
22
Language Syntax

1 Introduction

The organization of this section follows that of the SQL-92 standard. The syntax
is listed under corresponding section numbers in the SQL-92 standard. All new or
modified syntax rules are marked with a bullet (“•”) on the left side of the produc-
tion.

Where appropriate, we provide disambiguating rules to describe additional
syntactic and semantic restrictions. We assume that the reader is familiar with the
SQL-92 standard, and that a copy of the standard is available for reference.

2 Section 5 Lexical Elements

2.1 Section 5.2<token> and<separator>

The production for the non-terminal<delimiter token> is augmented.

<delimiter token> ::=
• ∣∣ <period string>

The production for the non-terminal<reserved word> is modified to add 25
reserved words. To conserve space, we do not copy the existing 227 reserved word
definitions from the SQL-92 standard.

<reserved word> ::=
• ∣∣ CALENDRIC

∣∣ CONTAINS
∣∣ CREDIBILITY

• ∣∣ DISTRIBUTION
• ∣∣ EVENT
• ∣∣ GENERAL
• ∣∣ INAPPLICABLE

∣∣ INDETERMINATE
• ∣∣ MEETS
• ∣∣ NEW

∣∣ NOBIND
∣∣ NONSTANDARD

• ∣∣ PERIOD
∣∣ PLAUSIBILITY

∣∣ PRECEDES
∣∣ PREVIOUS

∣∣ PROPERTIES
• ∣∣ RISING

519

520 THE TSQL2 QUERY LANGUAGE

• ∣∣ SCALE
∣∣ SNAPSHOT

∣∣ STATE
∣∣ SURROGATE

• ∣∣ VACUUM
• ∣∣ VALID
• ∣∣ WEIGHTED

2.2 Section 5.3<literal>

The production for the non-terminal<general literal> is augmented.

<general literal> ::=
• ∣∣ <period literal>

The <date string>, <time string>, <timestamp string>, and<interval
string> are generalized. The<year-month literal>, <day-time literal>, <day-
time interval>,<time interval>,<years value>,<months value>,<days value>,
<hours value>, <minutes value>, <seconds value>, <seconds integer value>,
<seconds fraction> and<datetime value> productions are all removed.

The allowable datetime, interval, and period literals is expanded to support
multiple character sets, user-specified representations, and indeterminate and now-
relative values.

<date literal> ::=
• DATE<date string> <calendric-property specification>

<time literal> ::=
• TIME <time string> <calendric-property>

<timestamp literal> ::=
• TIMESTAMP<timestamp string> [<timestamp precision>]

<calendric-property>

<interval literal> ::=
• INTERVAL [<sign>] <interval string> <interval qualifier>

<calendric-property>

<date string> ::=
• <datetime string>

<datetime string> ::=
• <character string literal>
• ∣∣ <determinate datetime string>
• ∣∣ <now-relative datetime string>
• ∣∣ <indeterminate now-relative datetime string>
• ∣∣ <now-relative with indeterminate datetime string>

LANGUAGE SYNTAX 521

<time string> ::=
• <datetime string>

<timestamp string> ::=
• <datetime string>

<interval string> ::=
• <character string literal>
• ∣∣ <determinate interval string>
• ∣∣ <indeterminate interval string>
• ∣∣ <now-relative interval string>

<period literal> ::=
• PERIOD<period string> [<period precision>] <calendric-property>

<period string> ::=
• <character string literal>

Format-related property values describe the contents of temporal constants.
The BNF grammar for format strings is as follows.

<format string> ::=
• <quote> [<character representation>

∣∣ <field specification>] . . .
<quote>

<field specification> ::=
• <less than operator><field identifier>

[<comma><translation table name>
[<comma><field formatting specification> . . .]]

<greater than operator>

<field identifier> ::=
• <identifier>

<translation table name> ::=
• <identifier>

<field formatting specification> ::=
• W<unsigned integer>
• L
• R
• Z
• B
• S

522 THE TSQL2 QUERY LANGUAGE

Syntax rules 7, 19, 20, 21, 22, 23 and 24 are removed, as they impose fairly
arbitrary restrictions on timestamps.
Additional syntax rules:

1. A <format string> defines the syntax of strings specified as the values of
format properties in property tables. A<format string> must be contained
in an activated property table to affect the translation timestamps or literal
values.

2. In a<field specification>, the table represented by the<translation table
name> and the character pattern shown by the<field formatting specifica-
tion>, determine the output format and translation for the given<field identi-
fier>.

3. Valid<field formatting specification>s are as follows.
Case:

• Wnum—place the value in an output field of widthnum. The default field
width is just large enough to contain the constant and a sign if specified.
Truncation will occur on the right if the value is too large, and the field
is left-justified. Truncation will occur on the left is the field is too large,
and the field is right justified. Only oneWspecification is permitted for
each<field formatting specification>.

• L—place the value left-justified in the field. Cannot be specified withR.

• R—place the value right-justified in the field. Right justification is the
default. Cannot be specified withL.

• Z—pad the field with zeros. Cannot be specified withB.

• B—pad the field with blanks. Blank padding is the default. Cannot be
specified withZ.

• S—include a sign character in the output. For negative numeric val-
ues the sign is always displayed.S forces a positive sign for positive
numeric values. Cannot be specified for non-numeric data.

4. Within a<format string>, <less than operator> <less than operator> de-
notes a single<less than operator>.

5. Within a<format string>, <quote><quote> (that is, a<quote symbol>)
denotes a single<quote>.

6. Any <character representation> appearing in the format string appears in
an output string in the same relative position and order with respect to other
<character representation>s and<field specification>s.

LANGUAGE SYNTAX 523

7. A <datetime string> is any sequence of characters not containing a single
<quote>.
Case:

• The value represented by a<datetime string> is the special granule
beginningif the<datetime string> is identical to the value of thebegin-
ning_stringproperty.

• The value represented by a<datetime string> is the special granule
forever if the <datetime string> is identical to the value of thefor-
ever_stringproperty.

• The value of a<datetime string> is the special valueuntil changedif the
<datetime string> is identical to the value of theuntil_changed_string
property.

• The value represented by a<datetime string> is the special granule
initiation if the <datetime string> is identical to the value of theiniti-
ation_stringproperty. This datetime is the creation time of the schema
for the database; no transaction time stored in this database can precedes
this instant.

• The value of a<datetime string> is the special valuenowif the<dateti-
me string> is identical to the value of thenow_stringproperty. This
special value, when bound in an executed statement, is identical to the
value ofCURRENT_TIMESTAMP.

• The value represented by a<datetime string> is the value returned by
a calendar if the<datetime string> is a contiguous subset of a string
consistent with the value of thedeterminate_datetime_formatproperty,
which can include references to calendric-specific fields. The calendar
named in the value of theinput_epoch_overrideproperty is attempted
first. If this calendar does not recognize one of the fields, the calendars
are attempted in the order specified for the current calendric system.

• Let A be a valid<datetime string>, representing the datetimeB. Let
T be a string consistent with thetime_zone_formatproperty, which can
include references to the fieldsminuteandhour. LetT Z be anINTER-
VAL HOUR TO MINUTEcomputed from the values of the hour and
minute fields. If the value of thedatetime_with_time_zoneproperty,
with the periodfield replaced withA and thetime_zonefield replaced
with B, is identical to the<datetime string>, then the value represented
by the<datetime string> is the datetimeB displaced by a time zone
offset ofTZ.

524 THE TSQL2 QUERY LANGUAGE

• LetA be a valid<datetime string>, representing the datetimeB. LetT
be a string contained in the translation table named by thetime_zone_-
name_table. LetT I be the index associated with this string in this trans-
lation table. LetTZ be anINTERVAL HOUR TO MINUTEcomputed
by looking upT I andB in the system-wide time zone table provided by
the DBA, with the schema(INDEX SMALLINT, VALIDTIME PE-
RIOD, ENDTIME TIMESTAMP, OFFSET INTERVAL HOUR TO
MINUTE), whereB overlapsVALIDTIME . If the value of thedate-
time_with_time_zoneproperty, with theperiod field replaced withA
and thetime_zonefield replaced withB, is identical to the<datetime
string>, then the value represented by the<datetime string> is the date-
timeB displaced by a time zone offset ofTZ.

• Let A andB be valid<datetime string>s, representing the datetimes
C andD. Let E be a string consistent with thedistribution_format
property, which can include references to the fielddistribution_name.
If the value of theindeterminate_datetimeproperty, with thedetermi-
nate_datetime_1field replaced withA, thedeterminate_datetime_2field
replaced withB, and thedistributionfield replaced withE, is identical
to the<datetime string>, then the value represented by the<datetime
string> is the indeterminate datetime with lower supportC, upper sup-
portD, and distribution as named inE.

• LetA be a valid<determinate interval string>, representing the interval
B. LetC be a string consistent with thesign_formatproperty, which can
include references to the fieldsign. If the value of thenow_relative_date-
time_formatproperty, with thenowfield replaced with the value of the
propertynow_string, the determinate_intervalfield replaced withA,
and thesignfield replaced withC, is identical to the<datetime string>,
then the value represented by the<datetime string> is the now-relative
datetimenow +B or now -B, depending on whether thesignfield value
is 0 or 1.

• LetA be a valid<now-relative datetime string>, representing the date-
time B. Let C be a valid<determinate datetime string>, represent-
ing the datetimeD. Let E be a string consistent with thedistribu-
tion_formatproperty, which can include references to the fielddistri-
bution_name. If the value of theindeterminate_now_relative_datetime
_format property, with thenow_relative_datetimefield replaced with
B, thedeterminate_datetimefield replaced withD, and thedistribution
field replaced withE, is identical to the<indeterminate now-relative
datetime string>, then the value represented by<indeterminate now-
relative datetime string> is the indeterminate now-relative datetime with

LANGUAGE SYNTAX 525

lower supportB, upper supportD, and distribution as named inE.

• LetA be a valid<indeterminate interval string>, representing the inter-
valB, with lower supportC, upper supportD, and distributionE. LetF
be a string consistent with thesign_formatproperty, which can include
references to the fieldsign. If the value of thenow_relative_with_inde-
terminate_interval_datetime_formatproperty, with thenow field re-
placed with the value of the propertynow_string, theindeterminate_in-
tervalfield replaced withA, and thesignfield replaced withF , is iden-
tical to the<now-relative with indeterminate datetime string>, then
the value represented by the<now-relative with indeterminate datetime
string> is the indeterminate datetime with lower supportnow + C or
now -C depending on whether thesignfield value is 0 or 1, upper sup-
portD, and distributionE.

8. An <interval string> is any sequence of characters not containing a single
<quote>.
Case:

• The value of an<interval string> is the special valueall of time if
the<interval string> is identical to the value of theall_of_time_string
property.

• The value of an<interval string> is the special valuenegative all of time
if the<interval string> is identical to the value of thenegative_all_of_ti-
me_stringproperty.

• The value of an<interval string> is the value returned by a calendar if
the<interval string> is a contiguous subset of a value consistent with
the value of thedeterminate_interval_formatproperty, which can in-
clude references to calendric-specific fields. The calendar named in the
value of theinput_epoch_overrideproperty is attempted first. If this cal-
endar does not recognize one of the fields, the calendars are attempted
in the order specified for the current calendric system.

• Let A andB be valid<determinate interval string>s, representing the
intervalsC andD. Let E be a string consistent with thedistribu-
tion_formatproperty, which can include references to the fielddistribu-
tion_name. If the value of theindeterminate_intervalproperty, with the
determinate_interval_1field replaced withA, thedeterminate_interval_
2 field replaced withB, and thedistribution field replaced withE, is
identical to the<interval string>, then the value represented by the
<interval string> is the indeterminate interval with lower supportC,
upper supportD, and distribution as named inE.

526 THE TSQL2 QUERY LANGUAGE

• LetA be a valid<determinate datetime string>, representing the date-
time B. Let C be a string consistent with thesign_formatproperty,
which can include references to the fieldsign, whose value is restricted
to being 1. If the value of thenow_relative_interval_formatproperty,
with the nowfield replaced with the value of the propertynow_string,
thedatetimefield replaced withA, and thesignfield replaced withC,
is identical to the<now-relative interval string>, then the value repre-
sented by the<now relative interval string> is the now-relative interval
now -B.

9. A <period string> is any sequence of characters not containing a single
<quote>.
Case:

• The value of a<period string> is the special valueall of time if the
<period string> is identical to the value of theall_of_time_period_string
property.

• Let A andB be valid<datetime string>s, representing datetimesC
andD. If the value of thedeterminate_period_formatproperty, with the
determinate_datetime_1field replaced byA and thedeterminate_dateti-
me_2field replaced byB, is identical to the<period string>, then the
value of the<period string> is the period fromC toD.

• Let A be a valid<period string>, representing the periodB. Let T
be a string consistent with thetime_zone_formatproperty, which can
include references to the fieldsminuteandhour. LetTZ be anINTER-
VAL HOUR TO MINUTEcomputed from the values of the hour and
minute fields. If the value of theperiod_with_time_zoneproperty, with
theperiodfield replace withA and thetime_zonefield replaced withB,
is identical to the<datetime string>, then the value represented by the
<period string> is the periodB displaced by a time zone offset ofTZ.

• LetA be a valid<datetime string>, representing the datetimeB. LetT
be a string contained in the translation table named by thetime_zone_na-
me_table. Let T I be the index associated with this string in this trans-
lation table. LetTZ be anINTERVAL HOUR TO MINUTEcomputed
by looking upT I andB in the system-wide time zone table provided by
the DBA, with the schemaINDEX SMALLINT, VALIDTIME PE-
RIOD, ENDTIME TIMESTAMP, OFFSET INTERVAL HOUR TO
MINUTE), whereB overlapsVALIDTIME . If the value of theperiod_
with_time_zoneproperty, with theperiod field replace withA and the
time_zonefield replaced withB, is identical to the<datetime string>,
then the value represented by the<period string> is the periodB dis-
placed by a time zone offset ofT Z.

LANGUAGE SYNTAX 527

10. The data type of a<period literal> is PERIOD.

11. Thestarting_delimiterandending_delimiterfields mentioned within thede-
terminate_period_formatdetermine whether the period literal is open-open,
open-closed, closed-open, or closed-closed. In any case, the value is stored
internally as a closed-closed period.

12. The non-terminal<calendric-property> is defined in Section 8.1.

13. If <calendric-property> contains a<calendric-spec clause> then the calen-
dric system named in the<calendric-spec clause> is used when interpreting
this literal. Otherwise, the globally declared calendric system whose scope
includes this literal is used.

14. If <calendric-property> contains a<property-spec clause> then the prop-
erties contained in the named property table are activated before interpreting
this literal, and deactivated after interpreting this literal.

15. If noDECLARE CALENDRIC SYSTEMcommand has been entered then the
implementation defined default calendric system is assumed.

Additional general rules:

1. The precision of a<time literal> is SECOND(0) if <time precision> is not
present. Otherwise, it is that specified by<time precision>.

2. The precision of a<timestamp literal> is SECOND(0) if <time precision>
is not present. Otherwise, it is that specified by<timestamp precision>.

3. The granule denoted by a<datetime literal> is assumed to be the first gran-
ule represented by the datetime string. This behavior may be changed with
appropriate field names.

4. Period literals are interpreted as follows. The beginning granule of the period
is the first granule contained in the period, and the ending granule of the period
is the last granule contained in the period. This behavior may be changed with
appropriate field names.

5. Closed-closed periods are closed on both ends (i.e., the period includes both
specified datetimes). Closed-open periods do not contain their specified end-
ing datetime; they terminate one granule before their ending datetime. Simi-
larly, open-closed periods do not contain their specified starting datetime, and
open-open do not contain either their specified starting or ending datetimes.

6. If the current calendric system is unable to successfully interpret a datetime,
period, or interval literal then an exception condition is raised:data excep-
tion—invalid time value literal.

2.3 Section 5.4 Names and identifiers

The following productions are added.

528 THE TSQL2 QUERY LANGUAGE

<calendric system name> ::=
• <identifier>

<property table name> ::=
• <table name>

<time granularity> ::=
• <identifier>

Additional syntax rules:

1. The identifiers denoting calendric systems and property tables are implemen-
tation dependent.

2. The available<time granularity>s are implementation dependent, but must
includeYEAR, MONTH, DAY, HOUR, MINUTE, andSECOND.

3 Section 6 Scalar Expressions

3.1 Section 6.1<data type>

The production for the non-terminal<data type> adds two new types.

<data type> ::=
• ∣∣ <period type>
• ∣∣ <surrogate type>

<period type> ::=
• [<indeterminate data type>] PERIOD[<period precision>]

[WITH TIME ZONE]

<period precision> ::=
• <period qualifier>

The production,<indeterminate data type> is added.

<indeterminate data type> ::=
• [NONSTANDARD] [GENERAL] INDETERMINATE

<surrogate type> ::=
• SURROGATE

The<datetime type> non-terminal is modified.

<datetime type> ::=
[<indeterminate data type>] DATE

• ∣∣ [<indeterminate data type>] TIME [<time precision>]
[WITH TIME ZONE]

• ∣∣ [<indeterminate data type>] TIMESTAMP[<timestamp precision>]

LANGUAGE SYNTAX 529

[WITH TIME ZONE]

<time precision> ::=
• <left paren><time fractional seconds precision> <right paren>

<timestamp precision> ::=
• <timestamp qualifier>

<interval type> ::=
• [<indeterminate data type>] INTERVAL [<interval qualifier>]

Additional general rules:

1. The delimiting datetimes of a period shall have the same precision and scale.

2. Values of typeSURROGATEcannot be seen (displayed). Consequently, at-
tributes ofSURROGATEtype are not allowed in the outermostSELECTclause
of a query. Also, attributes of surrogate type cannot be assigned an explicit
value.

3. A special reserved word,NEWmay be used when updating an attribute value
of SURROGATEtype. The new value is a previously unused value.

4. Values of typeSURROGATEcan only be compared with respect to identity.

5. The default distribution is standard (notNONSTANDARD).

6. The default indeterminate datetime is compact (notGENERAL).

7. The default datetime is determinate (notINDETERMINATE).

8. The size of the timestamp format allocated depends on the kind of timestamp
selected and the user-specified precision. Enough space must be allocated
to the data fields to accommodate the precision of the timestamp (precision
rules are described elsewhere). The default indeterminate timestamp format
is the chunked with standard distributions format. By specifyingGENERAL
the user chooses to use one of the general, indeterminate timestamp formats.
By specifyingNONSTANDARDthe user chooses to use one of the nonstandard
timestamp formats.

3.2 Section 6.2<value specification>

The productions for the non-terminals<parameter specification> and<variable
specification> are augmented to allow calendric system and property selection per-
item.

<parameter specification> ::=
• <parameter name> [<indicator parameter>]

[<calendric-property>]

530 THE TSQL2 QUERY LANGUAGE

<variable specification> ::=
• <embedded variable name> [<indicator variable>]

[<calendric-property>]

Additional syntax rules:

1. The non-terminal<calendric-property> is defined in Section 8.1.

2. If <calendric-property> is specified then<parameter name> must have the
data type<character string type>. Similar remarks apply to<embedded
variable name>.

3. If <calendric-property> is specified then the value contained in<parameter
name> or <variable name> is interpreted as a temporal value according to
the calendric system and/or calendar properties named by the<calendric-
property>.

4. If <calendric-property> contains a<calendric-spec clause> and the data
type of the column corresponding to the<parameter specification> or<va-
riable specification> is DATE, TIME, TIMESTAMP, PERIOD, or INTER-
VAL, then the calendric system named in the<calendric-spec clause> is used
to translate the timestamp into a temporal value.

5. If<calendric-property> contains a<property-spec clause> and the data type
of the column corresponding to the<parameter specification> or <variable
specification> is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL, then
the property table named in the<property-spec clause> are activated before
translating the timestamp, and deactivated immediately after translating the
timestamp.

6. If no SET CALENDRIC SYSTEMcommand has been entered then the im-
plementation defined default calendric system is assumed.

3.3 Section 6.3<table reference>

The production for the non-terminal<table reference> is replaced with the follow-
ing. The first component can be more complex than a single<table name>, and
multiple space-separated<correlation name>s are permitted.

<table reference> ::=
• <table source> [[AS] <corr>

{
<corr>

}
...]

• ∣∣ <derived table> [AS] <corr>
{
<corr>

}
...∣∣ <joined table>

<corr> ::=
• <correlation> [WITH CREDIBILITY <integer>]∣∣ <joined table>

LANGUAGE SYNTAX 531

The following productions are added. The first allows table references to be
defined in terms of other table references. The rest serve to define<correlation
modifier>.

<table source> ::=
• <table name><correlation modifier>
• ∣∣ <correlation name> <correlation modifier>

<correlation> ::=
• <correlation name> [<left paren> <derived column list>

<right paren>]

<correlation modifier> ::=
• [<left paren> <coalescing columns><right paren>]

[<left paren><partitioning unit> <right paren>]

<coalescing columns> ::=
• <column name> [

{
<comma> <column name>

}
...]

• ∣∣ <asterisk>

<partitioning unit> ::=
• ∣∣ INSTANT
• ∣∣ PERIOD

Additional syntax rules:

1. <coalescing columns> of <asterisk> imply all the attributes of the<table
name> or<correlation name>.

2. If the<coalescing attributes> are not present, then<asterisk> is assumed.

3. If a<correlation modifier> is applied to a<table source>, then a<correla-
tion> is required.

4. If the<correlation modifier> is applied to a<correlation name>, then the
attributes are drawn from the table upon which the<correlation name> is
based, and augment those attributes associated with the<correlation name>.
The latter attributes can be mentioned in this<correlation modifier>, but is
not required.

5. If <partitioning unit> is not specified, then Element is assumed.

6. If <partitioning unit> is not specified, then no partitioning is assumed.

7. Partitioning onINSTANT is only allowed for event tables.

Additional general rules:

1. LetCM be the<correlation modifier>. LetCN be a<column name> con-
tained inCM, andC be the column.

532 THE TSQL2 QUERY LANGUAGE

Case:

• If CM is associated with a<table name>, then letT be that table name.
The table identified byT is theultimate tableof CN .

• If CN is associated with a<correlation name>, then letD be that
<correlation name>. The ultimate table ofCN is the ultimate table
ofD.

2. C must be a column of its ultimate table.

3. Only those<column name>s indicated as<coalescing columns> are acces-
sible via the<correlation name>.

4. The credibility is a value between 0 and 100 (inclusive).

5. If the credibility phrase is missing, the default credibility is 100 or as specified
by the user with a set statement.

3.4 Section 6.5<set function specification>

An optional clause to the general set function production was added for weighted
aggregates.

<general function type> ::=
<set function type> <left paren> [<set quantifier>]

• [WEIGHTED]
<value expression><right paren>

One aggregate was added to the set function type.

<set function type> ::=
• ∣∣ RISING

Additional syntax rules:

1. LetDT be the data type of the<value expression>.

2. If RISING is specified, the data type of the result is a period.

3. If SUMis specified, DT shall not be an instant or a period.

4. If AVG is specified, DT shall not be a period, an event set, or a temporal
element.

5. If COUNTis specified,WEIGHTEDhas no effect.

Additional general rules:

1. If WEIGHTEDis specified, and DT is temporal, thenWEIGHTEDhas no effect
on the aggregate.

LANGUAGE SYNTAX 533

2. If WEIGHTEDis specified, letA be the specified attribute of the aggregate and
let T be the argument source.
Case:

(a) If MAXis specified, then the result is attribute A of the tuple, where, of
T, attribute A multiplied by the number of granules in its timestamp is
maximal.

(b) If MIN is specified, then the result is attribute A of the tuple, where, of
T, attribute A multiplied by the number of granules in its timestamp is
minimal.

(c) If SUMis specified, then the result is the sum of all attributes A in T,
piecewise multiplied by their timestamps, divided by the sum of the
timestamps.

(d) If AVGis specified, then the result is theSUMfunction over T divided
by the cardinality of T.

3. If RISING is specified withoutWEIGHTED, then the result shall be the largest
period such that the argument source T is monotonic increasing. IfWEIGHTED
is specified, then the largest period is computed over the value of each attribute
multiplied by its timestamp.

4. If MIN, MAX, SUM, or AVGis specified andT is a timestamp, then
Case:

(a) If MIN is present, then usePRECEDEto determine the minimum time-
stamp, except in the case that A is an interval, in which case return the
interval with the minimal number of granules.

(b) If MAXis present, then usenot PRECEDEto determine the maximum
timestamp, except in the case that A is an interval, in which case return
the interval with the maximal number of granules.

(c) If SUMis present, if the type of A is an interval, then return an interval
equal in length to the sum of the granules inT . Otherwise, the type of
A must be a temporal element or event set, and the result is the result of
set union of the elements ofT .

(d) If AVGis present, if the type of A is an interval, then return an interval
equal in length to the average number of granules inT . If the type of A is
an instant, pick any originO. Compute the average of the distance from
O to each instant inT , and return the instant representing the distance
from O to this average. If the type of A is period, then the beginning
instant of the resulting period is the average of the beginning instants of
the periods inT , and the terminating instant of the resulting period is
the average of the terminating instants of the periods inT .

534 THE TSQL2 QUERY LANGUAGE

5. If SUMis specified,T is INTERVAL and the sum is not within the range of
data type then an exception condition is raised:data exception—time value
out of range.

3.5 Section 6.8<datetime value function>

Expressions evaluating to or taking as a parameter periods or temporal expressions
are added.

<datetime value function> ::=
• ∣∣ BEGIN<left paren> <period value expression><right paren>
• ∣∣ END<left paren><period value expression><right paren>
• ∣∣ FIRST <left paren> <datetime value expression><comma>

<datetime value expression><right paren>
• ∣∣ LAST<left paren><datetime value expression><comma>

<datetime value expression><right paren>
• ∣∣ FIRST <left paren> <instant set value expression><right paren>
• ∣∣ LAST<left paren><instant set value expression><right paren>
• ∣∣ VALID <left paren>

{
<table name>

∣∣ <correlation name>
}

<right paren>
• ∣∣ SCALE<left paren> <datetime value expression>

AS<time granularity><right paren>
• ∣∣ NOBIND<left paren><datetime literal> <right paren>
• ∣∣ NOBIND<left paren><column reference><right paren>

Additional general rules:

1. FIRST (LAST) extracts the first (last) instant from the instant set.

2. Use ofVALID must be on valid or bitemporal event tables which are parti-
tioned.

3. Local invocation of a scale function overrides the global default.

4. The granularity of the resulting type of theSCALEoperation is<time granula-
rity>.

5. A NOBINDfunction can only appear in the target list of aninsert or mod-
ify statement. Any other use of a nobind will generate a compile-time error.

3.6 Section 6.10<cast specification>

Casting to different granularities is allowed, by adding to the options of the<cast
target>.

<cast target> ::=
<domain name>

LANGUAGE SYNTAX 535

∣∣ <data type>
• ∣∣ <time granularity>

Casting between data types is extended to include the temporal types. No
syntactic changes or additions are required to do this.
Additional syntax rules:

1. Table 1 showing the allowable data conversions is augmented to add thePE-
RIOD (P), temporal element (TE), instant set (IS) data types, and to add the
time granularity (G) cast target.

2. If SD is AN andTD is YM or DT then the conversion is first done to the EN
type.

3. If SD is EN andTD is YM or DT then the conversion is dependent on the
current calendric system in effect when the<cast specification> is executed.

4. If SDis C andTD is D, T, TS, YM, DT, or P then the conversion is dependent
on the current calendric system and set of input properties in effect when the
<cast specification> is executed.
Let CSbe the current calendric system andPSbe the appropriate output for-
mat string currently in effect when the<cast specification> is executed. Then
the<cast specification> CAST(C AS X) whereX is D, T, TS, YM, DT, or
P is equivalent to the following.

C WITH CALENDRICCS WITH PROPERTIESPS

5. If SD is D, T, TS, YM, DT, or P andTD is FC or VC then the conversion
is dependent on the current calendric system and set of output properties in
effect when the<cast specification> is executed, as described in Section 5.3
<literal>.

6. If SD is D, T, or TS andTD is P then the conversion results in a period of
duration one granule.

7. If SD is C andTD is P then the conversion is first done to the T data type.

8. LetCSbe the current calendric system andPSbe the appropriate output for-
mat string currently in effect when the<cast specification> is executed. Then
the<cast specification> CAST(T AS X) whereT is D, T, TS, TM, DT, or
P andX is VC or FC is equivalent to the following.

T WITH CALENDRICCS WITH PROPERTIESPS

9. If SD is YM or DT andTD is EN or AN then the conversion is dependent
on the current calendric system in effect when the<cast specification> is
executed.

10. If SD is C, D, T, or TS andTD is TE then the conversion is first done to theP
type.

536 THE TSQL2 QUERY LANGUAGE

<data type> of TD
<data type> of SD EN AN VC FC VB FB D T TS

EN Y Y Y Y N N N N N
AN Y Y Y Y N N N N N
C Y Y M M Y Y Y Y Y
B N N Y Y Y Y N N N
D N N Y Y N N Y N Y
T N N Y Y N N N Y Y
TS N N Y Y N N Y Y Y
YM M Y Y Y N N N N N
DT M Y Y Y N N N N N
P N N Y Y N N N N N

TE N N N N N N N N N
IS N N N N N N N N N

<data type> of TD
<data type> of SD YM DT P TE IS G

EN M M N N N N
AN N N N N N N
C Y Y Y Y Y N
B N N N N N N
D N N Y Y Y Y
T N N Y Y Y Y
TS N N Y Y Y Y
YM Y N N N N Y
DT N Y N N N Y
P M M Y Y N Y

TE N N N Y Y Y
IS N N N Y Y Y

Table 1: Cast data conversions

LANGUAGE SYNTAX 537

11. If SD is P andTD is TE, then the conversion is into a temporal element con-
taining one period.

12. If SD is C, T, TS, or P andTD is IS then the conversion is first done to theTE
type.

13. If SD is TE andTD is IS then the conversion is done by applyingFIRST to
each period in the set.

14. If SD is D, T, TS, YM, DT, P, TE, or IS andTD is G then the conversion
results in a value of the data typeSDat the underlying granularityTD.

Additional general rules:

1. Rule 3(c) is replaced with the following.
If TD is exact numeric andSDis interval then if there is a representation ofSV
in the typeTD that does not lose any leading significant digits thenTV is that
representation. Otherwise, an exception condition is raised:data exception—
numeric value out of range.

2. Rule 5(e) is replaced with the following.
If SD is a datetime, interval or period then letY be the calendar dependent
character string produced fromSVsuch that the interpreted value ofY is SV
and the interpreted precision ofY is the precision ofSD.
Case:

• If Ycontains any<SQL language character> that is not in the repertoire
of TD then an exception condition is raised:data exception—invalid
character value for cast.

• If the length in charactersLY of Y is equal toLTD thenTV is Y.

• If the length in charactersLY of Y is less thanLTD thenTV is extended
on the right byLTD− Yspaces.

• Otherwise an exception condition is raised:data exception—string data,
right truncation.

3. Rule 6(e) is replaced with the following.
If SD is a datetime, interval or period then letY be the calendar dependent
character string produced fromSVsuch that the interpreted value ofY is SV
and the interpreted precision ofY is the precision ofSD.
Case:

• If Ycontains any<SQL language character> that is not in the repertoire
of TD then an exception condition is raised:data exception—invalid
character value for cast.

• If the length in charactersLYof Y is less than or equal toMLTD thenTV
is Y.

538 THE TSQL2 QUERY LANGUAGE

• Otherwise an exception condition is raised:data exception—string data,
right truncation.

4. Rules 9(b)–(c) are deleted, and Rule 9(a) is replaced with the following.
If TD is a datetime data type andSD is a character string then the determina-
tion of TV from SVis calendar dependent. IfTV cannot be determined from
SV then an exception condition is raised:data exception—invalid character
value for cast.

5. Rules 10 and 11 are deleted.

6. Rule 12 is replaced with the following.
If TD is an interval data type, then
Case:

(a) If SDis exact numeric then the determination ofTV from SVis calendar
dependent.

If the representation ofSVin the data typeTD would result in the loss
of leading significant digits, then an exception condition is raised:data
exception—time value out of range.

(b) If SD is character string then the determination ofTV from SVis calen-
dar dependent.

If TV cannot be determined fromSV then an exception condition is
raised:data exception—invalid character value for cast.

(c) If SD is P andTD is YM or DT, then the duration ofSD is determined
in the precision ofTD.

3.7 Section 6.11<value expression>

The production for the non-terminal<value expression> is augmented to include
expressions evaluating to periods, to temporal elements, and to instant sets.

<value expression> ::=
• ∣∣ <period value expression>
• ∣∣ <temporal element value expression>

• ∣∣ <instant set value expression>

3.8 Section 6.14<datetime value expression>

The<time zone specifier> is augmented to allow symbolic time zones, such as
’MST’ . The production for the non-terminal<period primary> is augmented to
also include references to tables themselves. Also, expressions evaluating to tem-
poral expressions are added.

LANGUAGE SYNTAX 539

<time zone specifier> ::=
LOCAL∣∣ TIME ZONE<interval value expression>

• ∣∣ TIME ZONE<character string literal>

Operand 1 Operator Operand 2 Yields

- interval interval
interval + interval interval
interval - interval interval
datetime + interval datetime
datetime - interval datetime
interval + datetime datetime
datetime - datetime interval
interval * numeric interval
numeric * interval interval
interval / numeric interval
interval / interval numeric
interval + period period
period + interval period
period - interval period

Table 2: Valid arithmetic expressions and results

Additional general rules:

1. If<character string literal> is a string contained in the translation table named
by thetime_zone_name. LetT I be the index associated with this string in this
translation table. LetB be the value of<datetime primary>. Let T Z be an
INTERVAL HOUR TO MINUTEcomputed by looking upT I andB in the
system-wide time zone table provided by the DBA, with the schema(INDEX
SMALLINT, VALIDTIME PERIOD, ENDTIME TIMESTAMP, OFFSET
INTERVAL HOUR TO MINUTE), whereB overlapsVALIDTIME .

2. The following is added to Rule 3.
The semantics of<datetime value expression>s involving<period term>s
is calendar-dependent. If the underlying granularities of both are supplied by
theSQL92 calendar, then the semantics are as follows. (Original Rule 3 goes
here.)

3. Operands are coerced to the global scale/cast specified in the lastSET SCA-
LE/SET CASTcommand prior to the operation. If no such command was
issued or the defaults are specified, then operands are scaled as needed to
enforce left-operand semantics.

540 THE TSQL2 QUERY LANGUAGE

4. The range of intermediate results is the maximum allowed by the implemen-
tation.

5. The following is added to Rule 6.
If <datetime value expression> is specified, the semantics is calendar-depen-
dent. If the underlying granularities of both the<datetime value expression>
and the<datetime term>, as well as the<period qualifier> are supplied by
theSQL92calendar, then the semantics are as follows. (Original Rule 6 goes
here.)

3.9 Section 6.15<interval value expression>

The following production is added to the<interval value expression>non-terminal.

<interval value expression> ::=
• ∣∣ <interval value function>

New general rules:

1. The following is added to Rule 6.
If <datetime value expression> is specified, the semantics is calendar-depen-
dent. If the underlying granularities of both the<datetime value expression>
and the<datetime term>, as well as the<period qualifier> are supplied by
theSQL92calendar, then the semantics are as follows. (Original Rule 6 goes
here.)

3.10 Section 6.16<interval value function>

This is a new section.

<interval value function> ::=
• INTERVAL<left paren> <period value expression><right paren>
• ∣∣ ABSOLUTE<left paren> <interval value expression><right paren>
• ∣∣ SCALE<left paren> <interval value expression> AS

<time granularity><right paren>
• ∣∣ NOBIND<left paren><interval literal> <right paren>
• ∣∣ NOBIND<left paren><column reference><right paren>

Additional general rules:

1. Local invocation of a scale function overrides the global default.

2. The granularity of the resulting type of theSCALEoperation is<time granula-
rity>.

3. A NOBINDfunction can only appear in the target list of aninsert or mod-
ify statement. Any other use of a nobind will generate a compile-time error.

LANGUAGE SYNTAX 541

3.11 Section 6.17<period value expression>

This is a new section.

<period value expression> ::=
• <period primary>
• ∣∣ <interval value expression><plus sign> <period value expression>
• ∣∣ <period value expression> {<plus sign>

∣∣ <minus sign>}
<interval value expression>

<period primary> ::=
• <period literal>
• ∣∣ <column reference>
• ∣∣ <scalar subquery>
• ∣∣ <case expression>
• ∣∣ <period value function>
• ∣∣ <cast specification>

Additional syntax rules:

1. The data type of a<period value expression> is PERIOD.

2. Table 2 lists the arithmetic expressions involving time that are valid.

Additional general rules:

1. If a temporal arithmetic operation yields aPERIODvalue that is out of range
then an exception condition is raised:data exception—time value out of range.

3.12 Section 6.18<period value function>

This is a new section.

<period value function> ::=
• VALID <left paren>

{
<table name>

∣∣ <correlation name>
}

<right paren>
• ∣∣ TRANSACTION<left paren>{

<table name>
∣∣ <correlation name>

}
<right paren>

• ∣∣ PERIOD<left paren> <datetime value expression><comma>
<datetime value expression><right paren>

• ∣∣ INTERSECT<left paren> <period value expression><comma>
<period value expression><right paren>

• ∣∣ FIRST <left paren><temporal element value expression>

<right paren>
• ∣∣ LAST<left paren><temporal element value expression>

<right paren>
• ∣∣ SCALE<left paren><period value expression><right paren>

542 THE TSQL2 QUERY LANGUAGE

• ∣∣ NOBIND<left paren><period literal> <right paren>
• ∣∣ NOBIND<left paren><column reference><right paren>

Additional general rules:

1. Use ofVALID is allowed only on valid time state or bitemporal state tables
that are partitioned, and denotes a maximal period in the timestamp of the
underlying tuple.

2. Use ofTRANSACTIONis allowed only on transaction or bitemporal tables,
and denotes a maximal period in transaction time when the values of the
columns and the valid time associated with the tuple remained constant.

3. FIRST (LAST) extracts the first (last) maximal period from the temporal el-
ement.

4. Local invocation of a scale function overrides the global default.

5. The granularity of the resulting type of theSCALEoperation is<time granula-
rity>.

6. A NOBINDfunction can only appear in the target list of aninsert or mod-
ify statement. Any other use of a nobind will generate a compile-time error.

3.13 Section 6.19<temporal element value expression>

The following are new nonterminals introduced into the language.

<temporal element value expression> ::=
• <temporal element value term>
• ∣∣ <temporal element value expression>{

<plus sign>
∣∣ <minus sign>

}
<temporal element value term>

<temporal element value term> ::=
• <temporal element value factor>

<temporal element value factor> ::=
• <temporal element value primary>

<temporal element value primary> ::=
• <temporal element value function>

Additional general rules:

1. ‘ + ’ (‘ - ’) on temporal elements is set union (difference).

LANGUAGE SYNTAX 543

3.14 Section 6.20<temporal element value function>

A new nonterminal,<temporal element value function>, is added.

<temporal element value function> ::=
• VALID <left paren>

{
<table name>

∣∣ <correlation name>
}

<right paren>
• ∣∣ INTERSECT<left paren> <temporal element value expression>

<comma><temporal element value expression>

<right paren>
• ∣∣ SCALE<left paren><temporal element value expression> AS

<time granularity><right paren>

Additional general rules:

1. Use ofVALID denotes the temporal element timestamping of the underlying
tuple, which must be associated with a valid time or bitemporal state table that
has not been partitioned.

2. Intersection of temporal elements is set intersection.

3. Local invocation of a scale function overrides the global default.

4. The granularity of the resulting type of theSCALEoperation is<time granula-
rity>.

3.15 Section 6.21<instant set value expression>

The following are new nonterminals introduced into the language.

<instant set value expression> ::=
• <instant set value primary>
• ∣∣ <instant set value expression>

{
<minus>

∣∣ <plus>
}

<instant set value primary>

<instant set value primary> ::=
• <instant set value function>

Additional general rules:

1. ‘ + ’ (‘ - ’) on instant sets is set union (difference).

3.16 Section 6.22<instant set value function>

A new nonterminal,<instant set value function>, is added.

<instant set value function> ::=
• VALID <left paren>

{
<table name>

∣∣ <correlation name>
}

<right paren>
• ∣∣ INTERSECT<left paren> <instant set value expression><comma>

<instant set value expression><right paren>

544 THE TSQL2 QUERY LANGUAGE

Additional general rules:

1. Use ofVALID denotes the instant set timestamping of the underlying tuple,
which must be associated with a valid-time or bitemporal event table that has
not been partitioned.

4 Section 7 Query Expressions

4.1 Section 7.1<row value constructor>

A tuple can now include a valid time.

<row value constructor> ::=
<row value constructor element>

• ∣∣ <left paren><row value constructor list> <right paren>
[<valid value>]∣∣ <row subquery>

<valid value> ::=
• VALID

{
<element value expression>

∣∣ <interval value expression>∣∣ <event value expression>
∣∣ <event set value expression>

}
4.2 Section 7.3<table expression>

The production for the non-terminal<table expression> is replaced with the fol-
lowing, adding one clause.

<table expression> ::=
• [<valid clause>]

<from clause>
[<where clause>]

[<group by clause>]
[<having clause>]

The following production is added.

<valid clause> ::=
• {

VALID
∣∣ VALID INTERSECT

} {
<temporal element value expression>∣∣ <period value expression>

∣∣ <datetime value expression>∣∣ <instant set value expression>
}

Additional general rules:

1. VALID INTERSECTT is equivalent to

VALID INTERSECT(T ,
INTERSECT(C1, . . . , INTERSECT(Cn−1, Cn)))

LANGUAGE SYNTAX 545

whereCi are the correlation variables (or table names) mentioned in theSE-
LECTclause. The correlation variables are listed in order of increasing gran-
ularity.

2. The defaultVALID clause is

VALID INTERSECT PERIOD ’all of time’ .

3. If the VALID clause specifies a period or instant value, the values from the
other value-equivalent tuples are gathered into a temporal element or instant
set, respectively.

4.3 Section 7.6<where clause>

To the production for<where clause> is added the plausibility phrase.

<where clause> ::=
• WHERE<search condition> [WITH PLAUSIBILITY <integer>]

Additional general rules:

1. The plausibility is a value between 1 and 100 (inclusive). A value of 1 implies
a non-zero plausibility less than 1.

2. If the plausibility phrase is missing, the default plausibility is 100 or as speci-
fied by the user with a set statement.

4.4 Section 7.7<group by clause>

The production for grouping column reference is extended.

<grouping column reference> ::=
<column reference> [<collate clause>]

• ∣∣ <temporal partition>

<temporal partition> ::=
• {

VALID <left paren>
{
<table name>

∣∣ <correlation name>
}

<right paren>
• ∣∣ <column reference>

}
• [USING

{
<partition expression>

∣∣ INSTANT
}

]
• [LEADING<partition expression>]
• [TRAILING <partition expression>]

<partition expression> ::=
• <integer>
• ∣∣ <time granularity>
• ∣∣ <integer><time granularity>
• ∣∣ PERIOD ’All of time’ <time granularity>

546 THE TSQL2 QUERY LANGUAGE

Additional syntax rules:

1. If the using clause, or the leading clause or the trailing clause is present,
and VALID is not present, then the type of the<column reference> in a
<temporal partition> clause must be a timestamp. If the<column reference>
is simply a timestamp with no leading, trailing, of using clause, then partition
the relation as SQL-92 defines.

2. VALID associated with a particular table may only be present once in a<group
by clause>

Additional general rules:

1. If the special periodPERIOD ’All of time’ <time granularity> is pre-
sent in the using clause, then the partition includes all of the time-line. If the
leading clause (trailing) includes thePERIOD ’All of time’ <time
granularity>, then the leading partition (trailing) is of maximal length (i.e.,
includes all previous (later) granules on the time-line).

2. The granularity of the using, leading, and trailing clauses, if they are present,
must be the same as the granularity of the valid clause.

3. If the type of the<column reference> in a<temporal partition> clause is a
timestamp, orVALID is present, then

(a) If the using clause is not present, then the default isINSTANT for
<partition expression>’s that containVALID , andPERIOD ’All of
time’ <time granularity> for <column references> in a<temporal
partition>. The default granularity is the granularity of the valid clause.
The using and leading clauses may only specify integral multiples of
this granularity.

(b) If the leading (or trailing) clause is not present, then the default length
of the missing clause is length 0.

(c) The granularity in the leading, trailing, and using clauses is a calendar
granularity.

(d) If a granularity is given without the accompanying integer length, the
length is assumed to be 1.

4. If any or all of the using, trailing or leading clauses are present, orVALID
is present, then partition the table the following way. These computations
are done at the underlying granularity of the valid clause. The result of the
<temporal partition>will be an assignment of tuples to one or more granules
in the query result’s valid time-line. Then an aggregate value will be com-
puted over the set of tuples associated with each granule. For each tuple, we
determine which granules it is associated with in the following way. Also, if
the<column reference> is a timestamp, then in the following, use the values

LANGUAGE SYNTAX 547

of the timestamp instead of the valid time from that relation when processing
the<temporal partition> which contains that<column reference>.

(a) For each<temporal partition> (with R the expression’s<table name>
or <correlation name>), determine which granules the tuple overlaps.
This is done by computing the least (L) and greatest granules (G) which
overlap the tuple’s valid time fromR, in the granularity of the valid
clause, with respect to the leading, trailing, and using clauses. The tuple
is first tentatively associatedwith the sequence of granules fromL toG,
inclusive.

(b) The using clause specifies how many consecutive granules ({g1, . . . ,

gn }) are to be considered for each partition. The leading and trail-
ing clauses extend this sequence by their integral amounts, respectively
to the beginning and the end of the sequence. A tuple overlaps all
granules in a partition if it’s valid time with respect toR intersects
{ g1, . . . , gn }.

(c) If for all <temporal partition>’s, a tuple is tentatively associated to a
granuleg, then the tuple is associated withg.

4.5 Section 7.8<having clause>

Additional general rules:

1. LetT be one of the clauses in the<temporal partition> clause.

2. If T contains a using clause, then the using clause must be larger than a single
granule, and the leading and trailing clauses must be zero length.

3. If the group-by clause contains a<temporal partition>, then the result of a
reference to valid time in the having clause is the valid time of the group
defined by the<temporal partition>.

4.6 Section 7.9<query specification>

The production is replaced with the following, adding one optional reserved word.

<select statement: single row> ::=
• SELECT[<set quantifier>] [SNAPSHOT] <select list>

<table expression>

We add an option to indicate use of the completed schema.

<select list> ::=
<column list>∣∣ <asterisk>

• ∣∣ <asterisk> <asterisk>∣∣ <select sublist> [
{
<comma> <select sublist>

}
...]

548 THE TSQL2 QUERY LANGUAGE

Additional general rules:

1. SNAPSHOTspecifies that the resulting table will be a snapshot table. In this
case, the<table expression> should not include a<valid clause>.

2. Specification of the** option results in the use of the completed schemes for
the table(s) specified.

5 Section 8 Predicates

5.1 Section 8.1<predicate>

The production for the non-terminal<predicate> is replaced with the following.

<predicate> ::=
<comparison predicate>∣∣ <between predicate>∣∣ <in predicate>∣∣ <like predicate>∣∣ <null predicate>∣∣ <quantified comparison predicate>∣∣ <exists predicate>∣∣ <unique predicate>∣∣ <match predicate>

• ∣∣ <precedes predicate>
• ∣∣ <meets predicate>
• ∣∣ <overlaps predicate>
• ∣∣ <contains predicate>

5.2 Section 8.2<comparison predicate>

No new syntax rules are required, but additional disambiguating rules are required
for interval comparison.

1. The<less than operator>,<greater than operator>, and<equals operator>
are valid for interval comparison.

5.3 Section 8.7<quantified comparison predicate>

No additional productions are required. The following syntax rules are added.
Additional syntax rules:

1. LetT1 be the type of<value expression>.

2. LetT2 be the type of<row value expression>.

3. If eitherT1 orT2 is DATE, TIME, TIMESTAMP, PERIODor INTERVAL then
T1 andT2 must be comparable as defined in Table 3.

LANGUAGE SYNTAX 549

5.4 Section 8.11<overlaps predicate>

The following productions are added for the new comparison operators. (The pro-
duction for theOVERLAPSpredicate is extended.) The applicable types are broad-
ened to include temporal elements.

<overlaps predicate> ::=
<row value constructor 1> OVERLAPS<row value constructor 2>

• ∣∣ <row value expression 1> OVERLAPS<row value expression 2>

<precedes predicate> ::=
• <row value expression 1> PRECEDES<row value expression 2>

<meets predicate> ::=
• <row value expression 1>MEETS<row value expression 2>

<contains predicate> ::=
• <row value expression 1> CONTAINS<row value expression 2>

This grammar is overly permissive in that it generates semantically illegal
expressions. This is, however, consistent with the grammar originally provided in
the SQL-92 standard for datetime value comparison. Expressions violating type
constraints will be detected during semantic analysis.
Additional syntax rules:

1. LetT1 be the type of<row value expression 1>.

2. LetT2 be the type of<row value expression 2>.

3. T1 andT2 must be eitherPERIODor datetime.

4. T1 andT2 shall be comparable as defined in Table 3.

5. Any comparison involving thePERIODor datetimedata types not listed in
Table 3 is disallowed.

Operand 1 Operator Operand 2

interval = interval
interval < interval
interval > interval

datetime/period/element = datetime/period/element
datetime/period/elementPRECEDES datetime/period/element
datetime/period/elementOVERLAPS datetime/period/element
datetime/period/elementCONTAINS datetime/period/element
datetime/period/element MEETS datetime/period/element

Table 3: Permitted set of comparison operators

550 THE TSQL2 QUERY LANGUAGE

6 Section 10 Additional Common Elements

6.1 Section 10.1<interval qualifier>

This is significantly generalized to allow implementation-defined granularities. The
<non-second datetime field> non-terminal is removed,<timestamp qualifier> and
<period qualifier> are added, and the following non-terminals are modified.

<start field> ::=
• <time granularity> [<left paren><interval leading field precision>

<right paren>]
• ∣∣ <left paren><interval string> <interval qualifier> <right paren>

<end field> ::=
• <time granularity> [<left paren>

<interval fractional seconds precision><right paren>]

<single datetime field> ::=
• <time granularity> [<left paren><interval leading fixed position>

[<comma> <interval trailing field position>] <right paren>]

<timestamp qualifier> ::=
• [<start field> TO] <end field>
• ∣∣ <single datetime field>

<period qualifier> ::=
• <timestamp qualifier>

The general rules are significantly generalized to remove fairly arbitrary re-
strictions.

7 Section 11 Schema Definition and Manipulation

We add to the production for<schema element> to allow dynamic definition of
distributions.

<schema element> ::=
• ∣∣ <create distribution statement>

7.1 Section 11.3<table definition>

The production for the non-terminal<table definition> is augmented with an addi-
tional, optional clause, as well as with a<vacuuming definition>.

<table definition> ::=
CREATE[

{
GLOBAL

∣∣ LOCAL
}

TEMPORARY] TABLE<table name>

LANGUAGE SYNTAX 551

<table elements>
• [<temporal definition>]
• [<vacuuming definition>]

[ON COMMIT
{

DELETE
∣∣ PRESERVE

}
ROWS]

Three productions are added.

<temporal definition> ::=
• AS

{
VALID [STATE

∣∣ EVENT]
}

[<timestamp precision>]
[AND TRANSACTION]

• ∣∣ AS TRANSACTION

<vacuuming definition> ::=
• VACUUM<datetime value expression>

Additional general rules:

1. Case:

(a) if neitherVALID nor transaction is specified, the table is a snapshot
table.

(b) If AS VALID STATE is specified, andTRANSACTIONis not speci-
fied, then the tuples are timestamped with valid-time elements that are
sets of non-contiguous periods. The precision and scale of the periods
can be specified.

(c) If AS VALID EVENTis specified, andTRANSACTIONis not speci-
fied, then the tuples are timestamped with valid-time instant sets. The
precision and scale of the instants can be specified.

(d) If TRANSACTIONis specified, andVALID is not specified, then the
tuples are timestamped with transaction-time elements. The scale of the
timestamps is implementation-dependent.

(e) If TRANSACTIONand VALID STATE are specified, the the tuples
are timestamped with bitemporal elements that are sets of bitemporal
chronons. The precision and scale of the valid-time dimension can
be specified; the scale of the transaction-time dimension is implemen-
tation-dependent.

(f) If TRANSACTIONand VALID EVENT are specified, the the tuples
are timestamped with bitemporal instant sets that are sets of bitempo-
ral chronons. The precision and scale of the valid-time dimension can be
specified; the scale of the transaction-time dimension is implementation-
dependent.

2. The<vacuuming definition> is only allowed when the table supports trans-
action time.

552 THE TSQL2 QUERY LANGUAGE

3. If <vacuuming definition> is not specified, VACUUM TIMESTAMP
CURRENT_TIMESTAMPis assumed (the default).

7.2 Section 11.4<column definition>

<column definition> ::=
<column name>

{
<data type>

• [INAPPLICABLE <value expression>]∣∣<domain name>
}

[<default clause>]
[<column constraint definition>...]
[<collate clause>]

Additional General Rules:

1. TheINAPPLICABLE clause expressions may be either simple of a function
only of the attributes in the completed schema for the table.

7.3 Section 11.5<default clause>

The production for the non-terminal<default clause> is changed to the following.

<default clause> ::=
<literal>∣∣ <datetime value function>

• ∣∣ <interval value function>
• ∣∣ <period value function>∣∣ USER∣∣ SYSTEM USER∣∣ NULL

Additional syntax rules:

1. If <datetime value function>, <period value function>, or<interval value
function> is specified then any parameters passed to these functions must be
property values representing a special time value or literal values.

2. LetT be the type of the column being initialized.

3. If T is DATE, TIME, TIMESTAMP, PERIOD, or INTERVAL thenUSERand
SYSTEM USERmay not be specified.

4. If T is DATE, TIME or TIMESTAMPthen either a<literal> representing a
<datetime literal> or a<datetime value function> may be specified. The
calendric system used to interpret the constant is the calendric system whose
scope is the smallest scope which encompasses the literal. The properties
used to interpret the constant are the set of properties active when the default
clause is executed.

LANGUAGE SYNTAX 553

5. If T is PERIOD then either a<literal> representing a<period literal> or
a<period value function> may be specified. The calendric system used to
interpret the constant is the calendric system whose scope is the smallest scope
which encompasses the literal. The properties used to interpret the constant
are the set of properties active when the default clause is executed.

6. If T is INTERVAL then either a<literal> representing an<interval literal>
or an<interval value function>may be specified. The calendric system used
to interpret the constant is the calendric system whose scope is the smallest
scope which encompasses the literal. The properties used to interpret the
constant are the set of properties active when the default clause is executed.

7.4 Section 11.10<alter table statement>

The<alter table statement> is augmented with the following alternatives.

<alter table action> ::=
• ∣∣ <add valid definition>
• ∣∣ <drop valid definition>
• ∣∣ <replace valid def>
• ∣∣ <add transaction definition>
• ∣∣ <drop transaction definition>
• ∣∣ <scale valid definition>
• ∣∣ <cast valid definition>
• ∣∣ <alter vacuuming definition>

The following productions are added.

<add valid definition> ::=
• ADD[VALID]

{
STATE

∣∣ EVENT
}

[<timestamp precision>]

<drop valid definition> ::=
• DROP VALID

<replace valid definition> ::=
• REPLACE[VALID] [

{
STATE

∣∣ EVENT
}

]
[<timestamp precision>]

<add transaction definition> ::=
• ADD TRANSACTION

<drop transaction definition> ::=
• DROP TRANSACTION

<scale valid definition> ::=
• SCALE VALID AS <timestamp precision>

554 THE TSQL2 QUERY LANGUAGE

<cast valid definition> ::=
• CAST VALID AS<timestamp precision>

<alter vacuuming definition> ::=
• VACUUM<datetime value expression>

Additional syntax rules:

1. Let T be the table identified in the containing<alter table statement>.

2. For the<add valid definition>, T shall be a snapshot or transaction-time ta-
ble.

3. For the<drop valid definition>, T shall be a valid-time or bitemporal table.

4. For the<replace valid definition>, T shall be a valid-time or bitemporal table.

5. For the<add transaction definition>, T shall be a snapshot table or a valid-
time table.

6. For the<drop transaction definition>, T shall be a transaction-time or bitem-
poral table.

7. For the<scale valid definition>, T shall be a valid-time or bitemporal table.

8. For the<cast valid definition>, T shall be a valid-time or bitemporal table.

9. For the<alter vacuuming definition>, T shall be a transaction-time or bitem-
poral table.

Additional general rules:

1. For the<drop valid definition>, if T is a state table, it is converted to a snap-
shot table with contents

SELECT SNAPSHOT * FROMT
WHERET OVERLAPS CURRENT_TIMESTAMP

If T is an event table, it is converted to a snapshot table with contents

SELECT SNAPSHOT * FROMT

2. In the<replace valid definition>, scale or cast is used as specified by the<set
scale statement> or<set cast statement>.

3. For<scale valid definition>, the temporal element of each tuple of T is con-
verted to the new precision and scale, using a cast or scale operation.

4. If T was an state table and<valid definition> specifies period, then only
the precision or scale of T’s valid-time timestamps is altered. The temporal
element of each tuple ofT is converted to the new precision and scale. If the
scale in increased, the additional fractional digits are set to zero.

5. If T was an state table and<valid definition> specifies event, then the time-
stamp of each tuple inT is converted from a set of periods to a set of instants,
equivalently,SELECT * VALID BEGIN(T) FROM T(PERIOD)

LANGUAGE SYNTAX 555

6. If T was an event table and<valid definition> specifies event, then only the
precision or scale of T’s valid-time timestamps is altered. The instants in the
timestamp of each tuple ofT are converted to the new precision and scale. If
the scale in increased, the additional fractional digits are set to zero.

7. If T was an event table and<valid definition> specifies period, then the time-
stamp of each tuple inT is converted from a set of instants to a set of periods,
equivalently,SELECT * VALID PERIOD(T, T) FROM T(EVENT)

8. The<datetime value expression> must, when the<alter table statement>
is issued, evaluate to a time value that is either not before the current cut-off
point or is after the current time.

9. When an<alter table statement> with an<add transaction time> clause,
but with no<alter vacuuming definition>, is applied to a table that does not
support transaction time, the time the<alter table statement> takes effect is
used as the cut-off point of the altered table.

7.5 Section 11.38 Distributions

This is a new section.

<create distribution statement> ::=
• CREATE[

{
GLOBAL

∣∣ LOCAL
}

TEMPORARY] DISTRIBUTION
<distribution name> USING<table name>

<alter distribution statement> ::=
• ALTER DISTRIBUTION<distribution name> USING<table name>

<drop distribution statement> ::=
• DROP DISTRIBUTION<distribution name>

Additional general rules:

1. The distribution must conform to implementation-dependent distribution con-
straints, otherwise an exception is raised.

2. The<create distribution statement> establishes a new distribution name.

3. Altering a distribution effectively destroys the old distribution and replaces it
with a new distribution having the indicated table descriptor.

8 Section 12 Module

The production for the non-terminal<module contents> is changed to include a
global calendric system declaration statement, and a new non-terminal<declare
calendric system> is added to define this statement.

556 THE TSQL2 QUERY LANGUAGE

<module contents> ::=
<declare cursor>

• ∣∣ <declare calendric system>∣∣ <dynamic declare cursor>∣∣ <procedure>

<declare calendric system> ::=
• DECLARE CALENDRIC SYSTEM WITH<calendric spec>

<calendric spec> ::=
• DEFAULT
• ∣∣ <calendric system name>

Additional syntax rules:

1. In a sequence of SQL statements, the last calendric system specified in aDE-
CLARE CALENDRIC SYSTEMcommand remains in effect until a newDE-
CLARE CALENDRIC SYSTEMcommand is entered.

2. A DECLARE CALENDRIC SYSTEM WITH CALENDRIC DEFAULTsta-
tement reactivates the implementation defined default calendric system.

8.1 Section 12.5<SQL procedure statement>

The production for the non-terminal<SQL session statement> is changed to in-
clude a session-level calendric system selection command, default session-level
scale and align specification commands, and an additional production is added to
define the calendric system selection command. We also add an option to indicate
which schema version to use.

<SQL session statement> ::=
<SQL set identifier statement>∣∣ <set constraints mode statement>∣∣ <set transaction statement>

• ∣∣ <set properties statement>

• ∣∣ <set scale statement>
• ∣∣ <set cast statement>
• ∣∣ <set credibility statement>
• ∣∣ <set plausibility statement>
• ∣∣ <create distribution statement>
• ∣∣ <alter distribution statement>
• ∣∣ <drop distribution statement>
• ∣∣ <schema set statement>

LANGUAGE SYNTAX 557

<set properties statement> ::=
• SET PROPERTIES
• [FOR CHARACTER SET

[DEFAULT
∣∣ NATIONAL

∣∣ <character set>]]
• [FOR

{
<time granularity>

∣∣ <calendar name>
}

]
WITH<property spec>

<calendric-property> ::=
• [<calendric-spec clause>] [<property-spec clause> . . .]

<calendric-spec clause> ::=
• WITH CALENDRIC<calendric spec>

<property-spec clause> ::=
• WITH PROPERTIES<property spec>

<property spec> ::=
• PREVIOUS
• ∣∣ DEFAULT
• ∣∣ <property table name>
• ∣∣ <table value constructor>

<schema set statement> ::=
• SET SCHEMA<datetime value expression>

<set credibility statement> ::=
• SET CREDIBILITY

{
<integer>

∣∣ AS DEFAULT
}

<set plausibility statement> ::=
• SET PLAUSIBILITY

{
<integer>

∣∣ AS DEFAULT
}

<set scale statement> ::=
• SET SCALE

{
<time granularity>

∣∣ AS DEFAULT
}

<set cast statement> ::=
• SET CAST

{
<time granularity>

∣∣ AS DEFAULT
}

Additional syntax rules:

1. The non-terminal<calendric system name>must be an<identifier> naming
a calendric system.

2. The non-terminal<property table name> is the name of a property table
defining properties for the specified character set.

3. The non-terminal<table value expression> enumerates the rows of a prop-
erty table.

558 THE TSQL2 QUERY LANGUAGE

4. The most recent invocation of a<set credibility statement> or a<set plausi-
bility statement> takes precedence.

5. If both the<set credibility statement> and the<set plausibility statement>
are omitted, then the defaults, 100 and 100, respectively, are assumed.

6. The most recent invocation of a<set scale statement> or a<set cast state-
ment> takes precedence.

7. If both the<set scale statement> and the<set cast statement> are omitted
(or specifiedas default, then left argument granularity semantics is assumed.

8. Case:

• If neither<time granularity> nor<calendar name> is specified, then
the properties for all granularities are altered.

• If <time granularity> is specified, then only the properties for that gran-
ularity are altered.

• If <calendar name> is specified, then only the properties for the granu-
larities defined by that calendar are altered.

9. The<datetime value expression> evaluates to a transaction-time instant that
identifies a particular schema version.

Additional general rules:

1. SpecifyingSET PROPERTIES WITH PREVIOUScauses the previous set
of active properties for the specified character set to be reactivated.

2. SpecifyingSET PROPERTIES WITH DEFAULTcauses the implementa-
tion defined set of default properties for the specified character set to be acti-
vated.

3. A property table must have the schema (property:character string, value:cha-
racter string). The command to create a persistent property table with prop-
erty values of length at most twenty characters is the following.

CREATE TABLE property_table(property VARCHAR 20,
value VARCHAR 20)

4. If a <set properties statement> or <property-spec clause> names a non-
existent<property table name>, then an exception condition is raised:data
exception—property table non-existent.

9 Section 13 Data Manipulation

9.1 Section 13.3<fetch statement>

<fetch statement> ::=
FETCH[[<fetch orientation>] FROM] <cursor name>

[INTO <fetch target list>]
• [INTO VALID [PERIOD] <fetch target list>]

LANGUAGE SYNTAX 559

Additional syntax rules:

1. At least one ofINTO <fetch target list> and INTO VALID [PERIOD]
<fetch target list> must be present in a fetch statement.

Additional general rules:

1. When a<fetch target list> follows INTO VALID PERIOD, it must contain
precisely a single<target specification>. When a<fetch target list> fol-
lows INTO VALID (without PERIOD), it must contain exactly two<target
specification>s.

2. When a<fetch target list> follows INTO VALID PERIOD, it must contain
precisely a single<target specification>. This is only allowed with a state
table is being evaluated by theSELECTstatement. When a<fetch target
list> follows INTO VALID (without PERIOD), it must contain exactly two
<target specification>s if a state table is being evaluated by theSELECT
statement, and exactly one<target specification> is an event table is being
evaluated.

9.2 Section 13.5<select statement: single row>

The production is replaced with the following, adding one optional reserved word.

<select statement: single row> ::=
• SELECT[<set quantifier>] [SNAPSHOT] <select list>

INTO <select target list>
<table expression>

Additional general rules:

1. SNAPSHOTspecifies that the resulting table will be a snapshot table. In this
case, the<table expression> should not include a<valid clause>.

9.3 Section 13.7<delete statement: searched>

The production for the non-terminal<delete statement: searched> is augmented
with an additional, optional clause. This clause references the non-terminal<valid
clause> defined for theSELECTstatement.

<delete statement: searched> ::=
DELETE FROM<table name>

[WHERE<search condition>]
• [<valid value>]

Additional general rules:

1. If T is a valid-time table, and the<valid value> is omitted, then the default

560 THE TSQL2 QUERY LANGUAGE

valid value specified in the<table definition> is assumed. If there was no
default value specified, then the interval
PERIOD(TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP
’now’))
is assumed.

9.4 Section 13.8<insert statement>

A <valid value> is added.

<insert columns and source> ::=
[<left paren><insert column list> <right paren>]

• [<valid value>]
<query expression>∣∣ DEFAULT VALUES

The<insert column list> is modified to permit the use of theNEWreserved
word.

<insert column list> ::=
• <insert column> [

{
<comma><insert column>

}
...]

<insert column> ::=
• <column name>
• ∣∣ NEW

Additional general rules:

1. NEWis permitted only when the<data type> of the corresponding column is
SURROGATE.

2. If T is a valid-time table, and the<valid value> is omitted, then the default
valid value specified in the<table definition> is assumed. If there was no
default value specified, then the interval
PERIOD(TIMESTAMP CURRENT_TIMESTAMP, NOBIND(TIMESTAMP
’now’))
is assumed.

9.5 Section 13.9<update statement: positioned>

Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of the ap-
pended or update tuple isPERIOD(TIMESTAMP CURRENT_TIMESTAMP,
NOBIND(TIMESTAMP ’until changed’)) .

LANGUAGE SYNTAX 561

9.6 Section 13.10<update statement: searched>

<update statement: searched> ::=
UPDATE<table name>

SET<set clause list>
• [<valid value>]

[WHERE<search condition>]

Additional general rules:

1. If T is a transaction-time or bitemporal table, the transaction time of the ap-
pended or update tuple isPERIOD(TIMESTAMP CURRENT_TIMESTAMP,
NOBIND(TIMESTAMP ’until changed’)) .

10 Section 21 Information Schema and Definition Schema

10.1 Section 21.3.8 TABLES base table

ALTER TABLE TABLES ADD COLUMN
VALID_TIME CHARACTER_DATA

CONSTRAINT VALID_TIME_CHECK
CHECK (VALID_TIME IN

(’STATE’,’EVENT’,’NONE’))
ALTER TABLE TABLES ADD COLUMN

TRANSACTION_TIME CHARACTER_DATA
CONSTRAINT TRANSACTION_TIME_CHECK

CHECK (TRANSACTION_TIME IN
(’STATE’, ’NONE’))

ALTER TABLE TABLES ADD COLUMN
VACUUM_CUT-OFF TIMESTAMP

The precision and scale of theVACUUM_CUT-OFFcolumn is implementation-
defined.

10.2 Section 21.3.27 TEMPORAL_SPEC base table

CREATE TABLE TEMPORAL_SPEC {
TABLE_NAME CHARACTER_DATA,
VALID_SCALE INTERVAL,
SCALE_GRANULARITY CHARACTER_DATA,
VALID_PRECISION INTERVAL,
PRECISION_GRANULARITY CHARACTER_DATA,
DISTRIBUTION CHARACTER_DATA,
GENERAL CHARACTER_DATA,

562 THE TSQL2 QUERY LANGUAGE

DEFAULT_EVENT NONSTANDARD GENERAL
INDETERMINATE TIMESTAMP,

DEFAULT_STATE NONSTANDARD GENERAL
INDETERMINATE PERIOD,

CONSTRAINT TEMPORAL_SPEC_PRIMARY_KEY
PRIMARY_KEY (TABLE_NAME),

CONSTRAINT DISTRIBUTION_CHECK
CHECK (DISTRIBUTION IN

(’STANDARD’, ’NONSTANDARD’))
CONSTRAINT GENERAL_CHECK

CHECK (GENERAL IN
(’NONGENERAL’, ’GENERAL’)) }

The precision and scale of theVALID_SCALE and VALID_PRECISION
columns is the maximum supported by the implementation.

10.3 Section 21.3.28 SURROGATE base table

CREATE TABLE SURROGATE {
TABLE_NAME CHARACTER_DATA,
COLUMN_NAME CHARACTER_DATA,
CONSTRAINT SURROGATE_PRIMARY_KEY

PRIMARY_KEY (TABLE_NAME, COLUMN_NAME) }

11 Section 22 Status Codes

The exception codes associated with the SQLSTATE parameter are modified to
support the period data type

We show only the changed exceptions.

Condition Class Subcondition Subclass
data exception 22 time value out of range 008

invalid time value literal 007
property table non-existent 009

