
11
The Surrogate Data Type

Christian S. Jensen and Richard T. Snodgrass

This short chapter introduces theSURROGATEdata type, which is useful
when modeling time-varying objects.

Surrogates are unique identifiers that can be compared for equality, but the
values of which cannot be seen by the users. In this sense, a surrogate is “pure”
identity and does not describe a property (i.e., it has no observable value).

For this reason, aSURROGATEdata type cannot be treated identically to how
other data types are treated. For example, at tuple cannot be assigned a specific
value for aSURROGATEattribute. Rather, the user must indicate that the value to
be assigned must be a new value never used before, or, alternatively, must indicate
someSURROGATEattribute of some tuple that the assigned value must be identical
to.

For example, if surrogates are used for the identification of employees and a
new tuple with information about an existing employee is to be entered then it is
specified that the surrogate of the new tuple is to be identical to that of the existing
tuple(s) for the particular employee.

Beyond the semantics just mentioned, it is the responsibility of the user to
give meaning to surrogates. For example, the user may, or may not, use attributes
of SURROGATEtype as keys.

TheSURROGATEdata type is treated like any other data type when creating
and altering relation schemas. An example follows.

CREATE TABLE Employee (Name CHAR,Id SURROGATE,
Dept CHAR,Salary INT)

AS VALID STATE

Due to the special semantics of surrogates (e.g., values of surrogate attributes
cannot be seen), update is special. With the relation instance just defined, this is an
example of an insertion of a new employee.

INSERT INTO r VALUES (’Ben’, NEW, ’Toy’, 30)
VALID PERIOD ’1 Jan 1993 - 31 Mar 1993’

357

358 THE TSQL2 QUERY LANGUAGE

The reserved wordNEWindicates that the system must supply a new surrogate
value that has never before been used in the database. Thus,NEWis not a particular
surrogate, but may be thought of as a variable that is instantiated by the system,
when the insertion takes place, to a surrogate that has never been used before. For
example,

INSERT INTO r VALUES (’Ben’, NEW, ’Toy’, 30)
VALID PERIOD ’1 Jan 1993 - 31 Mar 1993’
INSERT INTO r VALUES (’Bill’, NEW, ’Toy’, 30)
VALID PERIOD ’1 Apr 1993 - 30 Jun 1993’

results in two tuples, with distinct surrogates, being appended to relationr ; further,
the two surrogates are distinct from all other surrogates that have been used.

The next example illustrates how new information may be linked to exist-
ing information by means of surrogates. In this example, we represent individual
employees by means of the surrogate-valued attribute,Id .

INSERT INTO Employee
SELECT (’Benjamin’, Employee.Id, ’Toy’, 30)
VALID PERIOD ’1 Apr 1993 - 31 May 1993’)
FROM Employee
WHERE Employee.Name = ’Ben’

AND Employee OVERLAPS
PERIOD ’5 Jan 1993 - 10 Jan 1993’

Here, we add more information for the same person (who changed name). We
say that theId of the new tuple should be that of the tuple with theNamevalue
Ben some time during the specified time interval in January 1993, assuming that
we know that only one person was named Ben between January 5 and January 10,
1993.

Like attributes of other data types, attributes of typeSURROGATEare allowed
to have null values. However, like attributes of other data types, constraints such as
NOT NULLmay also be imposed on attributes ofSURROGATEtype.

When considering the querying of relations with surrogate-valued attributes,
the semantics of surrogates again have some implications. Specifically, since surro-
gate values cannot be viewed by the user (including application programs), an error
results when a surrogate attribute is included in an outer-most target list (i.e., the
outer-mostSELECTclause) of a query.

Further, the use of “∗” in the SELECTclause when argument relations contain
surrogate-valued attributes needs special attention. Consider an example where we
retrieve all information for employees in theToy department. We would like to
formmulate the query as follows.

THE SURROGATE DATA TYPE 359

SELECT ∗
FROM Employee
WHERE Employee.Dept = ’Toy’

To make this possible, we adopt the convention that the “∗” does not select surrogate
valued attributes. ThusSELECT ∗ in the query above is equivalent to selecting all
attributes inEmployee , with the exception of attributes of typeSURROGATE. As
a result, the semantics of surrogates as well as the usability of the “∗” notation is
retained. In order to retrieve a surrogate attribute (in a subquery), the attribute must
be referenced explicitly.

Next, only equality comparison is defined for surrogates. Thus, surrogates
may be tested for equality (and not-equal, using,= andNOTor <>), but an error
results when an attempt is made to apply other (e.g., “greater-than”) predicates to
surrogates.

Surrogates do not replace keys, but rather supplement them. While surrogates
may be used for connecting information within the database, values of surrogates
have no real-world meaning. Keys, on the other hand, may be used for relating in-
formation in the database with real-world entities. In the sample tableEmployee ,
the attributeNamemay be declared as a key (e.g.,PRIMARY KEY (Name)).
It is via Name, rather than viaId , that the user establishes the connection between
a tuple and the actual employee the tuple is about.

