
14
The From Clause

Richard T. Snodgrass, Christian S. Jensen, and
Fabio Grandi

1 Introduction

Information retrieval is an integral component of any database management system.
Temporal database management systems should offer user-friendly and powerful
means of retrieval of data according to temporal criteria. The From clause is an
important component of the Select statement: it identifies the underlying relations
from which the information is to be retrieved and allows the declaration of range
variables. While variables merely serve as “correlation names” (e.g. for joining a
table with itself) in SQL-92, TSQL2 variables are designed to increase the temporal
expressiveness of the language, in addition to provide “syntactic sugar” in making
some queries easier to formulate.

TSQL2 range variables generalize the concept ofhistory variables[2], which
reference “groups” of tuples with a common value of a time-invariant key or surro-
gate, as earlier proposed for HoTQuel [1]. The main extension concerns the possi-
bility of grouping tuples on arbitrary sets of columns. This feature also generalizes
the concept of arestructuring operator[3], which changes the key of a temporal
relation, as proposed in TempSQL [4].

2 Informal Definition

Let us examine a few examples, to provide a very informal description. As will
be seen, this is an extension of the previous syntax. TheEmployee relation, with
Name, Dept , andSalary attributes, will be referenced in the examples. The
clause

FROM Employee

is equivalent toFROM Employee AS Employee, which is equivalent toFROM
Employee(*) AS Employee , which in turn declares a tuple variable named

399

400 THE TSQL2 QUERY LANGUAGE

Employee ranging over the relationEmployee grouped on all of its attributes,
specifying that in each tuple, each attribute will have exactly one value. This exam-
ple illustrates how the new syntax is upward-compatible with the existing syntax,
and also how snapshot reducibility could be proven. The clause

FROM Employee(Name) AS Emp

groups on theNameattribute. There may be many values for theSalary and
Dept attributes within a single “grouped tuple”, but there will only be one value
for theNameattribute. In fact, theSalary andDept attributes are inaccessible
throughEmp. We’ll see shortly how to access such attributes.

When the tuple variable’s lifespan is referenced, say in a where clause, the
lifespan is the union of the chronons of the BCDM tuples having the same value for
Namethat were collected together to form the grouped tuple. Only the attributes
mentioned in the<coalescing attributes> can be referenced in the rest of the query.

Who has been on the payroll for more than five years?

SELECT Name
FROM Employee(Name) AS Emp
WHERE CAST(Emp AS INTERVAL YEAR) > INTERVAL ’5’ YEAR

Since the from clause is grouped onName, the lifespan of theEmployee tuple
variable is the lifespan of that employee, and is a temporal element.

Who has worked in Toys longer than Di has made $20,000?

SELECT E.Name
FROM Employee(Name, Dept) AS E,

Employee(Name, Salary) AS D
WHERE E.Dept = "Toys" AND D.Name = "Di"

AND D.Salary = 20000
AND CAST(E AS INTERVAL DAY) >

CAST(D AS INTERVAL DAY)

Note that the lifespan ofD (a temporal element) is all the times that there is a tuple
with D.Name= "Di" and D.Salary = $20,000. This cannot be done easily in a
period tuple-timestamped language that employs a weaker From clause.

Tuple variables can be associated with other tuple variables. The clause

FROM Employee(Name) AS E, E(Name,Salary) AS F

specifies thatF is a tuple variable with two attributes, effectively synchronized with
E on theNameattribute. As syntactic sugar, it is not necessary to mention the
shared attributes, and hence this From clause is equivalent to

FROM Employee(Name) AS E, E(Salary) AS F

This clause defines a tuple variableE, grouped onName, and a “coupled” tuple
variableF, grouped onNameandSalary (sinceF is coupled toE, it inheritsE’s

THE FROM CLAUSE 401

grouped attributes).E will range overEmployee , grouped onName. Then,F will
range over all the tuples ofE that are grouped on bothNameandSalary . The
Nameattribute will be the same for bothE andF at any time, but the salary can
vary.

E andF are linked in another way. If, for a particularE, there is noF that sat-
isfies the where clause, thenE is considered not to have satisfied the where clause.
This will fall out of the semantics, which treats a<correlation name> that ap-
pears as a<table source> simply as additional equality predicates on the shared
attributes. Hence, the above from clause is equivalent to

FROM Employee(Name) AS E, Employee(Name, Salary) AS F
WHERE E.Name = F.Name AND E OVERLAPS F

We now discuss the second parenthesized component, the<partitioning unit>.
The clause

FROM Employee

is equivalent toFROM Employee AS Employee, which is equivalent toFROM
Employee(*) AS Employee . Note that no partitioning is the default. The
clause

FROM Employee(PERIOD) AS Emp

is equivalent toFROM Employee(*)(PERIOD) Employee AS Emp . This
from clause first groups on all attributes ofEmployee , then partitions the result-
ing temporal elements into maximal periods, yielding tuple timestamping with peri-
ods. This generates many value-equivalent tuples, each associated with exactly one
(maximal) period, for the purposes of the rest of the query. Note that this operation
is free if an period-tuple-timestamped representational data model is used (but is
nonetheless important semantically).

Consider query Q 2.1.3 from the test suite, “Who worked continuously in the
Toy department for as long as Di?”

SELECT E.Name
FROM Employee(Name,Dept)(PERIOD) AS E,

Employee(Name,Dept)(PERIOD) AS D
WHERE E.Dept = "Toys" AND D.Dept = "Toys"

AND D.Name = "Di"
AND CAST(E AS INTERVAL DAY) >=

CAST(D AS INTERVAL DAY)

Many queries are interested in maximal periods, and so being able to partition
a temporal element into such periods is highly useful.

402 THE TSQL2 QUERY LANGUAGE

3 Expressive Power

It turns out that coalescing attributes are syntactic sugar in TSQL2’s data model.
Specifically,

FROM Employee(Name) AS E

is equivalent to

FROM (SELECT Name FROM Employee) AS E

This is true whetherEmployee is a snapshot relation or a valid time relation. In
the latter case, the projection does an automatic coalescing of temporal element
timestamps.

References

[1] Grandi, F. and M. Scalas. “HoTQuel: A History-Oriented Temporal Query
Language,” inProceedings of the 5th IEEE Compeuro. Bologna, Italy: May
1991.

[2] Grandi, F., M. Scalas and P. Tiberio. “A History-oriented Data View and
Operation Semantics for Temporal Relational Databases,” inProceedings of
the International Workshop on an Infrastructure for Temporal Databases. Ed.
R. T. Snodgrass. Arlington, TX: June 1993.

[3] Gadia, S. K. “Weak Temporal Relations,” inProceedings of the ACM Sympo-
sium on Principles of Database Systems. ACM SIGAct-SIGMod. Los Ange-
les, CA: 1986.

[4] Gadia, S. K. and G. Bhargava. “SQL-like Seamless Query of Temporal Data,”
in Proceedings of the International Workshop on an Infrastructure for Tempo-
ral Databases. Ed. R. T. Snodgrass. Arlington, TX: June 1993.

