
17
Cursors

Christian S. Jensen, Richard T. Snodgrass, and
T. Y. Cliff Leung

The cursor facility of SQL2, to be useful in TSQL2, must be revised. Es-
sentially, revision is needed because tuples of TSQL2 have associated valid-time
elements, i.e., finite unions of periods.

The data model of TSQL2 was designed as a conceptually minimal valid-
time extension of the standard relational model. Facts in a valid-time table have
associated the times when they are assumed to be true in the modeled reality. Tuples
encode facts (atomic or composite), and the adopted data model associates valid
times with facts at the level of tuples. In order to not replicate facts, i.e., have
several value-equivalent tuples with different associated time periods, tuples are
associated with valid-time elements, finite unions of periods.

Storage and display of valid-time tables is not restrained by the above choice
of data model. Indeed, several formats may coexist for both storage and display.
As will be described, we have here adopted a very simple display format that is
well-suited for accessing valid-time tables via cursors. Other display formats may
be added later.

The association of tuples with valid-time elements necessitates modifications
of the SQL2 cursor mechanism before it can be adopted for TSQL2. This chapter
examines such modifications. When the cursor mechanism was designed, it was
attempted to make only minimal modifications of the SQL2 cursors.

To illustrate the use of cursors in TSQL2, consider an example. First, a valid-
time table schema and (empty) instance is defined which records the names of em-
ployees, their departments, and salaries.

CREATE TABLE Employee (Name CHAR(10),Dept CHAR(10),
Salary INTEGER)

VALID AS PERIOD

Next, a tuple is inserted which records Ben’s salary and indicates that he was
in the Toy department in January, March, and May of 1993. A subsequent insertion

449



450 THE TSQL2 QUERY LANGUAGE

records that he was in the Book department in February and April of 1993. His
salary remains 30 throughout these periods. Conceptually, the table shown next
results.

Name Department Salary V

Ben Toy 30
[1 Jan 1993, 31 Jan
1993] ∪
[1 Mar 1993, 31 Mar
1993] ∪
[1 May 1993, 31 May
1993]

Ben Book 30
[1 Feb 1993, 28 Feb
1993] ∪
[1 Apr 1993, 30 Apr
1993]

We use this example for describing the design of the cursor mechanism of
TSQL2.

For accessing valid-time tables, we will use the display format described next.
The format resembles that of the table above. Specifically, the only addition is that
timestamps are not finite unions of periods, but are instead lists of maximal periods.
Further, each period is represented by pairs of delimiting datetimes. Each pair is
ordered with the smallest value first. When a valid-time table is transformed as
described, a cursor may access the full valid-time table by simply iterating (using
OPEN, FETCH, andCLOSE) through the tuples. This is a very minimal extension.

For the example above, this table is created.

Name Department Salary

Ben Toy 30 [1 Jan 1993, 31 Jan 1993]
Ben Toy 30 [1 Mar 1993, 31 Mar 1993]
Ben Toy 30 [1 May 1993, 31 May 1993]
Ben Book 30 [1 Feb 1993, 28 Feb 1993]
Ben Book 30 [1 Apr 1993, 30 Apr 1993]

Next, it is convenient to map the period-valued attribute to two datetime-
valued attributes. Thus, in the display format adopted for cursor manipulation,
two unnamed attributes are assumed which contain the start and end valid times of
the corresponding maximal periods. Thus, the table above would be mapped to the
following.



CURSORS 451

Name Department Salary

Ben Toy 30 1 Jan 1993 31 Jan 1993
Ben Toy 30 1 Mar 1993 31 Mar 1993
Ben Toy 30 1 May 1993 31 May 1993
Ben Book 30 1 Feb 1993 28 Feb 1993
Ben Book 30 1 Apr 1993 30 Apr 1993

To explore the mapping of a variable-length tuple to a fixed-length record
format for retrieval purposes, recall first the (simplified) template for declaring a
cursor.

We next explore how the contents of a valid-time table is accessed using cur-
sors. To do so, recall the (simplified) template for declaring a cursor.

DECLARE cursor CURSOR FOR query-exp

For example, a cursor may be declared for employees named Ben.

DECLARE EmpCursor CURSOR
FOR SELECT *

FROM Employee
WHERE Employee.Name = ’Ben’

The syntax for cursor declaration is not affected. The following excerpts exemplify
how the cursor may be used for retrieval.

FETCH NEXT FROM EmpCursor
INTO :nameVar, :deptVar, :salaryVar

This statement retrieves the explicit attribute values of the next tuple. Using this
type ofFETCH, it is possible to iterate through a table instance. The next excerpt
indicates how the lists of pairs of timestamps associated with the tuples are re-
trieved.

FETCH NEXT FROM EmpCursor
INTO VALID :timeStartVar, :timeEndVar

This statement retrieves the next pair of timestamps of the current tuple. In a pro-
gramming language, the second type ofFETCHwill typically be nested into a state-
ment of the first type, forming a nested loop. The first type ofFETCHis identical
to the conventionalFETCH, and status information is passed from SQL to the pro-
gramming language via theSQLCODEparameter. Because the valid times associ-
ated with a tuple may be thought of as a binary table, theSQLCODEparameter is
used for timestamps the same way it is used for tuples. The previous two statements
may be combined.

FETCH NEXT FROM EmpCursor
INTO :nameVar, :deptVar, :salaryVar
VALID INTO :timeStartVar, :timeEndVar



452 THE TSQL2 QUERY LANGUAGE

This statement retrieves the explicit attributes of the next tuple as well as the bound-
ing datetimes of the first valid-time period associated with the explicit-attribute val-
ues. This type ofFETCHis especially useful when a cursor is declared to range
over a table instance where all the valid-time elements associated with tuples are
guaranteed to consist of single periods.

We have seen that a valid-time element of a tuple is passed using cursors to an
application program by passing each maximal period in turn. By default, a period
is passed by passing the delimiting datetimes. This default has been adopted be-
cause application programs are expected to find this format most useful. However,
a period may also be passed to a period-valued programming language variable, as
illustrated next.

FETCH NEXT FROM EmpCursor
INTO VALID PERIOD :periodVar

When SQL statements are embedded in a programming language, they are
prefixed byEXEC SQLin all languages. This prefix was omitted above because
different programming languages indicate the termination of the SQL statement
differently (using, e.g.,END-EXECor “; ”). Variables defined in the surrounding
program (written in, e.g., PL/1) are prefixed by “: ”.

Cursor stability, a special, weak level of consistency, may also be applied
in the context of TSQL2 cursors. Employing cursor stability in a transaction that
is iterating through entire tables may enhance system performance. In snapshot
databases, cursor stability ensures that the tuple that is currently being processed is
protected from writes (i.e., it is locked in shared mode) and that tuples modified by
the transaction are locked in exclusive mode until the transaction is terminated.

We have added a nested cursor mechanism to TSQL2. Thus, the notion of a
current tuple in the context of cursor stability must be redefined. Specifically, we
define the current tuple to be the tuple indicated by the outer cursor. Thus, the cur-
rent tuple is a complete tuple. It has associated a complete valid-time element, not
just the current period as indicated by the inner, timestamp-level cursor. Together,
the outer and inner cursors for a query expression generally point to a partial tuple,
namely an explicit-attribute component and a single valid-time period.

In TSQL2, cursor stability ensures that the part of the current tuple pointed
to by the nested cursor is protected from writes (i.e., it is locked in shared mode).
Further, if any part of a tuple is modified by the transaction, the complete tuple is
locked in exclusive mode until the transaction is terminated.

As indicated above, cursors also play a role during deletion and update. Specif-
ically, cursors are utilized during position delete and update statements. For exam-
ple, the template for positioned delete is given as follows.

DELETE FROM<table name>
WHERE CURRENT OF<cursor name>



CURSORS 453

The delete and update statements are related to cursors because they manip-
ulate the current tuple as indicated by the cursor (i.e., byWHERE CURRENT OF
<cursor name>). In these statements, as above, the current tuple is always a com-
plete tuple, namely the tuple indicated by the outer cursor (together with the com-
plete associated valid-time element) Consequently, positioned deletions as well as
updates apply to complete tuples.


