
Efficient Metric Indexing for Similarity Search
Lu Chen #1, Yunjun Gao #2, Xinhan Li #3, Christian S. Jensen †4, Gang Chen #5

College of Computer Science, Zhejiang University, Hangzhou, China

Department of Computer Science, Aalborg University, Denmark
{1 luchen, 2 gaoyj, 3 lixh, 5 cg}@cs.zju.edu.cn 4 csj@cs.aau.dk

Abstract—The goal in similarity search is to find objects

similar to a specified query object given a certain similarity
criterion. Although useful in many areas, such as multimedia
retrieval, pattern recognition, and computational biology, to
name but a few, similarity search is not yet supported well by
commercial DBMS. This may be due to the complex data types
involved and the needs for flexible similarity criteria seen in real
applications. We propose an efficient disk-based metric access
method, the Space-filling curve and Pivot-based B+-tree (SPB-tree),
to support a wide range of data types and similarity metrics. The
SPB-tree uses a small set of so-called pivots to reduce
significantly the number of distance computations, uses a space-
filling curve to cluster the data into compact regions, thus
improving storage efficiency, and utilizes a B+-tree with
minimum bounding box information as the underlying index.
The SPB-tree also employs a separate random access file to
efficiently manage a large and complex data. By design, it is easy
to integrate the SPB-tree into an existing DBMS. We present
efficient similarity search algorithms and corresponding cost
models based on the SPB-tree. Extensive experiments using real
and synthetic data show that the SPB-tree has much lower
construction cost, smaller storage size, and can support more
efficient similarity queries with high accuracy cost models than is
the case for competing techniques. Moreover, the SPB-tree scales
sublinearly with growing dataset size.

I. INTRODUCTION

The objective of similarity search is to find objects similar
to a given query object under a certain similarity criterion.
This kind of functionality has been used in many areas of
computer science as well as in many application areas. For
instance, in pattern recognition, similarity queries can be used
to classify a new object according to the labels of already
classified nearest neighbors; in multimedia retrieval, similarity
queries can be utilized to identify images similar to a specified
image; and in recommender systems, similarity queries can be
employed to generate personalized recommendations for users
based on their own preferences.

Considering the wide range of data types in the above
application scenarios, e.g., images, strings, and protein
sequences, a generic model is desirable that is capable of
accommodating not just a single type, but a wide spectrum. In
addition, the distance metrics for comparing the similarity of
objects, such as cosine similarity used for vectors, and edit
distance used for strings, are not restricted to the Euclidean
distance (i.e., the L2-norm). To accommodate a wide range of
similarity notions, we consider similarity queries in generic
metric spaces, where no detailed representations of objects are
required and where any similarity notion that satisfies the
triangle inequality can be accommodated.

A number of metric access methods exist that are designed
to accelerate similarity search in generic metric spaces. They
can be generally classified into two categories, namely,
compact partitioning methods [12], [15], [17], [21] and pivot-
based methods [9], [20], [27], [42]. Compact partitioning
methods divide the space into compact regions and try to
discard unqualified regions during search, while pivot-based
methods store pre-computed distances from each object in the
database to a set of pivots. Given two objects q and o, the
distance d(q, o) cannot be smaller than |d(q, p)  d(o, p)| for
any pivot p, due to the triangle-inequality. Hence, it may be
possible to prune an object o as a match for q using the lower
bound value |d(q, p)  d(o, p)| instead of calculating d(q, o).
This capability makes pivot-based approaches outperform
compact partitioning methods in terms of the number of
distance computations, one of the key performance criteria in
metric spaces. Nonetheless, pivot-based approaches need large
space to store pre-computed distances, and their I/O costs are
often high because the data needed to process a similarity
query is not well clustered. Due to the above, we propose a
hybrid method that integrates the compact partitioning into a
pivot-based approach.

To design an efficient metric access method (MAM), three
challenging issues have to be addressed. The first is how to
support efficient similarity retrieval in terms of the number of
distance computations (i.e., CPU cost) and the number of page
accesses (i.e., I/O cost). We tackle this by identifying and using
a small set of effective pivots for reducing significantly the
number of distance computations during search, and we utilize
a space-filling curve (SFC) to cluster objects into compact
regions, to further boost performance. The second challenge is
to achieve low-cost index storage, construction, and
manipulation. To reduce the storage cost, we store multi-
dimensional pre-computed distances as one-dimensional
integers using the SFC, and we employ a B+-tree to support
efficient index construction and manipulation. The third
challenge is how to efficiently manage a large set of complex
objects (e.g., DNA, images). Towards this, we develop a disk-
based MAM that maintains the index and the data separately,
to ensure the efficiency of the index. The resulting proposal is
called the Space-filling curve and Pivot-based B+-tree (SPB-
tree). It keeps complex objects in a separate random access
file (RAF) and uses a B+-tree with additional minimum
bounding box (MBB) to index objects after a two-stage pivot
and SFC mapping. The SPB-tree is generic, as it does not rely
on the detailed representations of objects, and it can support
any distance notion that satisfies the triangle inequality. To
sum up, the key contributions are as follows:

†

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015591

JacobN
Text Box
©2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

 We develop the SPB-tree, which integrates the compact
partitioning with a pivot-based approach. The tree
utilizes a space-filling curve and a B+-tree to efficiently
index pre-computed distances and to cluster objects into
compact regions.

 We propose an efficient pivot selection algorithm for
identifying a small set of effective pivots in order to
reduce significantly the number of distance computations
during the search.

 We present efficient similarity search algorithms,
including range and k nearest neighbor (kNN) queries,
and we provide corresponding cost models.

 We conduct extensive experiments using both real and
synthetic data sets to compare the SPB-tree against other
MAMs, finding that the SPB-tree has much lower
construction and storage cost, and supports more efficient
similarity queries with high accuracy cost models. Also,
the SPB-tree scales well with the data size.

The rest of this paper is organized as follows. Section II
reviews related work. Section III presents the problem
statement. Section IV describes the SPB-tree and the pivot
selection algorithm. Section V details the similarity query
algorithms and their corresponding cost models. Considerable
experimental results and our findings are reported in Section
VI. Finally, Section VII concludes the paper with some
directions for future work.

II. RELATED WORK

In this section, we survey previous work on metric access
methods and pivot selection algorithms.

A. Metric Access Methods

Two broad categories of MAM exist, namely, compact
partitioning methods and pivot-based methods.

Compact partitioning methods partition the space as
compact as possible and try to prune unqualified regions
during search. BST [22], [32] is a binary tree built recursively.
It uses a center with a covering radius to represent a partition.
GHT [38] uses two centers for each tree node, and it divides
the space according to which of the two centers is closer to
every object. GANT [6] is an m-way generalization of GHT. It
uses a Voronoi-like partitioning of the space, and a dynamic
structure EGANT has also been proposed [30]. SAT [29] is
also based on Voronoi diagrams, but unlike GHT and GNAT,
it attempts to approximate the structure of a Delaunay graph.
Dynamic and secondary memory extensions of SAT are also
available [8], [31]. Next, the M-tree [15] is a height-balanced
tree that is optimized for secondary memory. It is the first
dynamic MAM, and it supports insertion and deletion. Several
variants of M-trees, such as the Slim-tree [21], DBM-tree [41],
and CM-tree [3], try to reduce the overlap among nodes and to
further compact each partition. The D-index [17] is a multi-
level structure that hashes objects into buckets, which are
search-separable. LC [12] employs a list of clusters, which
trades construction time for query time. Since LC is an
unbalance structure, to index an object set O in a metric space,
its construction cost increases to O(|O|2) from O(|O| log|O|) in

high dimensional spaces. Finally, BP [1] is an unbalanced tree
index that integrates disjoint and non-disjoint paradigms.

Pivot-based methods store pre-computed distances from
every object in the database to a set of pivots and then utilize
these distances and the triangle inequality to prune objects
during search. AESA [40] uses a pivot table to preserve the
distances from each object to other objects. In order to save
main-memory storage for the pivot table, several variants have
been proposed. For example, LAESA [27] only keeps the
distances from every object to selected pivots. EP [35] selects
a set of essential pivots (without redundancy) covering the
entire database. Clustered Pivot-table [28] clusters the pre-
computed distances to further improve the query efficiency.
BKT [9] is a tree structure designed for discrete distance
functions. It chooses a pivot as the root, and puts the objects at
distance i to the pivot in its i-th sub-tree. In contrast to BKT,
where pivots at individual levels are different, FQT [4] and
FQA [13] use the same pivot for all nodes at the same level of
the tree. VPT [42] is designed for continuous distance
functions, and it has also been generalized to m-ary trees,
yielding MVPT [5]. The Omni-family [20] employs selected
pivots together with existing structures (e.g., the R-tree) to
index pre-computed distances.

Recently, hybrid methods that combine compact
partitioning with the use of pivots have appeared. The PM-tree
[36] uses cut-regions defined by pivots to accelerate similarity
queries on the M-tree. In particular, cut-regions can be used to
improve the performance of metric indexes with simple ball-
regions [25]. The M-Index [33] generalizes the iDistance [19]
technique for general metric spaces, which compacts the
objects by using pre-computed distances to their closest pivots.

For similarity queries, although pivot-based methods
clearly outperform compact partitioning methods in terms of
the number of distance computations (i.e., the CPU cost) [2],
[13], [20], [28], pivot-based approaches generally have high
I/O cost since objects are not well clustered on disk. Moreover,
the space requirements for both pivot-based and hybrid
methods to store pre-computed distances are high, resulting in
large indexes and considerable I/O.

B. Pivot Selection Algorithms

The efficiency of pivot-based methods depends on the
pivots used. Existing work is based on two observations: (1)
good pivots are far away from other objects, and (2) good
pivots are far away from each other. For instance, FFT [16]
tries to maximize the minimum distance between pivots. HF
[20] selects pivots near the hull of a dataset. SSS [7], [11]
dynamically selects pivots, if their distances to already
selected pivots exceed   d+, where d+ is the maximal
distance between any two objects and parameter  controls
the density of pivots with which the space is covered. These
pivot selection approaches have low time complexities, but
they do not perform the best. The reason is that, as pointed out
in [10], good pivots are outliers, but outliers are not always
good pivots.

To achieve strong pruning power using a small set of pivots,
several criteria have been proposed for pivot selection. Bustos
et al. [10] maximize the mean of the distance distribution in

592

the mapped vector space. Hennig and Latecki [18] select
pivots using a loss measurement, i.e., the nearest neighbor
distance in the mapped vector space. Venkateswaran et al. [39]
choose pivots that maximize pruning for a sample of queries.
Leuken and Veltkamp [24] select pivots with minimum
correlation to ensure that objects are evenly distributed in the
mapped vector space. More recently, PCA [26] has been
developed for pivot selection. As will be discussed in Section
IV.B, query efficiency relies on the similarity between the
original metric space and the mapped vector space. Therefore,
we aim to maximize the similarity in order to achieve better
search performance. The success of this approach is studied in
Section VI.A.

III. PROBLEM FORMULATION

In this section, we present the characteristics of the metric
space and the definitions of similarity queries. Table I lists the
notations frequently used throughout this paper.

A metric space is a tuple (M, d), in which M is the domain
of objects and d is a distance function which defines the
similarity between the objects in M. In particular, the distance
function d has four properties: (1) symmetry: d(q, o) = d(o, q),
(2) non-negativity: d(q, o) ≥ 0, (3) identity: d(q, o) = 0 iff q =
o, and (4) triangle inequality: d(q, o) ≤ d(q, p) + d(p, o). Based
on the properties of the metric space, we formally define two
types of similarity queries: range query and k nearest neighbor
(kNN) query.

Definition 1 (Range Query). Given an object set O, a query
object q, and a search radius r in a generic metric space, a
range query finds the objects in O that are within distance r of
q, i.e., RQ(q, r) = {o| o  O  d(q, o)  r}.

Definition 2 (kNN Query). Given an object set O, a query
object q, and an integer k in a generic metric space, a kNN
query finds k objects in O most similar to q, i.e., kNN(q, k) =
{R | R  O  |R| = k  r  R, o  O  R, d(q, r) ≤ d(q, o)}.

Consider an English word set O = {“citrate”, “defoliates”,
“defoliated”, “defoliating”, “defoliation”}, for which the edit
distance is the similarity measurement. The range query
RQ(“defoliate”, 1) retrieves the words in O with distances to
“defoliate” bounded by 1. The query result is {“defoliates”,
“defoliated”}. Next, the kNN query kNN(“defoliate”, 2)

retrieves two words in O that are most similar to “defoliate”,
yielding the result {“defoliates”, “defoliated”}. It is worth
noting that kNN(q, k) may be not unique due to the distance tie.
Nonetheless, the target of our proposed algorithms is to find
one possible instance.

The behavior of similarity search on a dataset can be
estimated using the dimensionality of the dataset. Since metric
datasets do not always have an embedded dimensionality (e.g.,
a word set), the intrinsic dimensionality can be employed. The
intrinsic dimensionality of a metric dataset can be calculated
as  = 2/22, in which  and  are the mean and variance of
the pairwise distances in the dataset [13]. We shall see in
Section IV.B that the appropriate number of the pivots
selected is also related to the intrinsic dimensionality.

IV. THE SPB-TREE

In this section, we first present the construction framework
for the SPB-tree, and then propose a pivot selection algorithm
and an index structure with bulk-loading, insertion, and
deletion operations.

A. Construction Framework

As shown in Figure 1, the construction framework of the
SPB-tree is based on a two-stage mapping. In the first stage,
we map the objects in a metric space to data points in a vector
space using well-chosen pivots. The vector space offers more
freedom than the metric space when designing search
approaches, since it is possible to utilize the geometric and
coordinate information that is unavailable in the metric space.
In the second stage, we use the SFC to map the data points in
the vector space into integers in a one-dimensional space.
Finally, a B+-tree with MBB information is employed to index
the resulting integers.

The SPB-tree utilizes the B+-tree with MBB information to
index the SFC values of objects after a pivot mapping. This is
attractive because (1) the use of an SFC can cluster objects
into compact regions, reducing the amount of storage needed
for pre-computed distances, and because (2) bulk-loading,
insertion, and deletion operations on the SPB-tree are simple
and effective since they rely on the manipulation of the B+-
tree. Although the ZBtree [23], [34] that combines a Z-curve
and a B+-tree can be used to index objects after the pivot
mapping, the ZB-tree is designed with a special SFC suitable
for skyline queries; whereas any SFC (e.g., a Hilbert curve
which offers better proximity preservation than Z-curve, as to
be verified in Section VI.A) is applicable for the SPB-tree.

Pivot Mapping. Given a pivot set P = {p1, p2, …, pn}, a
general metric space (M, d) can be mapped to a vector space
(Rn, L). Specifically, an object o in a metric space is
represented as a point (o) = d(o, p1), d(o, p2), …, d(o, pn) in

TABLE I
SYMBOLS AND DESCRIPTION

Notation Description
q, O a query object, the set of objects in a generic metric space
P the set/table of pivots
o, p an object in O, a pivot in P
|O|, |P| the cardinality of O, the cardinality of P
d() the distance function for the generic metric space
D() the L-norm metric for the mapped vector space
d+ the maximal distance in a generic metric space
(o) the data point for o after mapping to the vector space
 the value used to approximate (o) for the real numeric

domain of d()
SFC((o)) the space-filling curve value of an object o
RQ(q, r) the result set of a range query with a search radius r
kNN(q, k) the result set of a kNN query w.r.t. q
RR(r) the range region with a range radius r

Objects

Data points in a
vector space

Integers in one-
dimensional space

SPB-tree

Pivot mapping

Space filling
curve mapping

B+-tree indexing

Fig. 1. The construction framework of an SPB-tree

593

the vector space. For instance, consider the example in Figure
2, where O = {o1, o2, …, o9} and L2-norm is used. If P = {o1,
o6}, O can be mapped to a two-dimensional vector space, in
which the x-axis represents d(oi, o1) and the y-axis represents
d(oi, o6), 1  i  9.

Given objects oi, oj, and p in a metric space, d(oi, oj)  |d(oi,
p) – d(oj, p)| according to the triangle inequality. Hence, for a
pivot set P, d(oi, oj)  max{|d(oi, pi) – d(oj, pi)| | pi  P} =
D((oi), (oj)), in which D() is the L-norm. Clearly, we can
conclude that the distance in the mapped vector space is a lower
bound on that in the metric space. Take the example depicted in
Figure 2 again, d(o2, o3) > D((o2), (o3)) = 2.

Space-Filling Curve Mapping. Given a vector (o) after
pivot mapping and assuming that the range of d() in the
metric space is discrete integers (e.g., edit distance), then SFC
can directly map (o) to an integer SFC((o)). Consider the
SFC mapping examples in Figure 3, where SFC((o2)) = 18
for the Hilbert curve and SFC((o2)) = 19 for the Z-curve.
Note that, for simplicity, we use the Hilbert curve in the rest
of this paper.

Considering the range of d() in a metric space may be
continuous real numbers, -approximation is utilized to
partition the real range into discrete integers, i.e., 0, 1, …,
d+/, where d+ is the maximal distance in the metric space.
Thus, the whole vector space can be partitioned into cells.

Then, given an , (o) can be approximated as d(o, p1)/,
d(o, p2)/, …, d(o, pn)/. As to be verified in Section VI.A,
the value of  might affect the query efficiency. If the value of
 is too big, the average collision probability Pr(collision) =

 that different objects share the same approximation
increases, resulting in more distance computations during the
search. Instead, if a small  is used, the transformed vector
space becomes too sparse, i.e., the vast majority of the cells
must be empty, incurring large search space. In the rest of this
paper, for simplify, we assume that the range of d() is discrete
integers, as the techniques can be easily adapted to a
continuous real range using -approximation.

To design efficient metric access methods for similarity
queries, we have identified two important issues that have to
be addressed: (1) How should we pick pivots to perform a
pivot mapping? (2) Which index structures can be used to
support metric similarity queries? We discuss the first issue in
Section IV.B and turn to the second issue in Section IV.C.

B. Pivot Selection

The selected pivots influence the search performance
because the lower-bound distances computed using the pivots

are utilized for pruning during the search. In order to achieve
high performance, the lower-bound distances should be close
to the actual distances, i.e., the mapping to the vector space
should preserve the proximity from the metric space. Hence,
the quality of a pivot set can be evaluated as the similarity
between the mapped vector space and the original metric
space, as stated in Definition 3.

Definition 3 (Precision). Given a set OP of object pairs in a
metric space, the quality of a pivot set P is evaluated as the
average ratio between the distances in the vector space and the
distances in the metric space, i.e.,

.

The more pivots in P, the better the pruning capability;
however, the cost of using the transformed objects also
increases, as presented in Section IV.A. The more pivots there
are in P, the larger D((oi), (oj)) will be, then D((oi), (oj))
approaches d(oi, oj), and hence, precision(P) approaches 1.
Therefore, we can discard more objects using a larger pivot
set. On the other hand, the number of distance computations
between the query object and the pivots increases as the
number of pivots grows. Also, the cost (e.g., D((oi), (oj))
computation cost) to prune unqualified objects increases. Thus,
as pointed out in related work [13], [20], to achieve high
query efficiency, the appropriate number of pivots is related to
the intrinsic dimensionality of the dataset, which is also
confirmed in Section VI.A.

Determining a pivot set P (from O) with a fixed size that
maximizes precision(P) has time complexity O(),

which is costly. To reduce significantly the time complexity,
we propose an HF based Incremental pivot selection
algorithm (HFI), which first employs the HF algorithm [20] to
obtain outliers as candidate pivots CP and then incrementally
selects effective pivots from CP. The underlying rationale is
that good pivots are usually outliers, but outliers are not
always good pivots [10]. Hence, the time complexity of HFI is
O(|P|  |CP|), in which the cardinality of CP is small and is
only related to the distribution of the object set. We fix |CP| at
40 (as in reference [26]), which is enough to find all outliers
in our experiments.

Algorithm 1 depicts the pseudo-code of HFI. First, HFI
invokes HF algorithm to obtain a candidate pivot set CP from
O (line 1). Thereafter, it picks incrementally pivots from CP
(lines 2-5). Initially, the pivot set P is empty. Then, a while-
loop is performed until |P| = n, i.e., n pivots are selected. In
each iteration, HFI chooses a pivot p from CP to maximize

000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

o1

o2

o4 o3
o9

o5

o6

o7

 000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

o1

o2

o4 o3
o9

o5

o6

o7

(a) Hilbert curve mapping (b) Z-curve mapping

Fig.3. Space-filling curve mapping

Pivot
mapping

o7

o2

o3o4

o5 (o8)

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6

o1

o2
o3

o4
o5

o6

o7

x

y
o8

o9

o9

1

Fig. 2. Pivot mapping

594

precision(P ∪{p}) (line 4) and updates P to P ∪{p} and CP
to CP – {p} (line 5). Finally, the pivot set P is returned.

Note that the HFI algorithm does not need to take the whole
object set as an input, and it works well using only a sampled
object set. Moreover, theoretically, pivots do not need to be
part of the object set. Consequently, objects can be inserted or
deleted without changing the pivot set.

C. Indexing Structure

An SPB-tree used to index an object set in a generic metric
space contains three parts, i.e., the pivot table, the B+-tree, and
the RAF. Figure 4 shows an SPB-tree example to index an
object set O = {o1, …, o9} in Figure 2. A pivot table stores
selected objects (e.g., o1 and o6) to map a metric space into a
vector space. A B+-tree is employed to index the SFC values
of objects after a pivot mapping. Each leaf entry in the leaf
node (e.g., N3, N4, N5, and N6) of the B+-tree records (1) the
SFC value key, and (2) the pointer ptr to a real object, which
is the address of the actual object kept in the RAF. As an
example, in Figure 4, the leaf entry E7 associated with the
object o2 records the Hilbert value 18 and the storage address
0 of o2. Each non-leaf entry in the root or intermediate node
(e.g., N0, N1, and N2) of the B+-tree records (1) the minimum
SFC value key in its subtree, (2) the pointer ptr to the root
node of its subtree, and (3) the SFC values min and max for
a1, a2,…, a|P| and b1, b2,…, b|P|, to represent the MBB Mi
(= {[ai, bi] | i  [1, |P|]}) of the root node Ni of its subtree.
Specifically, a MBB Mi denotes the axis aligned minimum
bounding box to contain all (o) with SFC((o))  Ni. For

instance, the non-leaf entry E3 uses min (= 19) and max (= 23)
to represent the M3 of N3.

Unlike compact partitioning methods (e.g., M-tree), which
store actual objects in the index directly since the routing
objects are needed for pruning unqualified partitions, SPB-tree
uses a RAF to keep objects separately and supports both
random access and sequential scan, in order to enhance the
efficiency for managing the complex objects. Note that, RAF
is sorted to store the objects in ascending order of SFC values
as they appear in the B+-tree. Each RAF entry records (1) an
object identifier id, (2) the length len of the object, and (3) the
real object obj. Here, len is recorded to support efficient
storage management, because the object size may be different
in generic metric spaces. As an example, words in a dictionary
may have different lengths, e.g., the length of “word” is 4, and
the length of “dictionary” is 10. Also, in Figure 4, the RAF
entry associated with an object o2 records the object identifier
2, the object length 8, and the real object o2, respectively.

Bulk-loading Operation. We develop a bulk-loading
operation, with the pseudo-code of Bulkload SPB-tree
Algorithm (BA) shown in Algorithm 2. First, HFI (Algorithm
1) is called to get a pivot table P. Then, BA computes (o) for
every object o  O using P. After that, BA computes and sorts
the SFC values for all objects, and then, it invokes build_RAF
function to build the RAF. Next, the bulkload operation of the
B+-tree can be directly employed to build B+-tree for
{SFC((o)), ptr(o) | o  O}) and meanwhile compute the
MBB for every node. Finally, an SPB-tree is returned.

Insertion/Deletion Operation. For a new object o to be
inserted or deleted, we first compute (o) using P, and then
get its corresponding SFC((o)). Thereafter, the leaf entry e (=
SFC((o)), ptr(o)) and o are inserted into or deleted from the
B+-tree and the RAF, respectively. Finally, the MBBs of e’s
ancestors are updated if necessary. Note that, the insertion or
deletion may result in page splits or merges of the B+-tee and
RAF. Thus, the corresponding MBBs are updated if necessary.

V. SIMILARITY SEARCH

In this section, we propose efficient algorithms for
processing similarity queries based on the SPB-tree, and then
derive their corresponding cost models.

A. Range Query

Given a metric object set O, a range query finds the objects
in O with their distances to a specified query object q bounded
by a threshold r, i.e., a range query retrieves the objects
enclosed in the range region that is an area centered at q with
a radius r. Consider, for example, Figure 5(a), where a circle

Algorithm 1 HF based Incremental Pivot Selection Algorithm (HFI)
 Input: a set O of objects, the number n of pivots
 Output: a set P of pivots // |P| = n
 1: CP = HF(O, cp_scale) // get a candidate pivot set CP

with |CP| = cp_scale
 2: P = 
 3: while |P| < n do
 4: select p from CP with the maximal precision(P ∪{p})
 5: P = P ∪{p} and CP = CP – {p}
 6: return P

18 20 30 31 53 55

18

o2o22 8 RAFo1 o4 o3 o9 o5 o6

55 56

o8 o7

60

id len obj

Pivot table

id object
1
6

o1

o6
key ptr
18 0

30 53 55

18 53M1 M2

M4 M5 M6

key ptr
18 19 23

min max

N0

N1

N3

N2

N3 N4 N5 N6

E3 E4
M3

E1 E2

E5 E6

E7 E8 E9 E10 E11 E12 E13 E14 E15

(a) The SPB-tree structure

o7

o2 o3o4

o5 (o8)

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6
y

o9

x

M1

M2

M3

M4

M5

M6

o1

o2

o4 o3

o9

o5

o6

o7

0
1 2

3 4 5
67

8 9

101112

1314

15
16 17

19
23

2221

24

25 26

27
2829

32 33min

max

34

M3

35
36

37 38

39 40

41 42

43
4445

46 47

48
4950

5152

54

57
58 59

61 62

63 M2

min

max

(b) MBBs of an SPB-tree (c) The MBB representation

Fig. 4. Example of an SPB-tree

Algorithm 2 Bulkload SPB-tree Algorithm (BA)
 Input: a set O of objects, the number n of pivots
 Output: an SPB-tree
 1: P = HFI(O, n) // see Algorithm 1
 2: compute {(o) | o  O} using P
 3: compute and sort SFC values{SFC((o)) | o  O}
 4: build_RAF(O) // build the RAF in ascending order of SFC values
 5: bulkload-B+-tree({SFC((o)), ptr(o) | o  O})
 6: return SPB-tree

595

denotes a range region, and RQ(q, 2) = {o1, o2, o3, o4}. Given
a pivot set P, the range region can also be mapped into a
vector space. For instance, the thick black rectangle in Figure
5(b) represents the mapped range region using P = {o1, o6}.
To obtain RQ(q, r), we only need to verify the objects o whose
(o) are contained in the mapped range region, as stated below.

Lemma 1. Given a pivot set P, if an object o is enclosed in
RQ(q, r), then (o) is certainly contained in the mapped range
region RR(r), where RR(r) = {s1, s2, …, s|P| | 1  i  |P|  si 
0  si  [d(q, pi) – r, d(q, pi) + r]}.

Proof. Assume, to the contrary, that there exists an object o
 RQ(q, r) but (o)  RR(r), i.e.,  pi  P, d(o, pi) > d(q, pi) +
r or d(o, pi) < d(q, pi) – r. According to the triangle inequality,
d(q, o)  |d(q, pi) – d(o, pi)|. If d(o, pi) > d(q, pi) + r or d(o, pi)
< d(q, pi) – r, then d(q, o)  |d(o, pi) – d(q, pi)| > r, which
contradicts with our assumption. Consequently, the proof
completes. 

Based on Lemma 1, if the MBB of a node N does not
intersect with RR(r), we can discard N, in which MBB can be
easily obtained by using SFC values min and max stored in the
SPB-tree. Considering the example range query depicted in
Figure 5 with its corresponding SPB-tree illustrated in Figure
4, N6 can be pruned as M6  RR(r) = .

Lemma 1 is used to avoid distance computations for the
objects not contained in RQ(q, r). Nonetheless, we still have
to verify all the objects o whose (o) are enclosed in RR(r). To
this end, we develop Lemma 2 to further avoid unqualified
distance computations during the verification.

Lemma 2. Given a pivot set P, for an object o in O, if there
exists a pivot pi ( P) satisfying d(o, pi)  r – d(q, pi), then o is
certainly included in RQ(q, r).

Proof. Given a query object q, an object o, and a pivot pi,
d(q, o)  d(o, pi) + d(q, pi) due to the triangle inequality. If d(o,
pi)  r – d(q, pi), then d(q, o)  r – d(q, pi) + d(q, pi) = r. Thus, o
is for sure contained in RQ(q, r), which completes the proof. 

Back to the example shown in Figure 5, where O = {o1, …,
o9} and P = {o1, o6}. Suppose r = 3, for an object o2, there
exists a pivot p1 (= o1), which holds that d(o2, p1) = r – d(q, p1).
Hence, o2 is certainly included in RQ(q, 3) without any further
distance computation of d(q, o2).

The pseudo-code of Range Query Algorithm (RQA) is
depicted in Algorithm 3. First, RQA computes (q) using a
pivot table P. Then, it calls a function ComputeRR to obtain
RR(r). Next, it pushes the root node of a B+-tree into a heap H,

and a while-loop (lines 4-23) is performed until H is empty.
Each time, RQA pops the top node N from H. If N is a non-
leaf node, RQA pushes all its sub nodes e.ptr (e  N) with
MBB(e.ptr)  RR(r)   into H (lines 7-9). Otherwise (i.e., N
is a leaf node), if MBB(N)  RR(r), for each entry in N,
VerifyRQ is utilized to determine whether RQA inserts the
corresponding object into RQ(q, r). In order to achieve the
lowest CPU time, i.e., minimize the cost of the transformation
between (o) and SFC((o)), if the number of SFC values
contained in the intersected region RR(r)  MBB(N) is smaller
than that of entries in N, RQA first invokes a function
computeSFC to obtain S that includes all SFC values in the
intersected region in ascending order (line 15), and then calls
VerifyRQ for each entry e ( N) with e.key  S (lines 16-20);
otherwise, VerifyRQ is invoked for every entry in N (lines 22-
23), where unqualified objects (i.e., (o)  RR(r)) need not be
verified due to Lemma 1 (line 25). Finally, the final query
result set RQ(q, r) is returned (line 24).

Example 1. We illustrate RQA using the example depicted
in Figure 5 with its SPB-tree in Figure 4, and suppose r = 2.
Initially, RQA computes (q) = (2, 5) using P and gets RR(2).
It then pushes a root node N0 into H, and pops N0. As N0 is a
non-leaf node, its sub-nodes N1 and N2 are pushed into H due
to M1 and M2 are intersected with RR(2). Next, similarly, it
pops N1 and pushes N3 and N4 into H. Thereafter, N3 is popped.
Since N3 is a leaf node and M3  RR(2), RQA calls VerifyRQ
to insert o1 and o2 into RQ(q, 2) due to Lemma 2 and d(q, o2)
< 2, respectively. The algorithm proceeds in the same manner

o1

o2

o4

o5

o6
o7

o8

o9

q

r

o3

o7

o3o4

o5 (o8)

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6
y

o9

x

M1

M2

M3

M4

M5

M6

o2

q

 000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

o1

o2

o4 o3
o9

o5

o6

o7

q

(a) Metric space (b) Vector space (c) Hilbert curve

Fig. 5. Illustration of RQ(q, r)

Algorithm 3 Range Query Algorithm (RQA)
 Input: a query object q, a radius r, an object set O indexed by a SPB-tree
 Output: the result set RQ(q, r) of a range query
 1: compute (q) using a pivot table P // (q) = d(q, pi) | pi  P
 2: RR(r) = ComputeRR((q), r) // get RR(r)
 3: push the root node of a B+-tree into a min-heap H
 4: while H   do
 5: de-heap the top node N from H
 6: if N is a non-leaf node then
 7: for each entry e in N do
 8: if MBB(e.ptr)  RR(r)  
 9: push e.ptr into H
10: else // N is a leaf node
11: if MBB(N)  RR(r) then
12: for each entry e in N do
13: VerifyRQ(e, false) // verify e
14: else if |RR(r)  MBB(N) | < |N| then
15: S = computeSFC(RR(r)  MBB(N))
16: s = S.get_first() and e = N.get_first()
17: while s  NULL and e  NULL do
18: if e.key = s then VerifyRQ(e, false) and e = N.get_next()
19: else if e.key > s then s = S.get_next()
20: else e = N.get_next()
21: else // |RR(r)  MBB(N) |  |N|
22: for each entry e in N do
23: VerifyRQ(e, true)
24: return RQ(q, r)

 Function: VerifyRQ(e, flag)
25: if flag and (o)  RR(r) then return // (o) is obtained by e.key
26: if the condition of Lemma 2 satisfies then
27: insert e.ptr into RQ(q, r) and return
28: if d(q, e.ptr)  r then
29: insert e.ptr into RQ(q, r)

596

until H is empty, with the final query result set RQ(q, 2) = {o1,
o2, o3, o4}. 

B. k Nearest Neighbour Search

Given an object set O in a metric space, a kNN query finds
from O the k NNs of a specified query object q. For instance,
in Figure 6, the result set kNN(q, 3) = {o3, o2, o4} of a 3NN
query. In general, the kNN query is a little tricker than range
query. In order to minimize the kNN query cost, our kNN
Query Algorithm (NNA) follows an incremental traversal
paradigm, i.e., NNA visits the B+-tree entries and verifies
corresponding objects in ascending order of their minimum
distances to q in the mapped vector space until k NNs are
found. Moreover, to avoid unnecessary entry accesses, a
pruning rule is developed as follows.

Lemma 3. Given a query object q and a B+-tree entry E, E
can be safely pruned if MIND(q, E) ≥ curNDk, where MIND(q,
E) denotes the minimum distance between q and E in the
mapped vector space and curNDk represents the distance from
q to the current k-th NN.

Proof. As pointed out in Section IV.A, the distance in the
mapped vector space is the lower bound of that in the original
metric space. Thus, mind(q, E) ≥ MIND(q, E), with mind(q, E)
denoting the minimal distance between q and any object
contained in E under the original metric space. If MIND(q, E)
≥ curNDk, we can get that mind(q, E) ≥ curNDk. Hence, E can
be discarded safely, and the proof completes. 

Note that, for Lemma 3, curNDk is obtained and updated
during kNN search. For example, as depicted in Figure 6 with
its corresponding SPB-tree in Figure 4, assume that curNDk =
1, E2 can safely pruned as MIND(q, E2) > 1. Due to Lemma 3,
kNN search can stop when visiting the entry E that satisfies
the early termination condition, i.e., MIND(q, E) ≥ curNDk.
Hence, NNA is optimal in the number of distance
computations, since it only needs to search in RR(NDk), as
stated in Lemma 4.

Lemma 4. NNA has to evaluate the objects o having (o) 
RR(NDk) only once, in which NDk is the k-th NN distance.

Proof. Assume, to the contrary, NNA visits an object o
having (o)  RR(NDk), i.e., MIND(q, o) > NDk. Since NNA
follows an incremental traversal manner, all the objects o
contained in RR(NDk) are retrieved before o due to MIND(q, o)
> MIND(q, o). According to Lemma 1, we know that (o) 
RR(NDk) if o  kNN(q, k), as kNN(q, k) can be regarded as
RQ(q, NDk). Thus, curNDk has been already updated to NDk
before accessing o. Hence, NNA can be terminated, due to the

stop condition MIND(q, o) > curNDk (= NDk), without visiting
o, which contradicts with our assumption. In order to
complete the proof, we still need to show that the objects in
RR(NDk) are not visited multiple times, which is
straightforward as every entry is visited a single once. 

The pseudo-code of NNA is presented in Algorithm 4. First
of all, NNA sets curNDk to infinity, and initializes the min-
heap H. Then, it computes (q) using P and pushes the root
entries of a B+-tree into H. Next, a while-loop (lines 3-12) is
performed until H is empty or the early termination condition
satisfied (line 5). In each while-loop, NNA deheaps the top
entry E from H. If E is a non-leaf entry, it pushes all the
qualified sub entries of E into H (lines 7-9) based on Lemma 3;
otherwise, for a leaf entry E, it verifies whether its
corresponding object is an actual answer object and updates
curNDk if necessary (lines 11-12). In the end, the final query
result set kNN(q, k) is returned (line 13).

Example 2. We illustrate NNA using the kNN(q, 3) (k = 3)
example shown in Figure 6 with its SPB-tree in Figure 4. First,
curNDk and the min-heap H are initialized to infinity and
empty, respectively. Then, NNA computes (q) = (2, 5) using
P and pushes the root entries into H (= {E1, E2}). Next, it
performs a while-loop. In the first loop, NNA pops the top
entry E1 from H, and then pushes its qualified sub entries into
H (= {E4, E3, E2}) as E1 is a non-leaf entry. In the second loop,
it pops E4 and pushes the qualified sub leaf entries into H (=
{E9, E10, E3, E2}). Then, NNA pops the leaf entry E9 and
inserts o4 into kNN(q, 3) due to d(q, o4) < curNDk. Thereafter,
it pops and evaluates entries in H similarly until MIND(q, E2)
> curNDk, after which kNN(q, 3) = {o3, o2, o4}. Finally, NNA
stops, and returns kNN(q, 3) as the final result set. 

NNA evaluates objects contained in RR(NDk) in ascending
order of their MIND to q, incurring the random page accesses
in RAF. Since SFC preserves the spatial proximity, the objects
to be verified are supposed to be kept close to each other in
RAF. Thus, with a small cache, we can avoid duplicated RAF
page accesses, as to be confirmed in Section VI.A. However,
for the kNN query that needs to retrieve a large portion of the
dataset, a small cache is not enough. To this end, a greedy
traversal paradigm can be utilized, i.e., when visiting a B+-tree
entry pointing to a leaf node, instead of re-inserting the

o1

o2
o3

o4
o5

o6

o7

o8

o9

q

k = 3
o7

o3o4

o5 (o8)

o1

o6

10 2

2

1

3 4 5 6

3

4

5

6
y

o9

x

M1

M2

M3

M4

M5

M6

o2

q

 000 001 010 011 100 101 110 111
000

001

010

011

100

101

110

111

o1

o2

o4 o3
o9

o5

o6

o7

q

(a) Metric space (b) Vector space (c) Hilbert curve

Fig. 6. Illustration of kNN(q, k)

Algorithm 4 kNN Query Algorithm (NNA)
 Input: a query object q, an integer k, an object set O indexed by a SPB-tree
 Output: the result set kNN(q, k) of a kNN query

1: curNDk = , H =  // H stores the intermediate entries of B+-tree in
 ascending order of MIND(q, E)

 2: compute (q) using P and push the root entries of B+-tree into H
 3: while H   do
 4: de-heap the top entry E from H
 5: if MIND(q, E) ≥ curNDk then break
 6: if E is a non-leaf entry then
 7: for each sub entry e  E do
8: if MIND(e, D) < curNDk then // Lemma 3
9: push e into H

10: else // E is a leaf entry
11: if d(q, e.ptr) < curNDk then
12: insert e.ptr into kNN(q, k) and update curNDk if necessary
13: return kNN(q, k)

597

qualified sub leaf entries into the min-heap, the objects
pointed by leaf entries can be immediately evaluated.
Although the greedy traversal paradigm will result in
unnecessary distance computations for verifying the objects
not contained in RR(NDk), it can still boost the computational
efficiency, because the objects in the same leaf node satisfy
the spatial proximity, as also demonstrated in Section VI.A.

C. Cost Models

In this section, we develop cost models for similarity search,
including range and kNN queries, to estimate their I/O and
CPU costs. With the help of cost models, we can choose
promising execution strategies. For instance, if the estimated
cost of our MAM is lower than that of other MAMs, it would
be better to pick our similarity query algorithms.

In order to estimate the CPU cost in terms of the number of
distance computations, we need to utilize the distance
distribution, as it is the natural way to characterize metric
datasets. The overall distribution of distances from objects in
O to a pivot pi is defined as:

Fpi(r) = Pr{d(o, pi) ≤ r} (1)

where o is a random object in O. Nevertheless, distance
distributions Fpi(r) for pivots in a pivot set P are not
independent, because pivots are not selected randomly, and
the distances in a metric space are also not independent due to
the triangle inequality. Thus, we introduce the union distance
distribution function for P, since it can be obtained using the
sampled dataset:

F(r1, r2, …, r|P|) = Pr{d(o, p1) ≤ r1, d(o, p2) ≤ r2, …,
d(o, p|P|) ≤ r|P|} (2)

To determine the estimated number of distance computations
(EDC) for a similarity query, it is enough to sum two parts,
including the number of distance computations for computing
(q) and the number of distance computations for verifying
whether an object o is contained in the final result set, i.e.,

EDC = |P| + |O|  Pr(d(q, o) is needed to compute) (3)

For the range query algorithm, Pr(d(q, o) is needed to
compute) in equation (3) can be estimated as the probability
that (o) is contained in RR(r), which can be computed as:

Pr((o)RR(r)) = Pr(d(q, p1) – r  d(o, p1)  d(q, p1) + r)), …,
d(q, p|P|) – r  d(o, p|P|)  d(q, p|P|) + r))

 = F(u1, u2, …, u|P|) – F(l1, u2, …, u|P|) –
F(u1, l2, …, u|P|) –  – F(u1, u2, …, l|P|) +
F(l1, l2, …, u|P|) +  + F(u1, u2, …, l|P|-1,
l|P|) –  + (-1)|P|  F (l1, l2, …, l|P|) (4)

where li = d(q, pi) – r – 1 and ui = d(q, pi) + r.
A kNN query can be regarded as the range query with a

search radius r = NDk, in which NDk denotes the distance from
q to its farthest NN. Hence, in order to drive EDC for kNN
retrieval, the first step is to determine the NDk value. Using
the distance distribution function Fq(r), NDk can be estimated
as eNDk, the minimal r that has at least k objects with their
distances to q bounded by r:

eNDk = min{r | |O|  Fq(r)  k} (5)

However, Fq(r) is not known in advance. In this paper, we
employ a simple but efficient method [14] to estimate Fq(r)
using Fpi(r), where pi is the nearest neighbor of q.

Thus, to obtain EDC for kNN search, according to Lemma
4, Pr(d(q, o) is needed to compute) in equation (3) equals to
the probability that (o) is contained in RR(NDk), which can
be calculated via using equation (4) with r = eNDk (computed
by equation (5)).

Since the I/O cost for similarity queries on an SPB-tree
includes two parts, i.e., the B+-tree page accesses and the RAF
page accesses. To obtain the number of B+-tree page accesses,
it is sufficient to sum all the nodes whose MBBs are
intersected with the search region, i.e., RR(r) for a range query
or RR(NDk) for a kNN query. In addition, since the objects
accessed in RAF are supposed to be stored close to each other,
the number of RAF page accesses can be estimated as , in

which EDC is used to estimate the total number of the objects
visited, and f represents the average number of the objects
accessed per RAF page. Thus, to sum up, the expected number
of page accesses (EPA) of a similar query can be calculated as:

 (6)

where .

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
of SPB-tree. First, we study the effect of parameters for the
SPB-tree. Then, we compare the SPB-tree against several
representative MAMs. Next, the scalability of the SPB-tree is
explored. Finally, we verify the accuracy of cost models. We
implemented the SPB-tree and associated similarity search
algorithms in C++. All experiments were conducted on an
Intel Core 2 Duo 2.93GHz PC with 3GB RAM.

We employ three real datasets, namely, Words, Color, and
DNA. Words 1 contains proper nouns, acronyms, and
compound words taken from the Moby Project, and the edit
distance is used to compute the distance between two words.
Colors2 denotes the color histograms extracted from an image
database, and L5-norm is utilized to compare the color image
features. DNA3 consists of 1 million DNA data, and the cosine
similarity is used to measure its similarity under the tri-gram
counting space. Following the experimental setup in [37], we
generate a Signature dataset, and the Hamming distance is
employed. Synthetic datasets are also created, where the first
five dimensional values are generated randomly, and each
remaining dimension is the linear combination of previous
ones. Without loss of generality, L2-norm is utilized for
Synthetic datasets. Table II summarizes the statistics of the
datasets used in our experiments. All MAMs to index the
datasets are configured to use a fixed disk page size of 4KB.

We investigate the efficiency of the SPB-tree and the
performance of similarity search algorithms under various

1 Words is available at http://icon.shef.ac.uk/Moby/
2 Color is available at http://www.sisap.org/Metric_Space_Library.html
3 DNA is available at http://www.ncbi. nlm.nih.gov/genome

598

parameters, which are listed in Table III. Note that, in every
experiment, only one factor varies, whereas the others are
fixed to their default values. The main performance metrics
include the number of page accesses (PA), the number of
distance computations (compdists), and the total query time
(i.e., the sum of the I/O time and CPU time, where the I/O
time is computed by charging 10ms for each page access [37]).
Each measurement we report is the average of 500 queries.

A. Effect of Parameters

The first set of experiments studies the effect of parameters
for the SPB-tree. Note that, we only employ kNN queries to
demonstrate the effect of parameters on the efficiency of the
SPB-tree, due to space limitation and similar performance
behavior on range queries.

First, we evaluate the efficiency of the SPB-tree under
different SFCs, with the results illustrated in Table IV. As

observed, the query cost (including the number of page accesses
and the number of distance computations) of Hilbert curve is
lower than that of Z-curve. This is because a Hilbert curve is a
continuous SFC, which achieves better clustering property
than a Z-curve. Thus, in the rest of experiments, the Hilbert
curve is used to build the SPB-tree.

Then, we investigate the effectiveness of our pivot selection
algorithm (i.e., HFI). Figure 7 depicts the experimental results,
using real datasets. The first observation is that, HFI performs
better than existing pivot selection algorithms, viz., HF [20],
Spacing [24], and PCA [26]. The reason is that, similarity
search performance is highly related with precision defined in
Definition 3, and HFI tries to maximize precision. The second
observation is that the number of distance computations
decreases as the number of pivots grows. This is because,
using more pivots, the query efficiency improves as precision
becomes larger, incurring less distance computations. The
number of page accesses and the total query time first drop
and then stay stable or increase as the number of pivots
ascends. The reason is that, the cost for filtering unqualified
objects grows as well with more pivots. Hence, similarity

TABLE II
STATISTICS OF DATASETS USED

Dataset Cardinality Dim. Ins. Dim. Measurement
Words 611,756 1~34 4.9 Edit distance
Colors 112,682 16 2.9 L5-norm

DNA 1,000,000 108 6.9
Cosine similarity under
tri-gram counting space

Signature 49,740 64 14.8 Hamming distance
Synthetic [200K, 1000K] 20 4.76 L2-norm

TABLE III
PARAMETER SETTINGS

Parameter Value Default
the number of pivots |P| 1, 3, 5, 7, 9 5
cache size (pages) 0, 8, 16, 32, 64, 128 32
 0.001, 0.003, 0.005, 0.007, 0.009 0.005
r (% of d+) 2, 4, 8, 16, 32, 64 8
k 1, 2, 4, 8, 16, 32 8
cardinality 200K, 400K, 600K, 800K, 1000K 600K

TABLE IV
SPB-TREE EFFICIENCY UNDER DIFFERENT SFCS

Hilbert Curve Z-Curve

Words Color DNA Words Color DNA
PA 703.22 82.198 16,789 812.08 200.25 19,430
compdists 49,746 522.8 391,411 49,782 522.8 558,580
time (sec) 0.228 0.02 6.157 0.215 0.021 8.961

TABLE V
KNN SEARCH WITH DIFFERENT TRAVERSAL STRATEGIES

Incremental Traversal Greedy Traversal

Words Color DNA Words Color DNA
PA 703.218 82.198 309,765 469.784 57.686 16,789
compdists 49,746 522.802 391,215 51,188 740.574 391,411
time (sec) 0.2282 0.0203 9.126 0.259 0.0198 6.157

1 3 5 7 9

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

number of pivots

HFI HF

PCA Spacing

0

1500

3000

4500

co
m

pd
is

ts
 (
×

10
3)

number of pivots
1 3 5 7 9

HFI HF

PCA Spacing

0

150

300

450

1 3 5 7 9

qu
er

y
tim

e
(s

ec
)

number of pivots

HFI HF
PCA Spacing

0

15

30

45

60

(a) Words (b) Words (c) Words

1 3 5 7 9

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

number of pivots

HFI HF

PCA Spacing

0

200

400

600

0

5

10

15

20

25

co
m

pd
is

ts
 (
×

10
3)

number of pivots
1 3 5 7 9

HFI HF

PCA Spacing

1 3 5 7 9

qu
er

y
tim

e
(s

ec
)

number of pivots

HFI HF
PCA Spacing

0

2

4

6

(d) Color (e) Color (f) Color

1 3 5 7 9

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

number of pivots

HFI HF

PCA Spacing

15000

20000

25000

30000

35000

300

500

800

1050

co
m

pd
is

ts
 (
×

10
3)

number of pivots
1 3 5 7 9

HFI HF

PCA Spacing

1 3 5 7 9

qu
er

y
tim

e
(s

ec
)

number of pivots

HFI HF
PCA Spacing

150

200

250

300

350

(g) DNA (h) DNA (i) DNA

Fig. 7. Efficiency of pivot selection methods vs. the number of pivots |P|

599

search achieves high efficiency in all performance metrics,
when the number of pivots approaches the dataset’s instinct
dimensionality (Ins. Dim. for short in Table II).

Next, we explore the influence of cache size on the
efficiency of kNN query algorithms, as shown in Figure 8. As
expected, the number of page accesses and the total query
time decrease as cache size ascends, and stay stable when
cache size reaches 32 pages. Thus, a small cache is enough.
However, as discussed in Section V.B, if a kNN query needs
to retrieve a large portion of the dataset, i.e., is

large, a small cache is not enough for the incremental traversal
strategy. As shown in Table V, on DNA, it needs huge I/O
cost (i.e., PA) with a small default cache, while the greedy
traversal strategy is optimal in terms of PA, and it achieves the
computational efficiency accordingly. It is worth noting that,
in our remaining experiments, the cache size is set as the
default (i.e., 32 pages) for all the indexes.

Finally, in order to inspect the impact of  on the efficiency
of the SPB-tree, we use Color and Synthetic datasets since the
range of their distance functions is real numeric. Figure 9
plots the experimental results with respect to various  values.
As observed, the number of distance computations increases
with the growth of . The reason is that, for larger , the
collision probability that different objects can be
approximated as the same vectors ascends, resulting in more
distance computations. However, the total query time first
drops and then stays stable. This is because, for smaller , the
search space becomes sparse as the collision probability
decreases, leading to high query cost.

B. Comparisons with Other MAMs

The second set of experiments compares the SPB-tree with
three representative MAMs, namely, M-tree [15], OmniR-tree
[20], and M-Index [33]. It is worth mentioning that, OmniR-
tree utilizes HF algorithm to select (instinct dimension + 1)
pivots, while M-Index randomly chooses 20 pivots.

Table VI depicts the construction costs and storage sizes for
all MAMs using real datasets. Note that, on Words and DNA,
OmniR-tree cannot run because of the large cardinality of the
dataset. Clearly, SPB-tree has much lower construction cost,
in terms of the number of page accesses (i.e., PA), the number
of distance computations (i.e., Compdists), and the construction
time (denoted by Time). The reason is that, the SPB-tree uses a
B+-tree as the underlying index to achieve its construction
efficiency. In addition, the storage size (denoted by Storage)
of the SPB-tree is also much smaller than that of other MAMs,
due to the dimensionality reduction performed using SFC.

Figures 10 and 11 show the performance of range and kNN
queries, using Signature and real datasets. It is observed that,
SPB-tree performs the best in terms of the number of page
accesses, including both B+-tree node accesses and RAF page
accesses, due to two reasons below. First, SPB-tree uses SFC
to cluster objects into compact regions, and hence it achieves
the I/O efficiency as both B+-tree entries and RAF objects to
be visited are stored close to each other. Second, SPB-tree
preserves multi-dimensional pre-computed distances as one-
dimensional SFC values, resulting in smaller index storage
size and less page accesses. In addition, SPB-tree performs
better or comparable to existing MAMs, in terms of the
number of distance computations, which equals to the number
of the objects accessed during similar search. The reason is
that, our pivot selection algorithm selects effective pivots to
avoid significant number of distance computations, and our
similarity search algorithms only compute qualified distances,
as stated in Lemmas 1 to 4. Consequently, SPB-tree has the
lowest query time, which is used to evaluate the query at once,
i.e., not separately expressed by the number of page accesses
and the distance computations.

C. Scalability of the SPB-tree

The third set of experiments aims to verify the scalability of
the SPB-tree. Figure 12 plots the performance of range and
kNN queries as a function of cardinality, using Synthetic
datasets. Obviously, the query costs including the number of
page accesses, the number of distance computations, and the
total query time ascend linearly with cardinality, because the
search space grows as cardinality increases.

D. Accuracy of Cost Models

The last set of experiments evaluates the accuracy of our
cost models for similarity queries. Figures 13 and 14 illustrate

qu
er

y
ti

m
e

(s
ec

)

co
m

pd
is

ts

0 8 16 32 64 128
cache size (pages)

5566287038041002PA
0

100

200

300

400

49930
0

15000

30000

45000

60000

≈

499

query time
compdists

query time
compdists

qu
er

y
ti

m
e

(s
ec

)

co
m

pd
is

ts

0 8 16 32 64 128
cache size (pages)

539 55668299117PA
0

6

0

400

800

4

2

(a) Word (b) Color

Fig. 8. Effect of cache size

qu
er

y
tim

e
(s

ec
)

co
m

pd
is

ts

ε
0.001 0.003 0.005 0.007 0.009

100 80PA 758287

query time
compdists

0

200

400

600

800

0.4

0.8

1.2

0

qu
er

y
tim

e
(s

ec
)

co
m

pd
is

ts

ε
0.001 0.003 0.005 0.007 0.009
218 167PA 170165157

query time
compdists

0

200

400

600

800

0

1

2

3

(a) Color (b) Synthetic

Fig. 9. Effect of 

TABLE VI
THE CONSTRUCTION COSTS AND STORAGE SIZES OF MAMS

Words Color DNA
PA Compdists Time(sec) Storage(KB) PA Compdists Time(sec) Storage(KB) PA Compdists Time(sec) Storage(KB)

M-tree 5,896,000 54,303,500 186.88 69,772 1,286,500 4,694,000 22.9 34,364 11,665,125 76,430,441 1027.33 133,748
OmniR-tree     335,002 450,728 7.52 13,290    
M-Index 49,493 12,235,310 213.43 242,469 81,920 2,253,830 12.89 30,264 104,776 20,000,190 1433.23 499,106
SPB-tree 13,577 3,058,780 10.17 13,462 4,864 563,410 2.494 9,858 52,204 5,000,000 77.944 130,120

600

the I/O overhead (i.e., the number of page accesses) and CPU
cost (i.e., the number of distance computations) for range and
kNN queries, respectively. In particular, every diagram
contains (1) the actual costs Actual, (2) the estimated costs
Estimated computed by our cost models, and (3) the accuracy
between actual and estimated values Accuracy (i.e., 1 –
|Actual – Estimated| / Actual). It is observed that, our cost
models to estimate I/O and CPU costs are very accurate, with
the average accuracy over 80%.

0

250

500

750

1000

nu
m

be
r

of
 p

ag
e

ac
ce

ss

r
2% 4% 8% 16% 32% 64%

M-Index OmniR-Tree
M-Tree SPB-Tree

0

2.5

5

7.5

10

co
m

pd
is

ts
 (
×

10
3)

r
2% 4% 8% 16% 32% 64%

M-Index OmniR-Tree
M-Tree SPB-Tree

0

3

6

9

12

qu
er

y
ti

m
e

(s
ec

)

r
2% 4% 8% 16% 32% 64%

M-Index OmniR-Tree
M-Tree SPB-Tree

(a) Signature (b) Signature (c) Signature

Fig. 10. Range query performance vs. r

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

1 2 4 8 16 32
k

0

5000

10000

15000

20000

M-Index OmniR-Tree
M-Tree SPB-Tree

co
m

pd
is

ts

103

104

105

106

1 2 4 8 16 32k

M-Index OmniR-Tree
M-Tree SPB-Tree

qu
er

y
tim

e
(s

ec
)

1 2 4 8 16 32k

0

50

100

150

200

M-Index OmniR-Tree
M-Tree SPB-Tree

(a) Words (b) Words (c) Words

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

1 2 4 8 16 32
k

0

600

1200

1800

2400

3000

M-Index OmniR-Tree
M-Tree SPB-Tree

co
m

pd
is

ts

102

103

104

105

1 2 4 8 16 32k

M-Index OmniR-Tree
M-Tree SPB-Tree

qu
er

y
ti

m
e

(s
ec

)

1 2 4 8 16 32k
0

6

12

18

24

30

M-Index OmniR-Tree
M-Tree SPB-Tree

(d) Color (e) Color (f) Color

nu
m

be
r

of
 p

ag
e

ac
ce

ss
es

1 2 4 8 16 32
k

0

20000

40000

60000

80000

M-Index OmniR-Tree
M-Tree SPB-Tree

co
m

pd
is

ts

105

106

107

1 2 4 8 16 32k

M-Index OmniR-Tree
M-Tree SPB-Tree

qu
er

y
tim

e
(s

ec
)

1 2 4 8 16 32k

0

200

400

600

800

M-Index OmniR-Tree
M-Tree SPB-Tree

(g) DNA (h) DNA (i) DNA

Fig. 11. kNN query performance vs. k

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

k
1 2 4 8 16 32nu

m
be

r
of

 p
ag

e
ac

ce
ss

es

Actual Estimated Accuracy

100

101

102

103

104

102

103

104

105

106

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

co
m

pd
is

ts

k
1 2 4 8 16 32

Actual Estimated Accuracy

(a) Words (b) Words

100

101

103

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

k
1 2 4 8 16 32nu

m
be

r
of

 p
ag

e
ac

ce
ss

es

Actual Estimated Accuracy

102

100

101

102

103

104

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

co
m

pd
is

ts

k
1 2 4 8 16 32

Actual Estimated Accuracy

(c) Color (d) Color

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

k
1 2 4 8 16 32nu

m
be

r
of

 p
ag

e
ac

ce
ss

es

Actual Estimated Accuracy

100

101

102

103

104

105

104

105

106

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

co
m

pd
is

ts

k
1 2 4 8 16 32

Actual Estimated Accuracy

(e) DNA (f) DNA
Fig. 14. kNN query cost model vs. k

co
m

pd
is

ts
 (
×

10
3)

qu
er

y
tim

e
(s

ec
)

query time compdists

1000K800K600K400K200K
757 1414131011871025PA

cardinality

0

0.5

1

1.5

2

0

0.4

0.8

1.2

1.6
2

1000K800K600K400K200K

100 199184165143PA

cardinality

qu
er

y
ti

m
e

(s
ec

)

co
m

pd
is

ts
 (
×

10
3)

query time compdists

0

1

2

3

0

0.6

0.4

0.2

(a) Range query (b) kNN query

Fig. 12. Scalability of SPB-tree vs. cardinality

100

101

102

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

r
2% 4% 8% 16% 32% 64%nu

m
be

r
of

 p
ag

e
ac

ce
ss

es

Actual Estimated Accuracy

100

101

102

103

104

ac
cu

ra
cy

 (
%

)

0

20

40

60

80

100

co
m

pd
is

ts

r
2% 4% 8% 16% 32% 64%

Actual Estimated Accuracy

(a) Signature (b) Signature
Fig. 13. Range query cost model vs. r

VII. CONCLUSIONS

Similarity queries are useful in many areas of computer
science, such as pattern recognition, computational biology,
multimedia retrieval, and so forth. In this paper, we develop a

601

new metric index, namely, Space-filling curve and Pivot-
based B+-tree (SPB-tree), for similarity search in a generic
metric space, which supports a wide range of data types and
any similarity metric. The SPB-tree picks few but effective
pivots to reduce significantly the number of distance
computations; uses SFC to cluster data objects into compact
regions, thus improving storage efficiency; utilizes a B+-tree
with MBB information as the underlying index that can be
easily applicable to existing DBMS; and employs a separate
RAF to store a large set of complex data. In addition, we
propose efficient similarity search algorithms and derive their
corresponding cost models based on the SPB-tree. Extensive
experiments show that, compared with other MAMs, the SPB-
tree has lower construction and storage costs, and supports
more efficient similarity queries. In the future, we intend to
extend the SPB-tree to various distributed environments.

REFERENCES
[1] J. Almeida, R. D. S. Torres, and N. J. Leite, “BP-tree: An efficient index

for similarity search in high-dimensional metric spaces,” in CIKM, 2010,
pp. 1365–1368.

[2] L. G. Ares, N. R. Brisaboa, M. F. Esteller, O. Pedreira, and A. S. Places,
“Optimal pivots to minimize the index size for metric access methods,”
in SISAP, 2009, pp. 74–80.

[3] L. Aronovich and I. Spiegler, “CM-tree: A dynamic clustered index for
similarity search in metric databases,” Data Knowl. Eng., 63(3), pp.
919–946, 2007.

[4] R. A. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. “Proximity
matching using fixed-queries trees,” in CPM, 1994, pp. 198–212.

[5] T. Bozkaya and M. Ozsoyoglu, “Distance-based indexing for high-
dimensional metric spaces,” in SIGMOD, 1997, pp. 357–368.

[6] S. Brin, “Near neighbor search in large metric spaces,” in VLDB, 1995,
pp. 574–584.

[7] N. R. Brisaboa, A. Farina, O. Pedreira, and N. Reyes, “Similarity search
using sparse pivots for efficient multimedia information retrieval,” in
ISM, 2006, pp. 881–888.

[8] L. Britos, A. M. Printista, and Nora Reye, “DSACL+-tree: A dynamic
data structure for similarity search in secondary memory,” in SISAP, pp.
116–131, 2012.

[9] W. Burkhard and R. Keller, “Some approaches to best-match file
searching,” Commun. ACM, 16(4), pp. 230–236, 1973.

[10] B. Bustos, G. Navarro, and E. Chavez, “Pivot selection techniques for
proximity searching in metric spaces,” Pattern Recognition Letters,
24(14), pp. 2357–2366, 2003.

[11] B. Bustos, O. Pedreira, and N. R. Brisaboa, “A dynamic pivot selection
technique for similarity search in metric spaces,” in SISAP, 2008, pp.
105–112.

[12] E. Chavez and G. Navarro, “A compact space decomposition for effective
metric indexing,” Pattern Recognition Letters, 26(9), pp. 1363–1376, 2005.

[13] E. Chavez, G. Navarro, R. A. Baeza-Yates, and J. L. Marroquin, “Searching
in metric spaces,” ACM Comput. Surv., 33(3), pp. 273–321, 2001.

[14] P. Ciaccia and A. Nanni, “A query-sensitive cost model for similarity
queries with M-tree,” in ADC, 1999, pp. 65–76.

[15] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access method
for similarity search in metric spaces,” in VLDB, 1997, pp. 426–435.

[16] S. Dasgupta, “Performance guarantees for hierarchical clustering,” J.
Comput. Syst. Sci., 70(4), pp. 555–569, 2005.

[17] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “D-index: Distance
searching index for metric data sets,” Multimedia Tools Appl., 21(1), pp.
9–33, 2003.

[18] C. Hennig and L. J. Latecki, “The choice of vantage objects for image
retrieval,” Pattern Recognition, 36(9), pp. 2187–2196, 2003.

[19] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang, “iDistance:
An adaptive B+-tree based indexing method for nearest neighbor
search,” ACM Trans. Database Syst., 30(2), pp. 364–397, 2005.

[20] C. T. Jr., R. F. S. Filho, A. J. M. Traina, M. R. Vieira, and C. Faloutsos,
“The Omni-family of all-purpose access methods: A simple and
effective way to make similarity search more efficient,” VLDB J., 16(4),
pp. 483–505, 2007.

[21] C. T. Jr., A. Traina, B. Seeger, and C. Faloutsos, “Slim-trees: High
performance metric trees minimizing overlap between nodes,” in ICDE,
2000, pp. 51–65.

[22] I. Kalantari and G. McDonald, “A data structure and an algorithm for the
nearest point problem,” IEEE Trans. Software Eng., 9(5), pp. 631–634, 1983.

[23] K.C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the skyline
in Z order,” in: VLDB, 2007, pp. 279-290.

[24] R. H. V. Leuken and R. C. Veltkamp, “Selecting vantage objects for
similarity indexing,” ACM Trans. Multimedia Comput., Commun., and
Appl., 7(3), article 16, 2011.

[25] J. Lokoc, J. Mosko, P. Cech, and T. Skopal, “On indexing metric spaces
using cut-regions,” Inf. Syst., 43, pp. 1–19, 2014.

[26] R. Mao, W. L. Mirankerb, and D. P. Mirankerc, “Pivot selection:
Dimension reduction for distance-based indexing,” J. Discrete
Algorithms, 13, pp. 32–46, 2012.

[27] L. Mico, J. Oncina, and R. C. Carrasco, “A fast branch & bound nearest
neighbour classifier in metric spaces,” Pattern Recognition Letters,
17(7), pp. 731–739, 1996.

[28] J. Mosko, J. Lokoc, and T. Skopal, “Clustered pivot tables for I/O-
optimized similarity search,” in SISAP, 2011, pp. 17–24.

[29] G. Navarro, “Searching in metric spaces by spatial approximation,”
VLDB J., 11(1), pp. 28–46, 2002.

[30] G. Navarro and R. U. Paredes, “Fully dynamic metric access methods
based on hyperplane partitioning,” Inf. Syst., 36(4), pp. 734–747, 2011.

[31] G. Navarro and N. Reyes, “Dynamic spatial approximation trees for
massive data,” in SISAP, 2009, pp. 81–88.

[32] H. Noltemeier, K. Verbarg, and C. Zirkelbach, “Monotonous bisector*
Trees — A tool for efficient partitioning of complex scenes of geometric
objects,” in Data Structures and Efficient Algorithms, 1992, pp. 186–203.

[33] D. Novak, M. Batko, and P. Zezula, “Metric Index: An efficient and
scalable solution for precise and approximate similarity search,” Inf.
Syst., 36(4), pp. 721–733, 2011.

[34] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer,
“Integrating the UB-tree into a database system kernel”, in VLDB, pp.
263–272, 2000.

[35] G. Ruiz, F. Santoyo, E. Chavez, K. Figueroa, and E. S. Tellez, “Extreme
pivots for faster metric indexes,” in SISAP, 2013, pp. 115–126.

[36] T. Skopal, J. Pokorny, and V. Snasel, “PM-tree: Pivoting metric tree for
similarity search in multimedia databases,” in ADBIS, 2004, pp. 803–815.

[37] Y. Tao, M. L. Yiu, and N. Mamoulis, “Reverse nearest neighbor search in
metric spaces,” IEEE Trans. Knowl. Data Eng., 18(9), pp. 1239–1252, 2006.

[38] J. K. Uhlmann, “Satisfying general proximity/similarity queries with
metric trees,” Inf. Process. Lett., 40(4), pp. 175–179, 1991.

[39] J. Venkateswaran, T. Kahveci, C. M. Jermaine, and D. Lachwani,
“Reference-based indexing for metric spaces with costly distance
measures,” VLDB J., 17(5), pp. 1231–1251, 2008.

[40] E. Vidal, “An algorithm for finding nearest neighbors in (approximately)
constant average time,” Pattern Recognition Letters, 4(3), pp. 145–157, 1986.

[41] M. R. Vieira, C. T. Jr., F. J. T. Chino, and A. J. M. Traina, “DBM-Tree:
A dynamic metric access method sensitive to local density data,” J. Inf.
Data Management, 1(1), pp. 111–128, 2010.

[42] P. N. Yianilos, “Data structures and algorithms for nearest neighbor
search in general metric spaces,” in SODA, 1993, pp. 311-321.

ACKNOWLEDGMENT
Yunjun Gao was supported in part by NSFC Grant No.

61379033, the National Key Basic Research and Development
Program (i.e., 973 Program) No. 2015CB352502, the Cyber
Innovation Joint Research Center of Zhejiang University, and
the Key Project of Zhejiang University Excellent Young
Teacher Fund (Zijin Plan). We would like to thank
Prof. D. Novak and Prof. R. Mao for useful feedback on the
source-codes of their proposed algorithms in [26, 33].

602

