
A wait-free output data structure for GPU-based
streaming query processing

Discussion paper

Claudio Silvestri1, Francesco Lettich1, Salvatore Orlando1

Christian S. Jensen2

1 Università Ca’ Foscari Venezia, Italy
{lettich,orlando,silvestri}@dais.unive.it

2 Aalborg University, Denmark
csj@cs.aau.dk

Abstract. The performance of GPU-based algorithms can be reduced signifi-
cantly by contention among memory accesses and by locking. We focus on high-
volume output in GPU-based algorithms for streaming query processing: a very
large number of cores process input streams and simultaneously produce a sus-
tained output stream whose volume is sometimes orders of magnitude larger than
that of the input streams. In this context, several cores can produce results simul-
taneously that must be written in the output buffer according to some order and
without conflicts with other writers. To enable this behavior, we propose a wait-
free bitmap-based data structure and a usage pattern that combine to obviate the
use of locks and atomic operations. In our experiments, where the GPU-based al-
gorithm considered is otherwise unchanged, the introduction of the new wait-free
data structure entails a performance improvement of one order of magnitude.

1 Introduction

The efficiency of parallel algorithms, and in particular those tailored for massively par-
allel computing architectures, depends on the degree of parallelism that can be attained,
which depends on how the available resources are used. Contention in memory ac-
cesses results in computing cores being under-utilized because they wait for access to
resources. Thus, many optimization efforts in parallel computing aim to avoid con-
tention in memory access. This is particularly important in the setting of massively
parallel GPUs [1], where several thousands of cores may compete for a write lock and
where many of them may need to write at the same time due to data parallelism.

In this paper, we focus on high-volume output in stream processing: a very large
number of cores process input streams and simultaneously produce a sustained output
stream whose volume is sometimes orders of magnitude larger than that of the input
streams. In this context, one source of contention is related to the construction of the
output buffer: several cores may produce results that must be written in a particular
order in the output buffer. Since the amount of simultaneous writes is unknown, write
locations for each core cannot be predetermined. Even if atomic accesses and locks can
be used to avoid race conditions and result loss, their use imply that some threads must

wait for their turn to write. Having some thousands of cores and many more concur-
rent threads yields a high probability of contention and a large number of threads that
are waiting for locks. A more efficient solution is to let every core write in a different
position and then use stream compaction to keep only the relevant output. Unfortu-
nately, this approach is particularly memory demanding, since space is reserved both
for threads that produce output and threads that do not write to memory. Further, in case
more results are produced for each query received from the input stream, we could be
interested in having all the related output represented together, for logical reasons or to
avoid redundant information. Since it is possible, and quite likely, that threads do not
write their results in the expected order, a final sorting of the buffer would be needed.

We observe that, in case query results are subsets of a finite domain, the stream
to be compacted can be represented as a sequence of Boolean values, corresponding
to the presence or absence of a particular element in a query results. Moreover, this
finite set may have a limited cardinality, either originally or due to indexing or domain
restrictions.

Guided by these thoughts, we use a bitmap-based data structure for the compaction
of Boolean streams that capture set membership. From those streams that represent re-
sults of filtering predicate evaluations, we produce a stream of item identifiers, grouped
by set identifiers, containing only the references to those elements that are contained
in the corresponding set. This data structure can be used to fill the output buffer in
streaming query processing in a wait-free manner.

In experiments [6], we applied the proposed data structure for streaming range
queries over moving objects. Without changing any other aspect of the GPU-based
algorithm, the use of the new wait-free data structure gives a performance improve-
ment of one order of magnitude compared to using a more straightforward approach
for output production. Due to constraints on the length of the paper, we limited the pa-
per’s coverage of experiments to a single use case. In future works, we will evaluate the
benefit of the proposed design pattern in different scenarios such as streaming queries
over streams of social media updates and streaming similarity queries over real-time
financial data.

The remainder of the paper is organized as follows. Section 2 summarizes some
GPU related terminology, describes the problem, and presents a straightforward so-
lution; Section 3 describes the proposed data structure and usage pattern; Section 4
applies the proposed data structure to streaming range queries over moving objects and
discusses experimental results. Finally, Section 5 summarize the paper.

2 Preliminaries

2.1 GPU Terminology

The GPU terminology used in the paper refers to NVIDIA CUDA [4], although dif-
ferent programming frameworks and architectures adopt similar solutions with slightly
different names. A GPU consists of an array of nSM multithreaded streaming mul-
tiprocessors (SMs), each with ncore cores, yielding a total number of nSM · ncore
cores. Each SM is able to run blocks of threads, namely data-parallel tasks, with the

2

threads in a block running concurrently on the cores of the SM. Since a block typi-
cally has much more threads than the cores available in a single SM, only a subset of
threads, called warps, can run in parallel at a given time instant. Each warp consists of
szwarp synchronous, data parallel threads, executed by an SM according to a SIMD-
like paradigm.

2.2 Problem Description

The paper presents a design pattern that allows a class of streaming algorithms for
GPUs to avoid the use of locks and atomic memory accesses when writing to their
output stream buffer. In the following, we therefore describe a generic problem set that
is common to all of the algorithms in the class.

The algorithms in this class:

– process an input stream of queries, represented by a sequence IS = q1, . . . , qi, . . .
where qi ∈ Q , the input query domain;

– compute a set of results r(qi) = {o|θ(qi, o), o ∈ O} for each query qi, where θ is a
logical predicate and O is the output domain;

– produce a stream of results OS = (q1, r(q1)), . . . , (qi, r(qi)), . . . where qi ∈ IS .

Moreover, the input stream is partitioned into batches B = b1, . . . , bi, . . ., where
bi = {qj , qj+1, . . .}, whose queries are processed in parallel. In general, θ could be
time dependent and yield, for the same query, different result sets in different batches.
Further, computation may depend on system state and contextual information (as in
the use case described in Section 4). To simplify the notation, however, we omit those
dependencies.

Batching is common in GPU algorithms, since high parallelism on GPUs can only
be attained when an adequate amount of data is available for processing. Even if batch-
ing can introduce some latency in stream processing, for a fixed batch size, the duration
of each batch decreases as the stream rate increases. Thus, this kind of latency is not an
issue for important applications requiring high rate stream processing.

In Section 4, we instantiate this generic problem and consider a more specific one
for the experiments: streaming spatial range queries. In this case, input queries are rect-
angles, and the predicate θ represents containment of points in rectangles.

2.3 A Solution Based on Filtering and Synchronized Output

It is relatively easy to devise a simple strategy to write output directly to a GPU’s global
memory during query computation. Each GPU thread is in charge of a distinct query,
and all threads concurrently enqueue the output to contiguous memory locations, as
soon as a new element that satisfies the predicate θ is detected. The query results thus
constitute an un-ordered list of pairs (queryID , oID), where queryID and oID identify
a query q and an output element o such that θ(q, o) is true.

This approach has two main drawbacks: the need for synchronization among threads
(in each block) in order to flush the results to global memory in a coherent manner, and
the format of the output, which is not compressed, thus increasing the I/O costs.

3

3 Design Pattern

To address the output requirements of high rate streaming query processing algorithms,
as described in Section 2.2, we adopt a multi-step strategy that is a common choice in
the GPGPU field [3, 5]. We split the result production in two phases: during the first
one (filtering), we compute the results and enter them into an intermediate, wait-free,
data structure; then, during the second one (decoding), the intermediate data structure
is decoded to produce the final result.

3.1 Output Data Structure

The purpose of the intermediate data structure is to contain the logical values of the
predicate θ for each pair composed of a query from the input stream (qi ∈ I) and a
possible output value from the output domain (o ∈ O).

We apply three criteria to select a data structure and access pattern to use:

wait-freedom: to ensure that the output of each thread is independent, both true and
false values are represented. Thus, each thread can write to a predetermined lo-
cation, according to the query it is currently processing, and exclusive access is
granted without locks or atomic operations.

locality: to achieve memory access locality, the results produced by different threads
are interlaced. In particular, to benefit from coalescing, consecutive threads han-
dle consecutive queries and write to consecutive memory locations, thanks to an
interlaced data layout.

bitwise representation: to reduce the memory footprint, each Boolean value θ(qi, o)
is represented by a single bit.

In the proposed approach (see the next subsections), each input stream query qi is
processed by a different thread to evaluate θ for all possible o ∈ O (i.e., to process
the query qi). According to the above design criteria, the resulting bitmap depicted in
Figure 1 is written line by line, where columns correspond to the output of each thread
(results for query qi). Since it would be inefficient to write individual bits to memory
immediately, the elements in each cell are integers that represent the results for 32
consecutive output domain elements. Thus, each line represents the results for all the
queries in a batch limitedly to 32 elements of the output domain.

..........
...........

011…1001

q1 q2 qn
o0…31
o32…63

oj…j+31

101…1100

000…0110

Fig. 1: Bitmap-based output data structure.

From memory footprint perspective, this representation becomes advantageous when
the selectivity of queries exceeds 1/32 with respect to the output domain. In case in-

4

dexes are used, the same consideration holds, but the selectivity is computed with re-
spect to the number of distinct elements in each index leaf (see Section 3.4).

3.2 Filtering

The goal of this phase is to produce a bitmap containing all the results of the θ predicate
evaluation for a specific batch.

The query processing specifics are problem dependent. In general, however, when
each input query qi is processed, the predicate θ(qi, o) is evaluated once for each output
domain element o ∈ O (Section 3.4 discusses on the use of indexes), and the corre-
sponding bits are set or cleared.

All the evaluations of θ(qi, o) predicates for the same qi value are assigned to the
same GPU thread. Due to the proposed data structure, each thread writes a 32-bit integer
once every 32 evaluations of the θ predicate. Since this happens simultaneously for all
threads in the same warp, and since queries IDs are assigned to threads according to
the thread’s IDs, consecutive threads will write to consecutive memory locations. This
allows memory access coalescing: several memory accesses are combined in a single
memory transaction (e.g., 128 bytes, 32 · 32 bits, on a K20 device [4]). The size of the
bitmap for a batch b containing |b| input elements is therefore |b| |O|, but this can be
reduced in case indexes or domain partitioning techniques are adopted (Section 3.4).

3.3 Decoding

After filtering, the bitmap data structure contains the logical values of every θ predicate
evaluation, and the results related to different queries are interlaced in groups of 32
output elements (the cells in Figure 1). To simplify the transformation of the bitmap to
lists of query results, the interlaced bitmaps are first linearized: in the resulting layout,
the bit-vectors associated with every query have their words arranged consecutively in
memory, which enable read coalescing during the decoding phase. This transformation
can be done through a fairly simple GPU kernel.

Then, for each query, its linearized bit-vector is decoded by a group of 32 threads
always scheduled concurrently on the same SM (a warp). Due to their scheduling, such
threads are able to access the same SM shared memory. They use this opportunity to
read the input data in sequence to perform a collaborative count of the number of results
preceding each output element that will be written (to determine writing positions) and,
finally, to write the output element identifiers that constitute the query results. Coalesced
memory access can be exploited both for reads and writes to global memory since they
happen in sequence, with consecutive threads writing to consecutive memory locations.
Finally, no locking is used since write positions are distinct for each thread and are
predetermined before write time.

3.4 Optimizations

The abstract method described above can be improved in several ways. Some of them
are commonplace in GPU computing [4], for example the overlap of memory transfers

5

and computations can be used in the decoding phase to mask the cost of moving final
results to CPU memory. Others are common in specific domains, corresponding to spe-
cific predicates θ. For example, in case we consider range queries over a set of points,
input queries would be rectangles, and the predicate θ would represent containment of
points in rectangles. Using some kind of spatial indexing is an obvious option, but the
way it is used and computed on GPUs strongly affects the choice of which index to
use [6].

In addition to reducing the number of predicate evaluations, indexes can be used to
split the workload into independent partitions to be processed in parallel. When restrict-
ing the input domain to one of the partitions causes a restriction of the output domain, it
is possible to process partitions independently and thus benefit from the use of smaller
bitmaps thanks to the reduced cardinality of the output domain [6].

4 Use Case: Streaming Spatial Range Queries

4.1 Use case description

To assess the performance that can be achieved by using the proposed design pattern,
we focus on a specific instance of the generic problem described in Section 2.2, where
moving spatial point objects repeatedly issue range queries to find nearby objects [7].
This use case has applications in Massively Multiplayer Online Games and in simula-
tions, where agents may affect the behaviors of other agents within a given range [2,8].
Further, if we consider the particular case in which queries are static and only position
updates are streaming, this example matches the Twitter streaming API, in which data
collection applications may filter geo-tagged Tweets by defining a set of rectangles that
represent regions of interest.

Processing of streams of spatial range queries and position updates is described
in greater details in previous work [6], where several domain-specific techniques and
optimizations are covered. For example, the spatial data is organized according to a
grid index, used both for filtering and for workload partitioning. Further, bitmaps rep-
resenting the query results in an index cell are optimized to represent only the points
contained in that cell. This is an application of one of the optimizations described in
Section 3.4, enabled by the output domain restriction induced by the index. Next, we
focus our attention only on the effectiveness of the wait-free data structure and consider
this particular problem just as one use case.

4.2 Experimental Setup and Findings

The experiments are conducted on a PC equipped with an Intel Core i3 550 CPU (at 3.2
GHz) with 4 GB of RAM and an NVIDIA GTX 560 GPU (Ubuntu 12.04, GCC 4.6.3,
CUDA Toolkit 4.2). We exploit a publicly available framework [7] for both workload
generation and testing. The reader can refer to our previous work [6] for a complete
description of test parameters and additional experimental results.

We proceed to compare the optimized algorithm, denoted by GPUOpt, which ex-
ploits bitmaps during the filtering phase, with a baseline version, denoted by GPUBLine,

6

which uses thread synchronization to correctly enqueue the list of results. Since the
only difference between the two approaches is the use of the proposed data structure,
their comparison can be used to assess the data structure’s effectiveness.

Due to the space limitation, we discuss only one experiment: repeatedly using a
uniformly distributed synthetic data stream (700k moving objects, every object sends a
query per batch), we change the query range size, thus indirectly affecting the size of
the result bitmaps.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 300 400 500 600 700 800
 0

 2

 4

 6

 8

 10

 12

 14

T
im

e
pe

r b
at

ch
 (m

s)

Sp
ee

du
p

Query side (u)

GPUOpt vs GPUBLine

GPUBLine GPUOpt Speedup

Fig. 2: Running time per batch: varying query area

Figure 2 shows how the execution time changes when varying the query range. We
observe that for small ranges, GPUOpt is approximately 5 times faster than GPUBLine.
As the range increases also the number of results per query increases; consequently,
the benefit of the wait-free approach is more evident, and GPUOpt is approximately
14 times faster than GPUBLine. We highlight that an increase of the average query size
corresponds, due to the peculiarities of the algorithm [6], also to an increase of the grid
cell size, which in turn results in more containment check and in an increase of the
bitmap size. Despite this fact, the use of the bitmap-based data structure is increasingly
better than the output buffer management based on atomic operations when the query
range increases. Other experiments, not reported in details, highlight that storing the
results of the baseline approach (as pairs) requires more memory that storing both the
intermediate bitmaps and the final results of the optimized approach (as lists of objects
for each query identifier). Further, if storing the final result is not needed, the execution
time per tick can be reduced by approximately 50%. Indeed, the execution times for the
filtering and the decoding phases are almost the same [6].

7

5 Conclusions

We present a new perspective on an output production technique [6] based on a wait-
free bitmap-based data structure, discussing its use in a more general context. This
broader setting covers any stream processing scenario in which queries are processed at
a sustained rate to produce a high-volume output stream, in which results for the same
query are grouped together, and in which the output domain has limited cardinality
(e.g., 10k elements), either globally or per leaf in case an index is used. We consider
the original problem [6] as an instance of the general one, and we present a preliminary
evaluation of the performance gain achievable by using the proposed data structure.

In future work, we plan to extend this evaluation to other scenarios to assess how
the benefits given by the wait-free data structure depend on the characteristics of the
output stream.

Acknowledgment

Research partially supported by the European Union under the ESF/COST COST Ac-
tion IC0903: Knowledge Discovery from Moving Objects (MOVE, http://www.move-
cost.info).

References

1. D. Cederman, B. Chatterjee, and P. Tsigas. Understanding the performance of concurrent data
structures on graphics processors. In Proc. International Conference on Parallel Processing,
pages 883–894, 2012.

2. Joshua M. Epstein. Agent-based computational models and generative social science. Com-
plexity, 4(5):41–60, 1999.

3. D. Merrill and A.S. Grimshaw. High performance and scalable radix sorting: a case study
of implementing dynamic parallelism for GPU computing. Parallel Processing Letters,
21(2):245–272, 2011.

4. NVIDIA. CUDA C Programming guide 7.0. 2015.
5. S. Sengupta, M. Harris, Y. Zhang, and J.D. Owens. Scan primitives for GPU computing. In

Proc. of ACM SIGGRAPH Symposium on Graphics Hardware, pages 97–106, 2007.
6. C. Silvestri, F. Lettich, S. Orlando, and C. S. Jensen. Gpu-based computing of repeated range

queries over moving objects. In Proc. Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, pages 640–647, 2014.

7. B. Sowell, M. V. Salles, T. Cao, A. Demers, and J. Gehrke. An experimental analysis of
iterated spatial joins in main memory. Proc. VLDB Endow., 6(14):1882–1893, 2013.

8. F. Tauheed, T. Heinis, and A. Ailamaki. THERMAL-JOIN: A scalable spatial join for dynamic
workloads. In Proc. of ACM SIGMOD Conf., 2015.

8

