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Abstract—Rapidly increasing volumes of GPS data collected
from vehicles provide new and increasingly comprehensive
insight into the routes that drivers prefer. While routing
services generally compute shortest or fastest routes, recent
studies suggest that local drivers often prefer routes that are
neither shortest nor fastest, indicating that drivers value route
properties that are diverse and hard to quantify or even
identify. We propose a routing service that uses an existing
routing service while exploiting the availability of historical
route usage data from local drivers. Given a source and
destination, the service recommends a corresponding route that
is most preferred by local drivers. It uses a route preference
function that takes into account the number of distinct drivers
and the number of trips associated with a route, as well as
temporal aspects of the trips. The paper provides empirical
studies with real route usage data and an existing online routing
service.

I. INTRODUCTION

Widespread use of mobile devices, such as smartphones
and navigation devices, enables the accumulation of large
volumes of GPS data. This geographical user-generated
content holds huge potential for use in different types of
mobile services.

We provide and evaluate concepts and techniques that
enable the use of GPS data collected from the drivers as
input to a local driver behavior based routing service. We
aim to provide users with routes that are commonly used by
local drivers. Local drivers often have in-depth knowledge
of the surrounding area and therefore can recommend better
and more convenient routes.

Consider the four possible routes between source location
S and destination location D shown in Figure 1. Each route
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Figure 1. Motivating Example

has desired properties. Route r1 (solid line) contains the
longest part of the road with the highest speed, making it
the fastest route. Route r3 (dashed line) is shortest. Route
r2 (dotted line) avoids the parking lots near Food Store and
Shopping Mall that may slow down the travel due to cars
entering and leaving the parking lots, especially during peak
hours. Route r4 (long dashes line) can be attractive during
off-peak hours when the stores are closed. It avoids one

traffic light (intersection H) and passes intersection K with a
“green” right turn signal. This example illustrates how some
routes can be better than others at different times.

At the time when conventional routing services were
created, no scalable means of collecting information such
as that indicated in the example were available. This is
changing: With the availability of GPS data volunteered by
drivers, we are able to gain insight into the behaviors of
drivers. This data can provide insight into the geographical
aspects of drivers’ choice of routes and can also reveal
temporal behavior changes across a day, the days of the
week, or even the seasons of the year.

Some existing studies report on the use of GPS data in
routing services [5], [7], [11], [22]. Proposed routes are
formed from parts of the road network that are covered
by available GPS data by combining parts of different
trajectories into one route. Most of the studies focus on
inventing and evaluating algorithms that are efficient, and
only few proposals evaluate their results in terms of quality.
For example, few consider whether people actually use
routes suggested by scoring functions. In real life, such
recommended routes may not be attractive, and drivers may
prefer different route between specific source/destination
pairs than those formed from parts of trajectories.

Many factors can influence a user’s route preference, and
it is challenging to provide a user with the most convenient
route because opinions on “what is convenient” may differ
among users. Conventional routing services generally inter-
pret convenience as either the fastest or the shortest route.
This makes it easy to quantify the result. However, a recent
study [19] shows that drivers do not necessarily follow the
routes provided by routing services. Further analysis shows
that preferred routes are not necessarily the shortest or fastest
ones. As a result, we have no precise specification of the
properties that characterize a preferred route.

In this paper, we consider routes formed from trajectories.
Trajectories that follow the same paths are grouped into
routes that are identified using the concept of Longest
Common Subsequence (LCSS) [20]. With the help of a
flexible scoring function, a preferred route is identified from
the set of available routes. Our approach utilizes available
trajectory data, and the scoring function scores a route using
the number of available traversals of the route and the
number of distinct drivers following the route, and it also
considers temporal aspects. These properties of a route are
readily available the from trajectory data. In practice, it is
important to consider the number of distinct drivers because
routes taken by multiple drivers are generally more attractive
than routes traversed multiple times by one driver. Temporal
aspects are also important because drivers may take different
routes depending on the time of the day or the day of the
week. If no data is available for a considered time interval,
data from other time intervals should be used so that all
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available trajectory data is used to identify preferred routes.
When a new user issues a query for locations not covered

by available GPS data, an available online routing service is
simply used to provide the user with the route. This ensures
that route can always be provided.

We present a careful, in-depth experimental study with
high-quality, real-world data to obtain detailed insight into
key aspects of our proposal. The study offers insight into
route recommendation in different settings, and it also covers
comparisons with competing routing techniques. The results
show that the routes provided by the paper’s routing service
that uses GPS data from local drivers are better than those
provided by competing routing services.

In summary, the main contributions of the paper are:

• We propose a routing service that utilizes GPS data
from local drivers.

• We propose a flexible scoring function for route recom-
mendation. Specifically, the numbers of traversals and
distinct drivers, and temporal aspects of the routes are
used.

• We report findings from an extensive study with real
data collected during a two-year period from 285
drivers.

• We evaluate the quality of our proposed routes by
simulating a feedback loop from the drivers.

The remainder of the paper is organized as follows.
Section II provides the main definitions and presents the
proposed system framework and algorithms. Section III
reports on the results of the empirical study. Section IV
covers related work, and Section V concludes the paper.

II. ROUTING WITH USER-GENERATED TRAJECTORIES

A. Definitions

A GPS log is a collection of GPS points pt i = (pi, ti),
where pi = (xi, yi) is a location in two-dimensional Eu-
clidean space R

2 and t ∈ T is a timestamp. GPS locations
are collected from a number of users u ∈ U that are
uniquely identified by an id . A location where a user
stays for a certain duration of time is called a stay point.
A sequence of GPS points reported by a user u that is
between two stay points is considered as a separate trip,
trp = (u, plt) ∈ TRP , where plt = 〈pt1, . . . , ptn〉 is
a polyline defined by a sequence of timestamped points
pt i = (pi, ti), where pi ∈ P and ti ∈ T . Here, n ≥ 2
and ti < ti+1, i = 0, 1, . . . , n− 1.

The movements of users are constrained to a road net-
work. A digital road network is formed from a logically
linked set of polylines. The connectivity of the road network
is represented by a graph G = (I, S) that is formed from
a set of intersections I ⊂ P and a set of segments S. Each
road segment is represented by a polyline pl that is formed
by a sequence of points s = 〈p1, . . . , pn〉 ∈ S. A polyline
approximates the centerline of a physical road. The part of a
two-way road between a pair of intersections is represented
by two polylines with reverse sequences of points.

We utilize GPS logs to identify the trips taken by a
set of drivers throughout a monitoring period. Using map-
matching, sequences of GPS points, plt = 〈pt1, . . . , ptn〉,
are transformed into sequences of road segments with
timestamps capturing when the road segments were entered
and exited, i.e., sts = 〈st1, . . . , stm〉 ∈ STS , where
st = (s, ts, te), s ∈ S, and ts, te ∈ T .

After applying map-matching, trips are represented ac-
cording to Definition 1.

Definition 1: A traversal is a 3-tuple tr = (u, day , sts) ∈
TR, where u ∈ U , day ∈ [1, 7] identifies a day of the week,
and sts ∈ STS .

Each traversal occurs on a specific time of the day and
day of the week. To capture the temporal aspect of route
use, we group traversals according to the intersection of their
starting times with a set of temporal intervals that we call
temporal patterns. We divide one calendar day into three
temporal patterns: peak-morning, peak-afternoon, and off-
peak hours. A week is divided into weekdays and weekend
days (including public holidays). Each weekday has all three
temporal patterns, whereas weekend days are off-peak.

Definition 2: A temporal pattern tp ∈ TP is defined as
tp = (TT , days). Here TT is a set of time intervals tt =
[ts, te], ts, te ∈ T that identify the start and end times of the
pattern, and days ⊆ [1, 7] represents the days of the week
when the pattern is valid.

Traversals that follow the same sequence of road segments
are joined into routes. Further, use two representations of
routes. We represent a route as a sequence of road segments
pls = 〈s1, . . . , sm〉 ∈ PLS , si ∈ S; and we represent a
route as a sequence of geographic points that are formed
from the geographical representations of road segments,
pl = 〈p1, . . . , pn〉 ∈ PL, pi ∈ P , i.e., polylines. For easy
reference, both representations are used in the definition of
a route usage object.

Definition 3: A route usage object r ∈ R is defined as
r = (pls , pl ,RTP), where pls ∈ PLS , pl ∈ PL, and
RTP = {(tp,UA)i} is a set of temporal patterns together
with a set of tuples UA = {(u, amnt)j} that provide the
set of users and numbers of times each user has taken the
route.

Example 1: Figure 2 gives an example of three routes
along with a table providing traversal information.
Assume that a user wants to travel from location D to
location G during peak hours. In the example, all three
routes contain D and G. Route r1 is taken by user
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Figure 2. Route Score Calculation Example

u1 10 times during off-peak hours. Route r2 is taken
by users u2 and u4 3 and 5 times during peak hours
and 5 and 6 times during off-peak hours, respectively.
These two routes share the same sequence of segments
between the start and end locations. Thus, a new route
usage object is formed: r′ = (〈sDF , sFG〉, pl

′,RTP ′),
RTP ′ = {(peak , {(u2, 3), (u4, 5)}),
(off , {(u1, 10), (u2, 5), (u4, 6)})}. Route r3 is taken
by user u3 7 times during peak hours and 4 times
during off-peak hours. Another route usage object is
formed: r′′ = (〈sDF , sFI , sIG〉, pl

′′,RTP ′′), where
RTP ′′ = {(peak , {(u3, 7)}), (off , {(u3, 4)})}.
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Routes provided by an available online routing service
are formed by a sequence of points from the geographical
representations of the roads that belong to the routes, rn =
〈p1, . . . , pn〉 ∈ RN ⊂ PL.

B. Architecture

The architecture of the system is shown in Figure 3.
In the online mode, a user issues a request to the server,
providing source and destination locations along with a value
k indicating the number of desired results. The server uses
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Figure 3. Framework Overview

an available trajectory data set to identify the top-k preferred
routes that are then returned to the user. If no available
trajectories contain the source–destination (s–d) pair then a
request is issued to an available online routing service, and
the results from there are provided to the user.

While the user follows the route, the user’s GPS trace is
being logged and reported to the server. Then, when the trip
is completed, in the offline mode, the trip is map-matched
to the road network and stored in the trajectory data set for
later use.

C. Scoring of Route Usage Objects

In our study, we assume that each traversal starts at the
beginning and ends at the end of a road segment. The route
usage objects that start and end on the same pair of segments
are then possibly different routes between the same two
locations. We introduce a scoring function that makes it
possible to rank such routes.

We aim to present users with the routes that best reflect
the preferences of local drivers. A recent study [19] shows
that drivers favor routes that are not necessarily the shortest
or fastest. We distinguish between two different properties
that can influence the score of a route usage object, namely
its popularity and its temporal fit. As discussed earlier, some
routes may be more popular on specific times of the day or
days of the week than at other times and days.

The number of users and the number of traversals that
influence the popularity are totaled according to the tem-
poral patterns they belong to. Given a temporal pattern tpq

(∃i(tq ∈ tpq.tt i) ∧ dayq ∈ tpq.days), where tq and dayq

are the query time and day, respectively, the number of users
(users(r)) and the number of traversals (traversals(r)) are
calculated as follows.

users(r) =⎧⎨
⎩

r.rtpi.|UA|, if tpq = r.rtpi.tp∑
rtp∈r.RTP(r.rtp.tp �=tpq)

rtp.|UA|, otherwise

traversals(r) =⎧⎪⎪⎨
⎪⎪⎩

∑
ua∈r.rtpi.UA

ua.amnt , if tpq = rtpi.tp

∑
rtp∈r.RTP(rtp.tp �=tpq)

∑
ua∈rtp.UA

ua.amnt , otherwise

We quantify the popularity of a route based on its user
count and based on how many times each user traversed
the route. These counts are influenced strongly by how
well the available GPS data covers the roads. To contend
well with cases where, in the available GPS data, some
users have traversed a route considerably more times than
other users, we consider only those traversals that are less
or equal to the minimal average number of user traversals
per available route between the source and destination, i.e.,

avgmin(r) = traversals(r)
users(r) . Then, the preference function is

given as follows:

pref(r) = α · users(r) + (1− α) · traversalsAVG (r),

where α ∈ [0, 1]. Depending on the value of α, the number
of traversals or the number of users have a higher influence

on the preference value. Function traversalsAVG(r) gives
the number of traversal that satisfy the additional case, i.e.,
∀ua ∈ r.rtpi.UA(ua.amnt ≤ avgmin(r)).

Now we are able to define the scoring function for route
usage objects.

Definition 4: Given a query temporal pattern tpq , a
start segment ss, an end segment sd, and a route r ∈
R (r.pls .s1 = ss ∧ r.plsm = sd), the score of the route
r is:

score(r) = β · prefM (r) + (1− β) · prefN (r),

where prefM (r) is the preference value of route r calculated

using traversals with temporal pattern tpq and prefN (r) is
the preference value calculated using traversals with other
temporal patterns.

Example 2: Consider again the example in Figure 2. The
average value of traversals during different time patterns for
routes r′ and r′′ are: avg(r′)peak = 3+5

2 = 4, avg(r′)off =
10+5+6

3 = 7, avg(r′′)peak = 7, avg(r′′)off = 4. Thus, the
minimal average values that are used in the score calculation
are avgmin

peak = 4, avgmin
off = 4. Then, with α = 0.5, the

preference value for matched and unmatched traversals of
route r′ are prefM (r′) = 0.5 · 2 + 0.5 · (3 + 4) = 4.5 and

prefN (r′) = 0.5 ·3+0.5 ·(4+4+4) = 7.5. Let us prioritize
the traversals that match the temporal pattern in the scoring
function by setting β = 0.75. Then the score of route r′

is score(r′) = 0.75 · 4.5 + 0.25 · 7.5 = 5.25. Similarly, the
score of route r′′ is score(r′′) = 0.75 · 2.5 + 0.25 · 2.5 =
2.5. Because score(r′) > score(r′′), route r′ is the most
preferred by the users in the available dataset, and it is the
first route suggested to a user.

D. Route Identification

A set of traversals are joined into route usage objects. To
identify which traversals represent the same route, we use
the notion of Longest Common Subsequence (LCSS) [20].
Consider two trajectories represented by sequences of road
segments: pls = 〈s1, . . . , sn〉 and pls ′ = 〈s′1, . . . , s

′
m〉. The
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longest common subsequence LCSS(pls , pls ′) is defined as
follows:

LCSS(pls , pls ′) =⎧⎨
⎩
0, if n = 0 ∨m = 0
LCSS(pls i−1, pls

′
j−1) + 1, if si = s′j

max{LCSS(pls i, pls
′
j−1),LCSS(pls i−1, pls

′
j)}, otherwise

We then define the similarity S1 between two trajectories
pls and pls ′:

S1(pls , pls
′) =

length(LCSS(pls , pls ′))

length(pls)
· 100%

Here, length(·) returns the length of the argument polyline.
The match between a pair of traversals thus depends on the
length of the traversal. If a trip is long, the similar part has
to be larger.

Whether two trajectories pls and pls ′ represent the same
route is decided by the following predicate that uses Algo-
rithm 1:

C1(pls , pls
′) =

{
true, if S1(pls , pls

′, ε) ≥ getMatch(pls , pls ′)
false, otherwise

Algorithm 1 getMatch(pls , pls ′)

IN: pls , pls ′ ∈ PLS
OUT: sim ∈ R

1: lenavg ← (length(pls) + length(pls ′))/2;
2: sim ← 100% − max{simmin , (100 − lenavg) ·

simmax/100};
3: return sim ;

Parameters simmin ∈ N and simmax ∈ N are used
to calculate the similarity value. The possible percent-
age difference between two polylines is in the range
[simmin , simmax ], the average length of polylines pls and
pls ′ is also taken into account (line 2).

To determine whether the route that the driver takes
and the route recommended by the routing service are the
same, LCSS is evaluated using the trajectories represented
by a sequence of points. Consider two such polylines:
pl = 〈p1, . . . , pn〉 and pl ′ = 〈p′1, . . . , p

′
m〉. Given an in-

teger distance threshold ε, the longest common subsequence
LCSSε(pl , pl

′) is defined as follows:

LCSSε(pl , pl
′) =⎧⎨

⎩
0, if n = 0 ∨m = 0
LCSSε(pl i−1, pl

′
j−1) + 1, if distance(pl , p′j) ≤ ε

max{LCSSε(pl i, pl
′
j−1),LCSSε(pl i−1, pl

′
j)}, otherwise

Recall that the geographical representation of a route is
obtained by concatenating the polylines from the sequence
of segments. The polyline that represents a route returned
by an existing routing service contains key points of the
road polyline using possibly another digital map. The key
points in different maps may not match. Therefore, LCSS
is evaluated using a distance(pl , p) function that gives
the Euclidean distance from point p to polyline pl . Other
similarity constraints have to be satisfied, as discussed above,
for trajectories represented as sequences of road segments.

The general procedure for grouping GPS traversals into
routes during the route identification step is presented in
Algorithm 2. The algorithm takes a set of traversals and
source and destination segments as input and returns a set
of route usage objects.

Algorithm 2 getRoutes(TRin , ss, sd)

IN: TRin ⊆ TR, ss, sd ∈ S
OUT: Rout ⊆ R

1: Rout ← ∅;
2: for tr ∈ TRin do
3: pls ′ ← getSegmentSeq(tr .sts);
4: if ∃r ∈ Rout (C1(r.pls , pls

′) = true) then
5: update temporal patterns set r.RTP ;
6: else
7: pl ← ⊥;
8: while s ← getFirst(pls ′) �= ⊥ do
9: pl ′ ← s.pl ;

10: if pl �= ⊥ ∧ lastPoint(pl) �= firstPoint(pl ′)
then

11: pl ← concat(pl , pl ′);
12: else
13: pl ← concat(pl , getTail(pl ′));
14: end if
15: end while
16: tp ← getTempPatt(tr .sts1.ts, tr .day);
17: r ← (pls , pl , {(tp, {(tr .u, 1)})});
18: Rout ← Rout ∪ r;
19: end if
20: end for
21: return R;

First, the set of route usage objects is initialized to the
empty set (line 1). Then, each traversal tr ∈ TR is processed
(lines 2–20). A full sequence of segments (without start and
end times) is stored in pls ′ (line 3). Then, if a route exists
with the same sequence of segments, i.e., the route satisfies
the similarity requirements, information about the route is
updated (lines 4–5). Depending on the length of the route,
the similarity that has to be satisfied between two polylines
varies from 1 to 10 percent.

If traversal tr is formed from a new sequence of seg-
ments, a new route object is created and added to the
result set (lines 6–19). In this case, first the geographical
representation of the route is formed by concatenating the
polylines from the sequence of segments pls ′ of traversal tr ′

(lines 7–15). There can be cases where segments are very
short and no GPS points are reported while they are being
traversed. In map matching, depending on whether the first
point of the next segment in sts ′ matches the last point of the
previous segment, it is either included in or discarded from
the resulting polyline pl (lines 10–14). Then the temporal
pattern tp that traversal tr belongs to is identified, and the
new route usage object r is added to the output set (lines 16–
18).

When each traversal tr ∈ TR is processed, a final set of
route usage objects Rout is returned (line 21).

E. Route Search Algorithm

Algorithm 3 identifies the top-k routes with the highest
scores. As input, it takes a start location ps, a destination
location pd, a time of day tq , a day of the week dayq, an
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existing traversal data set TRin , and the value k that gives
the number of desired results.

Algorithm 3 getTopKRoutes(ps, pd, tq, dayq,TRin , k)

IN: ps, pd ∈ P, tq ∈ T, dayq ∈ N,TRin, k ∈ N

OUT: Rk ⊆ R
1: TR′ ← ∅;
2: ss ← getSegment(ps); sd ← getSegment(pd);
3: for tr ∈ TR such that ∃i, j (i ≤ j ∧ tr .stsi = ss ∧

tr .stsj = sd) do
4: sts ′ ← 〈tr .stsi, . . . , tr .stsj〉;
5: tr ′ ← (tr .u, tr .day , sts ′);
6: TR′ ← TR′ ∪ tr ′;
7: end for
8: R′ ← getRoutes(TR′);
9: Rk ← score routes in R′;

10: return Rk;

First, the set of intersecting traversals is initialized as
the empty set (line 1). Then the start ps and destination
pd locations are map-matched to road segments (line 2),
upon which the set of traversals that contain the source
and destination segments ss and sd are stored in set TR′

(lines 3–7). Every such traversal is trimmed to be between
segments ss and sd (line 4). A new traversal tr ′ is created
and stored in the set TR′ (lines 5–6). From the set of new
traversals, a set of routes R′ is identified using Algorithm 2
(line 8). Each of these routes is scored using the scoring
function, and the k routes with the highest scores are
returned (lines 9–10).

III. EXPERIMENTAL STUDY

This section presents an evaluation of the paper’s pro-
posal. First, we describe the data set used, then we explain
how the experiments were conducted, and finally we present
the experimental findings.

A. Data Description

In the experiments, we use a high-quality real GPS data
set collected at 1Hz from 285 distinct drivers who took
part in the “Pay as You Speed” project1. The drivers were
monitored during a two-year period. As all the drivers were
residents of North Jutland, Denmark, the GPS data offers
relatively dense coverage of this part of Denmark.

This data set was preprocessed with a modified M-
GEMMA map-matching algorithm [2], [13]. Each trip in
the resulting data set contains at least 10 GPS recordings
and one road segment. If there is only one single segment
between two identified trips and less than 120 seconds
between their timestamps then these trips are joined into one.
We discarded trips that were less than 2 kilometers long. The
final data set contains 182,714,637 GPS records and 247,713
trips that cover a total of 2,749,303 kilometers. Figure 4
gives a brief overview of the available traversals according
to their lengths and temporal periods. As is shown, more
than 90% of the traversals are between 2 and 20 kilometers
long. The average length of a trajectory is 10 kilometers.
Also, 92% of the traversals is taken during off-peak hours.

We used OpenStreetMap2 for Denmark. The map contains
659,015 road segments. Our data set covers 152,773 distinct

1www.sparpaafarten.dk
2www.openstreetmap.org
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road segments, i.e., 23% of the map. A brief overview of
the popularity of the segments in the road map is given in
Table I. It is shown that 50% of the covered segments were

Table I
THE POPULARITY OF SEGMENTS

# traversals # segments

1–10 68,063

10–100 62,369

100–1K 19,160

1K–3K 2,705

3K–10K 476

traversed from 10 to 10K times. Another half of segments
were traversed between 1 and 10 times.

B. Experimental Settings

To evaluate the quality of the routes returned by our pro-
posal, we conduct a series of experiments with a simulated
feedback loop. For each test case, we select a subset of
traversals from the available trajectory data set that fits the
purpose of the particular test case. The remaining data is
used in the route identification process.

Data Sets for Testing

For the experiments, we use two subsets of our full
trajectory data set. The first data set (Length) consists
of randomly selected trips with different lengths. These
traversals originate and end at source–destination (s–d) pairs
that are used at least twice in the full data set. This condition
is chosen in order to ensure that there is always a possible
route to recommend in response to a query. Each source–
destination pair appears once in the Length data set. This
allows us to explore diverse trips in the experimental study.
To select test trips for the Length data set, we first divided
the full trajectory data set into three sets consisting of: short
(2–10 km), medium (10–20 km), and long (20–350 km)
trajectories. We then selected equal amounts of test trips
from these three sets at random. Figure 5 gives an overview
of the amounts of test trips per length interval during specific
temporal periods.

For the second data set (Driver), we chose the 5 drivers
with the most trips. An overview of the data according to
length and temporal period is provided in Figure 6(a) and
Figure 6(b), respectively. This subset of the data contains
mostly short traversals, between 2 and 10 kilometers, and
most of these traversals were taken during off-peak hours.
Recall that the same tendency is also noticed in the full
trajectory data set (see Figure 4).
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Figure 6. Driver Data Set

The numbers of traversals per driver are given in Table II
along with the numbers of distinct source–destination pairs.
Figure 7 provides an overview of the amount of source–
destination pairs in the Driver data set that were used more
than nine times. It follows that this trajectory data set contain

Table II
TRAVERSALS OF Driver DATA SET

Driver # traversals # distinct s–d pairs

1 4458 1552

2 3529 1705

3 3377 1582

4 3039 1586

5 2885 1406

trips that originate and end at specific source–destination
pairs that are used multiple times (not only once). For
example, Driver 1 and Driver 2 have s–d pairs that were used
some 200 times during the monitoring period. For Drivers
3, 4, and 5, the most frequently visited s–d pair occurs in
some 50 trips.
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Figure 7. # s–d pairs vs. #traversals≥10

Test Procedure

The procedure for evaluating the quality of a preferred
route is presented in Algorithm 4. The procedure simulates
a feedback loop from drivers.

First, three counters used for statistics of the results are
initialized to zero (line 1). Counter matchcnt stores the
number of matched trips, i.e., trips that satisfy the defined
similarity measures (the test trip follows the same route
as the preferred route). Counter notcnt stores the number
of unmatched test trips that follow a different route than
the preferred route. The last counter, emptycnt , stores the
number of empty trips, i.e., the number of times where
our framework provided an empty result, meaning that the
available trajectory data set does not contain the provided
source and destination locations. Next, a subset of the full
trajectory data set is selected for testing (line 2). Each

Algorithm 4 doTest()

1: matchcnt ← 0; notcnt ← 0; emptycnt ← 0;
2: TRt ← (TR\TRLength) ∨ (TR\TRDriver );
3: for tr t ∈ TRt do
4: tq ← stst.st1.ts; stst ← tr t.sts ;
5: ps ← stst.st1.s.p1; pd ← stst.stm.s.pn;
6: Rk ← getTopKRoutes(ps, pd, tq, tr t.day ,TRt, 1);
7: if Rk = ∅ then
8: emptycnt ← emptycnt + 1;
9: else

10: plsr ← r1.sts(r1 ∈ Rk);
11: pls tr ← getSegmentSeq(tr t.sts);
12: if C1(plsr, pls tr ) = true then
13: matchcnt ← matchcnt + 1;
14: else
15: notcnt ← notcnt + 1;
16: end if
17: end if
18: TRt ← TRt ∪ tr t;
19: end for

traversal in the test subset TRt is processed (lines 3–19). For
each test traversal tr t, the start time tq, start point ps, and
the destination point pd are extracted (lines 4–5). In line 6,
the top–1 preferred route is found using getTopKRoutes. If
no preferred route is found, the value of counter emptycnt is
incremented. Otherwise, the segment sequences representing
the preferred route r1 and the test traversal tr t are compared,
and, depending on the result, the corresponding counter
values are incremented.

C. Experimental Results

Influence of α and β

The first experiment is designed to identify the best values
of α and β for our data set.

A higher α value decreases the influence of the number
of traversals on the route score. For the α experiment, we
set β = 0.95, so that matched traversals influence the score
more and so that there is always a recommended route, even
if there does not exist traversals that fit the temporal pattern
of the test trip. This way, we make sure that a preferred route
is found and that the empty case does not occur. The results
are provided in Figure 8(a) (bars under label “all”). It can be
seen that the α value does not influence the resulting amount
of matched routes. There are several reasons for this: (a) in
most cases, only one route is recommended to the user, (b)
only few distinct drivers are taking the route, and (c) the
number of traversals is low.
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Figure 8. Length Data Set Analysis

For the β experiment, we set α = 0.5. The results show
the same tendency as in the α experiment (see Figure 8(b),
bars under label “all”). A varying β value has low influence
on the number of matched trips.

If there exists only one possible route between a source–
destination pair, the α and β values do not matter for the final
count of matched and unmatched test trips. Thus, the second
bar in Figure 8(a) and 8(b), labeled “mltp”, shows the count
of test trips for which we identified several alternative routes
between the source–destination pairs. In the Length data set,
there are 871 such trips out of 2,086 trips. For varying α
values, the same tendency is observed as for the “all” trips
count. Considering β, the highest count of matched trips is
obtained with β = 1, i.e., the preferred route is formed only
from traversals that were taken during the same time period.
This means that the best preferred routes are selected when
only the traversals that have the same temporal pattern as
the test trips are considered.

In the subsequent experiments, we use α = 0.5 and β =
0.5. The value β = 1 was not chosen because we prefer, if
possible, to always present the user with some route rather
than returning no result.

INFLUENCE OF TRIP LENGTH

We continue with an experiment that aims to help us
understand how good the provided preferred routes are for
different trip length intervals. Results are given in Fig-
ure 9(a). A higher percentage of matches are seen for longer
trips (∼95%). For short trips of length 2–10 kilometers, only
80% of the trips are matched. This mirrors the fact that, in
our data set, drivers follow more diverse routes for short
trips than for long trips.
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Figure 9. Match Per Trip Length (Length)

For the same set of test trips, we also check how they
match the routes provided by the Google Directions API (see
Figure 9(b)). This provides an understanding of how many

trips can match when no preferred route is available in the
trajectory data set. For each length interval, only 60–70% of
the trips are matched. A higher percentage is observed for
longer trips.

Further, we use the same test data set and consider
the trips using the Time Period-Based Most Frequent Path
(TPMFP) [11] approach (see Figure 10). This is the most
recent study that exploits user-generated GPS data to score
routes. In this approach, a so-called footmark graph is
created from trips that fit the provided time period and have
the given destination node. For cases where no traversals
in our data set fall into the temporal period and have the
required source and destination locations, it is not possible
to provide the user with a route. Such a result is marked as
”empty” in the graph.
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While comparing TPMFP with the route the test trip
represents, we distinguish two cases: exact match (Fig-
ure 10(a)), and match with similarity measures (Fig-
ure 10(b)). The first case, exact match, means that the
sequence of segments is the same. Here, for each length
range, a match is identified for about 55–60% of the trips.
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The highest percentage of trips (43%) that do not match is
observed for trips with lengths in the range 2–10 kilometers.
The results also show that due to the lack of GPS data,
the highest percentage of empty results are for trips in the
length range 20–350 kilometers. In the second case, we
compare routes using the defined similarity measures, i.e.,
the sequences of segments are almost the same. Here, for
each length range, 80% of the trips matches. Again, the
highest percentage of unmatched trips occurs for the 2–10
kilometers length range. When comparing cases (a) and (b),
we found that the most common error that TPMFP gives for
recommended routes is a short detour along the route. These
detours appear because the resulting route is formed from
parts of several routes that have a higher traversal rate.

From this experiment, it can be concluded that routes
recommended to users are taken more often by local drivers
when they are formed from previous traversals of drivers
that live in the same region than when they are provided by
the Google Directions API. When identifying a preferred
route, we make use of all trips, i.e., not only those that
fit the temporal pattern. Therefore, for the Length data set,
we do not get “empty” results as in the TPMFP approach.
Considering the same similarity measures, we get similar
result for trips in the 2–10 kilometers length range, but for
the other two ranges, we get better percentages of matched
trips.

The quality of a route is judged personally. It is difficult
to guess why some particular route is more appealing in
a particular region. But, assuming that local drivers have
knowledge of the local region, local drivers’ routes are most
likely also attractive to tourists and visitors.

Driver Based Evaluation

This study does not aim to make general conclusions
about all the drivers, but rather aims to offer insight into
the extent to which our system is able to provide routes to
these specific 5 drivers as new users, i.e., we consider the
case where data collected from other drivers is used in the
route identification process. Recall that for the test cases,
we identify a preferred route using a subset of available
trajectory data (see Algorithm 4). For this set of experiments,
we used α = β = 0.5.

As discussed in Section II-C, a preferred route is formed
using available full routes and sub-routes. We use the term
sub-route for a route that contains the source and destination,
but may start or end at different locations.

First, we study how the use of sub-routes influences the
preferred routes returned by the system. Figure 11 shows
the results of matched, unmatched, and empty routes for

different drivers using different data sets for preferred route
identification.

It is expected that the first set of bars in Figure 11, labeled
“source and dest.”, have the most empty routes. Here, we
require that the considered routes start and end at the source
and destination locations given in the query. Therefore, the
data considered is considerably smaller than when using sub-
routes. With the restrictions that a route should only start
(see the “source” bars) or end (see the “destination” bars),
we see an improvement in the preferred route availability.
The fewest empty routes occur when a preferred route is
identified using all available sub-routes. It is also observed
that the amount of unmatched routes increases when sub-
routes are considered. We feel that the use of sub-routes
represents a good trade-off considering the clear decrease in
empty routes.

While comparing the routes that drivers are taking against
the route provided by the Google Directions API (see
Figure 12(a)), we see almost the same results as for the
Length data set, i.e., 60–70% of the trips taken by drivers
match the routes provided by Google.

Table III
Driver SET, ANALYSIS OF UNMATCHED TRIPS

Driver # traversals input = true input = false

1 388 69% 31%

2 241 46% 54%

3 225 74% 26%

4 206 63% 37%

5 197 70% 30%

A preferred route is identified using past trips taken by
the users of the system. Thus, we want to check how
often a preferred route given to a driver is formed using
traversals taken by the driver him- or herself. Table III
gives details on the unmatched trips for the Driver data set.
The first column identifies a test driver. The second column
gives the number of unmatched cases for each driver. The
third column provides the percentage of unmatched cases
when the preferred route was formed using trips previously
taken by the test driver considered (input=true). The fourth
column provides the percentage of the opposite cases (the
test driver did not previously take a preferred route). The
table shows that in more than 50% of the cases (except for
Driver 2), the preferred route was formed using the driver’s
own past trips. It thus follows that drivers change routes
between specific source–destination pairs, i.e., a specific
driver does not always take the same route.

Further we study how fast a preferred route is available to
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a new user in the system. For this experiment, we calculate
the percentage of empty routes after every 200 trips for a
specific driver. Results are given in Figure 12(b).

Driver 1 has a low percentage of empty routes for the
first 200 traversals, but it increases substantially for the next
400 trips. Then a decrease is observed. Driver 2 first has
∼25% empty routes. The percentage subsequently varies in
the range 10–15%. Between 1,800 and 2,200, the percentage
starts to increase again. Driver 3 has peaks at 800 and 3,200,
in-between which the percentage is steadily decreasing. For
Driver 4, the empty route count varies in the range 6–9%
until a peak is observed at 2,400; later, it again decreases.
The steadiest graph is for Driver 5. One of the reasons
why there can be an increase of empty preferred routes
during the monitoring period is that drivers are going to
new destinations that are not covered with available GPS
data.

Figure 13 gives the results on matched and unmatched
trips per driver when the full framework is used. Here, when
a preferred route is not available using GPS data, a route
is retrieved using the Google Directions API. A match is
identified for more than 85% of the trips for each driver.
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Figure 13. Results Using Proposed Framework

IV. RELATED WORK

Trajectories in Routing Services

There have been several recent attempts at increasing
routing quality by employing knowledge of previous trips.

Yuan et al. [22] propose a service that uses taxi trajectory
data for route planning. This approach first constructs a time-
dependent landmark graph, where a node (i.e., a landmark)
is a road segment traversed frequently by taxis and an edge
is a trajectory. Given start and destination locations, the
two closest landmarks are identified, and a rough route (a
sequence of landmarks) is found. Then a refined route (a
concatenation of trajectories) connecting these landmarks
is identified. Users are presented with the fastest route
available. This study also includes a comparison with routes
from Google Maps. It is found that when using roads that
are used often by taxis, the travel time can be reduced by
up to 26%. This study focuses on travel time; the actual
routes taken are not studied. In contrast, our framework
does not target fastest routes. Rather, we identify routes that
are the most preferred by local drivers, i.e., have the most
different drivers and have high numbers of traversals. To
identify a preferred route, we also take into consideration
when the query was issued, so that the temporal pattern of
the suggested route also fits.

Chen et al. [7] present an algorithm that finds the most
popular routes from one location to another using historical
trajectory data. The authors suggest that this service is bene-
ficial for tourists who are unfamiliar with the surroundings.
The routes provided to the users are based on the travel

behaviors found in the data set used. A transfer network
is formed that contains transfer nodes that are significant
locations for the users. These can be either starts or ends
of trips, or they can be intersections of trajectories. A
recommended route is formed from a sequence of transfer
nodes that maximize the product of transfer probabilities.
The authors use Absorbing Markov Chains to measure the
popularity of a route. Our routes are formed from trips that
contain paths between the source and destination, i.e., they
are not formed from parts of multiple available routes, which
we find can result in unattractive routes.

A framework presented by Chang et al. [5] focuses
on the discovery of personalized routes. A road network
is constructed from segments that are identified from a
historical trajectory data set. Routes are synthesized by using
the most frequently traveled road segments in the trajectory
data set, and the top-k personalized routes are returned. If
no trajectory connects two frequently used road segments,
the shortest path between such segments is identified. In
our study, we present users with top-k preferred routes that
are generally not taken by the user. We also consider other
drivers taking the route.

A recent study [11] provides a new scoring method to
identify time-period based frequent paths. A route is formed
from possibly multiple different routes. Trajectories used for
scoring have to satisfy several constraints: they must contain
the destination node and must also start and end during
a provided time period. In contrast, we take parts of full
trajectories that contain both the source and destination given
by the user. This way, we make sure that a recommended
route is one that has actually been used by drivers. We also
do not only consider the number of available trajectories
in the dataset when scoring a route, but consider also how
many different drivers have taken the route.

Our experimental study includes comparisons with the
most popular routes (MPR) [7], the shortest route, and the
least number of road segments approach. The comparison is
made using 1 month of data from multiple source locations
to one destination location and encompasses 2,808 queries.
The results show that 80% of the queries provide different
results when using the different approaches. In our study,
we compare our results (preferred routes) using a simulated
feedback loop from the users, i.e., we compare with the
paths the test user actually took. We chose this comparison to
evaluate how good preferred routes are with respect to actual
driver behavior. Comparison against other similar methods
does not provide such input.

Trajectory Similarity

In our study, we use two representations of trajectories:
sequences of roads segments and sequences of geographical
points that form centerlines of road segments.

Existing approaches to trajectory comparison fall into
three categories.

The first category is sequence based. Comparison based
on Euclidean distance is sensitive to noise and cannot be
applied to sequences with different lengths [4], [9]. The
use of Dynamic Time Warping (DTW) distance [3], [8],
[16] enables comparison between sequences of different
lengths, but the mapping between sequences has to be
continuous and monotonic. Since GPS trajectories can have
gaps due to device malfunction, DTW approaches may not
give good similarity results. Longest Common Subsequence
(LCSS) [20], [21] is a more flexible similarity comparison
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technique because it allows to leave some points in the
sequences unmatched. Edit Distance on Real sequences
(EDR) [6] is a similar approach that takes into consideration
gaps by assigning penalties. It is based on edit distance on
strings and is suitable for comparison of trajectories with
substantial noise.

The second category is shape-based similarity mea-
sures [1], [10], [12]. These methods ignore the ordering of
the points in a trajectory. Alt et al. [1] use Fréchet distance
to compare trajectories. Pelekis et al. [12] study geometric
issues of trajectories and propose a set of trajectory distance
operators based on space, time, speed, and direction.

The third category considers trajectory similarity under
road network constraints [14], [15], [17], [18]. Here, raw
trajectory data must be transformed into a form that ensures
given motion restrictions. A spatial network can be repre-
sented as a directed graph. Therefore, a trajectory can be
represented as a sequence of timestamped graph nodes [18]
or a sequence of edges [14], [15], [17]. This typically calls
for map-matching, which makes the quality of the results
sensitive to the map-matching performance. Two network-
represented trajectories match if the graph nodes or edges
in the trajectories are in close proximity. Thus, trajectories
do not have to follow the same exact routes to match.

We base our trajectory comparison on LCSS because it
allows for gaps in the GPS data. We were satisfied with the
quality of the results after extensive visual inspection.

V. CONCLUSIONS AND FUTURE WORK

We present a routing service that utilizes trajectory data
collected from local drivers for identifying preferred routes
between source and destination locations. We present a set
of algorithms that detail how to utilize GPS data for the
route identification process.

The identified routes between a source–destination pair
are scored, and the top-k preferred routes are returned to the
user. We propose a flexible scoring function that takes into
consideration the number of traversals of a route, the number
of distinct drivers taking the route, and the time periods
when the traversals occurred. Each of these characteristics
influences the score of a route, and the degree of influence
can be adjusted according to the needs of the routing service.

We present an in-depth experimental evaluation done
using two different test data sets: a set of trips selected
randomly from different length ranges, and a set of trips
taken by several pre-selected drivers. Among other studies,
we report on how often the provided preferred route matches
the route that the driver actually took, and we also compare
with the routes recommended by the Google Directions
API and the TPMFP [11] approach. We find that 60–70%
of the routes recommended by the Google Directions API
match the users’ actual choice of routes, while our approach
reaches about 90%. The TPMFP approach achieves some
80%; and since this approach uses only the trips that fit
the query’s temporal pattern, no route is recommended for
some 10% of the directions queries. Our approach avoids
this drawback because it utilizes all the available data. We
believe that this demonstrates that the proposal is effective
and represents an improvement over the state-of-the-art.

The evaluation of the proposed framework shows that
the use of user-generated GPS data can indeed improve the
quality of a routing service. Thus, it is relevant to consider
additional aspects of the framework. One such aspect is
the efficiency of route identification process. Specifically,

the LCSS technique. Another aspect is the inclusion of
personalized routes into the system. It is possible that a
specific driver prefers to take different routes during different
times of the day. Yet another aspect is the support for routes
that are constructed from sub-routes. This is of interest
because it can yield many more routes for recommendation.
However, there are cases where a route resulting from
the concatenation of several routes is not unattractive. For
example, the connectivity at road intersections has to be
considered carefully. A good first step in this direction is
to study different techniques experimentally.
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