
15
Valid-Time Selection and Projection

Suchen Hsu, Christian S. Jensen, and
Richard T. Snodgrass

1 Introduction

Temporal database management systems should offer user-friendly and powerful
means of retrieval of data according to temporal criteria. Selection of tuples ac-
cording to theirvalid times, which is the times when the information represented by
the tuples is valid in the modeled reality [16], is termedvalid-time selection.

The attributes to be computed and returned from a query are specified in the
target list.Valid-time projectionis the temporal analog of regular projection in, e.g.,
Quel, and allows for the specification of the implicit timestamps for tuples of the
resulting relation.

Valid-time projection mechanisms may be partitioned into two categories.
First, valid-time projection may be built implicitly into the operators and constructs
of the query language. This leaves the user no freedom in specifying the timestamps
of result tuples. Second, valid-time projection may be specified explicitly, as part
of an existing clause or in a new clause. This approach allows the user to control
the timestamps of result tuples.

The chapter is structured as follows. Initially, we survey previous temporal
query language proposals. We then describe six general criteria for good language
design. The criteria provide guidelines. However, they may conflict at times, and a
single general criterion may be applied in several ways in a concrete design. Then,
TSQL2’s method for valid-time selection is introduced. Mechanisms that involve
the referencing and construction/extraction of various kinds of timestamps are cov-
ered first. Then, comparison operators are covered. Finally, miscellaneous aspects
of the design are discussed. The general design is first presented, and then central
design issues are discussed in more detail.

We then turn to temporal projection. The motivation for adding a separate
clause for valid-time projection is discussed, and the choice of defaults is considered

403

404 THE TSQL2 QUERY LANGUAGE

in some detail. The chapter ends with a summary.

2 Survey

In the past decade, numerous temporal extensions to the relational data model have
been proposed. Most of these data model proposals have included user-level query
languages. Most of these languages are not entirely new, but are instead extensions
of existing, non-temporal query languages. To illustrate, extensions of SQL [4]
1976] include TOSQL [2], TSQL [12, 13], TempSQL [6], and HSQL [14]

In the late 1970’s and early 1980’s, two important temporal data models were
proposed, namely Ben-Zvi’s TRM and Ariav’s TOSQL. The designers of these lan-
guages did not place much emphasis on valid-time selection and projection; rather,
they were interested in specifying the data model. As a result, the support for valid-
time selection and projection is very limited in these languages. In the late 1980’s
and early 1990’s, TSQL and HSQL were proposed. These languages have a clearer
syntax than did their predecessors, and the the support for valid-time selection and
projection is improved. Parallel to these efforts, temporal query languages based
on Quel were also being developed. These include TQuel, HQuel, and HTQUEL.
Where TQuel is based on 1NF temporal relations, the other two languages are based
on non-1NF relations. Therefore, the syntax of HQuel and HTQUEL is very differ-
ent from that of conventional Quel.

Our objective is to analyze the mechanisms for valid-time selection and pro-
jection in existing temporal query languages. Such an analysis is a suitable foun-
dation for designing valid-time selection and projection components of the TSQL2
query language that are powerful and syntactically clear and thus make it easy to
formulate and understand queries.

Before we proceed by surveying valid-time selection and projection in nine
existing temporal query languages, we first define terminology that is useful when
exploring the commonalities and differences between the languages. The language
surveyed first is LEGOL 2.0, a pioneer temporal query language. Next, the four
extensions to SQL are reviewed in chronological order. Then the three extensions
to Quel are examined, also chronologically. A final section contains a summary.

In examples throughout the chapter, we use an employee relation, EMPLO-
YEE = (NAME, DEPT, POSITION), and the following natural-language query (in
addition to other queries) is formulated in each of the covered languages.

Q1. List all of the employees who worked during all of 1990.

Also, the part of each language that relates to valid-time selection and projec-
tion is described precisely by means of a BNF syntax. As most of the languages do
not define the temporal constants clearly, we use the same format, MM.DD.YY, for
all languages. Coverage of temporal constants may be found in [17, Chapter 8].

VALID-TIME SELECTION AND PROJECTION 405

2.1 Terminology

Below, we define terms that are frequently used in the discussions of the existing
language proposals. For clarity, we will use these definitions for all languages, even
in situations where other terms were originally used.

Timestamp referencingThis term denotes the method provided by the query lan-
guage for refering to the timestamp values of tuples in queries (e.g., in temporal
predicates and target lists).

Event extraction An interval consists of a starting event and an ending event. In
temporal queries, it is often convenient to reference (e.g., for comparison) the events
of intervals. Event extraction denotes the extraction of the delimiters of intervals.

Interval constructor As the opposite to event extraction, an interval constructor is
an operator that creates an interval from events or intervals. One useful constructor
takes two events as operands and constructs the interval with these two events as de-
limiters. Other constructors create new intervals from old intervals by intersection,
extension, and union.

Event and interval comparison predicatesTemporal query languages provide vary-
ing sets of built-in predicates for the comparison of temporal values. We distinguish
between predicates for the comparison of events and intervals. While some lan-
guages provide separate predicates for the two types of objects, other languages
utilize the same predicates.

Temporal predicates By this we mean any boolean expression with comparisons
involving time values. Temporal predicates are used for selecting tuples based on
their timestamps.

As both events and intervals are present in temporal relations, temporal predicates
may involve both types of timestamps. Events are totally ordered and may be treated
similarly to integers and reals. Thus, conventional arithmetic comparison operators
and logical operators are sufficient for event comparison. Regarding intervals, the
comparison operators of Allen have proved to be complete [1]. Note that each of
these operators can be simulated with event comparison operators, logical operators,
and event extraction mechanisms. (Figure 1 shows the complete set of interval
relations defined by Allen.)

Thus, languages that support event time comparison and event extraction have
the same expressive power as languages that support interval comparison. While

406 THE TSQL2 QUERY LANGUAGE

b

a

b

a

b

a

b
a

a b

b

a

ba

a finishes b

a starts b

a during b

a overlaps b

a meets b

a equals b

a before b

Figure 1: Allen’s interval comparison operators

interval comparison operators thus do not increase the expressive power of a query
language, such operators do improve the readability of queries.

Valid timeslice This operator retrieves the tuples from the argument relation which
are valid during a specified interval or on a time point. Conceptually, it is like
“cutting" a slice from a relation.

Temporal ordering A group of timestamped tuples may be numbered according
to their timestamp order. By means of temporal ordering, tuples with particular
numbers may be selected.

2.2 LEGOL 2.0

Legol 2.0 was the first relational query language to support temporal queries [9].
This language supports tuple-timestamped valid-time relations. Specifically, tuples
are assigned two implicit valid-time attributes,start andstop . These attributes
are accessed by the various set-theoretic, temporal, and comparison operators. The

VALID-TIME SELECTION AND PROJECTION 407

query language is closed: The results of queries are valid-time relations. As a result,
queries may be nested arbitrarily.

Legol 2.0 differs from other languages in that it is a rule-based, procedural
query language. As our interest is declarative query languages, we examine Legol
2.0 only briefly.

In addition to the conventional set-based operations, Legol 2.0 introduces sev-
eral temporal operations, including valid-time intersection, one-sided valid-time in-
tersection, valid-time union, valid-time difference, and valid-time set membership.
The semantics of these operators were explained by examples.

Next, temporal projection is implicitly embedded in the operators. For exam-
ple, the valid-time intersection operation, implements intersection of timestamps,
i.e., the valid time of an output tuple is the intersection of the valid times of the
two input tuples. The semantics of these set operations is not clearly implied by the
syntax (shown in Figure 2). As a result, it is hard for users to understand queries by
simply reading them.

Tuple-variable names are used for implicitly referencing the timestamps of
the tuples, and starting and ending events of intervals may be retrieved by the func-
tions,start of andend of . The arithmetic comparison operators (>, >=,<,
<=) are applicable also to events. While both event extraction and comparison are
supported, Legol 2.0 lacks interval comparison operators and boolean operators.
Temporal ordering functions, such asfirst, last, current and past ,
are provided.

The sample query Q1 is expressed as follows.

EMP1990() ⇐ [start of EMPLOYEE(NAME) < 12.31.90]
while [end of EMPLOYEE(NAME) > 1.1.1990]

In Legol 2.0, valid-time projection is built-into the operators. Some opera-
tors compute new timestamps by intersecting existing timestamps. Other operators
define valid-time projection differently, the particular choice depending on the se-
mantics of the operators.

2.3 Ben-Zvi’s TRM

Ben-Zvi was the first person to propose a temporal data model with three different
times, termedeffective time, registration time, anddeletion time[3]. Tuples have
five implicit timestamps. The effective time is similar to valid time, and like Legol
2.0, tuples have two of these. There are two registration times, indicating when
the valid-time start and the valid-time end were recorded. The single deletion time
indicates when a tuple is logically deleted. Together, the registration times and the
deletion time provide support for transaction time. A relation of tuples with these
temporal attributes is termed aTime Relation.

408 THE TSQL2 QUERY LANGUAGE

<source> ::= <expression> {<operator><expression>}
<expression> ::= <simple expression> | “ [" <source> “] "
<simple expression> ::= <reference> | <literal> | <function call>
<reference> ::= <entity reference> | <attribute reference>
<entity reference> ::= <entity label> “ (" <identifier list> “) "
<entity label> ::= <alphabetic string>
<attribute reference> ::= <attribute label> of <entity reference>
<attribute label> ::= <identifier label> | start | end
<identifier list> ::= <identifier element> {“ , " <identifier element> }*
<identifier element> ::= <identifier label> | <literal> | -
<identifier label> ::= <alphabetic string> | <non-negative integer>
<literal> ::= <quoted string> | <numeric constant>
<function call> ::= <function name> [for <control list>]

of <expression>
<control list> ::= <attribute label> {“ , " <attribute label> }*
<function name> ::= <select> | <aggregate> | <value>
<select> ::= max | min | highest | lowest | first

| last | current | past
<aggregate> ::= sum | number | accumulate | count

| whenever
<value> ::= duration | today
<operator> ::= <setop> | <timeop> | <arithmeticop>

| <comparison>
<setop> ::= union | is | isnot
<timeop> ::= while | while not | or while | during

| since | until
<arithmeticop> ::= + | - | * | /
<comparisonop> ::= = | 6= | > | < | >= | <=

Figure 2: BNF syntax of Legol 2.0

VALID-TIME SELECTION AND PROJECTION 409

Temporal selection is supported by theTIME-VIEW operator and a few sim-
ple, built-in temporal predicates. TheTIME-VIEW operator produces asnapshot
relation, i.e., a relation without timestamps [16]. The operator accepts two param-
eters, anE-TIME and anAS-OF time. The syntax is given as follows (defaults are
underlined).

TIME-VIEW

E− TIME =

NOW
CURRENT

<temporal constant>

AS−OF=

NOW
CURRENT

<temporal constant>

To compute the resulting snapshot relation, the argument relation is first (trans-
action) time-slicedAS-OF some time in the past. Then the intermediate relation is
(valid) time-sliced as of theE-TIME . The result is the tuples that were effective
at E-TIME , were registered before theAS-OF time, and not deleted before the
AS-OF time. Because the resulting relation is a non-temporal relation, valid-time
projection is not defined in TRM.

TRM provides a limited set of event-comparison operators which may be used

in selection predicates.

WHERE<qualifier> (<field name>) <comp-operator>

<temporal constant>

<qualifier> ::=E-START | E-END | R-START | R-END

<comp-operators> ::=< | <= | = | != | >= | >

No interval-comparison operators exist, and a temporal predicate is restricted to
compare the start of or end of valid or registration times with temporal constants
only; there is no way to compare two time variables. For example, a join that
compares the start times of two relations can not be expressed in this language.
Following is the sample query for Q1 expressed in TRM.

SELECT NAME
FROM EMPLOYEE
WHERE E-START(NAME) < 12.31.1990

AND E-END(NAME) > 1.1.1990

The temporal selection predicate in this query simply tests whether the valid times
of employee tuples cover the year 1990, but a long and unclear predicate is neces-
sary because interval comparison operators are not available.

410 THE TSQL2 QUERY LANGUAGE

<temp-spec> ::=<temp-period><time-dimension>
<temp-period> ::=AT [PRESENT| <temporal const>]

| DURING“ ("<temporal const> “ - " <temporal const> “) "
| BEFORE<temporal const>
| AFTER<temporal const>
| WHILE<selection expr>

DURING[“ (" -∞ “ - " +∞“) "
| “ ("<temporal const> “ - "
<temporal const>“) "]

<time-dimension>::=ALONG RT| ALONG<tsa>

Figure 3: BNF syntax for constructs in TOSQL related to timeslice

2.4 TOSQL

TOSQL is based on tuple timestampedtransaction-timerelations [2]. In this model,
tuples are automatically assigned arecording time, abbreviated RT (i.e., a transac-
tion time, the same as registration time in TRM). To obtain additional temporal
support, it is possible to define so-calledTime-Related Attributes(TRAs). Such
attributes record time-varying data, for example the times when equipment mal-
functions occurred. TRAs that satisfy thefinality propertyare termedTimestamp
Attributes(TSAs). This property is satisfied if at any give time, there exists one
and only one value set for each object in the relation. With TSAs, it is possible to
record, the valid times of tuples as well as other times. When a TSA is introduced
into a relation, its dimensionality is increased by one.

In TOSQL, timeslice may be specified in five ways, each of which are shown
in Figure 3. These operators serve as both temporal selection and projection opera-
tors for RT (the default) as well as existing TSAs. Temporal projection is computed
as the intersection of the period of time given in the timeslice clause and the in-
tervals of selected tuples; no alternatives exist for specifying the timestamps of
selected tuples.

The sample query for Q1 is expressed as follows.

SELECT F1.NAME
FROM EMP F1
DURING [1.1.1990 - 12.31.1990]

Here, the operatorDURINGretrieves all of the tuples which are recorded in 1990,
and theSELECToperator outputs the employees’ names.

The functionality of these five clauses are similar. All of them, except the
WHILEclause, can be simulated by theDURING clause. Even though theWHILE
clause does take a selection predicate as argument, it is different from theWHERE

VALID-TIME SELECTION AND PROJECTION 411

clause. It singles out periods of time in which tuples satisfy the selection predi-
cate. It’s effect may be simulated by a combination of a temporal predicate and the
WHEREclause. This is illustrated in the following two queries.

Q2. List all the employees who work in the company at some time when
Tom is in the toy department.

SELECT E.NAME
FROM EMPLOYEE E
WHILE E.NAME = ’Tom’ AND E.DEPT = ’toy’

The same query, now formulated in TSQL (described in the next section), is
expressed as follows.

SELECT E1.NAME
FROM EMPLOYEE E1, EMPLOYEE E2
WHERE E2.NAME = ’Tom’ AND E2.DEPT = ’toy’
WHEN E1.INTERVAL OVERLAP E2.INTERVAL

2.5 TSQL

Navathe’stemporal relational modelsupports tuple timestamping for valid time by
attaching two mandatory timestamp attributes,Time-start(Ts) andTime-end(Te)
to every time-varying relational schema [10, 12, 13]. These timestamp attributes
correspond to the lower and upper bounds of time intervals in which tuples are
continuously valid.

Informally speaking, attributes are not allowed to have multiple values at any
particular instant of time in relation instances in this model. As a result, the time
invariant key (i.e., the primary key of the corresponding snapshot relation schema,
abbreviated TIK) together with either Ts or Te defines a candidate key for a temporal
relation. Next,value-equivalenttuples (i.e., tuples with identical non-timestamp
attribute values) are required to be coalesced. Coalescing affects the facility for
temporal ordering of tuples, and requiring it improves the utility of this facility.

Most temporal operations are supported in TSQL, as are the properties de-
fined in Section 2.1. We will describe these operations next, starting with temporal
predicates and continuing with temporal projection, temporal ordering, and times-
lice.

In TSQL, a temporal selection predicate is specified in the when clause which
is a temporal analogue to SQL’s where clause. The clause consists of a new keyword
WHENfollowed by a temporal boolean expression (see Figure 4 for the BNF syntax)
which in turn consists of temporal predicates and logical operators.

The predicates consist of temporal expressions, which return intervals or
events, and temporal comparison operators. In temporal expressions, three post-
fix operators are used for referencing the timestamps of tuples. The event extrac-

412 THE TSQL2 QUERY LANGUAGE

<time-slice-clause> ::= TIME-SLICE <tem-const>
<when-claus> ::= WHEN<boolean>
<boolean> ::= <bool-term> | <boolean>OR<bool-term>
<bool-term> ::= <bool-fact> | <bool-term> AND<bool-fact>
<bool-fact> ::= [NOT] <bool-prim>
<bool-prim> ::= <predicate> | (<boolean>)
<predicate> ::= <expr><tem-comp-op><expr>
<expr> ::= <tem-seq> <ts-var> [<bf-af> <tem-seq> BREAK]

| [<tem-seq>] <ts-var> | <tem-const>
<tem-const> ::= <t-term> | “[" <t-term> “ , " <t-term> “]"
<t-term> ::= <t-fac> <add-op><number>
<t-fac> ::= <t-s-v> | NOW | <number><t-s-f>
<tem-com-op> ::= OVERLAP | EQUIVALENT | FOLLOWS

| BEFORE | AFTER | ADJACENT | PRECEDES
| DURING

<tem-seq> ::= FIRST | SECOND| THIRD | Nth | LAST
<ts-var> ::= <ts-attr> | <ts-attr-fid>
<ts-attr> ::= [<rel-name>“ . "] <time-st>
<ts-attr-fid> ::= [<rel-name>“ . "] <time-st>“ . "<t-s-f>
<time-st> ::= TIME-START | TIME-END
<bf-af> ::= BEFORE | AFTER
<t-s-v> : refer to value appearing under Ts(time start) or Te(time end).
<t-s-f> : temporal fields(e.g., year, month, day)

Figure 4: BNF of temporal selection in TSQL

tion operators.TIME-START and.TIME-END return the start of and end of time
intervals, respectively. The interval extraction operator,.INTERVAL , returns the
entire interval.

Eight comparison operators all of which apply to interval arguments are in-
cluded, namelyBEFORE, AFTER, EQUIVALENT, PRECEDES, FOLLOWS, OVER-
LAP, DURING, andADJACENT. Events are treated as degenerate intervals, so that
the comparison operators also apply to events. Based on Allen’s interval relation-
ships, Table 1 provides an overview of the interval comparison operators of TSQL,
HSQL, and TQuel The table shows that TSQL has operators that correspond to
each of Allen’s interval relationships, with the exception of start and finish (which
are rarely used). The table also indicates that the three languages are all complete
with respect to interval comparison. The semantics of the eight operators in TSQL
is clear, so a TSQL temporal predicate is easier to understand and construct than
predicates in the languages described in the previous three sections.

VALID-TIME SELECTION AND PROJECTION 413

The sample query Q1 is expressed as follows in TSQL.

SELECT F1.NAME
FROM EMP F1
WHEN F1.INTERVAL CONTAINS "1990"

Valid-time projection is specified in the target list, i.e., in theSELECTclause,
with the format of a relation quantifier name followed by.TIME-START ,
.TIME-END , or .INTERVAL . If there is more than one relation included in the
query, the quantifier name is necessary in order to indicate which timestamp to
retrieve; otherwise, the quantifier name can be omitted. An interval constructor,
INTER, which returns the intersection of two intervals can be used in the target list
when specifying the timestamps of the resulting relation. This is illustrated in query
Q3 below.

Q3. For all employees that worked in the same department as Mike and
worked throughout 1990, find the time when they worked with Mike.

SELECT F1.NAME, (F1 INTER F2).TIME-START,
(F1 INTER F2).TIME-END

FROM EMPLOYEE F1, EMPLOYEE F2
WHERE F2.NAME = ’Mike’ AND F1.DEPT = F2.DEPT
WHEN F1.INTERVAL OVERLAP 1990

AND F2.INTERVAL OVERLAP 1990

According to the BNF syntax, the.INTERVAL in the WHENclause cannot
be omitted for indicating a timestamp. However, the tuple variable name can rep-
resent the timestamp in theSELECTclause (not shown in this chapter). This is an
inconsistency in the design—there is no logical reason for this difference.

Temporal ordering is well supported in TSQL because users can retrieve any
version of an entry in its global or local ordering (defined later). No other languages
support both global and local ordering. The underlying data model ensures that in
any relation instance, no two tuples with the same TIK values have overlapping in-
tervals. Thus, tuples can be grouped based on their TIK value and then be assigned
unique order numbers based on either the start or the end times of their intervals.
This is termed theglobal ordering. It is possible for the intervals in a group to be
non-consecutive, i.e., there may bebreaks. Such breaks may also be ordered and
assigned order numbers. The breaks introduce a sub-partitioning of the tuples in a
group. The tuples in the sub-groups may also be ordered—this is termed thelocal
ordering.

To specify global temporal ordering in TSQL (see Figure 4 for the syntax),
an order number,e.g.,FIRST or SECOND, is placed before an attribute variable.
Considering local ordering, a desired sub-group can be specified by indicating a
break number, e.g.,AFTER FIRST BREAK, behind an attribute variable. Some
examples describe the use of global and local temporal ordering.

41
4

T
H

E
T

S
Q

L2
Q

U
E

R
Y

LA
N

G
U

A
G

E

Allen TSQL HSQL TQuel

a before b
a BEFORE b

or
b AFTER a

a PRECEDES b
a precede b

and
not (end of a equal begin of b)

a equals b a EQUIVALENT b a = b a equal b

a meets b
a PRECEDES b

or
b FOLLOWS a

a MEETS b end of a equal begin of b

a overlaps b
a OVERLAP b AND

a.TIME-END PRECEDES b.TIME-END

a OVERLAP b
AND

a.TO < b.TO

a overlap b and
end of a precedes end of b

begin of a overlap b and
a during b a DURING b b CONTAINS a end of a overlap b and

not (a equal b)
a meets b

or
b meets a

a ADJACENT b a ADJACENT b
end of a equal begin of b

or
end of b equal begin of a

a starts b

(a.TIME-START EQUIVALENT
b.TIME-START) AND

(a.TIME-END PRECEDES
b.TIME-END)

a.FROM = b.FROM
AND

a.TO < b.TO

begin of a equal begin of b
and

end of a precede end of b

a finishes b

(a.TIME-START AFTER
b.TIME-START) AND

(a.TIME-END EQUIVALENT
b.TIME-END)

a.FROM > b.FROM
AND

a.TO = b.TO

begin of a precede begin of b
and

end of a equal end of b

Table 1: Overview of interval comparison operators in TSQL, HSQL, and TQuel

VALID-TIME SELECTION AND PROJECTION 415

Q4. Find the names of the employees who started in the toy depart-
ment.

SELECT E.NAME
FROM EMPLOYEE E
WHERE FIRST(E.DEPT) = ’TOY’

Q5. For employees that joined the company a second time and received
a salary exceeding $ 50,000, retrieve the name and the time when
they joined.

SELECT E.NAME E.TIME-START
FROM EMPLOYEE E
WHERE FIRST(E.SALARY) > 50000 AFTER FIRST
BREAK

Q6. Find the start time and salary of employees when they entered the
toy department the first time.

SELECT E.NAME FIRST(E.SALARY) E.TIME-
START
FROM EMPLOYEE E
WHERE E.DEPT = ’TOY’

Time-slice queries are expressed using a special clause,TIME-SLICE . In
this clause, an interval, constructed using temporal constants enclosed within square
brackets, or a time point, defined by a temporal constant, is specified. The temporal
constant can be a constant expression thus allowing dynamic timeslices. This prop-
erty is very useful for a fixed-length timeslice which moves along in the valid-time
dimension. An example is given below.

Q7. On a monthly basis, list all employees who worked in the company
the last year.

SELECT NAME
FROM EMPLOYEE
TIME-SLICE YEAR[NOW-1, NOW]

This query can be executed monthly without modification.

2.6 HSQL

As the previous data model, Sarda’s HDBMS also supports valid time; however,
unlike the data model mentioned previously, HDBMS represent valid time in a
valid-time relation as a single non-atomic, implicit attribute [14]. The query lan-
guage of HDBMS is called HSQL1. The valid timestamps of tuples can be either

1In another paper, Sarda gave this extension to SQL the name TSQL [15]. We use HSQL because it was
used in the most recent paper.

416 THE TSQL2 QUERY LANGUAGE

intervals, instate relations, or events, inevent relations. The interval comparison,
event comparison, and interval operations are defined for operating on timestamps.
The granularity is not fixed in HDBMS where users can define different granulari-
ties for each relation. Comparison of events in different granularities is defined in
HDBMS by that a coarser event is converted to an interval of finer granularity, then
the comparison of the interval and the event of finer granularity is executed. Other
operations dealing with granularity, such as expand and coalesce, are also provided.
Details of temporal predicates, valid-time projection and timeslice are described in
the following.

The functionality of temporal predicates and timeslices in HSQL is similar
to that of TSQL. The difference are mainly in syntax and temporal comparison
operators.

A simplified BNF is shown in Figure 5 (Since Sarda does not provide any
full syntax in his articles, the BNF is derived by us and may not be accurate, but it
should be close to HSQL as proposed in Sarda’s paper).

<timeslice-clause> ::= FROM<temporal const>
[TOTIME<temporal const>]

<where-clause> ::= WHERE<boolean>
<boolean> ::= <bool-term> | <boolean>OR<bool-term>
<bool-term> ::= <bool-factor> | <bool-term> AND<bool-factor>
<bool-factor> ::= [NOT] <bool-prim>
<bool-prim> ::= <regular pred> | <temporal pred> | (<boolean>)
<temporal pred> ::= <interval> <interval-comp-op><interval>

| <instant> <inst-comp-op><instant>
| <instant> IN <interval>

<interval> ::= <interval-fac> <interval-op><interval-factor>
| <inst-factor> “ .. " <inst-factor>

<interval-op> ::= + | *
<interval-fac> ::= <interval-var> | (<interval>)
<interval-var> ::= <rel-name>“ . "INTERVAL
<inst-factor> ::= <temp-const> | <rel-name>“ . "FROM

| <rel-name>“ . "TO
<interval-comp-op> ::= PRECEDES| = | MEETS | OVERLAPS

| CONTAINS | ADJACENT
<inst-comp-op> ::= < | <= | = | <> | >= | >

Figure 5: Simplified BNF for HSQL temporal selection

Unlike TSQL, which provides awhen clause for temporal predicates, HSQL
simply adds temporal predicates to thewhere clause. Boolean expressions in the

VALID-TIME SELECTION AND PROJECTION 417

where clause are composed of temporal predicates and non-temporal predicates.
The event extraction operators are .FROMand .TOwhich retrieve the start and end
of an interval, respectively. The timestamp-referencing operators are .INTERVAL
and .AT; the .INTERVAL represents the interval timestamp of a tuple in a state rela-
tion, and the .AT indicates the event time associate with a tuple of a event relation.
Another difference between temporal predicates in TSQL and HSQL is that HSQL
supports two different set of comparison operators for interval time and event time.
The arithmetic comparison operators are overloaded for event time. while these
are the interval comparison operators:PRECEDES, =, MEETS, OVERLAPS,
CONTAINS, ADJACENT. The only exception is the operatorIN which tests if an
event is contained in an interval. When formulating queries, users of HSQL must
pay more attention than must TSQL users in order to choose the right comparison
operators for the different temporal variables and constants. Although the set of
interval comparison operators is smaller than that of TSQL, the expressive power is
the same, see Table 3.

In order to explain how valid-time projection is done in HSQL, we introduce
the interval constructors which are defined as follows.

• t1 .. t2: constructs a period of time fromt1 to t2. It is null if t1 >= t2.

• p1 + p2: construct a period equals (min(p1.FROM, p2.FROM), max(p1.END,
p2.END)) if p1 andp2 overlap; otherwise, it returns a null interval.

• p1 * p2: return the intersection ofp1 andp2. If there is no intersection, a null
interval is returned.

The valid-time projection is explicitly specified the timestamps in the select
clause. The timestamps are either constructed by the interval constructors with
timestamps of selected tuples or just the timestamps of selected tuples. If no time-
stamp is specified in theselect clause then the result is a snapshot relation. For
example, the query "list the employees in toy the department in 1990" can be ex-
pressed as follows.

Q8. List the employees in toy department in 1990.

FROMTIME 1.1.90 TOTIME 12.31.90
SELECT R.NAME, R.PERIOD * (1.1.90 .. 12.31.90)
FROM EMPLOYEE R
WHERE R.DPET = ’TOY’

This is also an example of timeslice. IfTOTIME is omitted, the default time,NOW,
is taken. Sample formulations of the queryQ1 are given below. Note that there
are two ways to write the query. One uses a temporal predicate; the other uses the
timeslice operation.

SELECT F1.NAME
FROM EMP F1
WHERE F1 OVERLAP "1990"

418 THE TSQL2 QUERY LANGUAGE

FROMTIME 1:1:1990 TOTIME 12:31:1990
SELECT F1.NAME
FROM EMP F1

2.7 TempSQL

Gadia’s TempSQL is based on a N1NF relational temporal data model which is
attribute-value timestamped [6, 7, 8]. A tuple may have more than one value (time-
stamped) for each attribute, but the union of the timestamps in each attribute must
be the same throughout the entire tuple, resulting in a homogeneous temporal rela-
tion. In their data model, they group a history of an entry into a tuple, instead of
storing the history of an entry in multiple tuples as is done in 1NF data models. The
following is an example of an attribute timestamped relation.

NAME SALARY DEPT

[11,60] John
[11,49] 15K
[50,54] 20K
[55,60] 25K

[11,44] Toys
[45,60] Shoes

[0,44] ∪
[50,NOW] Mary

[0,44] ∪
[50,NOW] 25K

[0,44] ∪
[50,NOW] Credit

In TempSQL, valid-time selection is heavily dependent ontemporal expres-
sionswhich are specified in theWHILE clause; see Figure 6 for a BNF. Temporal
expressions are of the form,[[A]] , [[r]] , [[AθB]] , and[[A θ b]] where A and B
are attributes, b is an attribute value and r is a relation. Thus the timestamp referenc-
ing is specified as a temporal expression. A temporal expression returns atemporal
element[5] which is the finite union of intervals where the temporal expression is
true. More complex temporal expressions are formed using the operators∪, ∩, and
−. For example,[[SALARY = 20K]] is a temporal expression. If the expression
is applied to John’s tuple, it would return [50,54].

There are two ways to specify temporal selection in TempSQL, depending
on whether the time domain of the resulting relation is restricted to time elements
specified in theWHILEclause. For example, the following query is interpreted as
“list the employees when they worked in the toy department”.

SELECT *
WHILE [[DEPT = TOYS]]
FROM EMP

The result is as follows.
NAME SALARY DEPT

[11,44] John [11,44] 15K [11,44] Toys

A similar query, “list the employees who worked in the toy department,”
would list any one who had ever worked in the toy department.

VALID-TIME SELECTION AND PROJECTION 419

<select stmt> ::= <select clause><while clause><from clause>

<where clause>

<select clause> ::= select <target list> [: <attr list>]

<while clause> ::= while <temporal expr>

<from clause> ::= from <relation list>

<where clause> ::= where <bool expr>

<relation list> ::= <relation name> [: <attr list>] [, <relation list>]
}
*

<temporal expr> ::= <temporal value>

| ¬ <temporal value>

| <temporal value> <set oper> <temporal value>

| <temporal constant>

<set oper> ::= ∩ | ∪
<temporal value> ::= [[<attr name>]]

| [[<predicate>]]

| [[<select stmt>]]

| [[exists <select stmt>]]

| [[<attribute> in <select stmt>]]

| [[<attribute> not in <select stmt>]]

| [[<attribute> <comparison oper> any <select stmt>]]

| [[<attribute> <comparison oper> all <select stmt>]]

<bool expr> ::= <bool value>

| ¬ <bool value>

| <bool value> <bool oper> <bool value>

| “ (" <bool value> “) "

<bool oper> ::= and | or

<bool value> ::= <predicate>

| <temporal value> = <temporal value>

| <temporal value> 6= ∅
| <temporal value> ⊇ <temporal value>

<predicate> ::= <attribute> <comparison oper><attribute>

| <attribute> <comparison oper><value>

| <value> <comparison oper> <attribute>

Figure 6: BNF for temporal selection in TempSQL

420 THE TSQL2 QUERY LANGUAGE

SELECT *
FROM EMP
WHERE [[DEPT = TOYS]] 6= ∅

The result is as follows.

NAME SALARY DEPT

[11,60] John
[11,49] 15K
[50,54] 20K
[55,60] 25K

[11,44] Toys
[45,60] Shoes

In the first query, the time domain of the result is restricted by the temporal expres-
sion, [[DEPT = TOYS]] . The restriction represents a valid-time projection, i.e.,
valid-time projection is defined by theWHILEclause. The timestamp of the result
relation is the intersection of the attribute timestamp with the temporal expression.
In the second query, there is no restriction on the time domain of the result, so the
entire tuple which satisfies theWHEREclause is retrieved.

There is no special timeslice operator defined in TempSQL (likewise for tem-
poral ordering). Event extraction could be specified by two functionsfirstIn-
stant and lastInstant . But it is not clear whether or not event comparison
operators are supported.

2.8 TQuel

Snodgrass’s TQuel is based on a tuple timestamped, temporal data model support-
ing both transaction time and valid time. Unlike TRM, where the result of a query
is a snapshot relation, the result of a TQuel query is a valid-time relation, so the
data model is consistent. Like HDBMS, TQuel distinguish between event relations
and interval relations (“state relation” in HDBMS); however, in TQuel the temporal
comparison operators are overloaded for both interval and event time.

TQuel adds a new clause,when, for valid-time selection.
Although not an extension of SQL, the BNF of thewhen clause as shown in

Figure 7 still gives a good illustration of how valid-time selection may be done syn-
tactically in TSQL2. The temporal predicates can be partitioned into two groups:
the first is predicates that consist of interval expressions, event expressions, and
the temporal predicate operators,overlap, precede, and equal , which
are overloaded for both interval and event time comparison; the second group is
the boolean expressions that consist of predicates of the first group and logical op-
erators.

The timestamps of tuples are referenced by tuple-variable names and the
event extraction operators,begin of andend of . There are also two interval
constructors,overlap andextend , for constructing temporal expression. The
overlap operator returns an intersection of time when both arguments are valid.

VALID-TIME SELECTION AND PROJECTION 421

<when clause> ::= when <temporal pred>
<temporal pred> ::= <ei-expression> precede <ei-expression>

| <ei-expression> overlap <ei-expression>
| <ei-expression> equal <ei-expression>
| <temporal pred> and <temporal pred>
| <temporal pred> or <temporal pred>
| (<temporal pred>)
| not <temporal pred>

<ei-expression> ::= <e-expression>
| <i-expression>

<e-expression> ::= <event element>
| begin of <ei-expression>
| end of <ei-expression>
| (<e-expression>)

<i-expression> ::= <interval element>
| <ei-expression> overlap <ei-expression>
| <ei-expression> extend <ei-expression>
| (<i-expression>)

<valid-clause> ::= valid from <e-expression> to <e-expression>
| valid at <e-expression>

Figure 7: BNF for temporal selection in TQuel

On the other hand, theextend operator is more like temporal union, in that it re-
turns the points in time when either of the arguments are valid. These operators can
be specified in event expressions and interval expressions for constructing a new
event or interval. The sample queryQ1 is expressed as follows .

range of f1 is Emp
retrieve into r(name = f1.name)
when f1 overlap "1990"

Although, the set of comparison operators has three operators only, together
with the functions of timestamp referencing and event extraction, the set has the
same expressive power as the other languages (see Tables 2–5). However, long
temporal expressions in TQuel may be used to express similar predicates in other
languages. For example, in Table 2, the operatorduring in TSQL is expressed as
the conjunction of three predicates in TQuel.

The valid clause is used for specifying valid-time projection, which in
TQuel can be any period of time. If the derived relation is to be an event rela-
tion, thevalid at <t1> variant specifies a single timestamp. The other variant
of the valid clause,valid from <t1> to<t2>, specifies an interval timestamp

422 THE TSQL2 QUERY LANGUAGE

and is used when the derived relation is to be an interval relation. Both of t1 and t2
can be derived from event expressions given in previous paragraphs. The queryQ3
is expressed in the following query which contains timestamp referencing, event
extraction, interval constructor, valid clause, and temporal predicate.

range of e1 is employee
range of e2 is employee
retrieve into r(name= e1.name)
valid from begin of (e1 overlap e2) to

end of (e1 overlap e2)
where e2.name = "Mike" and e1.dept = e2.dept
when e1 overlap 1990 and e2 overlap 1990

2.9 HQuel

Tansel’s HQuel is based on a valid-time relational data model where the attributes
are timestamped, leading to non-first normal form relations (N1NF) [18]. The
data model has four different kind of attributes which are elementary (atomic),
set-valued, triplet-valued , and set triplet-valued attributes. The elementary and
set-valued attributes are non-time-varying attributes; the other two are time-varying
attributes. The values of triplet-valued attributes are triplets containing an element
from the attribute’s value domain and the boundary points of the interval of ex-
istence, while the value of set triplet-value attribute is a set of such triplets. The
relation resulting from a query retains these four kinds of attributes depending on
how the query is specified.

Because of the varieties of attributes, HQuel supports methods for referenc-
ing members of a set, for indicating the timestamps and value of a triplet, and
for comparing attribute values. Set members are referenced by a new range vari-
able which ranges over the elements of a set. We describe this by an example.
Let t be a regular range variable, as in Quel, and *A be a set-valued attribute.
Range of s is t.*A declares that s ranges over the elements of attributeA
for each tuple in relationt . Assuming that $B is a triplet-valued attribute then
t.$B(V), t.$B(L), t.$B(U) , and t.$B(T) represent the value, lower-
bound(time start), upper-bound(time end) and interval of a triplet valued attribute,
t.$B .

The new comparison operators include set comparison operators (ρ ∈ {=, 6=
,⊃,⊇}), a set membership operator(∈), and temporal comparison operators. An
interval comparison expression is of the formxθyρz wherex, y and z are time
intervals, andθ ∈ {∩,∪, -}. For example, “t.$B(T) ∩ t.$C(T) 6= ∅" means
that the intersection of the time of t[$B] (denotes the set of triplet-valued attributes
B in relation t) and the time of t[$C] is not empty, or simply, intervals of B and C
overlap. This is not intuitive to users, since time is treated as a set of discrete points

VALID-TIME SELECTION AND PROJECTION 423

instead of a contiguous time line. Not only that, the interval comparison expression
does not have the same expressive power as Allen’s definition; for example, there
is no way to express “before" in HQuel.

For event comparison, the arithmetic comparison operators (<,<=,=, 6=,
>=, >) are used to express an event-time predicate which contains event-time vari-
ables or temporal constants. For example,t.$B(L) > 1/91 means the time of
triplet-valued attribute B start after January 1991. Although, the interval compari-
son operators are not complete in HQuel, the event-time comparison operators and
timestamp retrieval operators have the same expressive power as other languages in
Tables 2–5. The sample queryQ1 is expressed as follows, assuming thatposi-
tion is a set triplet-valued attribute.

range of f1 is Emp
range of p1 is f1.*$position
retrieve into r(f1.name)
where p1.$(T) ∩ "1990" != ∅
In HQuel, the valid-time projection is defined explicitly in the retrieve clause.

If an attribute of a result relation is supposed to be a time-varying attribute, a triplet-
valued attribute is specified in theretrieve clause. The set operators can also be
used in valid-time projection for constructing timestamps in HQuel. The following
is an example.

Q9. What was Tom’s position when he worked for the toy department,
and when was it?

range of e is Emp
range of s is e.*$position
range of d is e.*$dept
retrieve into Tompos($Tpos =

<s.$position(T) ∩ d.$dept, s.$position(V)>)
where e.ename = Tom and d.$dept(V) = Toy

and s.$position(T) ∩ d.$dept 6= ∅

2.10 HTQUEL

Gadia’s HTQUEL is based on the same data model for TempSQL, but HTQUEL is
an extension of Quel. We will not discuss the data model again, but talk only about
the language features. The function for timestamp referencing istdom which takes
an attribute as argument and returns atemporal element, a finite union of disjoint
intervals. Because the timestamp of an attribute is a set of intervals, the functions
for event extraction are applied on temporal elements.Firstinstant(v) and
Lastinstant(v) return the two boundary time points of the temporal element,

424 THE TSQL2 QUERY LANGUAGE

v. Nextinstant(v,t) takes an temporal element, v, and a instant, t, then returns
an instant after t;Previousinstant is similar, but returns an instant before
t. The functionalities of the functions,Firstinterval, Lastinterval,
Nextinterval, and Previousinterval , are similar to the event extrac-
tion functions, but these four operations return intervals. HTQuel supports timeslice
via theduring clause. Most of the other time-related operations are not defined
clearly in the papers (e.g., such as event comparison, interval comparison, and tem-
poral projection). We can thus not compare the expressive power with that of other
languages. The sample queryQ1 is expressed as follows.

range of f1 is Emp
retrieve into r(name = f1.name)
during [1990]

2.11 Summary

In this section, we summarize the languages with respect to valid-time selection
and projection, in two tables (Table 2 and Table 3), and we evaluate the query lan-
guages on ten properties (defined below). The first row in the tables contain the
references to each language and the remaining rows each relate to a property. The
first three properties, timestamp referencing, event extraction and event compar-
ison, are essential to temporal predicates; the interval comparison and time slice
improve syntactic convenience, but not the expressive power. Anevent constructor
is a function which takes events as arguments and returns an event. An example
of this is first which returns an oldest event from the arguments. With event
constructors and interval constructors, we can write queries with advanced event
or interval expressions. The remaining 3 properties are listed for comparison; the
language that supports some of these properties is not necessarily better than other
languages.

In the summary table, we show the keywords of a language, if the language
supports the property. Otherwise, “No” denotes not supporting a property in a
certain language, and “Unclear” denotes that the original papers were unclear with
respect to the property. In the previous subsections, we have discussed how each
aspect is done in each language. We now describe these properties briefly and point
out some interesting facts.

• timestamp referencing: How can timestamps of tuples be referenced? Gener-
ally, there are two ways: by an operator or through the tuple variable name.
TSQL and HSQL use operators; Legol 2.0 and TQuel use tuple-variable names
to denote the timestamp of a tuple.

• Event extraction: What are the functions or operators for extracting the de-
limiters of an interval. The operators fall into two categories: prefix operators

VALID-TIME SELECTION AND PROJECTION 425

or postfix operators. The prefix operators are more like function calls that
take interval expression as arguments. Postfix operators look like attribute
and cannot operate on expressions, which limits their power. Because the
data model of HQuel and HTQUEL are N1NF, they both use special ways to
extract events.

• Event time comparison: What are the operators for comparing events? All
of the operators in these languages are infix and take event time constants
and event time expressions as arguments. Half of the languages borrow the
arithmetic comparison operators while TSQL and TQuel use keywords as op-
erators.

• Interval comparison: Are there operators for comparing intervals? Three
languages—TSQL, HSQL, and TQuel—support sets of helpful interval com-
parison operators, while other languages provide either no support or partial
support.

• Event constructor: Is there any constructor that takes event time as arguments
and returns an event? None of the nine languages support event constructors;
however, we believe that event constructors are useful. This is the reason why
event constructors are included in the summary.

• Interval constructor: Is there any constructor that operates on intervals or
events and returns an interval? The common interval constructors are intersect
and union(extend), but the definition and syntax may vary from language to
language.

• timeslice construct: Is a timeslice construct supported in the language? Gen-
erally, the timeslice operation can be replaced by a simple temporal predicate
(shown in next section). “None” denotes that no special construct for times-
lice exists. Otherwise, we give the keywords.

• Temporal ordering: Is there a way to retrieve a tuple from a group according
to its temporal ordering in the group? Most query languages provide functions
for the first and last in temporal order, except TSQL which provides a set of
functions for retrieving any version of an entity.

• New clause or operators for temporal selection: Is a new clause defined for
temporal predicates in the language? Most of the languages do not introduce a
new clause for temporal predicates—TQuel, TSQL, and Legol 2.0 are excep-
tions. Legol 2.0 is a procedural query language which needs many operators
to accomplish the desired functionalities.

• Valid-time projection: How are the timestamps defined for the resulting rela-
tion? There are three possibilities: the valid-time projection can be defined
in the target list, it can be defined in a new clause, or it can be mixed with
valid-time selection operators. TSQL, HSQL, and HQuel employ the target
list, and TQuel uses thevalid clause. Both TOSQL and Legol 2.0 mix

426 THE TSQL2 QUERY LANGUAGE

Language TRM TOSQL TSQL

Reference [3] [2]
[11]
[12]

Timestamp
Referencing

No No

t .INTERVAL
or

tuple variable name
(in SELECT clause)

Event
Extraction

E-START(attr)
E-END(attr)
R-START(attr)
R-END(attr)

No
t .TIME-START
t .TIME-END

Event time
Comparison

<, =, > No same as below

Interval
Comparison

No No

BEFORE
AFTER
EQUIVALENT
PRECEDES
FOLLOWS
OVERLAP
DURING
ADJACENT

Event
Constructors

No No No

Interval
Constructors

No No INTER

Timeslice
Construct

TIME-VIEW

AT
DURING
BEFORE
AFTER
WHILE

TIME-SLICE

Temporal
Ordering

T-FIRST
T-LAST

No

FIRST
SECOND
THIRD
NTH
LAST

New clause or
Operators for
Valid-time
Selection

No No WHEN

Temporal
Valid-time

No
Mixed with
timeslice
operators

SELECTclause
vs

WHEN clause

Table 2: Summary—Part I

VALID-TIME SELECTION AND PROJECTION 427

Language HSQL TempSQL Legol 2.0

Reference
[15]
[14]

[6] [9]

Timestamp
Referencing

t .INTERVAL
t .AT

[[relation name]] tuple variable

Event
Extraction

t .FROM
t .TO

firstInstant[[u]]
lastInstant[[u]]

start of(exp)
end of(exp)

Event time
Comparison

<, =,> unclear <, =, >

Interval
Comparison

PRECEDES
=
MEETS
OVERLAPS
CONTAINS
ADJACENT

∩,∪,⊇ Partial

Event
Constructors

No unclear No

Interval
Constructors

t1 .. t2
∗
+

[[temp expr]] No

timeslice
Construct

FROMTIME t1
TOTIME t2

None None

Temporal
Ordering

FIRST
LAST

No

first
last
current
past

New clause or
Operators for
Valid-time
Selection

No WHILE

while
since
until
during
while not
or while
union
is
is not

Temporal
Valid-time

SELECTclause
vs

WHEREclause

WHILE clause
vs

WHEREclause

Mixed with
temporal
selection

Table 3: Summary—Part II

428 THE TSQL2 QUERY LANGUAGE

Language TQuel HQuel

Reference
[16]
[Snodgrass 1987]

[18]

Timestamp
Referencing

tuple variable $attr(T)

Event
Extraction

begin of exp
end of exp

$attr(L)
$attr(U)

Event time
Comparison

precede
equal

<, =, >

Interval
Comparison

precede
equal
overlap

Partial
(=, 6=,⊂,⊆)

Event
Constructors

No No

Interval
Constructors

overlap
extend

No

Timeslice
Construct

None None

Temporal
Ordering

No No

New clause or
Operators for
Valid-time
Selection

when No

Valid-time
Projection

valid clause
vs

when clause

From target list
vs

where clause

Table 4: Summary—Part III

VALID-TIME SELECTION AND PROJECTION 429

Language HTQUEL
Reference [7]
Timestamp
Referencing

tdom(attr)

Event
Extraction

Firstinstant(ν)
Lastinstant(ν)
Nextinstant(ν, i)
Previousinstant(ν, i)

Event time
Comparison

Unclear

Interval
Comparison

Unclear

Event
Constructors

No

Interval
Constructors

Firstinterval(ν)
Lastinterval(ν)
Nextinterval(ν, i)
Previousinterval(ν, i)

Timeslice
Construct

During

Temporal
Ordering

No

New clause or
Operators for
Valid-time
Selection

No

Valid-time
Projection

Unclear

Table 5: Summary—Part IV

430 THE TSQL2 QUERY LANGUAGE

valid-time projection with valid-time selection.

3 Design Criteria

As a guide for making appropriate design decisions, we present some language
design criteria. These criteria areexpressive power, consistency, clarity, minimality,
orthogonality,and independence.Initially, each criterion is described. Then the
interactions among the criteria are exemplified.

Expressive Power This criterion indicates that the language must exhibit a func-
tionality that makes it suitable for its intended applications and does not impose
undesirable restrictions on the queries that may be formulated.

This does not mean that providing a lot of operators and functions is neces-
sarily better than a more restricted set. For example, this criterion has implications
for TSQL2’s choice of comparison operators that involve valid time.

Consistency For the task at hand, this criterion has at least four implications.
First, the design must be consistent with the syntax for user-defined time support in
TSQL2. For example, it should use the formats for temporal constants adopted there
(see [17, Chapter 8]). Second, the design should be upward compatible with SQL2.
This indicates that defaults should be chosen carefully. Third, the design should be
consistent with the designs of other aspects of TSQL2. Fourth, the syntax should
be internally consistent. For instance, mixing postfix and prefix operators is not
considered a good design.

Clarity The syntax should clearly reflect the semantics of the language. This
aids in formulating and understanding queries. Applications of the principle in-
clude the meaningful naming of operators, a proper choice of clauses (to obtain
well-structured queries), and a consistent naming style. As a specific example, in-
clusion of a period comparison operator such asOVERLAPSincreases readability
when compared with an equivalent predicate based on event extraction and event
comparison operators.

Minimality The principle of minimality indicates that as few as possible new
reserved words and clauses should be introduced and added to those already present
in SQL2. It also indicates that new operators should not be included if they duplicate
the functionality already provided by existing operators. This is intended to ensure
that users will not be unnecessarily burdened by a large set of operators.

VALID-TIME SELECTION AND PROJECTION 431

Orthogonality It should be possible to freely combine query language constructs
that are semantically independent. The Zero–One-Infinity principle may be seen
as a more specific design criterion. This criterion states that the only reasonable
numbers in a design are zero, one and infinity and that other numbers are unintuitive
to users. For example, restricting the number of tuple variables that may be declared
in a query to another number (e.g., 15) appears to have no logical explanation and
is difficult to remember.

Independence Obeying this criterion ensures that each function is accomplished
in only one way. Designing functions to be independent and non-overlapping, or-
thogonality, minimality, and consistency may be achieved.

Although we would like the design to satisfy all of the criteria, this is not
possible because the criteria themselves are conflicting.

An example follows. As will be seen later, timestamp referencing, event ex-
traction, and event time comparison are fundamental to valid-time selection. How-
ever, the (functionality-wise unnecessary) use of period comparison operators im-
prove the readability. If we provide event operators only, the design satisfies the
minimality and independence criteria, but not that of clarity. Using only event-
based operators may result in confusing and erroneous predicates. Conflicts are
resolved by retaining duplicating operators if they are used frequently or if their
event-based equivalents are complicated. For example, the following two predi-
cates are equivalent.

a OVERLAPS b

(END(a) > BEGIN(b)) and (END(b) > BEGIN(a))

The second predicate is hard to understand andOVERLAPSis a frequently used
operator. In a case like this, the priority of clarity is higher than that of minimality
and independence;OVERLAPSis included in the language.

4 Valid-time Selection in TSQL2

4.1 Overview

The design includes four types of valid-time timestamps, namely intervals, instants,
periods, and elements. Intervals are directed, unanchored durations of time (e.g.,
2 minutes), and while they cannot be uses as valid times, they may be used in
expressions involving valid times. For details on intervals, see Chapter 21.

This section discusses three categories of operators related to valid-time se-
lection, namelyextractors, constructors, andcomparison operators. Operators in
the first category, e.g.,BEGIN, create a new timestamp, e.g., a starting instant, by
extraction from an argument timestamp, e.g., a period. To exemplify constructors,

432 THE TSQL2 QUERY LANGUAGE

INTERSECTcreates a period as the intersection of two overlapping periods. The
operatorOVERLAPSwhich tests whether two periods overlap illustrates compari-
son operators. As indicated, these categories of operators relate to instants as well
as periods and elements.

The language does not include new clauses for timeslice and temporal predi-
cates, both of which are commonly present in other temporal query languages.

Another characteristic is that valid-time selection and valid-time projection
are considered orthogonal and therefore are completely separated in the design.
Thus, the timestamps of results of queries are not defined by any valid-time selec-
tion operator. Temporal ordering is assumed to be the responsibility of aggregate
functions and is thus not addressed here.

Table 6 is a summary of the language design. In that table,event denotes
an argument of typeDATE, TIME, or TIMESTAMP, period denotes an argument
of period type, andelement denote an argument of element type. The details are
discussed in the next three sections.

4.2 Timestamp Referencing, Extraction and Construction

VALID(correlation name) is used for indicating timestamps of tuples. The alter-
native is an explicit reference such asEMPLOYEE.PERIODwhereEMPLOYEEis
a tuple variable and the postfix operatorPERIODreturns the (period-valued) time-
stamp of an argument tuple. Another alternative is to overload correlation names to
assume both a tuple and the timestamp of a tuple, depending on the context.

Several of the operators are adapted from Soo’s proposal [Soo & Snodgrass
1992A]. Whereas TSQL and HSQL use a postfix notation for event extraction,
TSQL2 employs a prefix, function-style notation for extraction. There are three
reasons for this decision.

First, the prefix notation avoids confusing extraction with a reference to an
attribute of a relation. For example, ifBEGIN is an operator that extracts the first
event of a timestamp,EMPLOYEE.BEGINmay be confused with a reference to
an attributeBEGIN of theEMPLOYEErelation. In contrast,BEGIN(EMPLOYEE)
does not have this problem of disallowing certain attribute names. Second, the
prefix notation is more generally applicable than is the postfix notation which may
not be used conveniently for operators that accept general temporal expressions as
arguments. Third, other operators are prefix (or infix); thus, avoiding the postfix
notation improves consistency.

The event extractors,BEGINandEND, return the first and last events, respec-
tively, of an event, an period, or an element. The period extractors,FIRST and
LAST, may be applied to timestamps of period or element type and return the first
and last periods of the arguments, respectively.

The event constructors,FIRST andLAST, are new operators not provided by

VALID-TIME SELECTION AND PROJECTION 433

Operation Type Operators

timestamp referencing VALID(correlation name)

event extraction
BEGIN(event) BEGIN(period)
BEGIN(element)
END(event) END(period) END(element)

period extraction
FIRST(period) FIRST(element)
LAST(period) LAST(element)

event constructors
FIRST(event, event)
LAST(event, event)

period constructors
PERIOD(event, event)
INTERSECT(period, period)

element constructors

INTERSECT(element, element)
element + element
element - element
May Also be Applied to
Periods and Events

element comparison

element PRECEDES element
element = element
element OVERLAPS element
element CONTAINS element

period comparison

period PRECEDES period
period = period
period OVERLAPS period
period MEETS period
period CONTAINS period

event time comparison

event PRECEDES event
event = event
event OVERLAPS event
event MEETS event
event CONTAINS event

mixed comparison
Comparison among elements, periods,
and events

time slice clause None
temporal ordering Use Aggregate Functions
separate clause for
valid-time selection

No

valid-time projection
and selection

Separated

Table 6: Overview of valid-time selection

434 THE TSQL2 QUERY LANGUAGE

existing languages. Both of them take two events as arguments and return an event;
FIRST returns the earliest event, andLAST returns the latest event. Following is
an example showing the use of these two operators.

PERIOD(FIRST(e1, e2), LAST(e1, e2))

There is hardly any clearer way to construct a period from two events whose order
is not known.

The PERIOD function returns a period with two argument events as the de-
limiters. While theINTERSECToperator is not strictly necessary for reasons of
functionality, it is still included because it is used frequently. This operator returns
the period which is the intersection of two argument periods.

Three operators exist for constructing elements. The set of elements is closed
under the binary operations of intersection, union, and difference. Thus,INTER-
SECT, +, and - , are included for constructing new elements. Since events and
periods are special cases of elements, the former two may also appear as arguments.

4.3 Comparison Operators

It is essential that a temporal query language allows for the convenient comparison
of timestamps.

A powerful set of comparison operators that satisfies the six design criteria is
provided. For element comparison,PRECEDES, =, OVERLAPS, andCONTAINS
are available; For period comparisonMEETSis provided. Note that since events
may be perceived as special cases of periods, events may occur as arguments where
periods are allowed. Similarly, periods may occur where elements may occur. Ta-
ble 7 gives the definition of these operators with the assumption thatE1 andE2 are
elements andI1 andI2 are periods. OperatorMEETShas no natural generalization
for elements. Observe that for events, operators=, OVERLAPS, andCONTAINS
are equivalent.

Operator Definition

E1 PRECEDESE2 END(E1) is earlier thanBEGIN(E2)
E1 = E2 E1 andE2 are identical
E1 OVERLAPSE2 the intersection ofE1 andE2 is not empty
E1 CONTAINS E2 each event inE2 is contained inE1

I1 MEETS I2
END(I1) PRECEDES BEGIN(I2) and there are

no events betweenEND(I1) andBEGIN(I2)

Table 7: Definition of comparison operators

This set of operators is complete in the sense that all possible relationships
between two periods or two events are covered [1]. Indeed, a smaller set of opera-

VALID-TIME SELECTION AND PROJECTION 435

tors could have been chosen had completeness, not user-friendliness, been the main
concern. Table 8 show the equivalence of Allen’s period comparison operators and
TSQL2’s operators.

Allen’s Operators TSQL2’s Operators

a before b a PRECEDES b
a equal b a = b

a overlaps b a OVERLAPS b AND END(a) PRECEDES END(b)
a meets b END(a) = BEGIN(b)

a during b
BEGIN(b) PRECEDES BEGIN(a)

AND
END(a) PRECEDES END(b)

a start b
BEGIN(a) = BEGIN(b)

AND
END(a) PRECEDES END(b)

a finish b
BEGIN(b) PRECEDES BEGIN(a)

AND
END(a) = END(b)

Table 8: Comparison expressions in Allen’s definition and TSQL2

According to Table 8, the first two pairs of operators are equivalent, with
naming being the only difference. Allen’s operatoroverlaps is a asymmetric.
We have chosen the more common symmetric counterpart for TSQL2. Operator
meets requires that the ending event of the first argument is identical to the start-
ing event of the second argument. That is tested easily using event extraction and
equality. TheMEETSincluded here is harder to express with other operators and
is expected to be at least as useful asmeets in practice. Because the definitions
of during andCONTAINSare slightly different (a during b meansa started
later thanb and ended earlier thanb), it is necessary to use two subexpressions to
accomplish the definition ofduring . However, the operatorCONTAINSas de-
fined in TSQL2 is expected to be used more often thanduring . If a a “pure”
CONTAINS, i.e., aduring , is needed, the expression in the table provides the
functionality.

Note that we do not provide theADJACENToperator (found in TSQL) in
TSQL2. This choice is made because the predicate,I1 ADJACENT I2, is equiva-
lent toI1 MEETS I2 OR I2 MEETS I1, the semantics of which is clear.

The last two operators,start and finish , are expected to be used only
sporadically in queries, so we do not provide equivalent operators for them. In
total, we have attempted to strike a balance between minimality and clarity.

Below, two sample queries are expressed using TSQL2.

436 THE TSQL2 QUERY LANGUAGE

Q1. List all of the employees who worked during all of 1991.

SELECT Name
FROM Employee
WHERE VALID(Employee) CONTAINS

PERIOD(DATE ’01/01/1991’, DATE ’12/31/1991’)

Q2. List all the employees who work in the company at some time when
Tom is in the Toy department.

SELECT E1.Name
FROM Employee E1, Employee E2
WHERE E2.Name = "Tom" AND E2.Dept = "Toy"

AND VALID(E1) OVERLAPS VALID(E2)

4.4 Additional Aspects

So far, we have accounted for most of Table 6, but a few design decisions still
remain to be discussed.

We did not include a special timeslice clause and a separate clause for tempo-
ral selection. We also decided to separate temporal ordering from temporal selec-
tion. We now discuss the reasons for those decisions.

Most language proposals include a timeslice clause, but after a careful exami-
nation of timeslice, we have not included a special timeslice clause, for two reasons.
First, a timeslice may be expressed in a clear way without using a special clause.
For example, the timeslice in TSQL,

SELECT Name
FROM Employee
TIME-SLICE [1.1.1990, 12.31.1990]

is equivalent to

SELECT Name
FROM Employee
WHERE VALID(Employee) OVERLAPS

PERIOD ’01/01/1990 - 12/31/1990’

The meaning of this latter predicate is clear. Omitting a timeslice clause improves
minimality without adversely affecting clarity. Second, the independence criterion
for temporal predicates is violated if a timeslice clause is included.

Next, we present the considerations that led to not including a new clause for
temporal selection. If we provide a new clause, e.g.,WHEN, possible advantages in-
clude a increased syntactically clarity, separation of temporal predicates from non-
temporal predicates, and a more structural language. Each of these may lead to
increased clarity.

VALID-TIME SELECTION AND PROJECTION 437

The advantages of not providing a new clause are less reserved words (min-
imality) and one clause for all predicates (consistency). Also, it is not clear what
should be the boundary between aWHENand aWHEREclause, i.e., what should go
where. Because of user-defined time attributes, we cannot avoid temporal predi-
cates in theWHEREclause totally. The advantage of separating temporal predicates
from non-temporal predicates is then decreased. Further, it is still possible to write
structured queries without aWHENclause.

The language should allow the use of user-defined time attributes and valid
times together in the same predicates. With a new clause, this combination of user-
defined time with timestamps is not allowed. For example, adding a user-defined
time attributePROJ-TIME to theEMPLOYEErelation, the predicate

WHERE A.PROJ-TIME PRECEDES A

cannot be expressed using a combination of theWHEREclause and a new clause.
Thus, it may be argued that adding a new clause actually decreases the expressive
power of the language. Expressive power has the highest priority among the criteria,
and it cannot be compromised for any reason.

We consider temporal ordering to be the responsibility of aggregate functions.
In temporal ordering, a tuple is selected, not by testing it against a predicate, but
by manipulating a group of tuples to get a correct order to obtain a desired tuples.
Generally, whether a tuple is selected or not cannot be determined by testing the
tuple against a predicate. An aggregate function takes a group of tuples, operates
on all of the tuples, and returns a value. Temporal ordering functions fall into this
category.

Aggregates are not covered in this chapter, so temporal ordering is not ad-
dressed.

The main reason to separate valid-time projection from temporal selection is
added expressive power. When the two are mixed, it may be impossible or difficult
to obtain adequate timestamps on result tuples. Separating valid-time selection and
projection allows the two to be combined freely.

5 Valid-time Projection in TSQL2

We now discuss TSQL2’s support for valid-time projection, which is specified in
the optional<valid clause>. This clause consists of eitherVALID or VALID IN-
TERSECTfollowed by a temporal expression.

5.1 Overview

Unlike some other proposed temporal query languages, we do not distinguish syn-
tactically between instant and period projection. There are two reasons for this.

438 THE TSQL2 QUERY LANGUAGE

First, in standard SQL, no clauses have combinations of reserved words. Second,
the compiler is capable of determining the correct type of a temporal expression
and then define the correct timestamp type for the resulting relation.

However, we do support two different options in the valid clause:VALID and
VALID INTERSECT. The reserved wordVALID indicates a general valid-time
projection, and all valid-time expressions returning periods or elements are allowed
in the clause.

The alternativeVALID INTERSECT indicates a restriction on the projec-
tion, namely that the resulting timestamp is the intersection of the time of the spec-
ified temporal expression and the timestamps of the relations (actually, correlation
names) appearing in theFROMclause. If the given timestamps and temporal ex-
pression do not intersect, the resulting timestamp is empty, and hence that tuple
doesn’t participate further in the query. For example, the following two statements
are equivalent.

VALID INTERSECT <temporal expression>
VALID INTERSECT(<temporal expression>,

INTERSECT(<argument relations>))

From this, it is clear thatVALID INTERSECT is subsumed byVALID . The rea-
son for still having the alternativeVALID INTERSECT is that it will be used very
frequently in queries that should return tuples with valid times that do not extend
beyond the valid times of the argument tuples. Put differently, usingVALID IN-
TERSECTensures that queries do not return “manufactured” information that was
not present in the database. Alternatively, usingVALID INTERSECT restricts the
possibilities for assigning timestamps to resulting tuples.

TheVALID form is useful when new information, e.g., to be entered into the
database, is computed from existing information. The following is a sample use of
VALID .

Q3. Create a new department, Newtoy, from the original Toy depart-
ment so that all of the employees currently in the Toy department will
work in Newtoy one month from now.

INSERT INTO Newdept(Name, Dept)
SELECT Name, ’Newtoy’
VALID PERIOD(CURRENT_DATE + INTERVAL ’1’ MONTH,

DATE ’forever’)
FROM Employee
WHERE Dept = ’Toy’

AND Employee OVERLAPS CURRENT_DATE)

In this example, we use theVALID form to specify the valid time for the new rela-
tion, Newdept . TheINTERVAL ’1’ MONTH is an interval literal and indicates

VALID-TIME SELECTION AND PROJECTION 439

a duration of one month.
The timestamp in valid-time projection is specified as a valid-time expression

which could be either period or element time.
The syntax and semantics of the valid-time expression in the valid clause is

the same as the valid-time expressions specified in theWHEREclause. Thus, the
period and element functions, as well as arithmetic operators, can all be used in
valid-time projections.

The default value of the valid clause is the intersection of the timestamps of
the argument relations, i.e., omittingVALID (VALID INTERSECT) is equivalent
to “VALID INTERSECT(relation1, relation2) .” If at least one of the argu-
ment relations is a snapshot relation, the default is also a snapshot relation. Table 9
shows the default value of the following (generic) query.

SELECT R1.A, R2.B
FROM R1, R2
WHERE. . .

R1 R2 default value

valid time relation valid time relation INTERSECT(R1, R2)
valid time relation snapshot relation snapshot
snapshot relation snapshot relation snapshot

Table 9: Default values for theVALID clause

If the user wants a snapshot relation as a result of a query where the argument
relations are valid-time relations, the reserved wordSNAPSHOTis specified after
SELECT. This use ofSNAPSHOTis similar to the current use ofDISTINCT . For
example, the following query lists only the employees who have ever worked in the
Toy department, with no timestamps in the resulting relation.

SELECT SNAPSHOT NAME
FROM EMP
WHERE DEPT = ’Toy’

In this section, we have introduced the valid clause; in the next section, we
will motivate in more detail why the clause was included into the language.

5.2 Why a New Clause?

Originally, we wanted to add valid-time projection to theSELECTclause because
valid-time projection is a kind of projection. This design would be consistent with
the original SQL syntax.

However, it introduces a conflict with the earlier design decision of using the
tuple-variable name for timestamp referencing. Adding valid-time projection to the

440 THE TSQL2 QUERY LANGUAGE

SELECTclause would mean that some attributes (i.e., the explicit, non-timestamp
attributes) would be referenced via their names while the valid timestamp is refer-
enced via the tuple-variable name.

Including the valid-time projection in theSELECTclause also implies that the
valid time of a tuple is simply a regular attribute, not the underlying valid time of
the entire tuple. On the other hand, the chosen design is consistent with the over-all
special treatment of valid time in the query language.

Another disadvantage is that we need to add one reserved word for naming
valid time in situations where a new relation is created. For example,Q3 could be
written as follows, where the reserved wordVALIDTIMESTAMPis employed to
indicate the implicit valid time attribute of the resulting relation.

INSERT INTO NEWDEPT(NAME, DEPT, VALIDTIMESTAMP)
SELECT NAME, ’NEWTOY’,

CURRENT_DATE + INTERVAL ’1’ MONTH
FROM EMPLOYEE
WHERE DEPT = ’Toy’

AND OVERLAP(EMPLOYEE, CURRENT_DATE)

In summary, the major advantage of a new clause is clarity—where to define
or read a valid-time projection is indicated clearly. In addition, having a new clause
means that theSELECTclause is not complicated by a possibly lengthy valid-time
projection. The presence of a new clause also emphasizes that the the valid time is
not just another attribute, but is about the entire tuple.

One disadvantage is that a reserved word has been added. Another is that
having a new clause for valid time may be claimed to be inconsistent with not
having a new clause for valid-time selection.

Comparing the advantages and disadvantages of the two designs, we choose
to include a separate clause for valid-time projection.

5.3 Discussion of Default Values

There are two obvious choices of default values for valid-time projection (the valid
clause using the reserved wordVALID). The first is the intersection of timestamps
of the argument relations. The second is a snapshot relation, i.e., including no
timestamp in the result relation. For example, the semantics of the following query
is different under the two default values.

SELECT R1.A, R2.B
FROM R1, R2
WHERE R1.A = R2.C

If the default is intersection, the result is a valid-time relation, and the timestamp of
each tuple is the intersection of timestamps of tuples fromR1 andR2. However, if

VALID-TIME SELECTION AND PROJECTION 441

the default is a snapshot, the result is a snapshot relation with two attributes,A and
B.

Table 10 is an overview of the differences between the two possible defaults.
The first column indicates the types of two argument relations in a query. These can
be either valid-time relations (VTR) or snapshot relations (SR). The last column in-
dicates the type of timestamp accorded result tuples, with “snapshot” indicating not
timestamps, “others” indicating some unspecified timestamp, and “R1∩ R2” indi-
cating the intersection of the timestamps of the argument tuples. The two middle
columns show what must be written in the valid clause to achieve certain kinds of
timestamps given certain kinds of argument relations. The first column assumes that
the default is “snapshot” and the second assumes that “intersection” is the default.
In these two columns, “default” means that no clause is present, and “temporal
expression” denotes an arbitrary valid-time expression.

Type of R1 Expression in the valid clause Timestamp
and R2 Default is “snapshot” Default is “R1∩ R2” of the result

R1, R2: VTR intersect(R1,R2) default R1∩ R2
R1, R2: VTR default ? snapshot
R1, R2: VTR temporal expression temporal expression others
R1, R2: SR default default snapshot
R1:VTR, R2: SR default default snapshot
R1:VTR, R2: SR temporal expression temporal expression others

Table 10: Possible defaults for expressions in the valid clause

The table shows that there is not much difference between the two defaults.
For the queries covered by rows three to six, either default works the same way.
There is a difference only in the first two rows where the two argument relations
are valid-time relations and where the desired result is a snapshot or a valid-time
relation with intersection timestamps.

Because intersection of timestamps is believed to be used more often than
producing snapshots, we choose the intersection of timestamps as the default value.
The question mark in the second row indicates that some special mechanism is
needed when a snapshot relation is to be produced from two valid-time relations.

Our solution is to add a new reserved wordSNAPSHOTafter SELECT to
indicate that a snapshot relation is desired. The valid clause is simply left out. With
the new reserved word, the syntax shows the resulting relation type explicitly. If we
add the reserved word to the valid clause, the semantics are less clear. The reserved
word is not a temporal expression and this is not consistent with the syntax of the
valid clause. In SQL, the reserved wordDISTINCT is also specified afterSELECT.
Thus, addingSNAPSHOTis consistent with SQL.

442 THE TSQL2 QUERY LANGUAGE

6 Summary

In a previous paper, we reviewed nine temporal query languages proposed in the
past decade. These languages include five extensions to SQL, three extensions to
Quel, and a procedural language. Because their underlying data models were not
the same, it is not easy to compare the features in each language. However, all of
the features, functionalities, new clauses, and reserved words of these languages
were examined carefully when support for valid-time and projection in TSQL2 was
designed. It has been a goal to build on the insights gained from the designs of
previous temporal query languages.

Initially, six criteria, expressive power, consistency, clarity, minimality, or-
thogonality, and independence, were defined in order to guide the design.

We attempted to design simple but powerful language constructs with no un-
necessary reserved words, clauses, and functions. Key features included a clean
separation of valid-time selection and valid-time projection. The orthogonality of
these constructs is reflected clearly in the design. No new clause was added for
valid-time selection, mainly because of a desire to be able to mix valid time and
user-defined time attributes in predicates. Defaults have been chosen carefully.
While important, the notion of temporal ordering was not considered. The function-
ality of the temporal ordering is close to aggregate functions, and temporal ordering
should be designed in that context.

A new clause for valid-time projection, with one reserved word,VALID ,
added. The former allows for assigning arbitrary timestamps to result tuples. The
latter ensures that timestamp values of resulting tuples do not exceed the intersec-
tion of the timestamps of the argument tuples, i.e., it in not possible to manufacture
information. We have thus allowed full flexibility (withVALID), but also have sep-
arated the “safe” queries (usingVALID INTERSECT) from the potentially unsafe.
Defaults have been chosen carefully. Most notably, a new reserved wordSNAP-
SHOTis placed afterSELECT to indicate that the result of a query should be a
snapshot relation.

This chapter does not address the transfer of timestamp values to data struc-
tures of a programming language program execution via cursors. In SQL2, cursors
can return values of explicit attributes; an extension is required to support the trans-
fer of timestamp values, as discussed in Chapter 17.

References

[1] Allen, J. F. “Maintaining Knowledge about Temporal Intervals.”Communi-
cations of the Association of Computing Machinery, 26, No. 11, Nov. 1983,
pp. 832–843.

VALID-TIME SELECTION AND PROJECTION 443

[2] Ariav, G. “A Temporally Oriented Data Model.”ACM Transactions on Data-
base Systems, 11, No. 4, Dec. 1986, pp. 499–527.

[3] Ben-Zvi, J. “The Time Relational Model.” PhD. Dissertation. Computer Sci-
ence Department, UCLA, 1982.

[4] Chamberlain, D. D. “SEQUEL 2: A Unified Approach to Data Definition,
Manipulation and Control..”IBM Systems Journal, 20, No. 6 (1976), pp. 560–
575.

[5] Gadia, S. K. “A Homogeneous Relational Model and Query Languages for
Temporal Databases.”ACM Transactions on Database Systems, 13, No. 4,
Dec. 1988, pp. 418–448.

[6] Gadia, S. K. “A Seamless Generic Extension of SQL for Querying Temporal
Data.” Technical Report TR-92-02. Computer Science Department, Iowa State
University. May 1992.

[7] Gadia, S. K. and J. H. Vaishnav. “A Query Language for a Homogeneous
Temporal Database,” inProceedings of the ACM Symposium on Principles of
Database Systems. Mar. 1985, pp. 51–56.

[8] Gadia, S. K. and C. S. Yeung. “A Generalized Model for a Relational Temporal
Database,” inProceedings of ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery. Chicago, IL:
June 1988, pp. 251–259.

[9] Jones, S., P. Mason and R. Stamper. “LEGOL 2.0: A Relational Specification
Language for Complex Rules.”Information Systems, 4, No. 4, Nov. 1979,
pp. 293–305.

[10] Martin, N. G., S. B. Navathe and R. Ahmed. “Dealing with Temporal Schema
Anomalies in History Databases,” inProceedings of the Conference on Very
Large Databases. Ed. P. Hammersley. Brighton, England: Sep. 1987, pp. 177–
184.

[11] Navathe, S. B. and R. Ahmed. “A Temporal Relational Model and a Query
Language.” UF-CIS Technical Report TR-85-16. Computer and Information
Sciences Department, University of Florida. Apr. 1986.

[12] Navathe, S. B. and R. Ahmed. “TSQL-A Language Interface for History Data-
bases,” inProceedings of the Conference on Temporal Aspects in Information
Systems. AFCET. France: May 1987, pp. 113–128.

[13] Navathe, S. B. and R. Ahmed. “A Temporal Relational Model and a Query
Language.”Information Sciences, 49 (1989), pp. 147–175.

[14] Sarda, N. L. “Extensions to SQL for Historical Databases.”IEEE Transactions
on Knowledge and Data Engineering, 2, No. 2, June 1990, pp. 220–230.

444 THE TSQL2 QUERY LANGUAGE

[15] Sarda, N. L. “Algebra and Query Language for a Historical Data Model.”The
Computer Journal, 33, No. 1, Feb. 1990, pp. 11–18.

[16] Snodgrass, R. T. and I. Ahn. “A Taxonomy of Time in Databases,” inProceed-
ings of ACM SIGMOD International Conference on Management of Data. Ed.
S. Navathe. Association for Computing Machinery. Austin, TX: May 1985,
pp. 236–246.

[17] Snodgrass, R. T. (editor) “The TSQL2 Temporal Query Language.” Kluwer
Academic Publishers, 1995.

[18] Tansel, A. U. and M. E. Arkun. “HQUEL, A Query Language for Historical
Relational Databases,” inProceedings of the Third International Workshop on
Statistical and Scientific Databases. July 1986.

