
21
An Algebra for TSQL2

Michael D. Soo, Christian S. Jensen, and
Richard T. Snodgrass

1 Introduction

TSQL2 is a declarative query language, and as such, requires a procedural (alge-
braic) equivalent for implementation. In this chapter, we describe such an algebraic
language. We undertook this design in order to show that TSQL2 can be imple-
mented efficiently, with minimal extension of existing techniques.

As TSQL2 provides a consistent extension of SQL-92, we had a parallel
goal in the construction of this algebra. Namely, whenever possible, we extend,
rather than modify, the snapshot relational algebra to accommodate the TSQL2
data model. This extension is performed to allow the use of established optimiza-
tion strategies and evaluation algorithms. In addition, we have the somewhat con-
flicting goal of completeness, i.e., any query expressible in TSQL2 should be im-
plementable as an algebraic expression. We informally demonstrate how TSQL2
language clauses are supported in the algebra.

We first describe an algebra for the conceptual data model underlying TSQL2
[5]. As TSQL2 supports six types of tables, snapshot, valid-time state, valid-time
event, transaction time, bitemporal state, and bitemporal event, we describe six
corresponding operator sets. This algebra is minimal in that each defined operator
is used by some construct in the language. We also show how language constructs
map to the algebra, thereby providing an informal demonstration that the algebra
has sufficient expressive power to implement the language.

With this (conceptual) algebra in hand, we continue by describing arepresen-
tationalalgebra that supports the conceptual semantics, but is better suited for effi-
cient query processing. We assume a 1NF tuple-timestamping data model, thereby
allowing the adaptation of well-understood storage organization, query optimiza-
tion, and query evaluation techniques. The correspondence between the conceptual
and representational algebras is described.

485

486 THE TSQL2 QUERY LANGUAGE

The remainder of the chapter is organized as follows. In Section 2, we define
the conceptual algebra using the tuple relational calculus. The description of the
algebra is organized around the specific data models supported by the language.
A brief discussion of additional operators that can be defined in terms of the core
operators in provided in Section 3. In Section 4, we examine the expressive power
of the defined algebra, and informally argue that the algebra has sufficient power
to express most TSQL2 queries. We also argue that the algebra is minimal in the
sense that each algebraic operator is necessary to implement some language con-
struct. In Section 5, we discuss implementation. We show how the semantics of
the conceptual algebra can be supported in a 1NF data model that is well-suited for
query evaluation, and argue that efficient support for the semantics of the concep-
tual model can be achieved. Limitations and future improvements of the algebra is
the subject of the last section.

2 Conceptual Algebra

In this section, we describe an extended relational algebra that supports TSQL2.
This extended algebra operates on conceptual relations as described in Chapter 12.

As stated above, a goal of this design is completeness. We describe the support
for each of the six TSQL2 relation types, snapshot, valid-time state and valid-time
event, transaction time, and bitemporal state and bitemporal event, beginning with
the snapshot model.

Throughout the chapter we use the following conventions. Operators super-
scripted withVS or VE denote valid-time state or valid-time event operators, respec-
tively; similarly, the superscriptT indicates a transaction-time operator, and the su-
perscriptsBS andBE indicate bitemporal state and bitemporal event operators, respec-
tively.

2.1 Snapshot Support

The snapshot algebra described here serves two purposes. First, it is used to im-
plement queries on snapshot databases, as supported by the base SQL-92 language.
Second, it provides a set of base operators that we later extend, and augment, with
temporal support.

Formalization

Following Maier [3], a relation schemaR is a set of attribute names{A1, A2, . . . ,

An}. Corresponding to each attribute nameAi , 1 ≤ i ≤ n, is a setDi called the
domain ofAi . We defineD = D1 × D2 × . . . × Dn. A relationr on schemaR,
sometimes denoted asr(R), is a finite set of mappingsx1, x2, . . . , xk from R to

AN ALGEBRA FOR TSQL2 487

πE(X) : s → s

σP : s → s

× : s × s → s

=1: s × s → s

∪ : s × s → s

− : s × s → s

ρN : s → s

Figure 1: Snapshot operators

D. Hencer = {x1, x2, . . . , xk}. Note thatr is a set, hence∀i, j, 1 ≤ i, j ≤ k,
i 6= j ⇒ xi 6= xj .

Snapshot Operators

Figure 1 lists the operators on snapshot relations. In the figure,X represents a set
of attribute names inR, E(X) is a set of expressions involvingX, P is a predicate
on expressions over the attributes ofR, andN is a relation name. The operators are
namedprojection, selection, Cartesian product, left-outer join, union, difference,
andrename, respectively. Tuple calculus definitions of these operators are found
elsewhere [3].

2.2 Valid-Time Support

In this section, we modify the snapshot algebra just defined to support valid time,
thereby producing a valid-time algebra. As TSQL2 supports two varieties of valid-
time relations, namely, valid-time state and valid-time event relations, we define
a set of operators for each. We begin by extending the formalization of snapshot
relations to incorporate valid time.

Formalization

A valid-time relation schemaR = {A1, A2, . . . , An | V} is a finite set of explicit
attribute names{A1, A2, . . . , An} and a distinguished timestamp attribute V. Cor-
responding to each attribute nameAi , 1 ≤ i ≤ n, is a setDi called the domain of
Ai . We defineD = D1×D2× . . .×Dn. We useTv to represent the set of all valid
times, and denote the power set ofTv byP(Tv). The domain of V isP(Tv).

We useRe to represent the explicit attributes ofR, i.e.,Re = {A1, A2, . . . ,

An}. A relationr on schemaR, denoted asr(R), is a finite set of mappingsx1, x2,
. . . , xk from Re to D, where associated with eachxi , 1 ≤ i ≤ k, is a non-empty
timestamp attributeti ∈ P(Tv). Hencer = {x1| t1, x2| t2, . . . , xk| tk}. As in the

488 THE TSQL2 QUERY LANGUAGE

snapshot model,∀i, j, 1 ≤ i, j ≤ k, i 6= j ⇒ xi 6= xj , i.e., tuples with identical
explicit attribute values, so-calledvalue-equivalenttuples, are disallowed.

Example 1 Consider a valid-time relation schema Emp = {Name, Dept| V}. Let
the domain of the Name attribute be the set {Al, Bill} and the domain of the Dept
attribute be the set {Ship, Load}. Then Empe = (Name, Dept), and the domain of
Empe, D, is the Cartesian product {Al, Bill}× {Ship, Load}.

For the valid-time attribute, let the domain of valid-times be isomorphic to the
natural numbers {0, 1,. . . }. Then the domain of V= P({0, 1, . . . }).

Figure 2 shows a relation Employee(Emp).

Name Dept V

Al Ship {10, . . . , 15, 20, . . . , 25}
Al Load {21, . . . , 24}
Bill Load {35, . . . , 45}

Figure 2: Employee relation

Each tuple in the relation represents a single fact and when that fact was true in
the modeled reality. For example, the first tuple records the fact that Al worked
for the Shipping department from times 10 through 15 and again from times 20 to
25. Notice that the timestamp associated with this tuple is truly a set of chronons
(representing a union of maximal time periods), rather than a contiguous period of
time.

Notice also that the relation obeys the restriction that value-equivalent tuples
are disallowed. None of the three tuples share the same values on both their Name
and Dept attributes. 2

Notationally, we use the subscriptP to represent a predicate onR, and the
subscriptF to represent a function on the distinguished timestamp attribute V. All
of the attribute-dependent functions of TSQL2 (and, consequently SQL-92), includ-
ing those on user-defined time, are permitted within the operator subscriptsP and
F . Capital lettersA, B, andC (possibly subscripted) represent individual attributes
of Re. Similarly, capital lettersX, Y , andZ represent subsets ofRe. Lower case
lettersx, y, andz (possibly subscripted) represent tuples inr.

Valid-Time State Operators

Figure 3 lists the valid-time state operators. In the figure,vs represents a valid-time
state relation,bs represents a bitemporal state relation (defined in Section 2.4), and
s represents a snapshot relation.

In comparison to the snapshot operators in Figure 1, we note that seven of
the ten operators are generalizations of their snapshot counterparts; only three ad-

AN ALGEBRA FOR TSQL2 489

π VS

E(X),F
: vs → vs

σ VS

P : vs → vs

1
VS,n
P,F : vs × · · · × vs → vs

=1VS

P,F,F ′ : vs × vs → vs

∪VS : vs × vs → vs

−VS : vs × vs → vs

ρ VS

N : vs → vs

AT VS,BS : vs → bs

SN VS : vs → s

SL VS

P : vs → vs

Figure 3: Valid-time state operators

ditional operators not having snapshot analogs are introduced. (In the operator set,
the valid-time theta-join replaces the snapshot Cartesian product as a base operator.)

Let X ⊆ Re be a subset of the explicit attributes of relation schemaR. The
valid-time projection operator has two subscripts: a set of expressionsE(X) to
project, and an expressionF evaluating to a valid-time element, which produces the
timestamp of the result tuple. The expressionsE(X) correspond to the expressions
present in theSELECTclause of a TSQL2 query. In the following definition, we
useE(x[X]) to mean the expressionsE(X) evaluated using the attribute values of
tuplex.

π VS

E(X),F (r) = {z(|E(X)|+1) | ∃x ∈ r (z[E(X)] = E(x[X])∧ F(x[V]) ⊆ z[V])∧
∀x1 ∈ r (E(x1[X]) = z[E(X)] ⇒ F(x1[V]) ⊆ z[V])∧
∀t ∈ z[V] ∃x2 ∈ r (E(x2[X]) = z[E(X)] ∧ t ∈ F(x2[V]))∧
z[V] 6= ∅}

As the projection may produce value-equivalent tuples onE(X), the second line
collapses each set of value-equivalent tuples into a single result tuple. We term this
processcoalescing. The timestamp of the result tuple is produced by the applying
the functionF to the timestamps of each of the value-equivalent tuples, and then
unioning the results. The last line ensures that no spurious chronons are introduced.

In general, other operators, such as the slice operatorSL VS

P (defined below),
may produce non-coalesced results. Technically, this violates the restriction that
value-equivalent tuples are not allowed in the data model. However, the presence
of value-equivalent tuples is generally restricted to intermediate query results. The
projection operator can always be applied when a coalesced result is needed.

Example 2 Let F compute the intersection of a tuple’s valid time with the set
{14, . . . , 22}. Using the Employee relation of Figure 2, the result of

π VS

{Name},VALID(Employee)∩{14,... ,22}(Employee)

490 THE TSQL2 QUERY LANGUAGE

is shown below.

Name V

Al {14, 15, 20, 21, 22}
The first two tuples in Figure 2 contribute to the single result tuple. The result is
coalesced by the projection. The last tuple in Figure 2 does not produce an output
tuple since the resulting timestamp is empty. 2

Let P be a predicate onR. Then the selection ofP on r, σ VS

P , is defined as
follows.

σ VS

P (r) = {z | ∈ r ∧ P(z)}
The valid-time selection operator is identical to its snapshot counterpart.

The valid-time theta-join,1VS,n
P,F , is ann-way join of then input relationsr1,

r2, . . . , rn. A result tuple representing the concatenation of the input tuplesxi ,
1 ≤ i ≤ n, is produced if the predicateP is satisfied. The timestamp of the result
tuple is computed by the functionF .

1
VS,n
P,F (r1, r2, . . . , rn) = {z(m+1) | ∃x1 ∈ r1∃x2 ∈ r2 . . . ∃xn ∈ rn

(P (x1|t1, x2|t2, . . . , xn|tn)∧
z[Re

1] = x1[Re
1] ∧ . . .∧ z[Re

n] = xn[Re
n]∧

z[V] = F(x1[V], x2[V], . . . , xn[V]) ∧ z[V] 6= ∅)}

wherem = 6n
i=1|Re

i |
The valid-time natural join is defined in terms of this operator by specifying the
identity function forP and set intersection forF , and using valid-time projection.

Example 3 To illustrate the valid-time theta-join we introduce a new relation Man-
ages with schema (Dept, MgrName| V). The contents of the Manages relation is
shown below.

Dept MgrName V

Ship George {11, . . . , 22}
Load Dan {24, . . . , 36}

The expression

1
VS,2
Employee.Dept=Manages.Dept,VALID (Employee) ∩ VALID(Manages) (

Employee, Manages)

produces a relation showing employees and their managers, by linking the relations
through their common Dept attributes. The result of this expression is as follows.
Using intersection for the timestamp computation finds precisely those time periods
when an employee worked for a department managed by some manager.

AN ALGEBRA FOR TSQL2 491

Name Employee.Dept Manages.Dept MgrName V

Al Ship Ship George {11, . . . , 15, 20, 21, 22}
Al Load Load Dan {24}
Bill Load Load Dan {35, 36}

2

For the family of outer-join operators, we only discuss the valid-time left
outer-join,r1 =1VS

P,F,F ′ r2. The right and full variants can be defined in a simi-
lar manner. Two tuplesx1 ∈ r1 andx2 ∈ r2 produce one or two output tuples, if
they satisfy the predicateP . If P evaluates toTRUE then a result tuple is gener-
ated which is the concatenation ofx1 andx2, with the result ofF(x1[V], x2[V])
as the timestamp value. A second result tuple is also produced. The explicit at-
tribute values of this tuple are set to the attribute values ofx1, however, null values
replace the attribute values ofx2. The timestamp of the resulting tuple is set to
F ′(x1[V], x2[V]). (In most cases,F ′ will be the difference function on the argu-
ment timestamps.)

r1 =1VS

P,F,F ′ r2 = {z(|Re
1|+|Re

2|+1)| ∃x1 ∈ r1∃x2 ∈ r2(P (x1|t1, x2|t2)∧
((z[Re

1] = x1[Re
1] ∧ z[Re

2] = x2[Re
2]∧

z[V] = F(x1[V], x2[V])∨
(z[Re

1] = x1[Re
1] ∧ z[Re

2] =⊥ ∧
z[V] = F ′(x1[V], x2[V])) ∧ z[V] 6= ∅))}

To define the union operator,∪VS, let bothr1 andr2 be instances ofR.

r1 ∪VS r2 = {z(n+1) | (∃x ∈ r1 ∃y ∈ r2 (x[Re] = y[Re] ∧ z[Re] = x[Re]∧
z[V] = x[V] ∪ y[V]))∨

(∃x ∈ r1 (z[Re] = x[Re] ∧ (¬∃y ∈ r2(y[Re] = x[Re]))∧
z[V] = x[V]))∨

(∃y ∈ r2 (z[Re] = y[Re] ∧ (¬∃x ∈ r1(x[Re] = y[Re]))∧
z[V] = y[V]))}

The first line coalesces value-equivalent tuples inr1 andr2. The second line ac-
counts for tuples inr1 that have no value-equivalent tuples inr2. The third line
handles the symmetric case.

With r1 andr2 defined as above, valid-time state difference is defined as fol-
lows.

r1−VS r2 = {z(n+1) | ∃x ∈ r1 ((z[Re] = x[Re])∧
((∃y ∈ r2 (z[Re] = y[Re] ∧ z[V] = x[V] − y[V])∧ z[V] 6= ∅)∨
(¬∃y ∈ r2 (z[Re] = y[Re]) ∧ z[V] = x[V])))}

The last two lines compute the valid-time element, depending on whether a value-
equivalent tuple may be found inr2.

492 THE TSQL2 QUERY LANGUAGE

The operatorρ VS

N accepts a valid-time state relation as an argument and returns
the same relation renamed to the subscriptN . It is used when the same relation is
referenced through different correlation names.

The AT VS,BS operator transforms a valid-time state relation into a bitemporal
state relation. (Bitemporal relation schemas are defined in Section 2.4.) Each tuple
in the input relation produces exactly one output tuple, whose timestamp is con-
structed as the cross product of the current transaction time and the valid time of
the input tuple.

In the following definitions, the functionbi_chr computes the set of bitem-
poral chronons from the set of argument transaction times and the set of argument
valid times. The symbolct denotes the current transaction time.

bi_chr(T , V) = {(t, v) | t ∈ T ∧ v ∈ V }
AT VS,BS(r) = {z(n+1) | ∃x ∈ r(z[Re] = x[Re] ∧ z[T] = bi_chr({ct}, x[V])}

TheSN VS operator transforms a valid-time state relation into a snapshot rela-
tion, by simply removing the timestamp associated with each input tuple.

SN VS(r) = {z(n) | ∃x ∈ r(z[Re] = x[Re])}
For each tuplex ∈ r, the slice operatorSL VS

P generates possibly many re-
sult tuples, each value-equivalent tox, and timestamped with a maximal period
contained inx[V]. (As noted above, this operator violates the restriction against
value-equivalent tuples. The projection operator may be subsequently applied to
coalesce the result.) In this operator, the subscriptP specifies that the operator
performs partitioning; it is not a predicate as for the selection and join operators.

Prior to defining the slice operator, we first derive the maximal periods from
x[V]. The predicateisContiguousdetermines if the valid-time elementv is a set of
contiguous chronons contained in the valid-time elementV .

isContiguous(v, V) =
{

TRUE if ∀t ∈ V (min(v) ≤ t ≤ max(v)⇒ t ∈ v)
FALSE otherwise

The functionmaxPeriodsproduces the maximal periods in the argument valid-
time elementV using isContiguousto determine the corresponding contiguous
valid-time elements contained inV . In the following definition, the functionsmin

andmax return the smallest and largest chronons, respectively, in their argument
sets.

maxPeriods(V) = {[min(v), max(v)] | isContiguous(v, V)∧
¬∃v′(isContiguous(v′, V) ∧ v ⊂ v′)}

with the restriction that∀t ∈ V ∃v ∈ maxPeriods(V)(min(v) ≤ t ≤ max(v))

The first conjunct ensures that generated periods correspond to contiguous chronon
sets inV . The second conjunct ensures that the periods are maximal. The restriction
ensures that no information is lost.

AN ALGEBRA FOR TSQL2 493

The slice operator simply replicates the explicit attribute values of the tuples
in the argument relation and attaches a timestamp from the set of maximal periods.

SL VS

P (r) = {z(n+1) | ∃x ∈ r ∃v ∈ maxPeriods(x[V])(z[Re] = x[Re] ∧ z[V] = v)}

Example 4 Using the Employee relation of Figure 2, the result ofSLVS

P
(Employee) is shown below.

Name Dept V

Al Ship [10,15]
Al Ship [20,25]
Al Load [21,24]
Bill Load [35,45]

Notice that the tuple (Al, Ship,{10, . . . , 15, 20, . . . , 25}) produces two tuples in
the sliced relation corresponding to the two maximal periods [10,15] and [20,25]
contained in its timestamp. The remaining tuples each contribute a single tuple to
the result since only a single maximal period is contained in their timestamps.2

Valid-Time Event Operators

In the valid-time event model, the timestamp V associated with each tuple is a set of
valid-time instants, rather than a union of periods as in the valid-time state model.
Hence, instants play the analogous role to periods in the valid-time state model.
In particular, the slicing operations on valid-time event relations create a group of
value-equivalent tuples each stamped with a single instant from the timestamp of
the input tuple.

With this slight distinction, the valid-time state and valid-time event operators
are identical. Figure 4 summarizes the valid-time event operators. In the figure,
ve represents a valid-time event relation,be represents a bitemporal event relation
(defined in Section 2.4), ands represents a snapshot relation.

Comparing Figure 3 and Figure 4, we note that for each valid-time event
operator, there is a corresponding valid-time state operator. As the definitions of
the valid-time event operators are nearly identical to those of their valid-time state
counterparts (modulo the appropriate superscripts, i.e.,VE rather thanVS, and BE

rather thanBS), we omit their definitions.

2.3 Transaction-Time Support

The algebra defined in the previous section supports valid-time which models chan-
ges in the real-world. We now address the orthogonal issue of supporting transac-
tion-time, which models the update activity of the database. Unlike valid-time,

494 THE TSQL2 QUERY LANGUAGE

π VE

E(X),F
: ve→ ve

σ VE

P : ve→ ve

1
VE,n
P,F : ve × · · · × ve→ ve

=1VE

P,F,F ′ : ve × ve→ ve

∪VE : ve × ve→ ve

−VE : ve × ve→ ve

ρ VE

N : ve→ ve

AT VE,BE : ve→ be

SN VE : ve→ s

SL VE

P : ve→ ve

Figure 4: Valid-time event operators

there is no notion of event associated with transaction-time. Hence, we define a
single algebra for transaction-time relations.

As before, we begin by extending the snapshot formalization of Section 2.1,
and continue by discussing the semantics of the operators.

Formalization

A transaction-time relation schemaR = {A1, A2, . . . , An| T} is a finite set of ex-
plicit attribute names{A1, A2, . . . , An} and a distinguished timestamp attribute T.
Corresponding to each attribute nameAi , 1≤ i ≤ n, is a setDi called the domain
of Ai . We defineD = D1 × D2 × . . . × Dn. We useTt to represent the set of
all transaction times, and denote the power set ofTt by P(Tt). The domain of T is
P(Tt).

We useRe to represent the explicit attributes ofR, i.e.,Re = {A1, A2, . . . ,

An}. A relationr on schemaR, sometimes denoted asr(R), is a finite set of map-
pingsx1, x2, . . . , xk from Re to D, where associated with eachxi , 1 ≤ i ≤ k,
is a non-empty timestamp attributeti ∈ P(Tt). As for the valid-time models, no
value-equivalent tuples may be present in the relation, i.e.,∀i, j, 1 ≤ i, j ≤ k,
i 6= j ⇒ xi 6= xj . Hencer = {x1| t1, x2| t2, . . . , xk| tk}.

All operators on transaction-time relations are superscripted withT. The sub-
script P represents a predicate onR; the subscriptF represents a function on the
distinguished timestamp attribute T.

Operators

Figure 5 shows the transaction-time operators. In the figure,t represents a trans-
action-time relation, ands represents a snapshot relation.

AN ALGEBRA FOR TSQL2 495

π T

E(X),F
: t → t

σ T

P : t → t

1
T,n
P,F : t × · · · × t → t

=1T

P,F,F ′ : t × t → t

∪T : t × t → t

−T : t × t → t

ρ T

N : t → t

SN T : t → s

SL T : t → t

Figure 5: Transaction time operators

In comparison with the snapshot operators in Figure 1, we note that all trans-
action-time operators except one are generalizations of some corresponding snap-
shot operator. The additional operator,SN T, transforms a transaction-time relation
to a snapshot relation. Furthermore, we note that the set of transaction time oper-
ators is a “subset” of the set of valid-time state or valid-time event operators, i.e.,
there is an analogous valid-time state operator for each transaction-time operator.
As the semantics of the transaction-time operators are nearly identical to the valid-
time operators, modulo the timestamp attribute name and the proper superscripts,
we omit their definitions.

2.4 Bitemporal Support

Having defined operators for both valid-time and transaction-time relations, we now
synthesize these operators into operators that accept bitemporal relations as input.

As before, we begin by formalizing bitemporal relations. We then define
operators on bitemporal relations.

Formalization

A bitemporal relation schemaR = {A1, A2, . . . , An| T} is a finite set of explicit
attribute names{A1, A2, . . . , An} and a distinguished timestamp attribute T. Cor-
responding to each attribute nameAi , 1 ≤ i ≤ n, is a setDi called the domain of
Ai . We defineD = D1×D2× . . .×Dn. Let Tt be the set of all transaction times,
andTv be the set of all valid times. We useP(Tt × Tv) to denote the power set of
the set of bitemporal chronons. The domain of T isP(Tt × Tv).

We useRe to represent the explicit attributes ofR, i.e.,Re = {A1, A2, . . . ,

An}. A relationr on schemaR, sometimes denoted asr(R), is a finite set of map-
pingsx1, x2, . . . , xk from Re to D, where associated with eachxi , 1 ≤ i ≤ k, is a

496 THE TSQL2 QUERY LANGUAGE

non-empty timestamp attributeti ∈ P(Tt × Tv). We add the explicit restriction that
∀i, j, 1≤ i, j ≤ k, i 6= j ⇒ xi 6= xj . Hencer = {x1| t1, x2| t2, . . . , xk| tk}.

In the following, the subscriptP represents a predicate onR, and the subscript
F represents a function on the valid-time component of the distinguished timestamp
attribute T.

Bitemporal Operators

Figure 6 shows the bitemporal state and bitemporal event operators. In the figure,
bs represents a bitemporal state relation,be represents a bitemporal event relation,
vs represents a valid-time state relation,ve represents a valid-time event relation,
andt represents a transaction-time relation.

Bitemporal State Bitemporal Event

π BS

E(X),F
: bs → bs π BE

E(X),F
: be→ be

σ BS

P : bs → bs σ BE

P : be→ be

1
BS,n
P,F : bs × · · · × bs → bs 1

BE,n
P,F : be × · · · × be→ be

=1BS

P,F,F ′ : bs × bs→ bs =1BE

P,F,F ′ : be× be→ be

∪BS : bs × bs → bs ∪BE : be× be→ be

−BS : bs × bs → bs −BE : be× be→ be

ρ BS

N : bs → bs ρ BE

N : be→ be

SN BS,VS : bs → vs SN BE,VE : be→ ve

SN BS,T : bs → t SN BE,T : be→ t

SL BS : bs → bs SL BE : be→ be

SL BS

P : bs → bs SL BE

P : be→ be

Figure 6: Bitemporal operators

Comparing the operator set in Figure 6 to the previously defined operator sets
shows that all of the bitemporal operators are either direct generalizations of their
snapshot counterparts, or generalizations of the few additional operators defined for
valid-time or transaction-time relations.

In the following, we define the operators that differ from the valid-time state
operators of Section 2.2. The definitions of the remaining operators are easily gen-
eralized from the valid-time operators. As the definitions of the bitemporal state
and bitemporal event operators are identical, modulo the appropriate superscript,
we omit the definitions of the bitemporal event operators.

The bitemporal theta-join is ann-way join. A result tuple representing the
concatenation of the input tuplesxi , 1 ≤ i ≤ n, is produced if the predicateP is
satisfied. The valid time of a result tuple is produced using the functionF . If the
intersection of the transaction time components of the input tuples is non-empty

AN ALGEBRA FOR TSQL2 497

then the timestamp of the result tuple is produced by the cross-product of this in-
tersection with the result ofF . Otherwise, the transaction time of the result tuple
defaults to the current transaction time.

The functioncomputeTransreturns the argument set of transaction times, if it
is non-empty. Otherwise, the singleton set containing only the current transaction
time is returned.

computeTrans(T) =
{

T if T 6= ∅
{ct } otherwise

The timestamp of a result tuple is produced by the Cartesian product of the result
of computeTranson the intersection of the transaction times of the input tuples, and
the result ofF .

1
BS,n
P,F (r1, r2, . . . , rn) = {z(6n

i=1|Re
i |)+1| ∃x1 ∈ r1∃x2 ∈ r2 . . . ∃xn ∈ rn

(P (x1|t1, x2|t2, . . . , xn|tn)∧
z[Re

1] = x1[Re
1] ∧ z[Re

2] = x2[Re
2] ∧ . . .∧

z[Re
n] = xn[Re

n] ∧ z[T] = bi_chr(T ′, V ′))}

whereT ′ = computeTrans(TRANSACTION(x1[T]) ∩
TRANSACTION(x2[T]) ∩ . . . ∩ TRANSACTION(xn[T]))

andV ′ = F(VALID (x1[T]), VALID (x2[T]), . . . , VALID (xn[T]))
Using bitemporal state projection and set intersection forF , it is possible to define
the bitemporal state natural join in terms of this operator.

For the family of outer-join operators, we only discuss the bitemporal state
left outer-join. The right and full variants can be defined in a similar manner. Two
tuplesx1 ∈ r1 andx2 ∈ r2 produce one or two output tuples, if they satisfy the
predicateP . If P evaluates toTRUE then a result tuple is generated which is the
concatenation ofx1 andx2, with the result ofF(VALID (x1[T]), VALID(x2[T])) as
its valid time. A second result tuple is also produced ifx1[T] − x2[T] 6= ∅. The
explicit attribute values of this tuple are set to the attribute values ofx1, however,
null values replace the attribute values ofx2. The valid time of the resulting tuple is
set toF ′(VALID (x1[T]), VALID (x2[T])). Normally,F ′ is the difference function
on timestamps.

r1 =1BS

P,F,F ′ r2 = {z|Re
1|+|Re

2|+1) | ∃x1 ∈ r1∃x2 ∈ r2(P (x1|t1, x2|t2)∧
((z[Re

1] = x1[Re
1] ∧ z[Re

2] = x2[Re
2]∧

z[T] = bi_chr(T ′, V ′))∨
(z[Re

1] = x1[Re
1] ∧ z[Re

2] =⊥ ∧z[T] = bi_chr(T ′, V ′′))∧
z[T] 6= ∅)}

whereV ′′ = F ′(VALID (x1[T]), VALID (x2[T])) andT ′ andV ′ are as defined for
the bitemporal theta-join.

498 THE TSQL2 QUERY LANGUAGE

The SN BS,VS operator transforms a bitemporal state relation into a valid-time
state relation, by simply removing the transaction times associated with each input
tuple.

SN BS,VS(r) = {z(n+1) | ∃x ∈ r(z[Re] = x[Re] ∧ z[V] = {v | ∃(t, v) ∈ x[T]})}
TheSN BS,T operator transforms a bitemporal state relation into a transaction-

time relation, by simply removing the valid times associated with each input tuple.

SN BS,T(r) = {z(n+1) | ∃x ∈ r(z[Re] = x[Re] ∧ z[T] = {t | ∃(t, v) ∈ x[T]})}
The slice operatorsSL BS andSL BS

P generate possibly many result tuples from
a single input tuple. Each result tuple is value-equivalent to the input tuple. In
the case ofSL BS, the result tuples are timestamped with a maximal transaction-
time period and the valid-time element corresponding to that transaction time. For
SL BS

P , each result tuple is timestamped with a maximal non-overlapping rectangle
in bitemporal space.
In the following we use themeetsandoverlapsoperators.

SL BS(r) = {z(n+2) | ∃x ∈ r(z[Re] = x[Re] ∧ bi_chr(z[T], z[V]) ⊆x[T])}
with the added restrictions that

∀z1, z2 ∈ SL BS(r)(z1[Re] = z2[Re] ⇒¬(z1[T]meets z2[T] ∧ z1[V] = z2[V])∧
¬(z1[T] overlaps z2[T]))

∀x ∈ r ∀t ∈ x[T] ∃z ∈ SL BS(r)(x[Re] = z[Re] ∧ t ∈ bi_chr(z[T], z[V]))
The first restriction ensures that the transaction-time periods are maximal, for a
constant valid-time element. The second restriction ensures that no information is
lost by the operation.

SL BS

P (r) = {z(n+2) | ∃x ∈ r(z[Re] = x[Re]∧bi_chr(z[T], x[V]) ⊆ x[T])}
with the added restrictions that

∀z1, z2 ∈ SL BS

P (r)(z1[Re] = z2[Re] ⇒ (bi_chr(z1[T], z2[V])∩
bi_chr(z2[T], z2[V]) = ∅)∧
z1[T]meets z2[T] ⇒ z1[V] 6= z2[V]∧
z1[T] overlaps z2[T] ⇒ ¬(z1[V]meets z2[V]))

∀x ∈ r ∀t ∈ x[T] ∃z ∈ SL BS

P (r)(x[Re] = z[Re] ∧ t ∈ bi_chr(z[T], z[V]))
The first restriction ensures that the resulting bitemporal rectangles do not overlap,
that the transaction-time periods are maximal (for a constant valid-time period), and
that the valid-time periods are in fact maximal. The second restriction ensures that
no information is lost by the operation.

2.5 Summary

We have defined a conceptual algebra for TSQL2 implementation. The algebra con-
sists of six operators sets, one for each of the relation types supported by TSQL2. A

AN ALGEBRA FOR TSQL2 499

salient feature of the algebra is that most of the operators are simple generalizations
of existing snapshot operators. Specifically, all but three of the valid-time state and
valid-time event operators, one of the transaction time operators, and four of the
bitemporal state and event operators are generalizations of corresponding snapshot
operators.

A consequence of this design is that implementation of the algebra is able to
make use of existing, and well-understood, snapshot query optimization and evalu-
ation techniques. As most operators are snapshot extensions, adaptation of existing
techniques is simplified. Moreover, since only a few new operators are added we
minimize the additional effort needed to extend query optimization to accommodate
these operators, as well as the number of new query evaluation algorithms needed
by the query processor.

3 Extended Operators of the Conceptual Algebra

The following are useful valid-time operators that can be expressed in terms of
the core operators described in the previous section. Similar definitions are easily
constructed for the transaction-time and bitemporal models.

Let r1 andr2 be valid-time state or valid-time event relations on schemasR1

andR2, respectively, and letX = Re
1 ∩ Re

2 be the attributes they have in common.
The valid-time Cartesian productr1 × r2 is defined in terms of the 2-way

valid-time theta-join as follows.

r1×V r2 ≡ r1 1
V,2

TRUE,VALID(r1)∩VALID(r2)
r2

With r1 and r2 valid-time relations over schemasR1 and R2, respectively,
as before, the 2-way valid-time natural join ofr1 andr2, r1 1

V,2 r2 is defined as
follows. (As before,ID denotes the identity function.)

r1 1
V,2 r2 ≡ π V

Re
1∪Re

2,ID(r1 1
V,2
r1.A1=r2.A1∧...∧r1.Am=r2.Am,VALID(r1)∩VALID(r2)

r2)

Valid-time intersection is defined using valid-time relational difference.

r1 ∩V r2 ≡ r1−V (r1−V r2)

Valid-time slice returns the set of tuples valid during a particular chronon.
This operator is defined in terms of a selection on a valid-time relationr. We define
two variants of this operator. In the first, result tuples retain the valid-time element
associated with the original tuples.

τ V

t (r) ≡ π V

R(σ V

t OVERLAPS VALID(r)(r))

500 THE TSQL2 QUERY LANGUAGE

In the second variant, the timestamp is removed, thereby producing the snapshot
relation valid during a particular chronon.

τ S

t (r) ≡ SN(σ V

t OVERLAPS VALID(r)(r))

4 Expressive Power

The defined algebra is able to implement many of the common TSQL2 queries.
However, there remain language features, namely data definition statements and
temporal aggregation constructs, that are not yet supported by the algebra. We are
currently adding support for temporal aggregates.

For this version of the algebra, we now examine its expressive power with
respect to TSQL2. Our purpose is to informally demonstrate that the algebra has
the following properties.

1. The operator set is minimal, in the sense that each defined operator is neces-
sary for some linguistic construct.

2. Each TSQL2 construct has some corresponding algebraic operator, thereby
demonstrating that the algebra is complete.

We limit the discussion to the bitemporal state algebra, one of the two most
complex variants of the algebra. Similar arguments are easily constructed for the
remaining operator sets.

4.1 Necessity

In this section, we show that each bitemporal state operation has a corresponding
linguistic construct in TSQL2, thereby demonstrating that this operator set is min-
imal. Throughout this section, we use the bitemporal state relation Employee =
(Name, Dept| T) to illustrate the discussion. Additional schemas and relations are
introduced as necessary.

The Projection Operator

The bitemporal state projection operator is used both to implement projection in the
SELECTclause, and to implement restructuring, if specified, in theFROMclause.

For example, consider the query “What are the names of all employees and
when did they work for the company?” This query can be expressed in TSQL2 as
follows.

SELECT Name
FROM Employee

AN ALGEBRA FOR TSQL2 501

Translation of this query into the bitemporal state algebra is straightforward. The
corresponding algebraic expression is shown below. The slice operator,SL BS, pro-
duces value-equivalent tuples from each conceptual tuple, where the bitemporal
slices associated with the value-equivalent tuples form a cover of the bitemporal
region associated with the original tuple. The selection operator is used to apply the
default transaction-time restriction ofnow. The projection operator,π BS, projects
the name and valid-time associated with each value-equivalent tuple, and coalesces
the resulting relation on the restructuring attribute, Name.

π BS

{Name},ID(σ BS

TRANSACTION(Employee) OVERLAPS NOW(SL BS(Employee)))

The Selection Operator

The selection operator is used to implement restriction in TSQL2. Several language
clauses, including theGROUP BY, HAVING, andWHEREare dependent on the se-
lection operator. We show how the selection operator is used to implement the
WHEREclause.

Consider the query, “What are the name of employees who were employed
by the company sometime during 1992 as known by the database on January 1,
1994?” This query restricts the result to those tuples in the Employee relation that
were valid during 1992 and current in the database as of January 1, 1994. This
query is expressible in TSQL2 as follows.

SELECT Name
FROM Employee
WHERE VALID(Employee) OVERLAPS PERIOD ’1992’

AND TRANSACTION(Employee) OVERLAPS
DATE ’1994-01-01’

The aboveWHEREclause is translated into a selection operator whose predicate
is the conjunction of conditions as stated in theWHEREclause. In particular, the
operands of the predicate can involve TSQL2 defined operations such asVALID
andTRANSACTION. The result relation is then projected on the Name attribute.

π BS

{Name},ID(σ BS

P (SLBS(Employee)))

where

P ≡ VALID (Employee) OVERLAPS PERIOD′1992 ′ ∧
TRANSACTION(Employee) OVERLAPS DATE′1994 − 01 − 01 ′

The Join Operator

To illustrate the join operator, we introduce an additional bitemporal state relation,
Manages. The Manages relation has schema (Dept, MgrName| T).

502 THE TSQL2 QUERY LANGUAGE

Consider the query “Who was John’s manager when John worked for the Toy
department?” This is expressed in TSQL2 as follows. As before, this query uses
the default value,now, for transaction-time selection.

SELECT MgrName
FROM Employee, Manages
WHERE Employee.Dept = ’Toy’ AND Employee.Name = ’John’

AND Manages.Dept = Employee.Dept

This query is implemented in the algebra by joining the Employee and Man-
ages relations. The Manages relation is first restricted to only the tuples current in
transaction time. Similarly, the Employee relation is restricted to the current tuples
recording when John worked for the Toy department. The result is produced by
matching tuples from the restructured relations that overlap in valid time.

r1 1
BS

Manages.Dept=Employee.Dept,VALID (Employee) ∩ VALID(Manages) r2

where

r1 = σ BS

TRANSACTION(Manages) OVERLAPS NOW(SLBS(Manages))

r2 = σ BS

Name=′John′∧Dept=′T oy′∧TRANSACTION(Manages) OVERLAPS NOW
(SLBS(Employee))

The previous example illustrated a 2-way join. Within a TSQL2 query, the
interaction of theVALID clause and theWHEREclause may require that the full
power of then-way theta-join be used. Consider the following query, which uses the
additional bitemporal state relation Salary with schema (Name, Amount| T). (This
query does not compute a useful result—we were unable to derive a meaningful
query that required a multi-way join. Our only purpose here is to demonstrate the
expressive power of the algebra.)

SELECT SNAPSHOT E.Name, M.MgrName, S.Amount
FROM Employee(PERIOD) AS E, Manages(PERIOD) AS M,

Salary(PERIOD) AS S
WHERE VALID(E) OVERLAPS VALID(S)

AND VALID(S) OVERLAPS VALID(M)
AND VALID(E) MEETS VALID(M)

Notice that it is not possible to compute this query as a series of 2-way joins. Sup-
pose we were to first join the Employee and Salary relations (i.e., attempting to
satisfy the predicateVALID(E) OVERLAPS VALID(S)). The timestamp of the
resulting relation must contain both the timestamp of the Employee tuple (to evalu-
ate the conjunctVALID(E) MEETS VALID(M)) and the timestamp of the Salary
tuple (to evaluate the conjunctVALID(S) OVERLAPS VALID(M)). As the join
expression is incapable of returning multiple timestamps, this query cannot be writ-
ten as a series of 2-way join expressions. The remaining cases (first joining Man-
ages and Employee or first joining Manages and Salary) are similar. We therefore
use a 3-way join to compute this query.

AN ALGEBRA FOR TSQL2 503

SNVS(SNBS,VS(π BS

{E.Name,M.MgrName,S.Amount},ID 1
BS

P,F (r1, r2, r3)))

where

P ≡ VALID (E) OVERLAPS VALID(S) ∧ VALID (S) OVERLAPS VALID(M)∧
VALID (E) MEETS VALID(M)

F ≡ VALID (E) ∩ VALID (M) ∩ VALID (S)

r1 = σ BS

TRANSACTION(Employee) OVERLAPS NOW(SLBS(ρE(Employee)))

r2 = σ BS

TRANSACTION(Manages) OVERLAPS NOW(SLBS(ρM(Manages)))

r3 = σ BS

TRANSACTION(Salary) OVERLAPS NOW(SLBS(ρS(Salary)))

The Outer-Join Operator

Consider the query “Show all employees and their managers, as well as all employ-
ees when they did not have managers.” We use this query to illustrate the outer-join
operator. The query may be posed in TSQL2 as follows.

SELECT E.Name, M.MgrName
FROM Employee AS E, Manages AS M
WHERE E.Dept = M.Dept
UNION
SELECT E.Name, NULL AS M.MgrName
VALID VALID(E) - VALID(M)
FROM Employee AS E, Manages(Dept) AS M
WHERE E.Dept = M.Dept

The first query matches an employee and the managers he or she has had. The valid
time of resulting tuples defaults to the intersection of the valid times of the matching
tuples. The second query determines the times when an employee did not have a
manager.

We use the outer-join operator to compute this query. First the relations are
restricted tonow, the default transaction time. The outer-join, producing the union
of the two TSQL2 subqueries, is then computed, and the desired attributes are pro-
jected.

π BS

{E.Name,M.MgrName},ID(r1 =1BS

E.Dept=M.Dept,P r2)

where

P ≡ VALID (E) ∩ VALID (M), VALID(E) − VALID (M)

r1 = σ BS

TRANSACTION(E) OVERLAPS NOW(ρ
BS

E(SLBS(Employee)))

r2 = σ BS

TRANSACTION(M) OVERLAPS NOW(ρ
BS

M(SLBS(Manages)))

504 THE TSQL2 QUERY LANGUAGE

The Union Operator

As an example of the union operator, consider the query “What are the names of the
employees and managers who worked, sometime, for the Toy department, as best
known now?” Assuming that the Name and MgrName attributes of the Employee
and Manages relations, respectively, are union-compatible, this query is expressible
in TSQL2 as follows.

SELECT Name
FROM Employee
WHERE Dept = ’Toy’
UNION
SELECT MgrName
FROM Manages
WHERE Dept = ’Toy’

This query is expressible in the algebra by first restricting the relations, then pro-
jecting the desired attributes, and performing the union.

r1 ∪BS r2

where

r1 = π BS

{MgrName},ID(σ BS

Dept=′T oy′∧TRANSACTION(Employee) OVERLAPS NOW
(SLBS(Manages)))

r2 = π BS

{Name},ID(σ BS

Dept=′T oy′∧TRANSACTION(Employee) OVERLAPS NOW
(SLBS(Employee)))

The Difference Operator

As a similar example to the previous one, consider the query “What were the names
of the employees at any time in their careers when they were not managers?” A
TSQL2 formulation of this query is the following.

SELECT Name
FROM Employee
EXCEPT
SELECT MgrName
FROM Manages

This query is expressible in the algebra as follows.

r1−BS r2

where

r1 = π BS

{MgrName},ID(σ BS

TRANSACTION(Employee) OVERLAPS NOW(SLBS(Employee)))

r2 = π BS

{Name},ID(σ BS

TRANSACTION(Manages) OVERLAPS NOW(SLBS(Manages)))

AN ALGEBRA FOR TSQL2 505

The Rename Operator

The rename operatorρBS

N allows a relation to be referenced by a different name. It
is used in theFROMclause where a relation, possibly restructured, may be given a
correlation name used by the remainder of the query. An example of theρBS

N was
given in Section 4.1.

The At Operator

TheATVS,BS operator promotes a valid-time state relation to a bitemporal state rela-
tion, by creating bitemporal elements from the valid-time elements associated with
the input tuples. As such it is not a bitemporal operator, but we illustrate its use
here for completeness.

Suppose we have a valid-time state relation Salary = (Name, Amount| V), and
we wanted to compute the bitemporal relation showing every employee’s salaries
and departments. Such a query could arise, for example, as an intermediate result
in a larger computation, e.g.,

SELECT Employee.Name
FROM Employee, Salary
WHERE TRANSACTION(Employee) OVERLAPS

PERIOD(DATE ’Beginning’, DATE ’Forever’)
AND Employee.Name = Salary.Name

We could compute this query by promoting Salary to a bitemporal state relation,
current as of now, and then joining the input relations.

1
BS,2
Employee.Name=Salary.Name∧VALID(Employee) ∩ VALID(Salary) (

ATVS,BS(Salary), SLBS(Employee))

The Snapshot Operator

The snapshot operator is the opposite of theAT operator. It transforms a bitempo-
ral state relation into a valid-time state relation, by removing the transaction-time
component associated with each bitemporal chronon.

Suppose we wanted to list all of company’s current employees. This is an
example of a important class of queries, as it references the current state of the
database.

SELECT SNAPSHOT Name
FROM Employee
WHERE VALID(Employee) OVERLAPS DATE ’NOW’

We could implement this query by selecting the qualifying tuples, and then
using the snapshot operator to remove the timestamp attribute.

506 THE TSQL2 QUERY LANGUAGE

π{Name}(SNVS(SNBS,VS(

σ BS

TRANSACTION(Employee) OVERLAPS NOW∧ VALID(Employee) OVERLAPS NOW(

SLBS(Employee)))))

The Slice Operators

The slice operators implement slicing and partitioning in theFROMclause. Specif-
ically, if the FROMclause does not specify a partitioning (i.e., eitherPERIOD for
state relations orINSTANT for event relations) then one of the slice operatorsSL BS

or SL BE is used. If a partitioning is specified then one of the slice operatorsSL BS

P or
SL BE

P is used.
Sections 4.1 to 4.1 showed examples of theSL BS operator. As an example of

theSL BS

P operator, consider the query “Who has worked continuously for the same
department for more than one year?”

SELECT Name
FROM Employee(PERIOD)
WHERE INTERVAL(VALID(Employee)) >

INTERVAL ’1-0’ YEAR TO MONTH

SpecifyingPERIODin theFROMclause slices the Employee relation on transaction
time as well as partitioning it on valid time. Graphically, tuples in the input relations
are replicated and timestamped with maximal rectangles covering their respective
bitemporal elements. This is implemented by the following algebraic expression.

π BS

{Name},ID(σ BS

P (SL BS

P (Employee)))

where

P ≡TRANSACTION(Employee) OVERLAPS NOW∧
INTERVAL(VALID (Employee)) > INTERVAL ’1-0’ YEAR TO MONTH’

4.2 Sufficiency

In this section, we enumerate each of the major linguistic clauses in TSQL2 and
show the corresponding algebraic equivalents. This demonstration provides an in-
formal proof that the algebra has sufficient expressive power to implement TSQL2.
As before we limit the discussion to the bitemporal state operator set. Similar argu-
ments are easily constructed for the remaining data models.

Throughout, we use the Employee relation defined in the previous section to
illustrate the discussion.

The Select Clause

The TSQL2SELECTclause allows arbitrary expressions over the attributes of a
relation to be projected as the result of a query. The projection operators are the

AN ALGEBRA FOR TSQL2 507

algebraic analogs of theSELECTclause. The bitemporal state projection opera-
tor, π BS

F , also allows the projection of arbitrary expressions. For example, assuming
that theFROMclause partitions the Employee relation by period, the followingSE-
LECTclause returns the names for each employee and their associated bitemporal
rectangles.

SELECT Name, VALID(Employee), TRANSACTION(Employee)

Assuming that any associatedFROMclause does not rename the Employee relation,
thisSELECTclause is translated into the projection operator as follows.

π BS

Name,VALID(Employee),TRANSACTION(Employee),ID

The Valid Clause

TheVALID clause, and its variant theVALID INTERSECTclause, perform valid-
time projection, i.e., it specifies the valid-time associated with result tuples gener-
ated by a query. For example, consider the followingVALID clause.

VALID PERIOD(DATE ’1972-01-01’, DATE ’1972-12-31’)

This clause sets the valid time of all result tuples to the specified period.
TheVALID andVALID INTERSECTclauses are supported by the bitempo-

ral state projection operator,π BS

P,F where the subscriptF denotes a function comput-
ing the valid-time associated with result tuples. Assuming that the setX of attributes
is named in the select list, theVALID clause from above would be implemented as
follows.

π BS

X, PERIOD(DATE ’1972-01-01’ ,DATE ’1972-12-31’)

Implementation of theVALID INTERSECTclause is similar, the only differ-
ence being that the resulting timestamp is the temporal intersection of the timestamp
attribute and a temporal expression. For example, consider the followingVALID
INTERSECTclause.

VALID INTERSECT PERIOD(DATE ’1972-01-01’,
DATE ’1972-12-31’)

Assuming a single relationr is named in theFROMclause, thisVALID clause is
implemented by the following projection operator.

π BS

X, VALID(r) ∩ PERIOD(DATE ’1972-01-01’ ,DATE ’1972-12-31’)

The From Clause

TheFROMclause specifies the relations, the form of those relations, and the names
used to refer to relations, in a query. TheFROMclause may specify that a bitemporal

508 THE TSQL2 QUERY LANGUAGE

relation either be sliced on transaction time, or sliced both on transaction time and
valid time, and then partitioned on valid time. In addition, by using theASmodifier
a correlation name may be applied by which the relation will be referred to in the
remainder of the query.

These two operations, slicing and slicing with partitioning, and correlation
name assignment, are implemented using the slicing operatorsSL BS andSL BS

P , and
the rename operatorρ BS, respectively. For example, consider the followingFROM
clause which specifies that the Employee relation is to be sliced on transaction time
and referred to by the correlation name E.

FROM Employee AS E

This clause is supported by first slicing the relation and then renaming it to the
correlation name.

ρE(SL BS(Employee))

Similarly, consider theFROMclause,FROM Employee(PERIOD) AS E,
where both slicing and partitioning are specified. In the algebra, first the slice oper-
ator with partitioning is used. The relation is then renamed to the specified correla-
tion name.

ρE(SL BS

P (Employee))

The Where Clause

Syntactically, theWHEREclause is a series of boolean expressions connected by
the boolean operatorsAND, OR, andNOT. The effect of this clause is to restrict the
query result to those tuples that match the given condition.

For queries or subexpressions involving a single relation, the selection oper-
ator,σ BS

P , is the algebraic analog of theWHEREclause. As the predicateP in the
selection operator is purposefully left unspecified, it is straightforward to see that
this operator is powerful enough to implement theWHEREclause.

For example, consider the followingWHEREclause restricting tuples from the
Employee relation.

WHERE Employee.Name = ’John’
AND VALID(Employee) OVERLAPS DATE ’1992-01-01’

This WHEREclause can be implemented using the selection operator as follows.

σP (Employee)

where

P ≡ Employee.Name= ′John′∧
VALID (Employee) OVERLAPS DATE ’1992-01-01’ ∧
TRANSACTION(Employee) OVERLAPS NOW

AN ALGEBRA FOR TSQL2 509

If theFROMclause names more than one input relation, then theWHEREclause
is implemented by a combination of selections and joins. As the bitemporal join op-
erator is ann-way join, it may handle an arbitrary number of relations. We showed,
in Section 4.1, an example of aWHEREclause involving three relations which re-
quired a 3-way theta-join.

The Group By Clause

TheGROUP BYclause creates groups of tuples sharing some attribute value, either
explicit or temporal. TheGROUP BYclause is simply implemented by generating
a series of selection expressions, one per group, so that a tuple belongs to a group
if it qualifies according to the corresponding selection expression. For example,
consider the followingGROUP BYclause.

GROUP BY VALID(Employee) USING 1 month
LEADING 1 month TRAILING 1 month

This clause creates a group for each month where a tuple belongs to a group if it
falls within the period from one month prior to one month after a given month. Let
the months be month1, month2, . . . , monthn. Then we can determine if a tuple
belongs to a group with the following series ofn selection operators, 1≤ i ≤ n.

σ BS

P (r)

where

P ≡ VALID (r) OVERLAPS PERIOD(

BEGIN(monthi)− INTERVAL ’0:1’ YEAR TO MONTH,

END(monthi)+ INTERVAL ’0:1’ YEAR TO MONTH)

Omitting theLEADINGor TRAILING clauses would simplify the generated pred-
icate. Also, grouping on explicit attributes is simpler sinceLEADINGandTRAIL-
ING specifications are not allowed for non-time attributes. Grouping on user-
defined time can be implemented identically to the above.

The Having Clause

The HAVINGclause eliminates groups produced by theGROUP BYclause from
further consideration in the query. As the form of the predicate in theHAVING
clause is identical to that of theWHEREclause, the discussion in Section 4.2 suffices.

4.3 Summary

In this section, we demonstrated two qualities of the algebra. First, we showed
that the algebra has no superfluous operators by demonstrating that each bitem-
poral state operator has a linguistic counterpart. This quality is important since a

510 THE TSQL2 QUERY LANGUAGE

small operator set simplifies query optimization and evaluation, making implemen-
tation of the algebra practical. Second, we showed, for each bitemporal linguistic
construct, a corresponding algebraic expression, thereby demonstrating that the al-
gebra has sufficient expressive power to implement TSQL2. Sufficient expressive
power is an obvious requirement of any algebra supporting TSQL2.

Together, these qualities imply that the defined conceptual algebra is powerful
enough to handle the rich semantics of TSQL2, without undue additional complex-
ity during query optimization. In the next section, we discuss in more detail how
the algebra may be efficiently implemented.

5 Implementation

The conceptual model and algebra are not meant for physical implementation due to
the N1NF nature of the model. We therefore show how the semantics of the concep-
tual algebra can be supported with a 1NF representational model and accompanying
algebra.

In the bitemporal state representational model, tuples have associated four
distinguished timestamp attributes, Ts , Te, Vs, and Ve, denoting when the fact was
current in the database, as well as when the fact was valid in the real-world, re-
spectively. (The simpler bitemporal event model has three timestamps, while valid-
time state, valid-time event and transaction-time models have two, one, and two
timestamps, respectively.) Collectively, the four timestamps represent a rectangle
in bitemporal space. A single conceptual tuple is represented by possibly many
value-equivalent representational tuples which collectively have the same informa-
tion content. The 1NF nature of this representation allows the use, or adaptation of,
many well-established query optimization and evaluation techniques. We use snap-
shot equivalence (see, e.g., Chapter 12) to comparing the semantics of conceptual
and representational instances.

We define a polymorphic representational algebra that supports all variants
of temporal relations. A single algebra is desirable since a small number of oper-
ators simplifies query optimization, the cost modeling associated with query plan
generation, as well as the expense of programming query evaluation algorithms.
Moreover, our goal is to define a representational algebra that not only supports
the full semantics of the conceptual algebra, and hence TSQL2, but also is ef-
ficiently implementable with minimal extension of conventional query evaluation
techniques. Therefore, in the following, when we discuss implementation of the
representational operators, we concentrate on the extensions that need to be made
to the well-understood snapshot evaluation algorithms in order to support the tem-
poral representational operators.

For a given conceptual algebra expression, correctness requires that some

AN ALGEBRA FOR TSQL2 511

π̂E(X),F : r → r

σ̂P : r → r

1̂
n
P,F : r × . . .× r → r

=̂1P,F,F ′ : r × r → r

∪̂ : r × r → r

−̂ : r × r → r

ρ̂N : r → r

Ĉ : r → r

ŜL : r → r

ŜLP : r → r

Figure 7: Representational algebra

combination of representational operators returns a snapshot equivalent result, given
snapshot equivalent operands. As notation, we distinguish representational opera-
tors and instances using a hat, e.g.,σ̂ and r̂, and snapshot equivalence is denoted
by

S≡ .
The representational operators are shown in Figure 7. As can be seen, only a

single operator, the coalescing operatorĈ, does not have a conceptual analog. This
operator is required due to the presence of value-equivalent tuples in the represen-
tation. Also, we note that the polymorphism of the operators are supported in large
part by parameterizing the timestamp computation functions,F , associated with the
projection, theta-join, and outer-join operators.

In many instances, correctness does not require that that the representational
tables be coalesced. For bitemporal tables, value-equivalent tuples may have over-
lapping rectangles; for valid-time and transaction-time tables, value-equivalent tu-
ples may have overlapping periods. Some of the operators, however, require that
their input(s) be coalesced, and some are more efficient if their input(s) are also
clustered on the explicit attributes. We note such circumstances in the following
analysis.

In the remainder of this section, we enumerate the representational operators,
show how they support the semantics of the conceptual operators, and briefly dis-
cuss some evaluation trade-offs.

5.1 The Projection Operator

The representational projection operators are nearly identical to their snapshot coun-
terpart. They differ only in the addition of the timestamp computation functionF ,
which supports the TSQL2VALID clause and computes the valid-time associated
with a result tuple.

512 THE TSQL2 QUERY LANGUAGE

Some of the functionsF and the expressions inE(X) may require that the
representation be coalesced. Consider the valid-time state projection operator. It
may be the case that an expression inE(X) or the functionF requires the entire
timestamp of the conceptual tuple, e.g., for aINTERVAL operation, present in ei-
ther theSELECT list or theWHEREclause. To support the equivalent semantics
in the representation, it is necessary to materialize the conceptual timestamp from
the possibly many value-equivalent representational tuples. We use the coalescing
operatorĈ shown in Figure 7 to do this. Specifically, letr andr̂ both be relations
of the appropriate type, i.e., valid-time event, valid-time state, transaction time,
bitemporal event, or bitemporal state, and letr

S≡ r̂. Furthermore letπE(X),F be
the matching conceptual projection operator. Then the semantics of the conceptual
projection operators are implemented in the appropriate representational models as
πE(X),F (r)

S≡ π̂E(X),F (Ĉ(r̂)).
We note that for many common queries prior coalescing of the input relation

is not required. For example, for projection operations that do not reference the
timestamps of input tuples, i.e., only explicit attributes appear in the select list,F

is the identity function. Clearly, in such circumstances the coalescing operation can
be omitted.

Furthermore, even if the timestamp of input tuples is referenced, it is often the
case that the conceptual timestamp need not be materialized. For example, if the
VALID INTERSECTclause is used with an period literal, e.g.,VALID INTER-
SECT PERIOD ’1993’ , then the representational tuples can be processed one
at a time, without first coalescing.

In addition to the conceptual projection operators, a simple variation of the
representational projection operators support the conceptualAT operators, which
promote valid-time relations to bitemporal relations. Consider the valid-time state
at operator,ATVS,BS. Here the representational relation is projected on all explicit
attributes, and, in addition the timestamp of the resulting tuple is computed using
the current transaction time. Similar remarks apply to the family of conceptual
snapshot operators,SN.

5.2 The Selection Operator

Implementation of the representational selection operatorσ̂P is essentially the same
as that of its snapshot counterpart. The distinction is that, depending on the form
of the predicateP , the input relation may require prior coalescing. For example if
P contains theINTERVAL operation, then the timestamps of the conceptual tuple
must be materialized from the representation. Again, we use the coalescing operator
to accomplish this. Formally, withr and r̂ defined as above, we implement the
appropriate conceptual selection operatorσP asσP (r)

S≡ σ̂P (Ĉ(r̂)).

AN ALGEBRA FOR TSQL2 513

We note that for many predicates prior coalescing is not required. For exam-
ple, if P references only the explicit attributes ofR then the coalescing operation
can be eliminated.

5.3 The Join Operator

As with the previous operators, representational theta-join supports predicates over
explicit as well as timestamp attributes, and its semantics are essentially the same
as the snapshot theta-join, with the addition of the timestamp computation function,
F .

The comments for the selection operator also apply to the processing of the
predicate in the join operator. Consider the valid-time state theta-join,1

VS,n

P,F . The
computation of the functionF may require the entire valid-time element associated
with a conceptual tuple. This valid-time element must be materialized from the
multiple timestamps associated with the value-equivalent tuples representing the
conceptual tuple. Coalescing of the input relation may be required, prior to join
evaluation. However, for many common operations, such as temporal intersection,
∩, it is possible to iterate through the timestamps in succession, generating the
resulting periods.

Semantically, the temporal outer-join operators are implemented using the
representational outer-join and coalescing operators, i.e.,1

n
P,F (r1, . . . , r2)

S≡
1̂

n
P,F (Ĉ(r̂1), . . . , Ĉ(r̂n)).

We note that efficient implementation of temporal joins is challenging for two
reasons. First, the predicates associated with temporal join operations are usually
inequality predicates, rather than the equality predicates prevalent in snapshot data-
bases. Second, as temporal relations may be many times larger than snapshot rela-
tions, efficient evaluation is especially important, as the cost of naively computing
a Cartesian product is prohibitive.

Several approaches have been proposed for implementing temporal joins. Sev-
eral exploit ordering of the input tables to achieve higher efficiency. Most ap-
proaches should be applicable to the semantics of the operators defined here and
to this representational data model. If the underlying tables are ordered, coalesc-
ing can be handled in a manner similar to that for projection. We believe that the
multi-way joins will rarely be required. As evidence, all 152 queries defined in
the TSQL2 [5] (representing the TSQL2 implementation of the consensus temporal
query test suite [2]) can be evaluated using 2-way join algorithms.

5.4 The Outer-Join Operator

As with the previous operators, representational outer-join,=̂1P,F,F ′, supports pred-
icates over explicit as well as timestamp attributes, and its semantics are essentially

514 THE TSQL2 QUERY LANGUAGE

the same as the snapshot outer-join, with the addition of the timestamp compu-
tation functionsF and F ′. Semantically, the temporal outer-join operators are
implemented using the representational outer-join and coalescing operators, i.e.,
r1 =1P,F,F ′ r2

S≡ Ĉ(r̂1)=̂1P,F,F ′Ĉ(r̂2).
Many of the same comments on the theta-join implementation apply to the

representational outer-join. However, the semantics of the outer-join requires that
the input relations be coalesced. To see this, consider the query “Who, if anyone,
was Ed’s manager for the departments in which he was employed?” We must de-
termine not only the periods during which Ed had a manager, but also those times
when Ed did not have a manager. This is most easily accomplished if the input
tuples are coalesced into, or at least clustered, on their explicit attribute values.
Moreover, the timestamp computation functionF may require the entire valid-time
element associated with a conceptual tuple.

5.5 The Union Operator

The representational union operator is identical to its snapshot counterpart. The
result of a union of temporal relations is simply the set union of the input rela-
tions. Note that the result is not coalesced, as overlapping value-equivalent tuples
may be produced. However, the uncoalesced result is clearly snapshot-equivalent
to the corresponding conceptual result. Moreover, the representational coalescing
operator may be applied to the the uncoalesced result to produce a coalesced repre-
sentation.

5.6 The Difference Operator

Semantically, the conceptual difference operator is implemented using the repre-
sentational difference operator, i.e.,r − s

S≡ r̂−̂ŝ.
Unlike the union operator, simple set difference is insufficient for computing

the representational difference operator. This is because two value-equivalent con-
ceptual tuples in the input relations produce a result tuple timestamped with the set
difference of the input timestamps. Computation of this difference timestamp is
most easily accomplished if the conceptual timestamps are first materialized.

Evaluation of the representational difference operator is simplified if the in-
put relations are clustered on their explicit attribute values, thereby allowing the
timestamp for a conceptual tuple to be easily materialized. The difference is then
computed by performing a single pass over both input relations, in effect perform-
ing a merge-join.

However, if the input relations are not clustered on the explicit attribute values
then either a nested-loop computation can be used, or prior coalescing must be
performed.

AN ALGEBRA FOR TSQL2 515

5.7 The Coalescing Operator

Coalescing is an important operation, since value-equivalent tuples may be present
in the representation. As mentioned in the discussions of other operators, the se-
mantics of some queries demand that the input relations be coalesced prior to eval-
uation.

If prior coalescing is required, this is most easily accomplished if the input
relation is sorted on the explicit attribute values. The temporal element associated
with the conceptual tuple is easily reconstructed during a scan of the relation. If
indexes or pre-computed results are available then it may be possible to avoid the
relation scan.

5.8 The Slice Operator

The representational slice operatorsŜL andŜLP implement the corresponding con-
ceptual slice operators. Many of the previous remarks apply to the slice operators.
For example, consider thêSL

BS

operator. This operator must reconstruct the valid-
time element for a given period of transaction time from the value-equivalent tuples
in the representation. This is a variant of the coalescing problem, and is most eas-
ily accomplished if the input tuples are clustered on their explicit attribute values.
Transaction-time indexes [4] and pre-computed results [1], if available, may be
helpful.

Now consider theŜL
BS

P operator. Interestingly, due to the representation, it

may be less expensive to compute this operator than theŜL
BS

operator, even though
the former has more complicated semantics. If the implementation enforces coa-
lescing of the input to the operator then theŜL

BS

P operator is free since the represen-
tation is already sliced and partitioned into maximal rectangles. If coalescing is not
enforced then remarks similar to those made for implementing theŜL

BS

operator
can be made.

5.9 The Rename Operator

The temporalρ operators have no associated cost as they are intensional operators,
and are not dependent on the contents of the database. The temporal operators are
identical to their snapshot counterparts.

5.10 Optimization

For efficient query evaluation, we would like to design special-purpose operators for
frequently used combinations of operators, or consider combinations of operators
during query optimization.

516 THE TSQL2 QUERY LANGUAGE

For example, we believe that most TSQL2 queries will reference the current
state of the database, in order to support conventional snapshot queries. Therefore,
an efficient algorithm to transaction timeslice the database, as given by the expres-
sionσ̂TRANSACTION(r)OVERLAPS NOW(ŜL(r)), would be very beneficial.

As another example, which we borrow from traditional query optimization,
consider the expression̂πE(X)(σ̂P,F (r̂ 1 ŝ)). A simple evaluation of this query
would perform each operation sequentially, i.e., first computing the join, then the
selection, and finally the projection. The associated cost is then cost computing
r̂1̂ŝ, plus the cost of selecting from̂r1̂ŝ (selectivities are used to estimate the size of
this result), plus the cost of projecting the result of the selection (again selectivities
are used). More efficient expressions may be substituted, e.g., if it is possible to
push the projection and/or selection into the join, or by implementing a combined
operator projection/selection operator, thereby eliminating an intermediate result.

5.11 Supporting Now

The addition ofnowhas minimal impact on the representational algebra. We treat
now as a variable that isground, i.e., given a value, during query evaluation or
view materialization. To accommodatenowin the representational algebra, TSQL2
adds a new function, “now variable assignment,” which assigns a value tonow
everywhere that it appears in a tuple. From that point on, the tuple is ground and
manipulated exactly as other ground tuples.

We considered the option of allowing the user to specify thatnow remain
uninstantiated during query evaluation, however, this option has one primary dis-
advantage that is illustrated by the following example. Consider a selection on
a valid-time state relation where the selected tuples are those preceding Decem-
ber 1, 1993 in valid time. Should a tuple with an ending time ofnowappear in the
result? If today is November 30, 1993, then perhaps the result should include the
tuple. However, if the tuple is in the result, then the result becomes invalid the very
next day, since on December 1, 1993 the tuple no longer precedes that date! We
could associate a “lifetime” with every result, but this is an (apparently) expensive
option and requires further research. In the interest of making minimal changes to
SQL-92 we advocate grounding every tuple prior to its use.

5.12 Summary

For many of the temporal operators, the same algorithms used to evaluate their snap-
shot counterparts may be used directly, or with small modifications, the changes
being additional parameters passed to the evaluation functions. These operators
include the projection, selection, theta-join, outer-join, and union operators. For

AN ALGEBRA FOR TSQL2 517

other operators, such as the at and snapshot operators, evaluation algorithms are
easily constructed as variants of the projection evaluation algorithm.

In some instances, the representational operators demand prior coalescing of
input relations, mainly for timestamp computation. Efficient algorithms for tem-
poral coalescing, as well as a thorough study of query optimization strategies for
queries involving coalescing, is needed for the construction of a TSQL2 query pro-
cessor. We note that the need for coalescing is determined by the form of the pred-
icate or timestamp computation function associated with a conceptual operator. In
many cases, such as when predicates reference only explicit attributes, coalescing
is not required.

However, efficient implementation of several operators, most notably the tem-
poral join operators, is significantly more complex than their snapshot counterparts,
in order to avoid performing a Cartesian product of the input. Coalescing is again
important here; however, new techniques for temporal join implementation may
result in improved performance, and justify additional implementation complexity.

Lastly, depending on the representation enforced by the implementation, ef-
ficient techniques for temporal slicing may be required. The database implemen-
tor may desire to trade cost on update for evaluation expense by allowing non-
coalesced or repetitive information in the database. Efficient temporal slicing tech-
niques should exist to support this capability.

These three problems, temporal coalescing, temporal join evaluation, and
temporal slicing, are central to the efficient evaluation of TSQL2 queries, and fur-
ther research is required to develop and analyze associated algorithms.

6 Summary and Future Work

We have defined an algebra for TSQL2 implementation. The distinguishing features
of this algebra are as follows.

• The algebra supports all six relation types provided by TSQL2.

• The algebra is minimal in the sense that it is an extension of the conventional
snapshot algebra, with few additional operators. In addition, we showed that
each defined operator is required by some TSQL2 language construct. Hence,
the algebra contains no superfluous operators.

• The algebra is expected to have sufficient expressive power to implement
TSQL2 queries, modulo the future work listed below.

• The algebra is minimal in the sense that no superfluous operators were de-
fined.

• The semantics of the algebra can be supported in a 1NF tuple-timestamping
representational data model, and hence, efficient implementation of the alge-

518 THE TSQL2 QUERY LANGUAGE

bra is possible by exploiting existing query optimization and evaluation tech-
niques.

This algebra is powerful enough to implement most TSQL2 queries. Two
language constructs, namely temporal aggregation and the TSQL2 data definition
language, are not yet incorporated into the algebra. We expect to augment the
algebra with support for these items in the near future.

In addition, we have described an implementation for a TSQL2 database man-
agement system. This architecture is notable in that it requires only a few changes to
the functionality found in existing conventional DBMS architectures. As such, we
believe that TSQL2 can be implemented at relatively low-cost, with the described
algebra and architecture providing the implementation framework.

References

[1] Jensen, C. S., L. Mark and N. Roussopoulos. “Incremental Implementation
Model for Relational Databases with Transaction Time.”IEEE Transactions
on Knowledge and Data Engineering, 3, No. 4, Dec. 1991, pp. 461–473.

[2] Jensen (ed.), C. S. “A Consensus Test Suite of Temporal Database Queries.”
Technical Report R 93-2034. Department of Mathematics and Computer, In-
stitute for Electronic Systems. Nov. 1993.

[3] Maier, D. The Theory of Relational Databases. Computer Science Press,
1985.

[4] Snodgrass, R. T. “Temporal Databases,” in A. U. Frank, I. Campari, and
U. Formentini (eds.), Theories and Methods of Spatio-Temporal Reasoning in
Geographic Space. Vol. 639 of Lecture Notes in Computer Science. Springer-
Verlag, 1992. pp. 22–64.

[5] Snodgrass, R. T., I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson,
R. Elmasri, F. Grandi, C.S. Jensen, W. Käfer, N. Kline, K. Kulkarni, T.Y.C.
Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo and S.M. Sripada.
“TSQL2 Language Specification.”ACM SIGMOD Record, 23, No. 1, Mar.
1994, pp. 65–86.

