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Abstract—The goal in similarity search is to find objects 

similar to a specified query object given a certain similarity 
criterion. Although useful in many areas, such as multimedia 
retrieval, pattern recognition, and computational biology, to 
name but a few, similarity search is not yet supported well by 
commercial DBMS. This may be due to the complex data types 
involved and the needs for flexible similarity criteria seen in real 
applications. We propose an efficient disk-based metric access 
method, the Space-filling curve and Pivot-based B+-tree (SPB-tree), 
to support a wide range of data types and similarity metrics. The 
SPB-tree uses a small set of so-called pivots to reduce 
significantly the number of distance computations, uses a space-
filling curve to cluster the data into compact regions, thus 
improving storage efficiency, and utilizes a B+-tree with 
minimum bounding box information as the underlying index. 
The SPB-tree also employs a separate random access file to 
efficiently manage a large and complex data. By design, it is easy 
to integrate the SPB-tree into an existing DBMS. We present 
efficient similarity search algorithms and corresponding cost 
models based on the SPB-tree. Extensive experiments using real 
and synthetic data show that the SPB-tree has much lower 
construction cost, smaller storage size, and can support more 
efficient similarity queries with high accuracy cost models than is 
the case for competing techniques. Moreover, the SPB-tree scales 
sublinearly with growing dataset size.  

I. INTRODUCTION 

The objective of similarity search is to find objects similar 
to a given query object under a certain similarity criterion. 
This kind of functionality has been used in many areas of 
computer science as well as in many application areas. For 
instance, in pattern recognition, similarity queries can be used 
to classify a new object according to the labels of already 
classified nearest neighbors; in multimedia retrieval, similarity 
queries can be utilized to identify images similar to a specified 
image; and in recommender systems, similarity queries can be 
employed to generate personalized recommendations for users 
based on their own preferences.  

Considering the wide range of data types in the above 
application scenarios, e.g., images, strings, and protein 
sequences, a generic model is desirable that is capable of 
accommodating not just a single type, but a wide spectrum. In 
addition, the distance metrics for comparing the similarity of 
objects, such as cosine similarity used for vectors, and edit 
distance used for strings, are not restricted to the Euclidean 
distance (i.e., the L2-norm). To accommodate a wide range of 
similarity notions, we consider similarity queries in generic 
metric spaces, where no detailed representations of objects are 
required and where any similarity notion that satisfies the 
triangle inequality can be accommodated.  

A number of metric access methods exist that are designed 
to accelerate similarity search in generic metric spaces. They 
can be generally classified into two categories, namely, 
compact partitioning methods [12], [15], [17], [21] and pivot-
based methods [9], [20], [27], [42]. Compact partitioning 
methods divide the space into compact regions and try to 
discard unqualified regions during search, while pivot-based 
methods store pre-computed distances from each object in the 
database to a set of pivots. Given two objects q and o, the 
distance d(q, o) cannot be smaller than |d(q, p)  d(o, p)| for 
any pivot p, due to the triangle-inequality. Hence, it may be 
possible to prune an object o as a match for q using the lower 
bound value |d(q, p)  d(o, p)| instead of calculating d(q, o). 
This capability makes pivot-based approaches outperform 
compact partitioning methods in terms of the number of 
distance computations, one of the key performance criteria in 
metric spaces. Nonetheless, pivot-based approaches need large 
space to store pre-computed distances, and their I/O costs are 
often high because the data needed to process a similarity 
query is not well clustered. Due to the above, we propose a 
hybrid method that integrates the compact partitioning into a 
pivot-based approach.  

To design an efficient metric access method (MAM), three 
challenging issues have to be addressed. The first is how to 
support efficient similarity retrieval in terms of the number of 
distance computations (i.e., CPU cost) and the number of page 
accesses (i.e., I/O cost). We tackle this by identifying and using 
a small set of effective pivots for reducing significantly the 
number of distance computations during search, and we utilize 
a space-filling curve (SFC) to cluster objects into compact 
regions, to further boost performance. The second challenge is 
to achieve low-cost index storage, construction, and 
manipulation. To reduce the storage cost, we store multi-
dimensional pre-computed distances as one-dimensional 
integers using the SFC, and we employ a B+-tree to support 
efficient index construction and manipulation. The third 
challenge is how to efficiently manage a large set of complex 
objects (e.g., DNA, images). Towards this, we develop a disk-
based MAM that maintains the index and the data separately, 
to ensure the efficiency of the index. The resulting proposal is 
called the Space-filling curve and Pivot-based B+-tree (SPB-
tree). It keeps complex objects in a separate random access 
file (RAF) and uses a B+-tree with additional minimum 
bounding box (MBB) to index objects after a two-stage pivot 
and SFC mapping. The SPB-tree is generic, as it does not rely 
on the detailed representations of objects, and it can support 
any distance notion that satisfies the triangle inequality. To 
sum up, the key contributions are as follows:  
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 We develop the SPB-tree, which integrates the compact 
partitioning with a pivot-based approach. The tree 
utilizes a space-filling curve and a B+-tree to efficiently 
index pre-computed distances and to cluster objects into 
compact regions.  

 We propose an efficient pivot selection algorithm for 
identifying a small set of effective pivots in order to 
reduce significantly the number of distance computations 
during the search.  

 We present efficient similarity search algorithms, 
including range and k nearest neighbor (kNN) queries, 
and we provide corresponding cost models.  

 We conduct extensive experiments using both real and 
synthetic data sets to compare the SPB-tree against other 
MAMs, finding that the SPB-tree has much lower 
construction and storage cost, and supports more efficient 
similarity queries with high accuracy cost models. Also, 
the SPB-tree scales well with the data size.  

The rest of this paper is organized as follows. Section II 
reviews related work. Section III presents the problem 
statement. Section IV describes the SPB-tree and the pivot 
selection algorithm. Section V details the similarity query 
algorithms and their corresponding cost models. Considerable 
experimental results and our findings are reported in Section 
VI. Finally, Section VII concludes the paper with some 
directions for future work.  

II. RELATED WORK  

In this section, we survey previous work on metric access 
methods and pivot selection algorithms.  

A. Metric Access Methods 

Two broad categories of MAM exist, namely, compact 
partitioning methods and pivot-based methods.  

Compact partitioning methods partition the space as 
compact as possible and try to prune unqualified regions 
during search. BST [22], [32] is a binary tree built recursively. 
It uses a center with a covering radius to represent a partition. 
GHT [38] uses two centers for each tree node, and it divides 
the space according to which of the two centers is closer to 
every object. GANT [6] is an m-way generalization of GHT. It 
uses a Voronoi-like partitioning of the space, and a dynamic 
structure EGANT has also been proposed [30]. SAT [29] is 
also based on Voronoi diagrams, but unlike GHT and GNAT, 
it attempts to approximate the structure of a Delaunay graph. 
Dynamic and secondary memory extensions of SAT are also 
available [8], [31]. Next, the M-tree [15] is a height-balanced 
tree that is optimized for secondary memory. It is the first 
dynamic MAM, and it supports insertion and deletion. Several 
variants of M-trees, such as the Slim-tree [21], DBM-tree [41], 
and CM-tree [3], try to reduce the overlap among nodes and to 
further compact each partition. The D-index [17] is a multi-
level structure that hashes objects into buckets, which are 
search-separable. LC [12] employs a list of clusters, which 
trades construction time for query time. Since LC is an 
unbalance structure, to index an object set O in a metric space, 
its construction cost increases to O(|O|2) from O(|O| log|O|) in 

high dimensional spaces. Finally, BP [1] is an unbalanced tree 
index that integrates disjoint and non-disjoint paradigms.  

Pivot-based methods store pre-computed distances from 
every object in the database to a set of pivots and then utilize 
these distances and the triangle inequality to prune objects 
during search. AESA [40] uses a pivot table to preserve the 
distances from each object to other objects. In order to save 
main-memory storage for the pivot table, several variants have 
been proposed. For example, LAESA [27] only keeps the 
distances from every object to selected pivots. EP [35] selects 
a set of essential pivots (without redundancy) covering the 
entire database. Clustered Pivot-table [28] clusters the pre-
computed distances to further improve the query efficiency. 
BKT [9] is a tree structure designed for discrete distance 
functions. It chooses a pivot as the root, and puts the objects at 
distance i to the pivot in its i-th sub-tree. In contrast to BKT, 
where pivots at individual levels are different, FQT [4] and 
FQA [13] use the same pivot for all nodes at the same level of 
the tree. VPT [42] is designed for continuous distance 
functions, and it has also been generalized to m-ary trees, 
yielding MVPT [5]. The Omni-family [20] employs selected 
pivots together with existing structures (e.g., the R-tree) to 
index pre-computed distances.  

Recently, hybrid methods that combine compact 
partitioning with the use of pivots have appeared. The PM-tree 
[36] uses cut-regions defined by pivots to accelerate similarity 
queries on the M-tree. In particular, cut-regions can be used to 
improve the performance of metric indexes with simple ball-
regions [25]. The M-Index [33] generalizes the iDistance [19] 
technique for general metric spaces, which compacts the 
objects by using pre-computed distances to their closest pivots.  

For similarity queries, although pivot-based methods 
clearly outperform compact partitioning methods in terms of 
the number of distance computations (i.e., the CPU cost) [2], 
[13], [20], [28], pivot-based approaches generally have high 
I/O cost since objects are not well clustered on disk. Moreover, 
the space requirements for both pivot-based and hybrid 
methods to store pre-computed distances are high, resulting in 
large indexes and considerable I/O.  

B. Pivot Selection Algorithms 

The efficiency of pivot-based methods depends on the 
pivots used. Existing work is based on two observations: (1) 
good pivots are far away from other objects, and (2) good 
pivots are far away from each other. For instance, FFT [16] 
tries to maximize the minimum distance between pivots. HF 
[20] selects pivots near the hull of a dataset. SSS [7], [11] 
dynamically selects pivots, if their distances to already 
selected pivots exceed   d+, where d+ is the maximal 
distance between any two objects and parameter  controls 
the density of pivots with which the space is covered. These 
pivot selection approaches have low time complexities, but 
they do not perform the best. The reason is that, as pointed out 
in [10], good pivots are outliers, but outliers are not always 
good pivots.  

To achieve strong pruning power using a small set of pivots, 
several criteria have been proposed for pivot selection. Bustos 
et al. [10] maximize the mean of the distance distribution in 
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the mapped vector space. Hennig and Latecki [18] select 
pivots using a loss measurement, i.e., the nearest neighbor 
distance in the mapped vector space. Venkateswaran et al. [39] 
choose pivots that maximize pruning for a sample of queries. 
Leuken and Veltkamp [24] select pivots with minimum 
correlation to ensure that objects are evenly distributed in the 
mapped vector space. More recently, PCA [26] has been 
developed for pivot selection. As will be discussed in Section 
IV.B, query efficiency relies on the similarity between the 
original metric space and the mapped vector space. Therefore, 
we aim to maximize the similarity in order to achieve better 
search performance. The success of this approach is studied in 
Section VI.A.  

III. PROBLEM FORMULATION 

In this section, we present the characteristics of the metric 
space and the definitions of similarity queries. Table I lists the 
notations frequently used throughout this paper.  

A metric space is a tuple (M, d), in which M is the domain 
of objects and d is a distance function which defines the 
similarity between the objects in M. In particular, the distance 
function d has four properties: (1) symmetry: d(q, o) = d(o, q), 
(2) non-negativity: d(q, o) ≥ 0, (3) identity: d(q, o) = 0 iff q = 
o, and (4) triangle inequality: d(q, o) ≤ d(q, p) + d(p, o). Based 
on the properties of the metric space, we formally define two 
types of similarity queries: range query and k nearest neighbor 
(kNN) query.  

Definition 1 (Range Query). Given an object set O, a query 
object q, and a search radius r in a generic metric space, a 
range query finds the objects in O that are within distance r of 
q, i.e., RQ(q, r) = {o| o  O  d(q, o)  r}.  

Definition 2 (kNN Query). Given an object set O, a query 
object q, and an integer k in a generic metric space, a kNN 
query finds k objects in O most similar to q, i.e., kNN(q, k) = 
{R | R  O  |R| = k  r  R, o  O  R, d(q, r) ≤ d(q, o)}.  

Consider an English word set O = {“citrate”, “defoliates”, 
“defoliated”, “defoliating”, “defoliation”}, for which the edit 
distance is the similarity measurement. The range query 
RQ(“defoliate”, 1) retrieves the words in O with distances to 
“defoliate” bounded by 1. The query result is {“defoliates”, 
“defoliated”}. Next, the kNN query kNN(“defoliate”, 2) 

retrieves two words in O that are most similar to “defoliate”, 
yielding the result {“defoliates”, “defoliated”}. It is worth 
noting that kNN(q, k) may be not unique due to the distance tie. 
Nonetheless, the target of our proposed algorithms is to find 
one possible instance.  

The behavior of similarity search on a dataset can be 
estimated using the dimensionality of the dataset. Since metric 
datasets do not always have an embedded dimensionality (e.g., 
a word set), the intrinsic dimensionality can be employed. The 
intrinsic dimensionality of a metric dataset can be calculated 
as  = 2/22, in which  and  are the mean and variance of 
the pairwise distances in the dataset [13]. We shall see in 
Section IV.B that the appropriate number of the pivots 
selected is also related to the intrinsic dimensionality.  

IV. THE SPB-TREE 

In this section, we first present the construction framework 
for the SPB-tree, and then propose a pivot selection algorithm 
and an index structure with bulk-loading, insertion, and 
deletion operations.  

A. Construction Framework 

As shown in Figure 1, the construction framework of the 
SPB-tree is based on a two-stage mapping. In the first stage, 
we map the objects in a metric space to data points in a vector 
space using well-chosen pivots. The vector space offers more 
freedom than the metric space when designing search 
approaches, since it is possible to utilize the geometric and 
coordinate information that is unavailable in the metric space. 
In the second stage, we use the SFC to map the data points in 
the vector space into integers in a one-dimensional space. 
Finally, a B+-tree with MBB information is employed to index 
the resulting integers.  

The SPB-tree utilizes the B+-tree with MBB information to 
index the SFC values of objects after a pivot mapping. This is 
attractive because (1) the use of an SFC can cluster objects 
into compact regions, reducing the amount of storage needed 
for pre-computed distances, and because (2) bulk-loading, 
insertion, and deletion operations on the SPB-tree are simple 
and effective since they rely on the manipulation of the B+-
tree. Although the ZBtree [23], [34] that combines a Z-curve 
and a B+-tree can be used to index objects after the pivot 
mapping, the ZB-tree is designed with a special SFC suitable 
for skyline queries; whereas any SFC (e.g., a Hilbert curve 
which offers better proximity preservation than Z-curve, as to 
be verified in Section VI.A) is applicable for the SPB-tree.  

Pivot Mapping. Given a pivot set P = {p1, p2, …, pn}, a 
general metric space (M, d) can be mapped to a vector space 
(Rn, L). Specifically, an object o in a metric space is 
represented as a point (o) = d(o, p1), d(o, p2), …, d(o, pn) in 

TABLE I 
SYMBOLS AND DESCRIPTION 

Notation  Description  
q, O a query object, the set of objects in a generic metric space
P the set/table of pivots  
o, p an object in O, a pivot in P 
|O|, |P|  the cardinality of O, the cardinality of P  
d( ) the distance function for the generic metric space  
D( ) the L-norm metric for the mapped vector space 
d+ the maximal distance in a generic metric space 
(o) the data point for o after mapping to the vector space 
 the value used to approximate (o) for the real numeric 

domain of d( ) 
SFC((o)) the space-filling curve value of an object o 
RQ(q, r) the result set of a range query with a search radius r  
kNN(q, k) the result set of a kNN query w.r.t. q  
RR(r) the range region with a range radius r 

Objects

Data points in a 
vector space

Integers in one-
dimensional space

SPB-tree

Pivot mapping

Space filling 
curve mapping

B+-tree indexing

 
Fig. 1. The construction framework of an SPB-tree  
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the vector space. For instance, consider the example in Figure 
2, where O = {o1, o2, …, o9} and L2-norm is used. If P = {o1, 
o6}, O can be mapped to a two-dimensional vector space, in 
which the x-axis represents d(oi, o1) and the y-axis represents 
d(oi, o6), 1  i  9.  

Given objects oi, oj, and p in a metric space, d(oi, oj)  |d(oi, 
p) – d(oj, p)| according to the triangle inequality. Hence, for a 
pivot set P, d(oi, oj)  max{|d(oi, pi) – d(oj, pi)| | pi  P} = 
D((oi), (oj)), in which D( ) is the L-norm. Clearly, we can 
conclude that the distance in the mapped vector space is a lower 
bound on that in the metric space. Take the example depicted in 
Figure 2 again, d(o2, o3) > D((o2), (o3)) = 2.  

Space-Filling Curve Mapping. Given a vector (o) after 
pivot mapping and assuming that the range of d( ) in the 
metric space is discrete integers (e.g., edit distance), then SFC 
can directly map (o) to an integer SFC((o)). Consider the 
SFC mapping examples in Figure 3, where SFC((o2)) = 18 
for the Hilbert curve and SFC((o2)) = 19 for the Z-curve. 
Note that, for simplicity, we use the Hilbert curve in the rest 
of this paper.  

Considering the range of d( ) in a metric space may be 
continuous real numbers, -approximation is utilized to 
partition the real range into discrete integers, i.e., 0, 1, …, 
d+/, where d+ is the maximal distance in the metric space. 
Thus, the whole vector space can be partitioned into cells. 

Then, given an , (o) can be approximated as d(o, p1)/, 
d(o, p2)/, …, d(o, pn)/. As to be verified in Section VI.A, 
the value of  might affect the query efficiency. If the value of 
 is too big, the average collision probability Pr(collision) = 

 that different objects share the same approximation 
increases, resulting in more distance computations during the 
search. Instead, if a small  is used, the transformed vector 
space becomes too sparse, i.e., the vast majority of the cells 
must be empty, incurring large search space. In the rest of this 
paper, for simplify, we assume that the range of d( ) is discrete 
integers, as the techniques can be easily adapted to a 
continuous real range using -approximation.  

To design efficient metric access methods for similarity 
queries, we have identified two important issues that have to 
be addressed: (1) How should we pick pivots to perform a 
pivot mapping? (2) Which index structures can be used to 
support metric similarity queries? We discuss the first issue in 
Section IV.B and turn to the second issue in Section IV.C.  

B. Pivot Selection 

The selected pivots influence the search performance 
because the lower-bound distances computed using the pivots 

are utilized for pruning during the search. In order to achieve 
high performance, the lower-bound distances should be close 
to the actual distances, i.e., the mapping to the vector space 
should preserve the proximity from the metric space. Hence, 
the quality of a pivot set can be evaluated as the similarity 
between the mapped vector space and the original metric 
space, as stated in Definition 3.  

Definition 3 (Precision). Given a set OP of object pairs in a 
metric space, the quality of a pivot set P is evaluated as the 
average ratio between the distances in the vector space and the 
distances in the metric space, i.e.,  

.  

The more pivots in P, the better the pruning capability; 
however, the cost of using the transformed objects also 
increases, as presented in Section IV.A. The more pivots there 
are in P, the larger D((oi), (oj)) will be, then D((oi), (oj)) 
approaches d(oi, oj), and hence, precision(P) approaches 1. 
Therefore, we can discard more objects using a larger pivot 
set. On the other hand, the number of distance computations 
between the query object and the pivots increases as the 
number of pivots grows. Also, the cost (e.g., D((oi), (oj)) 
computation cost) to prune unqualified objects increases. Thus, 
as pointed out in related work [13], [20], to achieve high 
query efficiency, the appropriate number of pivots is related to 
the intrinsic dimensionality of the dataset, which is also 
confirmed in Section VI.A.  

Determining a pivot set P (from O) with a fixed size that 
maximizes precision(P) has time complexity O( ), 

which is costly. To reduce significantly the time complexity, 
we propose an HF based Incremental pivot selection 
algorithm (HFI), which first employs the HF algorithm [20] to 
obtain outliers as candidate pivots CP and then incrementally 
selects effective pivots from CP. The underlying rationale is 
that good pivots are usually outliers, but outliers are not 
always good pivots [10]. Hence, the time complexity of HFI is 
O(|P|  |CP|), in which the cardinality of CP is small and is 
only related to the distribution of the object set. We fix |CP| at 
40 (as in reference [26]), which is enough to find all outliers 
in our experiments.  

Algorithm 1 depicts the pseudo-code of HFI. First, HFI 
invokes HF algorithm to obtain a candidate pivot set CP from 
O (line 1). Thereafter, it picks incrementally pivots from CP 
(lines 2-5). Initially, the pivot set P is empty. Then, a while-
loop is performed until |P| = n, i.e., n pivots are selected. In 
each iteration, HFI chooses a pivot p from CP to maximize 
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precision(P ∪{p}) (line 4) and updates P to P ∪{p} and CP 
to CP – {p} (line 5). Finally, the pivot set P is returned.  

Note that the HFI algorithm does not need to take the whole 
object set as an input, and it works well using only a sampled 
object set. Moreover, theoretically, pivots do not need to be 
part of the object set. Consequently, objects can be inserted or 
deleted without changing the pivot set.  

C. Indexing Structure 

An SPB-tree used to index an object set in a generic metric 
space contains three parts, i.e., the pivot table, the B+-tree, and 
the RAF. Figure 4 shows an SPB-tree example to index an 
object set O = {o1, …, o9} in Figure 2. A pivot table stores 
selected objects (e.g., o1 and o6) to map a metric space into a 
vector space. A B+-tree is employed to index the SFC values 
of objects after a pivot mapping. Each leaf entry in the leaf 
node (e.g., N3, N4, N5, and N6) of the B+-tree records (1) the 
SFC value key, and (2) the pointer ptr to a real object, which 
is the address of the actual object kept in the RAF. As an 
example, in Figure 4, the leaf entry E7 associated with the 
object o2 records the Hilbert value 18 and the storage address 
0 of o2. Each non-leaf entry in the root or intermediate node 
(e.g., N0, N1, and N2) of the B+-tree records (1) the minimum 
SFC value key in its subtree, (2) the pointer ptr to the root 
node of its subtree, and (3) the SFC values min and max for 
a1, a2,…, a|P| and b1, b2,…, b|P|, to represent the MBB Mi 
(= {[ai, bi] | i  [1, |P|]}) of the root node Ni of its subtree. 
Specifically, a MBB Mi denotes the axis aligned minimum 
bounding box to contain all (o) with SFC((o))  Ni. For 

instance, the non-leaf entry E3 uses min (= 19) and max (= 23) 
to represent the M3 of N3.  

Unlike compact partitioning methods (e.g., M-tree), which 
store actual objects in the index directly since the routing 
objects are needed for pruning unqualified partitions, SPB-tree 
uses a RAF to keep objects separately and supports both 
random access and sequential scan, in order to enhance the 
efficiency for managing the complex objects. Note that, RAF 
is sorted to store the objects in ascending order of SFC values 
as they appear in the B+-tree. Each RAF entry records (1) an 
object identifier id, (2) the length len of the object, and (3) the 
real object obj. Here, len is recorded to support efficient 
storage management, because the object size may be different 
in generic metric spaces. As an example, words in a dictionary 
may have different lengths, e.g., the length of “word” is 4, and 
the length of “dictionary” is 10. Also, in Figure 4, the RAF 
entry associated with an object o2 records the object identifier 
2, the object length 8, and the real object o2, respectively.  

Bulk-loading Operation. We develop a bulk-loading 
operation, with the pseudo-code of Bulkload SPB-tree 
Algorithm (BA) shown in Algorithm 2. First, HFI (Algorithm 
1) is called to get a pivot table P. Then, BA computes (o) for 
every object o  O using P. After that, BA computes and sorts 
the SFC values for all objects, and then, it invokes build_RAF 
function to build the RAF. Next, the bulkload operation of the 
B+-tree can be directly employed to build B+-tree for 
{SFC((o)), ptr(o) | o  O}) and meanwhile compute the 
MBB for every node. Finally, an SPB-tree is returned.  

Insertion/Deletion Operation. For a new object o to be 
inserted or deleted, we first compute (o) using P, and then 
get its corresponding SFC((o)). Thereafter, the leaf entry e (= 
SFC((o)), ptr(o)) and o are inserted into or deleted from the 
B+-tree and the RAF, respectively. Finally, the MBBs of e’s 
ancestors are updated if necessary. Note that, the insertion or 
deletion may result in page splits or merges of the B+-tee and 
RAF. Thus, the corresponding MBBs are updated if necessary. 

V. SIMILARITY SEARCH 

In this section, we propose efficient algorithms for 
processing similarity queries based on the SPB-tree, and then 
derive their corresponding cost models.  

A. Range Query 

Given a metric object set O, a range query finds the objects 
in O with their distances to a specified query object q bounded 
by a threshold r, i.e., a range query retrieves the objects 
enclosed in the range region that is an area centered at q with 
a radius r. Consider, for example, Figure 5(a), where a circle 

Algorithm 1 HF based Incremental Pivot Selection Algorithm (HFI)  
  Input: a set O of objects, the number n of pivots  
  Output: a set P of pivots   // |P| = n  
  1: CP = HF(O, cp_scale)   // get a candidate pivot set CP  

with |CP| = cp_scale  
  2: P =   
  3: while |P| < n do 
  4:    select p from CP with the maximal precision(P ∪{p}) 
  5:    P = P ∪{p} and CP = CP – {p}  
  6: return P  
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Fig. 4. Example of an SPB-tree  

Algorithm 2 Bulkload SPB-tree Algorithm (BA)  
  Input: a set O of objects, the number n of pivots  
  Output: an SPB-tree  
  1: P = HFI(O, n)   // see Algorithm 1 
  2: compute {(o) | o  O} using P  
  3: compute and sort SFC values{SFC((o)) | o  O} 
  4: build_RAF(O)   // build the RAF in ascending order of SFC values  
  5: bulkload-B+-tree({SFC((o)), ptr(o) | o  O}) 
  6: return SPB-tree  

595



denotes a range region, and RQ(q, 2) = {o1, o2, o3, o4}. Given 
a pivot set P, the range region can also be mapped into a 
vector space. For instance, the thick black rectangle in Figure 
5(b) represents the mapped range region using P = {o1, o6}. 
To obtain RQ(q, r), we only need to verify the objects o whose 
(o) are contained in the mapped range region, as stated below.  

Lemma 1. Given a pivot set P, if an object o is enclosed in 
RQ(q, r), then (o) is certainly contained in the mapped range 
region RR(r), where RR(r) = {s1, s2, …, s|P| | 1  i  |P|  si  
0  si  [d(q, pi) – r, d(q, pi) + r]}.  

Proof. Assume, to the contrary, that there exists an object o 
 RQ(q, r) but (o)  RR(r), i.e.,  pi  P, d(o, pi) > d(q, pi) + 
r or d(o, pi) < d(q, pi) – r. According to the triangle inequality, 
d(q, o)  |d(q, pi) – d(o, pi)|. If d(o, pi) > d(q, pi) + r or d(o, pi) 
< d(q, pi) – r, then d(q, o)  |d(o, pi) – d(q, pi)| > r, which 
contradicts with our assumption. Consequently, the proof 
completes.                                                                                

Based on Lemma 1, if the MBB of a node N does not 
intersect with RR(r), we can discard N, in which MBB can be 
easily obtained by using SFC values min and max stored in the 
SPB-tree. Considering the example range query depicted in 
Figure 5 with its corresponding SPB-tree illustrated in Figure 
4, N6 can be pruned as M6  RR(r) = .  

Lemma 1 is used to avoid distance computations for the 
objects not contained in RQ(q, r). Nonetheless, we still have 
to verify all the objects o whose (o) are enclosed in RR(r). To 
this end, we develop Lemma 2 to further avoid unqualified 
distance computations during the verification. 

Lemma 2. Given a pivot set P, for an object o in O, if there 
exists a pivot pi ( P) satisfying d(o, pi)  r – d(q, pi), then o is 
certainly included in RQ(q, r).  

Proof. Given a query object q, an object o, and a pivot pi, 
d(q, o)  d(o, pi) + d(q, pi) due to the triangle inequality. If d(o, 
pi)  r – d(q, pi), then d(q, o)  r – d(q, pi) + d(q, pi) = r. Thus, o 
is for sure contained in RQ(q, r), which completes the proof.   

Back to the example shown in Figure 5, where O = {o1, …, 
o9} and P = {o1, o6}. Suppose r = 3, for an object o2, there 
exists a pivot p1 (= o1), which holds that d(o2, p1) = r – d(q, p1). 
Hence, o2 is certainly included in RQ(q, 3) without any further 
distance computation of d(q, o2).  

The pseudo-code of Range Query Algorithm (RQA) is 
depicted in Algorithm 3. First, RQA computes (q) using a 
pivot table P. Then, it calls a function ComputeRR to obtain 
RR(r). Next, it pushes the root node of a B+-tree into a heap H, 

and a while-loop (lines 4-23) is performed until H is empty. 
Each time, RQA pops the top node N from H. If N is a non-
leaf node, RQA pushes all its sub nodes e.ptr (e  N) with 
MBB(e.ptr)  RR(r)   into H (lines 7-9). Otherwise (i.e., N 
is a leaf node), if MBB(N)  RR(r), for each entry in N, 
VerifyRQ is utilized to determine whether RQA inserts the 
corresponding object into RQ(q, r). In order to achieve the 
lowest CPU time, i.e., minimize the cost of the transformation 
between (o) and SFC((o)), if the number of SFC values 
contained in the intersected region RR(r)  MBB(N) is smaller 
than that of entries in N, RQA first invokes a function 
computeSFC to obtain S that includes all SFC values in the 
intersected region in ascending order (line 15), and then calls 
VerifyRQ for each entry e ( N) with e.key  S (lines 16-20); 
otherwise, VerifyRQ is invoked for every entry in N (lines 22-
23), where unqualified objects (i.e., (o)  RR(r)) need not be 
verified due to Lemma 1 (line 25). Finally, the final query 
result set RQ(q, r) is returned (line 24). 

Example 1. We illustrate RQA using the example depicted 
in Figure 5 with its SPB-tree in Figure 4, and suppose r = 2. 
Initially, RQA computes (q) = (2, 5) using P and gets RR(2). 
It then pushes a root node N0 into H, and pops N0. As N0 is a 
non-leaf node, its sub-nodes N1 and N2 are pushed into H due 
to M1 and M2 are intersected with RR(2). Next, similarly, it 
pops N1 and pushes N3 and N4 into H. Thereafter, N3 is popped. 
Since N3 is a leaf node and M3  RR(2), RQA calls VerifyRQ 
to insert o1 and o2 into RQ(q, 2) due to Lemma 2 and d(q, o2) 
< 2, respectively. The algorithm proceeds in the same manner 
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Fig. 5. Illustration of RQ(q, r)  

Algorithm 3 Range Query Algorithm (RQA)  
  Input: a query object q, a radius r, an object set O indexed by a SPB-tree 
  Output: the result set RQ(q, r) of a range query  
  1: compute (q) using a pivot table P   // (q) = d(q, pi) | pi  P  
  2: RR(r) = ComputeRR((q), r)   // get RR(r)  
  3: push the root node of a B+-tree into a min-heap H  
  4: while H   do  
  5:    de-heap the top node N from H  
  6:    if N is a non-leaf node then 
  7:       for each entry e in N do 
  8:          if MBB(e.ptr)  RR(r)    
  9:             push e.ptr into H 
10:    else   // N is a leaf node 
11:       if MBB(N)  RR(r) then 
12:          for each entry e in N do 
13:             VerifyRQ(e, false)   // verify e  
14:       else if |RR(r)  MBB(N) | < |N| then 
15:          S = computeSFC(RR(r)  MBB(N))  
16:          s = S.get_first() and e = N.get_first() 
17:          while s  NULL and e  NULL do 
18:             if e.key = s then VerifyRQ(e, false) and e = N.get_next()  
19:             else if e.key > s then s = S.get_next() 
20:             else e = N.get_next() 
21:       else   // |RR(r)  MBB(N) |  |N| 
22:          for each entry e in N do 
23:             VerifyRQ(e, true) 
24: return RQ(q, r)  

  Function: VerifyRQ(e, flag)  
25: if flag and (o)  RR(r) then return   // (o) is obtained by e.key 
26: if the condition of Lemma 2 satisfies then 
27:    insert e.ptr into RQ(q, r) and return 
28: if d(q, e.ptr)  r then 
29:    insert e.ptr into RQ(q, r)  
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until H is empty, with the final query result set RQ(q, 2) = {o1, 
o2, o3, o4}.                                                                                 

B. k Nearest Neighbour Search 

Given an object set O in a metric space, a kNN query finds 
from O the k NNs of a specified query object q. For instance, 
in Figure 6, the result set kNN(q, 3) = {o3, o2, o4} of a 3NN 
query. In general, the kNN query is a little tricker than range 
query. In order to minimize the kNN query cost, our kNN 
Query Algorithm (NNA) follows an incremental traversal 
paradigm, i.e., NNA visits the B+-tree entries and verifies 
corresponding objects in ascending order of their minimum 
distances to q in the mapped vector space until k NNs are 
found. Moreover, to avoid unnecessary entry accesses, a 
pruning rule is developed as follows.  

Lemma 3. Given a query object q and a B+-tree entry E, E 
can be safely pruned if MIND(q, E) ≥ curNDk, where MIND(q, 
E) denotes the minimum distance between q and E in the 
mapped vector space and curNDk represents the distance from 
q to the current k-th NN. 

Proof. As pointed out in Section IV.A, the distance in the 
mapped vector space is the lower bound of that in the original 
metric space. Thus, mind(q, E) ≥ MIND(q, E), with mind(q, E) 
denoting the minimal distance between q and any object 
contained in E under the original metric space. If MIND(q, E) 
≥ curNDk, we can get that mind(q, E) ≥ curNDk. Hence, E can 
be discarded safely, and the proof completes.                         

Note that, for Lemma 3, curNDk is obtained and updated 
during kNN search. For example, as depicted in Figure 6 with 
its corresponding SPB-tree in Figure 4, assume that curNDk = 
1, E2 can safely pruned as MIND(q, E2) > 1. Due to Lemma 3, 
kNN search can stop when visiting the entry E that satisfies 
the early termination condition, i.e., MIND(q, E) ≥ curNDk. 
Hence, NNA is optimal in the number of distance 
computations, since it only needs to search in RR(NDk), as 
stated in Lemma 4.  

Lemma 4. NNA has to evaluate the objects o having (o)  
RR(NDk) only once, in which NDk is the k-th NN distance. 

Proof. Assume, to the contrary, NNA visits an object o 
having (o)  RR(NDk), i.e., MIND(q, o) > NDk. Since NNA 
follows an incremental traversal manner, all the objects o 
contained in RR(NDk) are retrieved before o due to MIND(q, o) 
> MIND(q, o). According to Lemma 1, we know that (o)  
RR(NDk) if o  kNN(q, k), as kNN(q, k) can be regarded as 
RQ(q, NDk). Thus, curNDk has been already updated to NDk 
before accessing o. Hence, NNA can be terminated, due to the 

stop condition MIND(q, o) > curNDk (= NDk), without visiting 
o, which contradicts with our assumption. In order to 
complete the proof, we still need to show that the objects in 
RR(NDk) are not visited multiple times, which is 
straightforward as every entry is visited a single once.           

The pseudo-code of NNA is presented in Algorithm 4. First 
of all, NNA sets curNDk to infinity, and initializes the min-
heap H. Then, it computes (q) using P and pushes the root 
entries of a B+-tree into H. Next, a while-loop (lines 3-12) is 
performed until H is empty or the early termination condition 
satisfied (line 5). In each while-loop, NNA deheaps the top 
entry E from H. If E is a non-leaf entry, it pushes all the 
qualified sub entries of E into H (lines 7-9) based on Lemma 3; 
otherwise, for a leaf entry E, it verifies whether its 
corresponding object is an actual answer object and updates 
curNDk if necessary (lines 11-12). In the end, the final query 
result set kNN(q, k) is returned (line 13).  

Example 2. We illustrate NNA using the kNN(q, 3) (k = 3) 
example shown in Figure 6 with its SPB-tree in Figure 4. First, 
curNDk and the min-heap H are initialized to infinity and 
empty, respectively. Then, NNA computes (q) = (2, 5) using 
P and pushes the root entries into H (= {E1, E2}). Next, it 
performs a while-loop. In the first loop, NNA pops the top 
entry E1 from H, and then pushes its qualified sub entries into 
H (= {E4, E3, E2}) as E1 is a non-leaf entry. In the second loop, 
it pops E4 and pushes the qualified sub leaf entries into H (= 
{E9, E10, E3, E2}). Then, NNA pops the leaf entry E9 and 
inserts o4 into kNN(q, 3) due to d(q, o4) < curNDk. Thereafter, 
it pops and evaluates entries in H similarly until MIND(q, E2) 
> curNDk, after which kNN(q, 3) = {o3, o2, o4}. Finally, NNA 
stops, and returns kNN(q, 3) as the final result set.                  

NNA evaluates objects contained in RR(NDk) in ascending 
order of their MIND to q, incurring the random page accesses 
in RAF. Since SFC preserves the spatial proximity, the objects 
to be verified are supposed to be kept close to each other in 
RAF. Thus, with a small cache, we can avoid duplicated RAF 
page accesses, as to be confirmed in Section VI.A. However, 
for the kNN query that needs to retrieve a large portion of the 
dataset, a small cache is not enough. To this end, a greedy 
traversal paradigm can be utilized, i.e., when visiting a B+-tree 
entry pointing to a leaf node, instead of re-inserting the 
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Fig. 6. Illustration of kNN(q, k)  

Algorithm 4 kNN Query Algorithm (NNA)  
  Input: a query object q, an integer k, an object set O indexed by a SPB-tree 
  Output: the result set kNN(q, k) of a kNN query  

1: curNDk = , H =    // H stores the intermediate entries of B+-tree in 
                                         ascending order of MIND(q, E) 

  2: compute (q) using P and push the root entries of B+-tree into H 
  3: while H   do  
  4:    de-heap the top entry E from H 
  5:    if MIND(q, E) ≥ curNDk then break 
  6:     if E is a non-leaf entry then 
  7:        for each sub entry e  E do  
8:           if MIND(e, D) < curNDk then   // Lemma 3 
9:              push e into H 

10:      else   // E is a leaf entry 
11:          if d(q, e.ptr) < curNDk then  
12:              insert e.ptr into kNN(q, k) and update curNDk if necessary 
13: return kNN(q, k)  
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qualified sub leaf entries into the min-heap, the objects 
pointed by leaf entries can be immediately evaluated. 
Although the greedy traversal paradigm will result in 
unnecessary distance computations for verifying the objects 
not contained in RR(NDk), it can still boost the computational 
efficiency, because the objects in the same leaf node satisfy 
the spatial proximity, as also demonstrated in Section VI.A.  

C. Cost Models  

In this section, we develop cost models for similarity search, 
including range and kNN queries, to estimate their I/O and 
CPU costs. With the help of cost models, we can choose 
promising execution strategies. For instance, if the estimated 
cost of our MAM is lower than that of other MAMs, it would 
be better to pick our similarity query algorithms.  

In order to estimate the CPU cost in terms of the number of 
distance computations, we need to utilize the distance 
distribution, as it is the natural way to characterize metric 
datasets. The overall distribution of distances from objects in 
O to a pivot pi is defined as:  

Fpi(r) = Pr{d(o, pi) ≤ r}                             (1) 

where o is a random object in O. Nevertheless, distance 
distributions Fpi(r) for pivots in a pivot set P are not 
independent, because pivots are not selected randomly, and 
the distances in a metric space are also not independent due to 
the triangle inequality. Thus, we introduce the union distance 
distribution function for P, since it can be obtained using the 
sampled dataset:  

F(r1, r2, …, r|P|) = Pr{d(o, p1) ≤ r1, d(o, p2) ≤ r2, …,  
d(o, p|P|) ≤ r|P|}                               (2) 

To determine the estimated number of distance computations 
(EDC) for a similarity query, it is enough to sum two parts, 
including the number of distance computations for computing 
(q) and the number of distance computations for verifying 
whether an object o is contained in the final result set, i.e.,  

EDC = |P| + |O|  Pr(d(q, o) is needed to compute)         (3) 

For the range query algorithm, Pr(d(q, o) is needed to 
compute) in equation (3) can be estimated as the probability 
that (o) is contained in RR(r),  which can be computed as:  

Pr((o)RR(r))  = Pr(d(q, p1) – r  d(o, p1)  d(q, p1) + r)), …,
d(q, p|P|) – r  d(o, p|P|)  d(q, p|P|) + r))  

 = F(u1, u2, …, u|P|) – F(l1, u2, …, u|P|) –
F(u1, l2, …, u|P|) –  – F(u1, u2, …, l|P|) + 
F(l1, l2, …, u|P|) +  + F(u1, u2, …, l|P|-1,
l|P|) –  + (-1)|P|  F (l1, l2, …, l|P|)       (4)

where li = d(q, pi) – r – 1 and ui = d(q, pi) + r.  
A kNN query can be regarded as the range query with a 

search radius r = NDk, in which NDk denotes the distance from 
q to its farthest NN. Hence, in order to drive EDC for kNN 
retrieval, the first step is to determine the NDk value. Using 
the distance distribution function Fq(r), NDk can be estimated 
as eNDk, the minimal r that has at least k objects with their 
distances to q bounded by r:  

eNDk = min{r | |O|  Fq(r)  k}                                         (5) 

However, Fq(r) is not known in advance. In this paper, we 
employ a simple but efficient method [14] to estimate Fq(r) 
using Fpi(r), where pi is the nearest neighbor of q.  

Thus, to obtain EDC for kNN search, according to Lemma 
4, Pr(d(q, o) is needed to compute) in equation (3) equals to 
the probability that (o) is contained in RR(NDk), which can 
be calculated via using equation (4) with r = eNDk (computed 
by equation (5)).  

Since the I/O cost for similarity queries on an SPB-tree 
includes two parts, i.e., the B+-tree page accesses and the RAF 
page accesses. To obtain the number of B+-tree page accesses, 
it is sufficient to sum all the nodes whose MBBs are 
intersected with the search region, i.e., RR(r) for a range query 
or RR(NDk) for a kNN query. In addition, since the objects 
accessed in RAF are supposed to be stored close to each other, 
the number of RAF page accesses can be estimated as , in 

which EDC is used to estimate the total number of the objects 
visited, and f represents the average number of the objects 
accessed per RAF page. Thus, to sum up, the expected number 
of page accesses (EPA) of a similar query can be calculated as:  

                                   (6) 

where .  

VI. EXPERIMENTAL EVALUATION 

In this section, we experimentally evaluate the performance 
of SPB-tree. First, we study the effect of parameters for the 
SPB-tree. Then, we compare the SPB-tree against several 
representative MAMs. Next, the scalability of the SPB-tree is 
explored. Finally, we verify the accuracy of cost models. We 
implemented the SPB-tree and associated similarity search 
algorithms in C++. All experiments were conducted on an 
Intel Core 2 Duo 2.93GHz PC with 3GB RAM. 

We employ three real datasets, namely, Words, Color, and 
DNA. Words 1  contains proper nouns, acronyms, and 
compound words taken from the Moby Project, and the edit 
distance is used to compute the distance between two words. 
Colors2 denotes the color histograms extracted from an image 
database, and L5-norm is utilized to compare the color image 
features. DNA3 consists of 1 million DNA data, and the cosine 
similarity is used to measure its similarity under the tri-gram 
counting space. Following the experimental setup in [37], we 
generate a Signature dataset, and the Hamming distance is 
employed. Synthetic datasets are also created, where the first 
five dimensional values are generated randomly, and each 
remaining dimension is the linear combination of previous 
ones. Without loss of generality, L2-norm is utilized for 
Synthetic datasets. Table II summarizes the statistics of the 
datasets used in our experiments. All MAMs to index the 
datasets are configured to use a fixed disk page size of 4KB.  

We investigate the efficiency of the SPB-tree and the 
performance of similarity search algorithms under various 

                                                                 
1 Words is available at http://icon.shef.ac.uk/Moby/  
2 Color is available at http://www.sisap.org/Metric_Space_Library.html  
3 DNA is available at http://www.ncbi. nlm.nih.gov/genome  

598



parameters, which are listed in Table III. Note that, in every 
experiment, only one factor varies, whereas the others are 
fixed to their default values. The main performance metrics 
include the number of page accesses (PA), the number of 
distance computations (compdists), and the total query time 
(i.e., the sum of the I/O time and CPU time, where the I/O 
time is computed by charging 10ms for each page access [37]). 
Each measurement we report is the average of 500 queries.  

A. Effect of Parameters 

The first set of experiments studies the effect of parameters 
for the SPB-tree. Note that, we only employ kNN queries to 
demonstrate the effect of parameters on the efficiency of the 
SPB-tree, due to space limitation and similar performance 
behavior on range queries.  

First, we evaluate the efficiency of the SPB-tree under 
different SFCs, with the results illustrated in Table IV. As 

observed, the query cost (including the number of page accesses 
and the number of distance computations) of Hilbert curve is 
lower than that of Z-curve. This is because a Hilbert curve is a 
continuous SFC, which achieves better clustering property 
than a Z-curve. Thus, in the rest of experiments, the Hilbert 
curve is used to build the SPB-tree. 

Then, we investigate the effectiveness of our pivot selection 
algorithm (i.e., HFI). Figure 7 depicts the experimental results, 
using real datasets. The first observation is that, HFI performs 
better than existing pivot selection algorithms, viz., HF [20], 
Spacing [24], and PCA [26]. The reason is that, similarity 
search performance is highly related with precision defined in 
Definition 3, and HFI tries to maximize precision. The second 
observation is that the number of distance computations 
decreases as the number of pivots grows. This is because, 
using more pivots, the query efficiency improves as precision 
becomes larger, incurring less distance computations. The 
number of page accesses and the total query time first drop 
and then stay stable or increase as the number of pivots 
ascends. The reason is that, the cost for filtering unqualified 
objects grows as well with more pivots. Hence, similarity 

TABLE II 
STATISTICS OF DATASETS USED  

Dataset Cardinality Dim. Ins. Dim. Measurement 
Words 611,756 1~34 4.9 Edit distance 
Colors 112,682 16 2.9 L5-norm 

DNA 1,000,000 108 6.9 
Cosine similarity under 
tri-gram counting space

Signature  49,740 64 14.8 Hamming distance 
Synthetic [200K, 1000K] 20 4.76 L2-norm 

TABLE III 
PARAMETER SETTINGS 

Parameter Value Default 
the number of pivots |P| 1, 3, 5, 7, 9 5 
cache size (pages) 0, 8, 16, 32, 64, 128 32 
 0.001, 0.003, 0.005, 0.007, 0.009 0.005 
r (% of d+)  2, 4, 8, 16, 32, 64 8 
k 1, 2, 4, 8, 16, 32 8 
cardinality  200K, 400K, 600K, 800K, 1000K 600K 

 

TABLE IV 
SPB-TREE EFFICIENCY UNDER DIFFERENT SFCS  

Hilbert Curve Z-Curve 
 

Words Color DNA Words Color DNA 
PA 703.22 82.198 16,789 812.08 200.25 19,430
compdists 49,746 522.8 391,411 49,782 522.8 558,580
time (sec) 0.228 0.02 6.157 0.215 0.021 8.961 

TABLE V 
KNN SEARCH WITH DIFFERENT TRAVERSAL STRATEGIES 

Incremental Traversal  Greedy Traversal  
 

Words Color DNA Words Color DNA 
PA 703.218 82.198 309,765 469.784 57.686 16,789
compdists 49,746 522.802 391,215 51,188 740.574 391,411
time (sec) 0.2282 0.0203 9.126 0.259 0.0198 6.157 
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search achieves high efficiency in all performance metrics, 
when the number of pivots approaches the dataset’s instinct 
dimensionality (Ins. Dim. for short in Table II).  

Next, we explore the influence of cache size on the 
efficiency of kNN query algorithms, as shown in Figure 8. As 
expected, the number of page accesses and the total query 
time decrease as cache size ascends, and stay stable when 
cache size reaches 32 pages. Thus, a small cache is enough. 
However, as discussed in Section V.B, if a kNN query needs 
to retrieve a large portion of the dataset, i.e.,   is 

large, a small cache is not enough for the incremental traversal 
strategy. As shown in Table V, on DNA, it needs huge I/O 
cost (i.e., PA) with a small default cache, while the greedy 
traversal strategy is optimal in terms of PA, and it achieves the 
computational efficiency accordingly. It is worth noting that, 
in our remaining experiments, the cache size is set as the 
default (i.e., 32 pages) for all the indexes.  

Finally, in order to inspect the impact of  on the efficiency 
of the SPB-tree, we use Color and Synthetic datasets since the 
range of their distance functions is real numeric. Figure 9 
plots the experimental results with respect to various  values. 
As observed, the number of distance computations increases 
with the growth of . The reason is that, for larger , the 
collision probability  that different objects can be 
approximated as the same vectors ascends, resulting in more 
distance computations. However, the total query time first 
drops and then stays stable. This is because, for smaller , the 
search space becomes sparse as the collision probability 
decreases, leading to high query cost.  

B. Comparisons with Other MAMs 

The second set of experiments compares the SPB-tree with 
three representative MAMs, namely, M-tree [15], OmniR-tree 
[20], and M-Index [33]. It is worth mentioning that, OmniR-
tree utilizes HF algorithm to select (instinct dimension + 1) 
pivots, while M-Index randomly chooses 20 pivots.  

Table VI depicts the construction costs and storage sizes for 
all MAMs using real datasets. Note that, on Words and DNA, 
OmniR-tree cannot run because of the large cardinality of the 
dataset. Clearly, SPB-tree has much lower construction cost, 
in terms of the number of page accesses (i.e., PA), the number 
of distance computations (i.e., Compdists), and the construction 
time (denoted by Time). The reason is that, the SPB-tree uses a 
B+-tree as the underlying index to achieve its construction 
efficiency. In addition, the storage size (denoted by Storage) 
of the SPB-tree is also much smaller than that of other MAMs, 
due to the dimensionality reduction performed using SFC.  

Figures 10 and 11 show the performance of range and kNN 
queries, using Signature and real datasets. It is observed that, 
SPB-tree performs the best in terms of the number of page 
accesses, including both B+-tree node accesses and RAF page 
accesses, due to two reasons below. First, SPB-tree uses SFC 
to cluster objects into compact regions, and hence it achieves 
the I/O efficiency as both B+-tree entries and RAF objects to 
be visited are stored close to each other. Second, SPB-tree 
preserves multi-dimensional pre-computed distances as one-
dimensional SFC values, resulting in smaller index storage 
size and less page accesses. In addition, SPB-tree performs 
better or comparable to existing MAMs, in terms of the 
number of distance computations, which equals to the number 
of the objects accessed during similar search. The reason is 
that, our pivot selection algorithm selects effective pivots to 
avoid significant number of distance computations, and our 
similarity search algorithms only compute qualified distances, 
as stated in Lemmas 1 to 4. Consequently, SPB-tree has the 
lowest query time, which is used to evaluate the query at once, 
i.e., not separately expressed by the number of page accesses 
and the distance computations.  

C. Scalability of the SPB-tree 

The third set of experiments aims to verify the scalability of 
the SPB-tree. Figure 12 plots the performance of range and 
kNN queries as a function of cardinality, using Synthetic 
datasets. Obviously, the query costs including the number of 
page accesses, the number of distance computations, and the 
total query time ascend linearly with cardinality, because the 
search space grows as cardinality increases. 

D. Accuracy of Cost Models 

The last set of experiments evaluates the accuracy of our 
cost models for similarity queries. Figures 13 and 14 illustrate 
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TABLE VI
THE CONSTRUCTION COSTS AND STORAGE SIZES OF MAMS  

Words Color DNA  
PA Compdists Time(sec) Storage(KB) PA Compdists Time(sec) Storage(KB) PA Compdists Time(sec) Storage(KB)

M-tree 5,896,000 54,303,500 186.88 69,772 1,286,500 4,694,000 22.9 34,364 11,665,125 76,430,441 1027.33 133,748 
OmniR-tree     335,002 450,728 7.52 13,290     
M-Index 49,493 12,235,310 213.43 242,469 81,920 2,253,830 12.89 30,264 104,776 20,000,190 1433.23 499,106 
SPB-tree 13,577 3,058,780 10.17 13,462 4,864 563,410 2.494 9,858 52,204 5,000,000 77.944 130,120 
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the I/O overhead (i.e., the number of page accesses) and CPU 
cost (i.e., the number of distance computations) for range and 
kNN queries, respectively. In particular, every diagram 
contains (1) the actual costs Actual, (2) the estimated costs 
Estimated computed by our cost models, and (3) the accuracy 
between actual and estimated values Accuracy (i.e., 1 – 
|Actual – Estimated| / Actual). It is observed that, our cost 
models to estimate I/O and CPU costs are very accurate, with 
the average accuracy over 80%.  
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VII. CONCLUSIONS 

Similarity queries are useful in many areas of computer 
science, such as pattern recognition, computational biology, 
multimedia retrieval, and so forth. In this paper, we develop a 
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new metric index, namely, Space-filling curve and Pivot-
based B+-tree (SPB-tree), for similarity search in a generic 
metric space, which supports a wide range of data types and 
any similarity metric. The SPB-tree picks few but effective 
pivots to reduce significantly the number of distance 
computations; uses SFC to cluster data objects into compact 
regions, thus improving storage efficiency; utilizes a B+-tree 
with MBB information as the underlying index that can be 
easily applicable to existing DBMS; and employs a separate 
RAF to store a large set of complex data. In addition, we 
propose efficient similarity search algorithms and derive their 
corresponding cost models based on the SPB-tree. Extensive 
experiments show that, compared with other MAMs, the SPB-
tree has lower construction and storage costs, and supports 
more efficient similarity queries. In the future, we intend to 
extend the SPB-tree to various distributed environments.  
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