20

An Architectural Framework

Michael D. Soo, Christian S. Jensen, and
Richard T. Snodgrass

1 Introduction

In this chapter we address the question of how to construct a DBMS architecture
supporting TSQL2. Our goal is to enumerate the changes that a conventional DBMS
would need to support TSQL2. We are concerned with modifying a conventional
DBMS in a minimal fashion to support TSQL2. While a more elaborate architecture
is possible (likely with significant performance gains), our purpose is to describe the
“first step” towards the realization of a temporal DBMS.

In the next section, we describe a canonical design for a conventional DBMS.
We then describe the minimal changes needed by each component of the architec-
ture to support TSQL2. We conclude with a few observations about the described
architecture.

2 Conventional Architecture

Figure 1 shows a conventional DBMS architecture supporting SQL-92. In the
figure, ovals represent data items, e.g., user submitted queries, boxes represent
software components, e.g., the query compiler, and arrows show the flow of data
through the DBMS.

Queries may be submitted by four types of users, the database administration
(DBA) staff, interactive users, application programmers, and parametric users.

The DBA staff is responsible for defining and maintaining the database through
the execution of data definition language (DDL) statements and privileged com-
mands not available to other users.

Interactive users are sophisticated, database-literate users. They submit SQL-
92 queries which are compiled by the query compiler into an procedure-oriented in-
ternal representation, the query execution plan. The query execution plan is passed
to the run-time evaluator for execution. Actual access to the stored data is performed
by the transaction and data manager.

477

478 THE TSQL2 QUERY LANGUAGE

Application

Programmers
Application
Programs

DBA Staff Interactive Parametric
Users Users
Precompiler
Privileged
Statements Commands DML Host Language
Statements Compiler

| Compiler Compiler Transactions |

()

Query Execution
Plan

Run-time J

Evaluator

Transaction
and
Data Manager

Data
Dictionary

Figure 1: Canonical DBMS architecture

Application programmers submit application programs written in a host pro-
gramming language, e.g., C, that contain embedded database queries. A precom-
piler separates the embedded queries from the host application and routes each to
an appropriate compiler. The compiled database query and host program are re-
combined to produce a canned transaction, which may be executed at some later
date.

Parametric users are unsophisticated users such as airline reservation agents
or customer service representatives. They use the canned transactions produced by
applications programmers.

AN ARCHITECTURAL FRAMEWORK 479

Example 1 Consider snapshot versions of the Employee and Manages schemas
defined in Chapter 21, Section 4.1. We illustrate the flow of information through
the architecture with the following query, which returns the names of all employees
managed by Bob.

SELECT Employee.Name, Manages.MgrName

FROM Employee, Manages

WHERE Manages.Dept = Employee.Dept AND
Manages.MgrName = ’'Bob’

Suppose that this query is submitted by an interactive user. (We could assume
that the query was submitted via another path, e.g., as an embedded query in an
applications program, but the discussion would be more complicated, and no more
illustrative.) The query, a DML statement, is first processed byjtlexy compiler
The query compiler analyzes the query, first syntactically and then semantically.
Syntactic analysis ensures that the lexical and syntactic structure of the query is
correct. Semantic analysis performs type checking and verifies that other semantic
constraints are satisfied. Though not shown on the diagram, schema information
contained in the data dictionary is used during semantic analysis.

Ultimately, the query compiler produces a procedural expression of the sub-
mitted query that is suitable for execution by the run-time evaluator. This procedu-
ral expression is based on the relational algebra. As an intermediate step, the query
compiler translates the query into a simple algebraic expression which is then opti-
mized. Such an expression for our example might be the following.

T Employee.Name,Manages.MgrName}
(EmployeeNEmployee.Dept:Manages.Dept
(GMngame=/Bob/ (Manages)))

The final result produced by the query compiler is a query execution plan,
which is essentially the optimized algebraic expression with specific algorithms
chosen for each algebraic operation. For example, the query compiler might gen-
erate the following query execution plan, depending on a estimate of the cost of
various algorithms implementing the different operators.

tempy < index_select(Manages,’ Bob')
result <— project{Name,Mgr Name}

(nested _loop join(Employee, temp1,’ Dept’))
In this query execution plan, the query compiler makes use of an existing index on
the MgrName attribute of the Manages table to quickly find the departments that
Bob manages. This intermediate result is stored in the temporary:tafte. As
temp1 is likely to fit in main memory, i.e., Bob only manages a few departments,
and henceemp will contain only a few tuples, a simple nested-loop join is used
to find Bob’s employees. In addition, rather than writing another temporary result,

480 THE TSQL2 QUERY LANGUAGE

the compiler chooses to perform the final projection of the employee name and the
manager name attributes “on the fly” with the join.

The query execution plan is sent to the run-time evaluator for execution. For
example, for thendex _select operation in the above query execution plan, the
run-time evaluator executes this algorithm, generating a series of index retrievals
and subsequent table page retrievals to materialize the selection. The data retrieval
operations are performed by the transaction and data manager which manages the
buffer space alloted to the transaction, and ensures the consistency of the database
even though multiple transactions may be executing concurrently in the DBMS.

In the remainder of this section, we describe the minimal changes required
to each DBMS component in order to support TSQL2. We note that the precom-
piler and host language compiler are largely independent of the database query
language—they require only small changes to support temporal literal/timestamp
conversion. For each of the remaining components, the data dictionary and data
files, as well as those within the DBMS proper, we describe the minimal modifica-
tions needed by these components to support TSQL2 queries.

3 Data Dictionary and Data Files

The data dictionary and data files contain the database, the actual data managed by
the DBMS. The data dictionary records schema information such as file structure
and format, the number and types of attributes in a table, integrity constraints, and
associated indexes. The data files contain the physical tables and access paths of
the database.

For a minimal extension, the data files require no revision. We can store tuple-
timestamped temporal tables in conventional tables, where the timestamp attributes
are stored as explicit atomic attributes. However, the data dictionary must be ex-
tended in a number of ways to support TSQL2 [1]. The most significant extensions
involve schema versioning, multiple granularities, and vacuuming.

For schema versioning, the data dictionary must record, for each table, all of
its schemas and when they were current. The data files associated with a schema
must also be preserved. This is easily accomplished by making a transaction-time
table recording the schemas for a single table. The transaction time associated with
a tuple in this table indicates the time when the schema was current.

Multiple granularities are associated in a lattice structure specified at system
generation time. A simple option is to store the lattice as a data structure in the
data dictionary. Alternatively, if the lattice is fixed, i.e., new granularities will not
be added after the DBMS is generated, then the lattice can exist as a separate data
structure outside of the data dictionary.

AN ARCHITECTURAL FRAMEWORK 481

Vacuuming specifies what information should be physically deleted from the
database. Minimally, this requires a timestamp, the cut-off time, to be stored for
each transaction-time or bitemporal table cataloged by the data dictionary. The cut-
off time indicates that all data current in the table before the value of the timestamp
has been physically deleted from the table.

4 DDL Compiler

The DDL compiler translates TSQLCREATE ADDQ REPLACEand DROPstate-

ments [1] into executable transactions. Each of these statements affects both the
data dictionary and the data files. TGREATEstatement adds new definitions, of
either tables or indexes, to the data dictionary and creates the data files contain-
ing the new table or index. TheDDandREPLACEstatements change an existing
schema by updating the data dictionary, and possibly updating the data file con-
taining the table. Thé&DDstatement is used to add new columns or indexes to a
schema, and tHREPLACEstatement is used to change an existing column or index.
Lastly, theDROPstatement is used to remove a table, column, or index definition
from a schema, as well as the actual physical data.

Numerous changes are needed by the DDL compiler, but each is straight-
forward and extend existing functionality in small ways. First, the syntactic ana-
lyzer must be extended to accommodate the extended TSQL2 syntax for each of
the CREATEADD REPLACE andDROPstatements. The semantic analyzer must
be extended in a similar manner, e.g., to ensure that an existing table being trans-
formed into a valid-time state table via thdD VALID STATEcommand is not
already a valid-time table.

5 Query Compiler

The query compiler translates TSQL2 data manipulation language (DML) state-
ments into an executable, and semantically equivalent, internal form called the
guery execution plan. As with the DDL compiler, each phase of the query compiler,
syntactic analysis, semantic analysis, and query plan generation, must be extended
to accommodate TSQLZ2 queries.

We use the model that the initial phase of the compilation, syntactic anal-
ysis, creates a tree-structured query representation which is then referenced and
augmented by subsequent phases. Abstractly, the query compiler performs the fol-
lowing steps.

1. Parse the TSQL2 query. The syntactic analyzer, extended to parse the TSQL?2
constructs, produces an internal representation of the query, the parse tree.

482 THE TSQL2 QUERY LANGUAGE

2. Semantically analyze the constructed parse tree. The parse tree produced by
the syntactic analyzer is checked for types and other semantic constraints, and
simultaneously augmented with semantic information.

3. Lastly, a query execution plan, essentially an algebraic expression that is se-
mantically equivalent to the original query, is produced from the augmented
parse tree by the query plan generator.

The minimal changes required by the query compiler are summarized as follows.
e The syntactic and semantic analyzers must be extended to support TSQL2.

e The query execution plan generator must be extended to support the extended
TSQL2 algebra, including the new coalescing, join, and slicing operations. In
a minimally extended system, it may be acceptable to use existing algebraic
equivalences for optimization, even with the extended operator set. Such an
approach preserves the performance of conventional snapshot queries. Later
inclusion of optimization rules for the new operators would be beneficial to
the performance of temporal queries.

e Support for vacuuming must be included in the compiler. Query modification,
which normally occurs after semantic analysis and prior to query optimiza-
tion, must be extended to include vacuuming support.

The need to extend the syntactic and semantic analyzers is self-evident, and straight-
forward. (A query compiler has been implemented in conjunction with the M

TICAL project that syntactically and semantically analyzes a significant subset of
TSQL2.) Extending the query plan generator to use the extended algebra is also
straightforward, assuming that temporal aspects of the query are not considered
during query optimization. In the worst case, the same performance would be en-
countered when executing a temporal query on a purely snapshot database. Lastly,
in order to support vacuuming, the query compiler, within its semantic analysis
phase, must support automated query modification based on vacuuming cut-off
times stored in the data dictionary.

6 Run-time Evaluator

The run-time evaluator interprets a query plan produced by the query compiler. The
run-time evaluator calls the transaction and data manager to retrieve data from the
system catalog and data files.

We assume that the run-time evaluator makes no changes to the query plan
as received from the query compiler, i.e., the query plan, as generated by the query
compiler, is optimized and represents the best possible evaluation plan for the query.
As such the changes required for the run-time evaluator are small. Particularly, since
evaluation plans for the any new operators have already been selected by the query

AN ARCHITECTURAL FRAMEWORK 483

compiler, the run-time evaluator must merely invoke these operations in the same
manner as non-temporal operations. Additionally, as will be mentioned in Chap-
ter 21, Section 5, evaluation algorithms for the new temporal operators (coalescing,
n-way joins, and slicing) are similar to well-known algorithms for snapshot opera-
tors. For example, coalescing can be implemented with slightly modified duplicate
elimination algorithms, which have been well-studied in snapshot databases.
Lastly, changes are needed by the run-time evaluator to support the input and
output of temporal literals, as discussed in [2, Chapter 8]. Calls to the software
components supporting temporal literals must be inserted into the query execution
plan by the query compiler and subsequently performed by the run-time evaluator.

7 Transaction and Data Manager

The transaction and data manager performs two basic tasks: it manages the transfer
of information to and from disk and main memory, and it ensures the consistency
of the database in light of concurrent access and transaction failure.

Again, at a minimum little needs to be modified. We assume that the conven-
tional buffer management techniques are employed. Supporting transaction time
requires the following small extension to the concurrency control mechanism.

For correctness, transaction times are assigned at commit time, otherwise dur-
ing an interleaved execution a transaction may see data that is not yet current. This
would happen if a transaction reads tuples previously written by a concurrent trans-
action holding a later transaction time. To avoid this problem, we have an exe-
cuting transaction write tuples without filling in the transaction timestamp of the
tuples. When the transaction later commits, the transaction times of affected tuples
are then updated.

This is accomplished by maintaining a (reconstructible) table of tuple IDs
written by the transaction. This table is read by an asynchronous background pro-
cess which performs the physical update of the tuples’ transaction timestamp. Cor-
rectness only requires that the transaction times for all written tuples be filled in
before they are read by a subsequent transaction. While this simple extension suf-
fices, more complex and efficient methods have been proposed [3]. Notice also that
this algorithm does not affect the recovery mechanism used by the DBMS, assum-
ing that the transaction time of a committed transaction is logged along with the
necessary undo/redo information.

8 Summary

We have described how a canonical DBMS architecture can be extended to support
TSQL2. The changes described are minimal in that they represent the smallest

484 THE TSQL2 QUERY LANGUAGE

necessary extensions to support the functionality of TSQL2. As the extensions are
small, we believe that, as a first-step, TSQL2 can be supported for a relatively low
development cost.

We anticipate that the performance of the minimally extended architecture
will rival the performance of conventional systems. Snapshot queries on the cur-
rent database state may suffer a slight performance penalty due to the additional
temporal support. However, since we are able to use existing optimization tech-
niques, evaluation algorithms, and storage structures, we expect snapshot queries
on the temporal DBMS to approach the performance of identical queries on a con-
ventional DBMS.

Conversely, while there are many opportunities for improvement, we believe
that temporal queries on the minimally extended architecture will show reasonable
performance. In particular, the architecture can employ new evaluation and opti-
mization techniques for temporal queries currently under investigation. With the
addition of temporally optimized storage structures, we expect further performance
improvements.

References

[1] Snodgrass, R. T., I. Ahn, G. Ariav, D.S. Batory, J. Clifford, C.E. Dyreson,
R. Elmasri, F. Grandi, C.S. Jensen, W. Kafer, N. Kline, K. Kulkarni, T.Y.C.
Leung, N. Lorentzos, J.F. Roddick, A. Segev, M.D. Soo and S.M. Sripada.
“TSQL2 Language Specification.ACM SIGMOD Record23, No. 1, Mar.
1994, pp. 65-86.

[2] Snodgrass, R. T. (editor) “The TSQL2 Temporal Query Language.” Kluwer
Academic Publishers, 1995.

[3] Lomet, D. and B. Salzberg. “Transaction-Time Databases,” in Temporal
Databases: Theory, Design, and Implementation. Benjamin/Cummings, 1993.
Chap. 16. pp. 388-417.

