
18
Now

James Clifford, Curtis E. Dyreson, Richard
T. Snodgrass, Tomás Isakowitz, and Christian S. Jensen

1 Introduction

Now is an English noun meaning “at the present time” [16].Now is also a distin-
guished timestamp value in many temporal data model proposals. In this chapter,
we give precise, but informal, semantics for this familiar term and discuss repre-
sentations and query language constructs for supportingnow in TSQL2. We also
explore the related concepts of “infinite future” and “infinite past.”

In general, we treatnowas a variable that is assigned a specific time during
query or update evaluation. The time that is assigned to the variable depends upon
when the query or update is evaluated. We call the time assigned to the variablenow
thereference timeas it is specific to the reference frame of the observer; in the case
of nowthe observer is the query (or update). Now appears in SQL-92 though the re-
served wordsCURRENT_DATE, CURRENT_TIME, andCURRENT_TIMESTAMP.

This discussion ofnowadds to the set of temporal values and types developed
in [15, Chapter 8] and [15, Chapter 5]. In particular,now is a distinguished kind of
datetime, rather than aintervalor period. A datetime is a fixed point on an underly-
ing time-line whereas a period is an anchored segment of the time-line demarcated
by two datetimes. An interval is the duration between two datetimes, an unanchored
segment of the time-line. Two distinguished datetimes currently exist:beginning,
which is the earliest time on the underlying time-line (valid or user-defined time),
andforever, which is the latest time.

2 Now in User-defined and Valid Time

A common use ofnow is to indicate that a fact is valid until the current time [1, 2,
7, 8, 10, 11, 17, 19]. For example, suppose that Jane began working as a faculty
member for State University on 06/01/94. Figure 1 shows the relevant tuple from

455

456 THE TSQL2 QUERY LANGUAGE

FACULTY1
NAME RANK VALID-TIME

Jane Assistant ’[06/01/94 - now]’

Figure 1: Jane’s employment tuple

the university’s employment history (theFACULTY1table). Jane started working
as an Assistant professor at State University on 06/01/94, as indicated by the “valid
time” attribute (for the examples in this chapter we assume a timestamp granularity
of one day). The variablenow, appearing as the terminating datetime in the valid-
time period for Jane’s employment tuple, represents a currently unknown future
time when Jane will stop working for State University. The result of a query that
requests the current faculty members will include Jane.

The informal semantics of this value is that Jane is a faculty member until we
learn otherwise. As the current time inexorably advances, the interpretation ofnow
also changes to reflect the new current time. Some authors have called this concept
“until changed” instead of “now” [20, 21], but the semantics is the same.

Other data models useforeveror∞ as the terminating period datetime, as
shown in Figure 2 [3, 13, 14][18]. Forever is the largest representable timestamp
value, that is, the one furthest into the future. This value admits that we do not
know when Jane will depart the company, and so assumes that she will be working
forever.

One limitation of using forever is that it is overly optimistic: forever is a long
time into the future! In SQL and in IBM’s DB2, forever is about 8,000 years from
the present [5, 9]; in TSQL2’s more liberal design, it is approximately 18billion
years from the present time [6]. Hence, to assert that Jane will be employed until
forever is most assuredly incorrect (others have also noted that a terminating time of
∞ or forever, has erroneous implications for the future [10]). A related limitation
is that when Jane departs from the company, forever must be revised with the date
of her departure; but the revised date will be an entirely separate time, unrelated to
forever.

An alternative way to view this problem is that there is a difference between
the actual andexpectedtimes of a fact. On a day-to-day basis, we expect Jane
to remain employed. A database that usesforeveras the terminating time of her
employment tuple (very optimistically) records her expected employment, while a
database that usesnowrecords only her actual employment, the time she has worked
to the current time.

NOW 457

FACULTY2
NAME RANK VALID-TIME

Jane Assistant ’[06/01/94 - forever]’

Figure 2: Jane’s employment tuple with a large upper bound

2.1 Why use Now?

Suppose that instead of using the variablenowas the terminating time in the tuple
in Figure 1, we use a ground time, i.e., a particular date. Then as time advances
and Jane remains an Assistant professor at State University, the terminating time
on Jane’s tuple must be updated each day to record when she worked. While this
representation is faithful to our knowledge at any point in time, it is it is unrealistic
to assume that the terminating time will be continuously updated as time advances.
It is also unclear who should do the updating, as the database has no indication of
which timestamp values are stable and which are continuously changing. For these
reasons, it is more convenient to use the variablenow.

2.2 Now-relative Datetimes

In this section we introduce a new kind of datetime, called anow-relative datetime.
A now-relative datetime is a datetime that is located at a given offset from, or rel-
ative to,now, or thereference time. Now-relative datetimes are a proper subset of
the general notion of aparameterized datetime. We show below that now-relative
datetimes are very useful.

The terminating time in Jane’s employment tuple shown in Figure 1 is a now-
relative datetime. For this datetime, the offset is a zero-length interval. By using
now-relative datetimes, we can more accurately record our “actual” knowledge of
Jane’s employment with State University.

As an example, assume that all changes to the faculty database are made 3
days prior to when they take effect, then Jane’s employment should extend from
when she was hired to 3 days afternowas shown in Figure 3. Here the terminat-
ing timestamp value is a rather complex datetime. It is an expression involving the
variablenowand ainterval, in this case, 3 days, indicating the punctuality of up-
dates. We recommend support for only those now-relative datetimes that indicate
an offset fromnow, e.g., support for the addition operator. Now-relative datetimes
involving multiplication (or division), such asDATE ’2*now ’ , are not included
in TSQL2.

An interval is the duration between two datetimes, an unanchored segment of
the time-line.

458 THE TSQL2 QUERY LANGUAGE

FACULTY3
NAME RANK VALID-TIME

Jane Assistant ’[06/01/94 - (now + 3 days)]’

Figure 3: Using a now-relative datetime

The processing of a now-relative datetime is quite interesting. First the vari-
ablenow is bound to the reference time. Next, the arithmetic involving the interval
(if any) is performed. In essence, the processing of a now-relative datetime is a
non-relative datetime, calculated by substituting the reference time fornow and
subtracting (or adding) the interval. Finally the resulting tuple is used as expected
in the query. For example, consider the processing of the tuple in Figure 3 on
07/09/94, e.g.,

< Jane, Assistant, ’[06/01/94 - now + 3 days]’ > .

First now is bound to the reference time, 07/09/94. Next the interval arithmetic is
performed:

07/09/94+ 3 days = 07/12/94,

resulting in the tuple

< Jane, Assistant, ’[06/01/94 - 07/12/94’] > .

The resulting tuple is then used in the rest of the query. The variablenow is always
groundprior to its use in a query. This is because the TSQL2 semantics is based
upon tuples without variables, (especially, the semantics of arithmetic operations).
TSQL2 does not support “unground” tuples or values.

2.3 An Aside: Forever and Beginning

The symbolforever used in a tuple has the following interpretation:forever=
∞. Here,∞ is a special time in the temporal universe that is greater than any other
time in that universe. As a consequence, we point out that the symbolforever
is in fact not a variable, but a constant. The special symbolbeginning is treated
similarly (as−∞).

3 Now at Run-time

Now is always bound to the current reference time when used in a query. There is
one important exception to this maxim, theNOBIND() function discussed below.
First consider the query given below.

NOW 459

SELECT NAME, RANK
FROM FACULTY
WHERE DATE ’now’ OVERLAPS VALID(FACULTY)

(CURRENT_DATEis equivalent toDATE ’now’ .) This query retrieves all the
current employees, that is, all those employee tuples that overlapDATE ’now’ in
valid-time. The semantics of the temporal variable|now| in the query requires
that it be bound to the time when the query is evaluated. Thus for example, if the
query is evaluated on July 9, then this query is equivalent to:

SELECT NAME, RANK
FROM FACULTY
WHERE DATE ’07/09/1994’ OVERLAPS VALID(FACULTY)

Note that the query might subsequently be evaluated at some other date, for example
July 31, at which time the variableDATE ’now’ would be bound to that time.

We do, however, provide a function that preventsnowfrom being bound dur-
ing evaluation of a query or update. The function is calledNOBIND() . NOBIND()
is a signal to the compiler to suspend generation of the “code” that binds a tempo-
ral value.NOBIND() can only appear in the target list of anINSERT or UPDATE
statement, and will generate a compile-time error if it appears elsewhere. We do not
currently allowNOBIND() to appear in aSELECT. To emphasize the difference
betweenNOBIND() and its absence, consider the following three insertions.

INSERT INTO FACULTY
VALUES (Jane,Assistant,PERIOD(DATE ’June 1’,

NOBIND(DATE ’now’)))

INSERT INTO FACULTY
VALUES (Jane, Assistant, PERIOD(DATE ’06/01/1994’,

DATE ’now’))

INSERT INTO FACULTY
VALUES (Jane, Assistant, PERIOD(DATE ’now’,

NOBIND(DATE ’now’)))

Assume that all three updates were performed on June 13. The first update will
store the tuple shown in Figure 1; the second update will store the tuple shown
in Figure 4; and the third, Figure 5. In general,NOBIND() supports the inser-
tion of now-relative datetimes, intervals, and periods into the database; without
NOBIND() these temporal values would be bound during execution of a query or
update.

460 THE TSQL2 QUERY LANGUAGE

FACULTY4
NAME RANK VALID-TIME

Jane Assistant ’[06/01/94 - 06/13/94]’

Figure 4: Executing the insert withdate ’now’

FACULTY5
NAME RANK VALID-TIME

Jane Assistant ’[06/13/94 - now]’

Figure 5: Executing the insert with the period fromDATE ’now’ to
NOBIND(DATE ’now’)

4 Now in Transaction Time

The transaction time concept that heretofore has been labeled with “now” is some-
what simpler than the valid time concept ofnow. The problem withnowin transac-
tion time is that the concept is misleadingly called “now.”

Transaction timedenotes the time period between a fact being stored in the
database and the fact being (logically) deleted from the database [12]. It is an
orthogonal concept to valid time, in that it concerns the history of the database, as
opposed to the history of the enterprise being modeled.

Transaction-time timestamps are supplied automatically by the DBMS during
updates (valid-time timestamps are generally supplied by the user). Specifically,
insertions initialize the starting transaction time to the “current time” and the termi-
nating transaction time tonow. (There is an additional requirement that the trans-
action time be consistent with the transaction serialization order.) Updates change
the terminating time ofnow to the value of the current transaction time. Hence,
in transaction-time tables, deletion is logical. The information is not physically
removed from the table, rather it is tagged as no longer current by having a termi-
nating time different fromnow. Physical deletion never occurs in a transaction-time
table.

As an example, consider the transaction-time table shown in Figure 6. The
distinct semantics of transaction time yields a different interpretation of this table
as compared with the one shown in Figure 1. The start of the transaction time period
indicates that this tuple was stored in the database on 06/01/94, e.g., the database
first became aware that Jane was a faculty member on that date. The period ends at
now, indicating that we still believe that Jane is an Assistant professor at State Uni-
versity. When we learn on 07/10/94 that Jane left State University, we will logically
delete this tuple by changing the period to’[06/01/94 - 07/10/94]’ .

NOW 461

FACULTY
NAME RANK TRANS-TIME

Jane Assistant ’[06/01/94 - now]’

Figure 6: Jane’s employment tuple in a transaction-time table

FACULTY
NAME RANK TRANS-TIME

Jane Assistant ’[06/01/94 - forever]’

Figure 7: Using forever in a transaction-time table

4.1 The Label “Now” in Transaction Time

In transaction time, a tuple timestamped with a terminating transaction time ofnow
means that this tuple has not yet been logically deleted [19]. But the label “now”
actually obscures this meaning. Strictly speaking, it implies that every current tuple
was deleted by the current transaction! In Figure 6, if the current time is 07/09/94,
then a strict interpretation of a terminating time of “now” suggests that the termi-
nating time is 07/09/94 (we used exactly the same interpretation for “now” in valid
time). This is not what was intended.

4.2 The Label “Forever” in Transaction Time

As with valid time, some data models address this problem by using “forever” in-
stead of “now,” as shown in Figure 7 [3, 4, 13, 18]. And as before, we immediately
encounter other difficulties. The strict interpretation of this tuple is that a transac-
tion executing a (very) long time in the future will logically delete this tuple from
the table. In the meantime, it will remain in the database. If, on 07/10/94, it be-
comes known that Jane has left State University, then we logically delete this tuple
by changing the terminating time to 07/10/94. Such a change is inconsistent with
the previous terminating time, thus implying that the label “forever” is not an ade-
quate solution. In this one sense, “now” is somewhat more appropriate.

4.3 The Label “Until Changed” in Transaction Time

A more precise label than “now” or “forever” for the transaction-time concept of
“not yet logically deleted” is “until changed.” The most recent transaction for a fact
is considered the current state of that fact,until changedby some later transaction.
Querying the current state, i.e., in a rollback operation, considers all tuples with a
terminating time ofuntil changed, and no other tuples. We advocate using the label

462 THE TSQL2 QUERY LANGUAGE

FACULTY
NAME RANK TRANS-TIME

Jane Assistant ’[06/01/94 - until changed]’

Figure 8: Using until changed in a transaction-time table

“until changed” instead of the label “now” in transaction time to make clear the
special, transaction-time specific meaning ofnow, and to ensure that updates are
consistent with, and in fact a refinement of, currently stored information. For our
running transaction-time example, this would appear as shown in Figure 8.

“Until changed” is a distinguished transaction-time literal, appearing in a
datetime or period constant. It has no counterpart in valid time (using “until
changed” instead of “now” avoids potential confusion with “now” in valid time,
although some authors use “until changed” in valid time [20, 21]). Also, it can only
be used as the terminating transaction time; it is nonsensical to use it as the starting
time.

We emphasize thatuntil changedis not a different variable thannow, merely
a different label for the same variable. The label expresses the unique, transaction
time semantics for the variablenow.

5 Summary

In temporal databasesnow is a commonly used value. In this chapter we developed
the concept of a now-relative datetime, outlined timestamp formats to store now-
relative datetimes, and considered the impact of now-relative datetimes on query
processing.

TSQL2’s support fornow requires few changes to the data model,nowwill
be handled by simply replacing it with the reference time during query or update
evaluation. We allow an interval “offset” to be coupled withnow resulting in a
now-relative datetime which is indispensable to modeling some kinds of temporal
information. We also advocate use of the unary functionNOBIND() to distinguish
the mention ofnow from its use in a query. We further noted a difference in the
transaction-time and valid-time uses ofnow. To highlight this difference we recom-
mend using “until changed” as the transaction-time label fornowand “now” as the
valid-time label. The naming convention is enforced by each calendar during input
and output of temporal constants. Finally, we anticipate that timestamp operation
efficiency will remain high, even for these complex datetimes.

In closing, we note that addingnow to TSQL2 requires no schema level or
syntax changes to the language and minimal changes to the temporal algebra. Some
changes must be made to the timestamp representation and operations, but these

NOW 463

changes were planned for in the initial timestamp design.

References

[1] Ariav, G., A. Beller and H. L. Morgan. “A Temporal Data Model.” Tech-
nical Report DS-WP 82-12-05. Decision Sciences Department, University of
Pennsylvania. Dec. 1984.

[2] Bassiouni, M. A. and M. J. Llewellyn. “A Relational-Calculus Query Lan-
guage For Historical Databases.”Computer Languages, 17, No. 3 (1992),
pp. 185–197.

[3] Ben-Zvi, J. “The Time Relational Model.” PhD. Dissertation. Computer Sci-
ence Department, UCLA, 1982.

[4] Bhargava, G. and S. Gadia. “Achieving Zero Information Loss in a Classi-
cal Database Environment,” inProceedings of the Conference on Very Large
Databases. Amsterdam: Aug. 1989, pp. 217–224.

[5] Date, C. J. and C. J. White. “A Guide to DB2.” Reading, MA: Addison-
Wesley, 1990. Vol. 1, 3rd edition.

[6] Dyreson, C. E. and R. T. Snodgrass. “Timestamp Semantics and Representa-
tion.” Information Systems, 18, No. 3 (1993), pp. 143–166.

[7] Elmasri, R., G. Wuu and Y. Kim. “The Time Index - An Access Structure for
Temporal Data,” inProceedings of the Conference on Very Large Databases.
Brisbane, Australia: Aug. 1990.

[8] Gadia, S. K. “A Homogeneous Relational Model and Query Languages for
Temporal Databases.”ACM Transactions on Database Systems, 13, No. 4,
Dec. 1988, pp. 418–448.

[9] Melton, J. and A. R. Simon. “Understanding the New SQL: A Complete
Guide.” San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1993.

[10] Navathe, S. B. and R. Ahmed. “A Temporal Relational Model and a Query
Language.”Information Sciences, 49 (1989), pp. 147–175.

[11] Sarda, N. L. “Algebra and Query Language for a Historical Data Model.”The
Computer Journal, 33, No. 1, Feb. 1990, pp. 11–18.

[12] Snodgrass, R. T. and I. Ahn. “A Taxonomy of Time in Databases,” inProceed-
ings of ACM SIGMOD International Conference on Management of Data. Ed.
S. Navathe. Association for Computing Machinery. Austin, TX: May 1985,
pp. 236–246.

[13] Snodgrass, R. T. “The Temporal Query Language TQuel.”ACM Transactions
on Database Systems, 12, No. 2, June 1987, pp. 247–298.

464 THE TSQL2 QUERY LANGUAGE

[14] Snodgrass, R. T. “An Overview of TQuel,” in Temporal Databases: Theory,
Design, and Implementation. Benjamin/Cummings, 1993. Chap. 6. pp. 141–
182.

[15] Snodgrass, R. T. (editor) “The TSQL2 Temporal Query Language.” Kluwer
Academic Publishers, 1995.

[16] Sykes, J. B. “The Concise Oxford Dictionary.” Oxford, England: Oxford
University Press, 1964.

[17] Tansel, A. U. “Modelling temporal data.”Information and Software Technol-
ogy, 32, No. 8, Oct. 1990, pp. 514–520.

[18] Thirumalai, S. and S. Krishna. “Data Organization for Temporal Databases.”
Technical Report. Raman Research Institute, India. 1988.

[19] Yau, C. and G. S. W. Chat. “TempSQL – A Language Interface to a Temporal
Relational Model.”Information Sc. & Tech., , Oct. 1991, pp. 44–60.

[20] Wiederhold, G., S. Jajodia and W. Litwin. “Dealing with Granularity of Time
in Temporal Databases,” inProc. 3rd Nordic Conf. on Advanced Information
Systems Engineering. Trondheim, Norway: May 1991.

[21] Wiederhold, G., S. Jajodia and W. Litwin. “Integrating Temporal Data in a
Heterogeneous Environment,” in Temporal Databases: Theory, Design, and
Implementation. Benjamin/Cummings, 1993. Chap. 22. pp. 563–579.

