is
ensured. For system users, the opposite is true. The reason is that, for a system
user, a conventional SQL query over a temporal table will return a temporal table.

TempSQL is thus fine when a non-temporal application is executed on a data-
base that has been migrated to a temporal DBMS. Where TempSQL falls short is in
further migration of that application, to exploit the very useful temporal constructs
of that language. This requires that the user be a system user, because a classical
user is not permitted to use any of the new constructs. As soon as the user transi-
tions from classical to system, all of the query language statements in the applica-
tion must be reevaluated, and many must be substantially rewritten. Had temporal
upward compatibility been ensured for all users, this jarring transition would have
been much smoother.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 603

IXSQL

IXSQL [11, 12, 10] differs from all the other temporal query languages in that it
does not provide support for a special, built-in notion of time. Rather, IXSQL adds
the ability to define columns of a parameterized interval abstract data type, and it
provides special query facilities for manipulating tables with rows that have such
interval values.

Actually, there exists at least two different versions of IXSQL, an early ver-
sion [11], and a later version [10]. The initial version was neither upward nor tem-
porally upward compatible with SQL, in part because it did not permit duplicate
rows in tables.

“IXSQL actually differs from the standard SQL [reference to SQL–89],
in that a relation may not contain duplicate tuples.” [11, p. 4]

In the remainder, we consider the later version. This version was designed to
be upward compatible with SQL–92:

“IXSQL is syntactically and semantically upwards consistent with SQL2.”
[10, p. 1]

Next, we consider temporal upward compatibility. The first step is to decide
on what the meaning ofT should be in a model without an implicit notion of time
in its tables. To be specific, let us simply assume thatT adds an interval-valued
column to each snapshot table, with value[CURRENT_DATE, DATE ’9999-
12-31’] for each row. Other reasonable assumptions seem to lead to the same
conclusions. The result of a legacy query such asSELECT * FROM Rwill differ
from the result ofSELECT * FROMT (R). In addition, legacy modifications to
“temporal” tables will generally not be consistent with satisfying temporal upward
compatibility, or they may fail altogether. In summary, legacy applications need to
be rewritten when new columns are added to the tables then access.

ChronoSQL

ChronoSQL was designed and implemented as part of the ChronoLog project [5].
The main purpose was to illustrate how temporal concepts developed for deductive
databases can be carried over to relational databases. ChronoSQL is tightly coupled
with a Datalog-based language, which means that users can switch language any
time.

This said, it comes as no surprise that not all language features of ChronoSQL
have been worked out in detail. Specifically, the temporal extension was restricted
to query statements; data manipulation statements and integrity constraints were
not considered. Moreover, legacy queries over temporal tables are not restricted to
the current state. This clearly violates temporal upward compatibility.

604 SQL STANDARDIZATION AND BEYOND

Upward compatibility looks more promising. ChronoSQL adds a couple of
non-mandatory syntactic constructs to SQL. No other syntactic changes are pro-
posed. This ensures syntactic upward compatibility. Furthermore, the semantics of
legacy statements over nontemporal tables remains unchanged [5, p.69], meaning
that upward compatibility is ensured as well.

TSQL2

TSQL2 [25] is the most comprehensively documented temporal query language.
Its syntax was given as an extension of the syntax of SQL–92 as presented in the
official standard, and the semantics of TSQL2 was also given in the format of the
SQL–92 standard. Some 500 pages of technical commentaries accompany these
specifications. Upward compatibility of TSQL2 is studied in [4].

In TSQL2, there are six kinds of tables: snapshot tables, valid-time event
tables, valid-time state tables, transaction-time tables, bitemporal event tables, and
bitemporal state tables. The first is the kind of table found in the relational model;
the remaining five are temporal tables. As all the schema specification statements
of SQL–92 are included in TSQL2, it follows that the data structures of TSQL2
include those in SQL–92.

TSQL2 is also a strict superset of SQL–92 in its query facilities. In particular,
if an SQL–92 select statement does not incorporate any of the constructs added in
TSQL2, and mentions only snapshot tables in its from clause(s), then the language
specification states explicitly that the semantics of this statement is identical to its
SQL–92 semantics.

It should be noted that the preliminary TSQL2 language specification released
in March, 1994 [19] did not have that property. In particular, SQL–92INTERVALs
were termedSPANs in the preliminary TSQL2 specification, and TSQL2INTER-
VALs were not present at all in SQL–92. The final TSQL2 language specification
[25] retained SQL–92INTERVALs and added thePERIODdata type, which was
previously calledINTERVAL in preliminary TSQL2 (confusing, isn’t it?). Addi-
tional changes to the datetime literals were also made to ensure that TSQL2 was a
strict superset of SQL–92.

Hence, TSQL2 is upwards compatible with SQL–92. However, TSQL2 is
not temporally upward compatible with SQL–92, for several reasons. First, SQL–
92 tables that contain duplicates have no counterparts in TSQL2 where tables with
value-equivalent rows (and thus duplicates, either in a timeslice, or in the temporal
table itself) are not allowed. A second reason that TSQL2 is not temporally upward
compatible with SQL-92 is that when the keywordSNAPSHOTis not specified in
a select statement in TSQL2, a temporal table results. Hence, an SQL–92 query
over a temporal table will result not in a conventional table, but rather in a temporal
table.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 605

5 Ensuring Temporal Upward Compatibility

This section explains a sequence of steps that lead to a temporal upward compat-
ible SQL–92 extension. Implications to syntax and semantics are discussed and
illustrated with examples. Temporal upward compatible extensions allow to in-
dependently migrate data structures and application code. Specifically, it permits
migration of data structures without also requiring changes to application code (c.f.
Definition 3). The examples that have been stated in prose in Section 2 are recon-
sidered and formulated in the temporal extension of SQL–92.

5.1 Syntax of a Temporal Upward Compatible Extension of SQL

Temporal upward compatibility does not put an upper limit on syntactic extensions
to a language. It, however, defines a lower limit. First, all legacy statements must be
retained. (This requirement is independently established by upward compatibility.)
Second, a possibility must be provided to migrate nontemporal data structures to
temporal data structures. The first requirement is met by adding (non-mandatory!)
syntactic constructs to the base language. No syntactic constructs may be deleted
or changed. Migrating non-temporal to temporal data structures can be achieved in
different ways. We discuss two possibilities to illustrate the design space and the
possible consequences to the data model.

If we want to emphasize different table types (snapshot tables, valid time ta-
bles, transaction time tables, and bitemporal tables) a reasonable syntactic choice
is to extend the<alter table action> production of SQL–92 [14, p.511], by adding
two options.

<alter table action> ::= <add column definition>∣∣ <alter column definition>∣∣ <drop column definition>∣∣ <add table constraint definition>∣∣ <drop table constraint definition>∣∣ <add time dimension>∣∣ <drop time dimension>

<add time dimension> ::= ADD<time dimension>

<drop time dimension> ::= DROP<time dimension><drop behavior>

<time dimension> ::= VALID
∣∣ TRANSACTION

Adding valid time turns a snapshot table into a valid time table and a trans-
action time table into a bitemporal table. Adding transaction time turns a snapshot

606 SQL STANDARDIZATION AND BEYOND

table into a transaction time table and a valid time table into a bitemporal table.
This is the approach chosen by TSQL2 [25].

If instead we want to emphasize the conventional relational data model with
tables that support time through special-purpose columns, an alternative approach
would be to enhance the productions<add column definition> and<drop column
definition> respectively.

<add column definition> ::= ADD[COLUMN] <column definition>∣∣ ADD[COLUMN] <time dimension>

<drop column definition> ::=
DROP[COLUMN] <column name> <drop behavior>∣∣ DROP[COLUMN] <time dimension><drop behavior>

Further syntactic alternatives can also be envisioned. It is, however, critical
that all of them support the semantics discussed in the next section.

5.2 Semantics of a Temporal Upward Compatible Extension of SQL

This section discusses the semantics of various temporally upward compatible state-
ment categories, i.e., standard SQL–92 statement categories evaluated over tempo-
ral databases. The categories include queries, views, assertions, column constraints,
referential integrity constraints, insertions, deletions, and updates. This ensures a
broad coverage of the functionality of a database system. Nevertheless, there are
certain statement categories that are not considered explicitly, e.g., triggers. These
categories do not introduce fundamentally new problems with respect to temporal
upward compatibility. Instead, semantics and techniques discussed for other cate-
gories can be applied directly.

When we discuss the semantics of legacy statement categories over temporal
tables we can differentiate betweennon-destructive statements, e.g., queries, views,
and integrity constraints, andmodification statements, e.g., data manipulation state-
ments. As we will see, these two sets of categories have to be treated differently.

Below we discuss the semantics for each of the two sets of categories. Within
each set all categories are analyzed and illustrated with an example. We initially
consider only valid time, then discuss the impact of adding transaction-time support.

The very first step is of course to migrate the data structures.

ALTER TABLE Employee ADD VALID
ALTER TABLE Salary ADD VALID

Both tables are turned into valid-time tables, such that all information stored in the
tables can be annotated with its valid time (transaction time is discussed at the end
of this section).

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 607

Non-destructive Valid-time Statements

Non-destructive statements retrieve from or check parts of the database. They do
not change the contents of the database. To get the exact same semantics that a
nontemporal database would provide, we have to restrict the retrieval and checking
to the current state.

Queries are supported by adding an implicit selection condition to theWHERE
clause that selects current rows. Moreover, defaults, e.g., ‘* ’ in the select clause,
may not expand to include time. As an example, assume a query that determines
who manages the high-salaried employees. The ‘temporal’ query is straightforward.

SELECT Manager
FROM Salary AS S, Employee AS E
WHERE S.Name = E.Name
AND S.Amount > 3500

Whenever the temporal database system identifies one or more temporal in an SQL–
92 statement, it must perform the actions dictated by temporal upward compatibil-
ity. In this case, it must restrict the set of rows to the current ones.

Views are similar to queries. This becomes obvious if we remember that
a view is a virtual table defined by a query. The query that defines the view is
enhanced along the lines outlined above. As an example, consider a view that yields
high-salaried employees.

CREATE VIEW High_salary AS
SELECT *
FROM Salary
WHERE Amount > 3500;

A selection condition that limits the query expression to current salaries has to be
added. Moreover, the default used in the select clause has to be extended toSE-
LECT Name, Amount (or an equivalent relational algebra projection) so that the
valid time is not part of the result.

Integrity constraints come in different flavors. The most general form are
assertions [14, p.211ff]. Consider the assertion that ensures that all employees get
a salary, i.e., an assertion that checks that no employees without a salary exist.

CREATE ASSERTION CONSTRAINT Emp_has_sal CHECK
NOT EXISTS (SELECT *

FROM Employee AS E
WHERE NOT EXISTS (SELECT *

FROM Salary AS S
WHERE

E.Name = S.Name))

608 SQL STANDARDIZATION AND BEYOND

The general approach to check an assertion is to negate it and to execute it as a
query, i.e.,

SELECT *
FROM Employee AS E
WHERE NOT EXISTS (SELECT *

FROM Salary AS S
WHERE E.Name = S.Name)

If the query result is empty, i.e., if no rows are returned, the assertion is respected;
otherwise it is violated. With this background, temporal upward compatible asser-
tions can be achieved easily, because we showed above how to do so with queries.

Modification Statements on Valid-time Tables

Modification statements change the contents of the database. An obvious (but naive)
approach is to carry over the semantics from the previous section and to modify the
current state. Imagine the insertion of an employee into the database.

INSERT INTO Employee
VALUES (’Liliane’, ’Brandt’, ’Tools’)
INSERT INTO Salary
VALUES (’Liliane’, 1000)

If we inserted Liliane only in the current state, subsequent queries would not return
this row. When we later issue a query, time will have progressed and Liliane will
no longer be in the (new) current state. Of course this is not the behavior we expect
from a nontemporal database. In order to get the expected behavior, we have to
make sure that Liliane remains in the changing current state. This may be achieved
by using the period fromCURRENT_DATEto 9999-12-31 (the largestDATE
value) as the timestamp of Liliane’s tuples. But it may also be achieved using as
the end pointNOBIND(CURRENT_DATE), whereNOBINDhas the effect of stor-
ing in the timestamp avariablethat evaluates toCURRENT_DATEwhen accessed,
rather than storing the current value ofCURRENT_DATE. Indeed, any now-relative
variable [6] that evaluates to a time between these two end points may be used. We
will adopt the simplest choice, the date9999-12-31 .

An equivalent observation holds for delete and update statements. Assume
that we want to change the manager of the tools department to Bob.

UPDATE Employee
SET Manager = ’Bob’
WHERE Dept = ’Tools’

If we only updated the current state, subsequent queries would not access the cor-
rected database state. Again, we have to ensure that the update persists in the chang-
ing current state to get the exact same behavior a nontemporal database provides.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 609

Achieving temporal upward compatibility for modification statements is
slightly more complicated than achieving temporal upward compatibility for non-
modification statements. The reason is that certain rows may be valid from some
point in the past until some point in the future, i.e., they overlap the current time.
Because temporal upward compatible statements only affect the current and future
times, the modifications must not change the row during the entire time range. Let
us consider each type of modification statement in turn.

Insert statements have to set the valid-time start to the current time and the
valid-time end toDATE ’9999-12-31’ , as discussed above. This ensures that,
until the row is deleted or modified, it will be valid.

Next we consider delete statements. Historical data, i.e., qualifying rows with
a valid time end before the current time, is left untouched. Current data, i.e., quali-
fying rows with a valid-time start after the current time (including a valid time end
equal toDATE ’9999-12-31’), has to be deleted as of the current time. This
is done by changing valid time end to the current time. For future knowledge two
choices exist. If we decide not to delete it, today’s future knowledge will become
valid eventually. This behavior can be quite surprising for applications employing
temporal upward compatibility exclusively. An alternative is to delete qualifying
future knowledge. This ensures a more intuitive behavior of legacy applications,
but it might not be the semantics temporal applications envision.

The most complex statements are update statements. First, rows with a valid-
time start before the current time and a valid-time end after the current time (in-
cluding a valid-time end equal toDATE ’9999-12-31’) are duplicated. The
valid-time end of the original row and the valid-time start of the duplicated row are
set to the current time. Then the update statement is applied to all rows with a valid
time start that is equal or after the current time. Again we have the choice not to
update future knowledge (c.f. previous paragraph).

Transaction Time

With respect to temporal upward compatibility, transaction time behaves almost
identically to valid time. Exactly the same semantics applies to transaction-time
tables and valid-time tables.

Even bitemporal tables behave quite similarly. In non-destructive statements
and insertions, both time dimensions inherit the unitemporal semantics. Deletions
and updates are somewhat more complicated, due to the nature of transaction time
which guarantees that at each point in time, it is possible to reconstruct previous
database states. A temporal upward compatible deletion of a bitemporal row trig-
gers the following steps.

1. Qualifying rows with a transaction-time end equal to9999-12-31 are du-
plicated. The transaction-time end of the original row and the transaction-time

610 SQL STANDARDIZATION AND BEYOND

start of the duplicated row are set to the current time.

2. The valid-time deletion is applied to qualifying rows with a transaction-time
end equal to9999-12-31 .

The first step saves the current state and thus ensures reconstructability, whereas the
second step performs the valid-time deletion. Update follows a similar pattern.

6 Conclusion

Upward compatibility aids in the smooth migration of applications from a conven-
tional to a temporal data model. The definitions introduced here allow a specific
temporal language to be evaluated as to the degree that it ensures upward compati-
bility. The extant temporal extensions to SQL are all deficient in one or more ways,
rendering migration more difficult. We subsequently showed how SQL–92 can be
extended to yield a temporal data model satisfying all three notions of upward com-
patibility. Applications can be much more easily migrated to this new data model.

The notion of temporal upward compatibility can be viewed as a form of
logical data independence. In the same way that an external schema can ensure
that applications are not impacted by changes to the logical schema, temporal up-
ward compatibility ensures that applications are not impacted by a specific kind of
change to the logical schema: adding or removing temporal support. Logical data
independence is an important benefit provided by modern data models, in particular
by the relational data model, and the specific kind discussed here provides similar
advantages.

The approach we espouse here to providing temporal upward compatibility
relative to SQL was adopted in the SQL/Temporal proposals [23, 24]. These lan-
guage constructs were explicitly designed to ensure upward compatibilityandtem-
poral upward compatibility with the entire SQL–92 standard. The constructs have
been proposed to the American ANSI and international ISO SQL committees for
inclusion into the next ISO SQL standard.

Several directions for further research are promising. First, there is a need
for exploring different implementation alternatives for upward compatible tempo-
ral SQL extensions. Alternatives range from stand-alone implementations to imple-
mentations that maximally reuse the functionality offered by existing DBMS’s with
an SQL interface. Second, it is felt that much could be learned from conducting
actual case studies of the migration of legacy applications to temporal platforms.
Third, the transition from explicit to implicit temporal knowledge should be inves-
tigated. Strategies must be designed to assist the user in migrating nontemporal
tables with explicit time columns to temporal tables. This is essential to maximally
exploit the capabilities of temporal database systems.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 611

7 Acknowledgments

M. H. Böhlen and C. S. Jensen were supported in part by the CHOROCHRONOS
project, funded by the European Commission DG XII Science, Research and De-
velopment, as a Networks Activity of the Training and Mobility of Researchers
Programme, contract no. FMRX-CT96-0056. R. T. Snodgrass was supported in
part by NSF grants ISI-9202244 and ISI-9632569 and by a grant from DuPont.

References

[1] M. M. Astrahan and D. D. Chamberlin. Implementation of a Structured En-
glish Query Language.Communications of the ACM, 18(10):580–588, Octo-
ber 1975.

[2] G. Ariav. A Temporally Oriented Data Model.ACM Transactions on Data-
base Systems, 11(4):499–527, December 1986.

[3] G. Bhargava and S. K. Gadia. Relational database systems with zero informa-
tion loss. IEEE Transactions on Knowledge and Data Engineering, 5(1):76–
87, February 1993.

[4] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the Completeness
of TSQL2. InRecent Advances in Temporal Databases, International Work-
shop on Temporal Databases, pages 153–172, Zürich, Switzerland, September
1995. Springer, Berlin.

[5] M. Böhlen. Managing Temporal Knowldege in Deductive Databases. PhD
thesis, Departement für Informatik, ETH Zürich, Switzerland, 1994.

[6] J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snodgrass. On the
Semantics of “NOW” in Temporal Databases.ACM Transactions on Database
Systems, to appear 1997.

[7] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.Com-
munications of the ACM, 13(6):377–387, June 1970.

[8] S. K. Gadia and G. Bhargava. SQL-like Seamless Query of Temporal Data.
In R. T. Snodgrass, editor,Proceedings of the International Workshop on an
Infrastructure for Temporal Databases, Arlington, Texas, June 1993.

[9] S. K. Gadia and S. S. Nair.Temporal Databases: A Prelude to Parametric
Data, chapter 2 of [26], pages 28–66. 1993.

[10] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Extension for Interval Data.
IEEE Transactions on Knowledge and Data Engineering, to appear 1996.

[11] N. Lorentzos. Management of Intervals and Temporal Data in the Relational
Model. Technical Report 49, Agricultural University of Athens, 1991.

612 SQL STANDARDIZATION AND BEYOND

[12] N. Lorentzos.The Interval-extended Relational Model and Its Application to
Valid-time Databases, chapter 3 of [26], pages 67–91. 1993.

[13] N. G. Martin, S. B. Navathe, and R. Ahmed. Dealing with temporal schema
anomalies in history databases. In P. Hammersley, editor,Proceedings of the
Thirteenth International Conference on Very Large Databases, pages 177–
184, Brighton, England, September 1987.

[14] J. Melton and A. R. Simon.Understanding the new SQL: A Complete Guide.
Morgan Kaufmann Publishers, San Mateo, California, 1993.

[15] S. B. Navathe and R. Ahmed. TSQL - A Language Interface for History Data-
bases. InProceedings of the Conference on Temporal Aspects in Information
Systems, pages 113–128. AFCET, May 1987.

[16] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a Query
Language.Information Systems, 49(2):147–175, 1989.

[17] S. Navathe and R. Ahmed.Temporal Extensions to the Relational Model and
SQL, chapter 4 of [26], pages 92–109. 1993.

[18] G. Özsoyǒglu and R. T. Snodgrass. Temporal and Real-Time Databases: A
Survey. IEEE Transactions on Knowledge and Data Engineering, 7(4):513–
532, August 1995.

[19] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. El-
masri, F. Grandi, C. S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Y. C. Leung,
N. Lorentzos, J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. TSQL2
Language Specification.SIGMOD RECORD, 23(1):65–86, March 1994.

[20] N. Sarda. Algebra and Query Language for a Historical Data Model.IEEE
Computer Journal, 33(1):11–18, February 1990.

[21] N. Sarda. Extensions to SQL for Historical Databases.IEEE Transactions on
Knowledge and Data Engineering, 2(2):220–230, June 1990.

[22] N. Sarda.HSQL: A Historical Query Language, chapter 5 of [26], pages 110–
140. 1993.

[23] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Valid
Time to SQL/Temporal. ANSI X3H2-96-151r1, ISO–ANSI SQL/Temporal
Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-142, May 1996.

[24] R. T. Snodgrass, M. H. Böhlen, C. S. Jensen, and A. Steiner. Adding Transac-
tion Time to SQL/Temporal. ANSI X3H2-96-152r, ISO–ANSI SQL/Temporal
Change Proposal, ISO/IEC JTC1/SC21/WG3 DBL MCI-143, May 1996.

[25] R. T. Snodgrass (editor).The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, Boston, 1995.

UPWARD COMPATIBILITY OF TEMPORAL QUERY LANGUAGES 613

[26] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. T. Snodgrass.
Temporal Databases: Theory, Design, and Implementation. Benjamin/-
Cummings Publishing Company, Inc., Redwood City, California, 1993.

[27] V. J. Tsotras and A. Kumar. Temporal Database Bibliography Update.SIG-
MOD Record, 25(1):41–51, March 1996.

[28] D. C. Tsichritzis and F. H. Lochovsky. Data models. InSoftware Series.
Prentice-Hall, 1982.

