
GPU-based Computing of Repeated Range Queries
over Moving Objects

Claudio Silvestri, Francesco Lettich, and Salvatore Orlando
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Abstract—In this paper we investigate the use of GPUs to solve
a data-intensive problem that involves huge amounts of moving
objects. The scenario which we focus on regards objects that
continuously move in a 2D space, where a large percentage of
them also issues range queries. The processing of these queries
entails a large quantity of objects falling into the range queries
to be returned. In order to solve this problem by maintaining a
suitable throughput, we partition the time into ticks, and defer
the parallel processing of all the objects events (location updates
and range queries) occurring in a given tick to the next tick, thus
slightly delaying the overall computation. We process in parallel
all the events of each tick by adopting an hybrid approach, based
on the combined use of CPU and GPU, and show the suitability
of the method by discussing performance results.

The exploitation of a GPU allow us to achieve a speedup of
more than 20× on several datasets with respect to the best se-
quential algorithm solving the same problem. More importantly,
we show that the adoption of new bitmap-based intermediate data
structure we propose to avoid memory access contention entails
a 10× speedup with respect to naive GPU based solutions.

I. INTRODUCTION

An increasing number of applications rely on the pro-
cessing of massive spatial and spatio-temporal workloads.
Specifically, we consider applications in settings where moving
object data are continuously produced and need to be pro-
cessed rapidly, such as mobile phone infrastructures, Massively
Multiplayer Online Games, and behavioral simulations where
the agents may affect the behaviors of other agents within a
given range. In these applications, very large populations of
continuously moving objects frequently update their positions
and issue queries for other objects within their range. The
resulting massive workloads pose new challenges to data
management techniques.

Figure 1 shows an instance of this setting with three
objects. The object positions are represented as circles with
the object ids inside. Updates are shown as previous (in gray)
and new positions connected by arrows labeled u1, u2, u3, and
queries are shown as rectangles, labeled q1, q2, q3. The result
of query q3 when executed after u2 is {o2, o3}.

In order to contend with the targeted workloads in a
scalable manner, we partition time into intervals (called ticks),
assign the location updates and range queries to the ticks
in which they occur, and process updates and queries in
the resulting batches such that we report query results at
the ends of ticks. This approach has the effect of replacing
the processing of a large number of single, asynchronous
object events (location updates and queries) with the repeated
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Fig. 1: Moving objects, queries, and position updates.

processing of spatial joins between the object positions as of
the end of a tick and the range queries that have arrived during
the tick. Our solution trades slightly delayed processing of
queries for increased throughput, and special care is needed to
ensure that this delay is acceptable.

To achieve high performance we exploit a platform en-
compassing an off-the-shelf general-purpose microprocessor
(CPU) coupled with a Graphics Processing Unit (GPU) that
features thousands of processing cores. To benefit from the
computational power of a GPU, peculiarities and limitations
of its architecture must be taken into account. Specifically,
individual GPU cores are slower than those of a typical CPU
and have memory access limitations that may cause contention.
Effective query processing techniques must contend with these
limitations and must ensure coordination among the cores.

To speed-up the range query processing during each tick,
in particular to prune objects during the filtering phase, we
need to exploit a spatial index that stores the moving object
positions. Since in this work we assume uniform spatial
distribution of objects in the space, a regular grid index
suffices. Grid indexes are reported to be particularly effective
for update-intensive workloads [6] and they also allow an easy
parallelization of the workload, since the problem space is
naturally partitioned into independently solvable sub-problems.
Due to its simplicity and the huge amount of updates per time
tick, we simply re-build the grid-based index from scratch
before processing the queries occurring in a tick. Each sub-
problem deriving from the grid-based partitioning is in turn a
data-parallel computation, where the same task, i.e., a query
processing, must be repeated for all the range queries falling
into the cell.

We exploit the GPU, by adopting an hybrid CPU/GPU
approach, in all the phases of the computation: (i) to pre-
process the data such that objects in the same index grid cell
are stored consecutively to optimize memory access; (ii) to
realize nested data parallelism to process queries, where the
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outer parallelism applies to all the cells and associated objects,
whereas the inner parallelism applies to all the queries in each
cell; (iii) to produce and transfer in parallel the list of object
ids for each issued query.

The first step (i) is the easiest one and the least expensive to
compute, since it requires to read the dataset, compute some
statistics over the moving objects, and finally build the grid
and sort the objects.

The second step (ii) may potentially suffer from load
imbalance. However, since in this paper we limit our study
to datasets in which moving objects and queries are spatially
distributed in a uniform way, the amount of objects/queries
associated with each cell of the index is approximatively the
same. In addition, a range query may span in principle many
grid cells. However, since in the application setting that we
address it is common to have queries whose range areas are
identical, we carefully dimension the grid cell size in order to
upper limit the number of index cells (at most four) to inspect
when processing a query.

Thus, in this paper we focus on the third step (iii), which
becomes the most challengeable one in this simplified setting.
In order to avoid the use of blocking writes and to ensure
high throughput, for this step we propose a novel bitwise
intermediate data structure that supports an approach based
on two-steps, during which an interlaced list of results can
be concurrently written by using coalesced memory accesses
without incurring in race conditions.

We run extensive experiments, comparing the proposed
approach to the best known competitor on CPU and to a
straightforward GPU-based alternative that exploits a simple
synchronization mechanism to store the list of query results.
We show that the use of our bitwise intermediate data structure
entails a one order of magnitude performance gain of the
proposed approach with respect to the naive GPU-based one.
Further, whereas the naive approach has just a marginal ad-
vantage over the sequential competitor, the proposed approach
consistently outperforms it by a 20× factor.
To the best of our knowledge this is the first work that exploits
GPUs to efficiently solve repeated spatial range queries on
continuously moving objects.

The paper is organized as follows: in Section II we describe
the problem setting and state the problem addressed. In Section
III we present our solutions, while in Section IV we show
a deep experimental study. Finally, in Section V we cite the
relevant related works, while in Section VI we draw some
conclusions and possible future works.

II. PROBLEM SETTING AND STATEMENT

A. Problem Setting
We consider a set of points O = {o1, . . . , on} moving in a

two-dimensional Euclidean space R
2, where the position of an

object oi is given by the function posi : R≥0 → R
2 mapping

time instants into spatial positions. These points model objects
that issue position updates and range queries as they move.

Let Pi = 〈pt0i , . . . , ptki , . . .〉, tj < tj+1, be the time-ordered

sequence position updates issued by oi, where p
tj
i = posi(tj)

is a position update. A range query issued by object oi at
time t is denoted by qti = (xa, xb, ya, yb), where (xa, ya)
and (xb, yb) are the lower left and upper right corners of a
rectangle. Thus, Qi = 〈qt0i , . . . , qtki , . . .〉, tj < tj+1, is the
time-ordered sequence of queries issued by oi.

Given the above, the most recently known position of oi at
time t, t ≥ t0, is denoted as p̂ti and defined as follows.

p̂ti = ptki ∈ Pi if tk < t ≤ tk+1

Similarly, the most recent query issued by oi at time t, t ≥ t0,
is q̂ti .

q̂ti = qtki ∈ Qi if tk < t ≤ tk+1

We assume that the processing of a query can be delayed
to a certain extent in order to optimize the overall system
throughput. We process queries using the most up-to-date
information available.

Definition 1: [Result set of a range query]
The result of query qti when computed at time t′, t′ ≥ t ≥ t0,
is denoted by res(qti , t

′) and is defined as follows.

res(qti , t
′) = {oj ∈ O | p̂t′j ∈s q

t
i},

where p̂t
′
j ∈s q

t
i denotes that p̂t

′
j = (x, y) belongs to the query

rectangle qti , i.e., xa ≤ x ≤ xb and ya ≤ y ≤ yb.

Assuming that updates u1, . . . , u3 in Figure 1 are the most
recent ones before t′, we have res(qt3, t

′) = {o2, o3}, which
includes also object o3 that issued the query.

B. Batch Processing
To obtain high throughput when facing massive workloads

due to frequent updates and queries issued by very large
populations of moving objects, we quantize time into time
intervals, ticks, with the objective of processing updates and
queries in batches on a per-tick basis. Assuming that the
initial time is 0 and the tick duration is Δt, the k-th time tick
τk is the time interval [k · Δt, (k + 1) · Δt). Specifically,
we aim to collect the updates and queries that arrive during
a tick and process the updates and then the queries at the
end of the tick. For simplicity and to be specific, we assume
a setting where an unanswered query issued by an object
becomes obsolete when the object issues a new query. Thus,
if an object submits more than one update and one query
during a time tick, only the most recent ones are processed.
It is then straightforward to support scenarios where queries
never become obsolete.

C. Query Semantics
The procedure for computing queries as described above

ensures serializable query processing and implements the
timeslice query semantics, where query results are consistent
with respect to the database state at a given time, usually
the time when the query processing begins. This is a popular
choice in traditional databases and is commonly adopted in
related work [7]–[9], [14]. We process updates and queries in
batches, and thus query results are consistent with the database
states at the boundaries of ticks when the processing of batches
begin. When the computation finishes the results are returned.

D. Problem Statement
With the preceding definitions in place, we can state the

problem addressed.

Definition 2: [Repeated Range Query Problem]
Given (i) a set of n objects O, (ii) a partitioning of the
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time domain into ticks [τk]k∈N of duration Δt, and (iii) a
sequence of pairs [(Pτk , Qτk)]k∈N, where Pτk is the up-to-
date object positions at the end of τk, and Qτk is the set of
the last issued queries during τk, we define the repeated range
query operator RRQ applied to [(Pτk , Qτk)]k∈N to yield the
sequence [Rτk ]k∈N, where

Rτk = {(qτki , res(qτki , k ·Δt)) | qτki �= ⊥ ∧ qτki ∈ Qτk}.

In other words, Rτk is a set of pairs of a query and the list of
its result.

Before moving to the description of the proposed methods, we
rapidly cover background information on the type of hardware
that we use to execute them.

E. Graphics Processing Units

GPUs are based on massively parallel computing archi-
tectures that feature thousands of cores grouped in streaming
multiprocessors (SMs) and high-bandwidth RAM which can
be used successfully for general purpose computing. The large
number of available cores offers a potential for substantial
performance gains when compared to the performance of
traditional CPUs.

However, due to the architecture of these devices, it is non-
trivial to exploit their computational power. Specifically, each
GPU processing core is slower than a typical CPU and has
limitations on its access to device memory, resulting in po-
tential contentions unless specific conditions are satisfied [16];
the many cores need to coordinate their actions, which is non-
trivial with large numbers of cores.
Special algorithms are needed, that are designed with the
architecture of GPU in mind, which is not always possible or
favorable [19]. in general, it is not possible to use an existing
algorithm, even if conceived for a multi-core CPU.

To effectively exploit the computational power of a GPU,
memory accesses should have high spatial and temporal lo-
cality to ensure that several cores can benefit of the same
memory transfers (coalescing) and to avoid serialization of
potentially parallel memory accesses (with consequent perfor-
mance degradation by orders of magnitude). Moreover, GPUs
feature several types of memory ranging from registers to
fast memory shared among groups of cores, to device global
memory, which is slower but of significant size and is the
contact point with the host CPU. To achieve high performance
in the context of this quite complex memory hierarchy an
explicit management of memory transfers between the different
memories is most of the times fundamental.

Finally, workload partitioning is paramount when designing
GPU algorithms. A GPU consists of an array of nSM multi-
threaded SMs, each with ncore cores, yielding a total number
of nSM ·ncore cores. Each SM is able to run blocks of threads,
with the threads in a block running concurrently on the cores of
an SM. Since a block typically has many more threads than an
SM has cores, only a subset of the threads can run in parallel
at a given time instant. Such subsets of threads, called warps,
consist of szwarp synchronous, data parallel threads and are
executed according to an SIMD paradigm [12], [16]. Due to
the SIMD model, it is important to avoid branching inside the
same warp to assure optimal use of resources. At the warp
level, no synchronization mechanisms are needed to guarantee
data dependencies among threads.

III. REPEATED RANGE QUERIES

We first cover design considerations underlying the join
techniques. Then we cover indexing and present the GPU-
based algorithms.
When processing a repeated batch of range queries, the same
procedure is repeated for each tick. Thus, for the sake of
readability, hereinafter we omit the subscript that indicates the
tick, and denote by P , Q, and R, respectively, the up-to-date
object positions, the non-obsolete queries, and the result set
associated with a generic tick.

A. Design Considerations

A brute-force approach for computing a repeated set of
range queries during a tick entails O(|P | · |Q|) containment
checks. By introducing a proper spatial indexing it is possible
to prune pairs of query ranges and object locations that cannot
join. When choosing or designing an appropriate index, its
pruning power is but one consideration. The cost of maintain-
ing the index is another aspect to take into consideration. For
example, grid indexes are reported to be particularly effective
for update-intensive workloads [6].

Another consideration is the number of cores and memory
hierarchy provided by the underlying computing platform: an
index may perform differently on different platforms, so a
specific one must be considered when choosing the best option.
With massively parallel platforms such as GPUs, the regularity
of grid indexes is attractive as it enables efficient parallel index
update and querying. The location in the index of the data
related to a given region of space is known a priori. For all
these reasons, we thus adopt a regular grid index.

In the following we discuss this index, and then how
queries are processed and submitted on a per grid cell basis.
Since we assume that queries are homogeneous in size, we
choose a grid cell size such that a query intersects at most
four cells, thus limiting the search space.

B. Grid-Based Partitioning and Indexing

Let G = (xG
a , y

G
a , x

G
b , y

G
b ) be the minimum bounding

rectangle that contain all objects and query locations during
the tick. We cover G by a regular grid and thus partition G
into cells [11]. Then we enumerate the cells using a space-
filling curve and map object locations and queries to cells as
detailed next.

1) MBR partitioning into a regular grid: We partition G
according to a grid C of N ·M cells of width W and height
H such that cell cij covers the following region:

(xG
a + i ·W, xG

a +(i+1) ·W, yGa +j ·H, yGa +(j+1) ·H).

W and H are computed on the basis of the dataset features,
in particular the area of the range queries occurring in a
given tick. Therefore, given a set Q consisting of queries
qi = 〈xa

i , x
b
i , y

a
i , y

b
i 〉, the cell size W · H is computed as

follows:

W = max
i=1,...,|Q|

(xb
i − xa

i ) H = max
j=1,...,|Q|

(ybi − yb1)

Finally, to ensure that the grid covers G, constants N and M
are chosen so that xG

a +N ·W ≥ xG
b and yGa +M ·H ≥ yGb

hold.
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2) Mapping of objects and queries to cells: Next, we
assume that the cells are enumerated according to the standard
z-curve function such that the index of cell cij is z(i, j).
Function f : P → C maps each object in P to the cell that
contains the object. Function g : Q → C maps each query in
Q that is distinct from ⊥ to the cell that contains its lower left
corner, called its primary cell. We denote the range of function
g by CA and call it the set of active cells. Note that if g maps
a query q to its primary cell cij , three other neighboring cells
may intersect q: ci(j+1), c(i+1)j , and c(i+1)(j+1). Thus, up to 4
cells need to be visited to compute a query. Figure 2 illustrates
this scenario.
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Fig. 2: Grid partitioning of the space

C. Query Processing Pipeline

Five main design issues underline our GPU-based solution:
(i) we have to distribute the workload evenly among the
GPUs’ SMs; (ii) we have to avoid contention/serialization
when accessing the GPU device memory and we must favor
locality to fully exploit the complex GPU memory hierarchy;
(iii) when possible, we have to apply data compression of the
GPU output, which can be very large and much larger than
the input for our problem; (iv) we have to avoid expensive
synchronization among concurrent threads; and (v) we have to
choose the unit of parallelization (either objects or queries, or
partitions of queries).

The processing pipeline we propose is structured into five
stages:

1) index creation;
2) moving object and query indexing;
3) sorting;
4) filtering with bitmap encoding;
5) bitmap decoding and output.

Each one of these stages takes advantage of a tight cooperation
between the GPU and the CPU and exploits temporary ad-hoc
bit-wise data structures, which encode the query result for a
single tick, in order to address the design issues reported in
(ii) and (iv). Data are moved to GPU memory before stage 1
and wrote back to host memory during the last stage.

In order to show the benefits of using bitmap intermediate
data structures, we also implement a 4-stage baseline pipeline,
where we replace the 4th and 5th stage above with the
following one:

4) filtering and synchronized output.

In the following detailed pipeline description we will
refer to the two pipelines as baseline pipeline and optimized
pipeline. The common part, stages 1-3, will be described
separately and indicated as common pipeline.

D. Common Pipeline Description

1) Index Creation phase: During the index creation phase
the minimum rectangle G that bounds all objects and queries
during the tick is first determined. Then, the grid index
C that partitions G is created (see Section III-B1). This is
done through simple reductions over P and Q. The overall
complexity for both steps is O(|Q|+ |P |).

2) Moving Object and Query Indexing: This stage cal-
culates the index of the cells to which the various queries
and moving objects belong, given their coordinates. This is
translated essentially into computing in parallel an integer
value from a tuple of reals. This task has thus an overall
complexity of O(|Q|+ |P |).

3) Sorting: During this phase we reorder separately P and
Q accordingly to the indices of the cells computed in III-D2:
the goal is to store objects and queries assigned to the same cell
in contiguous memory locations so to improve spatial locality
during the subsequent phases.

The sorting phase can be performed very efficiently on
GPU by adopting a well established GPU-based sorting algo-
rithm such as the radix-sort [5]. The complexity of this step
is O(d · (|Q| + |P |)), where d is the base used when sorting
keys. Once we have reordered the vectors related to P and
Q accordingly to the way described above, we also compute
the start/stop indices needed to detect the lists of queries and
moving objects belonging to each active cell.

E. Baseline Pipeline Description

4) Filtering and Synchronized Output: The 4th and last
stage of the baseline approach computes the intersection tests
and writes out directly in the GPU’s global memory. Each
thread is in charge of a distinct query, and all threads concur-
rently enqueue the output to contiguous memory locations, as
soon as a new object falling into a query is detected. The query
results are thus produced by these threads as an un-ordered list
of pairs (queryID, objectID).

This approach has two main drawbacks: (i) the need
of using synchronizing mechanisms among threads (in each
block) in order to flush out the results in global memory in a
coherent manner, and (ii) the format of the output, which is
not compressed at all, thus increasing the I/O costs. Since the
implementation of the forth phase of the baseline pipeline is
straightforward, we do not discuss it any more, although we
discuss the results of some tests involving it in the experimental
section.

F. Optimized Pipeline Description

4) Filtering with Bitmap Encoding: This phase actually
computes the range queries against the object positions. Ac-
cordingly to the design issues cited in Section III-C, we have
to exploit cleverly the GPU architecture in order to orchestrate
efficiently the input/output going on between the CPU and the
GPU. To this end we thus adopt a multi-step strategy, a thing
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which is rather common in the GPGPU field [5], [17], in which
the phase described in this section represents the first step. The
main idea employed during this phase is to store the results
of the queries issued during a single tick to bitmaps. More
specifically, for each cell c ∈ C and for all the queries whose
primary cell is c, a 2D bitmap Bc is computed, where each row
represents a single query assigned to c, and each column an
object falling in either c or one of its (up to) three neighboring
cells (see Section III-B2). The element bchk is thus set to 1 if
the h-th object is in the result of the k-th query.

Before computing the bitmaps, however, we must deter-
mine their size; this in turn depends on the convenience layout
used to store the bitmaps, which is the interlaced, column-
major one, as shown in Figure 3. Accordingly to this layout,
the bits of each row are grouped in words q1, . . . , qp, which
yields a scattered access to the device memory when multiple
GPU threads, each one in charge of computing a distinct query,
create the bitmap. This, as it will be shown later, allows to
coalesce the writes when bitmaps are stored inside the GPU’s
main global memory and to avoid the usage of synchronization
mechanisms between threads.

The size of the bitmap for a given cell cα is therefore
nqα ·npα, where nqα is the number of queries that map (by g)
to cα and npα is the number of objects that can be in the range
of a query in cα. Thus, npα is the number of objects in four
cells: the (primary) cell cα = cz(ij) and its three neighboring
cells cz(i(j+1)), cz((i+1)j), and cz((i+1)(j+1)), where z is the
z-curve function.
The values nqα and npα can, for all k, be computed in
parallel over the ordered vectors obtained during the sorting
phase using a GPU-based parallel scan algorithm. At the end,
along with the sizes of the bitmaps, we compute the starting
addresses in global memory for the various bitmaps for each
index cell as well.

After having determined the sizes of each bitmap we are
finally ready to compute the spatial joins in parallel. Our
GPU parallelization of the filtering and encoding phase is
decomposed into two stages: Interlaced bitmap generation and
bitmap linearization.

Interlaced bitmap generation. As shown in Listing 1, we have
a distinct block of GPU threads for each active index cell cα
(line 5). Each thread in a block is then in charge of computing a
distinct query assigned to cα (line 6). Since there are usually
many more threads/queries in a block than cores in an SM,
only a subset of them can run in parallel at a given time.
These subsets of threads are called warps and consist of szwarp

synchronous threads (32 data-parallel threads in our GPU set-
ting). All the threads of a warp access the device memory in an
optimized way: they read the same input data (object positions)
(line 7) synchronously and access them consecutively (spatial
locality). They first access the objects in cα = cz(ij), then the
objects in cz(i(j+1)), then those in cz((i+1)j), and finally those
in cz((i+1)(j+1)). Moreover, all threads write simultaneously
words that are stored consecutively in memory, thus favoring
coalescing of memory writes, which improves device memory
bandwidth utilization (line 15).

In more detail, all threads read the same sequence of
object positions and update locally a 32 bit-wide register that
contains the bitwise information about the presence/absence
of 32 distinct objects in its own range query (line 11). When
the threads in a warp have all completed the updating of

their registers, all the threads store them simultaneously to the
device memory at the right memory displacement (line 15).
Then, they start computing the next words/registers, etc.

Listing 1: Filtering with bitmap encoding pseudocode

1 numPoints← 0
2 indexWord← 0
3 wordBitmap← 0
4

5 foreach cα ∈ Cα p a r a l l e l GPU b l o c k do
6 foreach q ∈ cα p a r a l l e l GPU t h r e a d do
7 foreach p ∈ cα do
8

9 numPoints← numPoints+ 1
10 i f (p ∈ q )
11 setBit(wordBitmap, p)
12 e n d i f
13

14 i f (numPoints mod 32 = 0 )
15 writeBitmap(wordBitmap, indexWord, q)
16 wordBitmap← 0
17 indexWord← indexWord+ 1
18 e n d i f
19

20 endfor
21 endfor
22 endfor

This process is also schematized in Figure 3, which shows
the interlaced bitmap representation and a block of szwarp

columns that are collectively updated by a warp. Each column
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Fig. 3: Collective creation of a interlaced bitmap by a block
of GPU threads.

contains the 32 bit-wide words associated with each query
q1, . . . , qp. The first words (the b1’s) associated with the
various queries and computed by the warp’s threads are stored
simultaneously in memory at time 1. Then at time 2, the same
holds for the second words ( the b2’s), etc. The words updated
simultaneously by the threads are stored consecutively due to
the interlaced layout of the bitmap. This permits coalesced
writing of data by the synchronous warp threads.
The complexity of the algorithm is:

∑

c∈Cα

|Qc| · |P c|. (1)

To simplify the decoding of the information stored in the
bitmaps, the interlaced bitmaps are then linearized. In the
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resulting layout (Figure 4), the bit-vectors associated with
every queries have their words arranged consecutively in
memory, which favors read coalescing during the decoding
phase. This transformation can be done through a fairly simple
GPU kernel.

�
�

�����������

����������

Fig. 4: Collective linearization of a group of columns by a
warp of GPU threads.

5) Bitmap Decoding: The previous phase outputs one
bitmap for each query, including both positive and negative
occurrences of all object positions associated with a given
index cell. From such a bitmap, the bitmap decoding phase
has to generate a list of object identifiers corresponding to the
positive occurrences.

It would be possible to transfer the linearised bitmaps from
the GPU to the CPU and let the latter perform the decoding.
However, the decoding is a computationally intensive task that
can be massively parallelized. On the negative side, when
carrying out the decoding using the GPU, we must transfer the
results to the CPU. In sum, given the bandwidths of the buses
through which CPUs and GPUs communicate, we choose to
perform the decoding on the GPU.

We adopt a classical [15] solution to overlap the overhead
of the communication between the CPU and the GPU with
the computation on the GPU. In particular, we overlap the
GPU’s decoding of a bitmap chunk to produce a portion of the
result, with the communication of another portion of the result,
previously decoded by the GPU. A chunk is a subset of all the
linearized bitmaps, produced by the previous pipeline stage
for each index cell. To this end, we employ a double buffer
technique. One buffer is used for GPU-based decoding of a
chunk, while the other is used for transmitting already decoded
results from the GPU to the CPU. Then, we exchange the roles
of the buffers. This kind of overlapping is possible thanks to
the hardware capabilities of GPUs, which allow simultaneous
kernel execution and data transfer.

Each bitmap is decoded by a specific block of threads that
are scheduled in warps over an SM. Queries are statically
split among warps, the threads of which cooperate to decode
the queries. First the threads load the bit vector words of
the currently considered query into shared memory. Since the
words are consecutive in memory in the linearized layout,

the parallel reads are coalesced. Then, through a parallel
double linear scan, the warp compute the numbers of the
object identifiers (positive query results) to write to the device
memory along with the right displacements.

The linear scan avoids bank conflicts, by exploiting the
broadcast capability of shared memories, and it scales with
respect to the size of the query bitmap. Once this information
is computed, every thread inside a warp performs a collective
write of the positive query result to global memory, exploiting
write coalescing. This means that each thread in a warp writes
consecutive words, each one containing the identifier of an
object in the result set. The complexity of this phase can be
expressed as:

|R|+
∑

c∈Cα

|Qc| · |P c|, (2)

where |R| is the part related to the I/O notification cost and
the rest is related to the bitmaps’ decoding costs.

IV. EXPERIMENTAL EVALUATION

We present an experimental evaluation that aims to prove
the effectiveness of using our intermediate bitmap data struc-
ture and to offer insight into effects of key parameters on the
performance of the strategy we propose.

A. Experimental Setup

The experiments are conducted on a PC equipped with an
Intel Core i3 550 CPU (at 3.2 GHz) with 4 GB of RAM and a
NVIDIA GTX 560 GPU; the operating system used is Ubuntu
12.04, while the C/C++ compiler utilized is GCC 4.6.3 and
the CUDA Toolkit version is 4.2.

We exploit a publicly available framework [1], [2] for
both workload generation and testing. The framework comes
with a number of sequential, CPU-based algorithms. Among
these, Synchronized Trasversal is shown to be consistently the
best [2], so we compare our methods against this one.

For the tests, we use synthetic datasets in which moving
objects are distributed uniformly on the space. Workloads are
created using the generator included in the framework, which is
derived from the Brinkoff generator [18]. In all tests, we iterate
the computing of a batch of object updates and range queries
for 20 ticks. To model object movements, the framework thus
generates 20 chunks of data for each dataset, one for each tick.
Table I summarizes the main parameters used to generate the
datasets. The framework uses a generic spatial distance unit u.

Spatial area (sa) All tests occur in a square spatial area with size
500M u2 (side length 22, 361 u).

Moving objs no. (|P |) We vary the number of moving objects |P |
from 100k to 1.5M .

Query rate (qr) The percentage of objects that issue a range
query during every tick, so that |Q| = qr · |P |.
Default value is 100%.

Query area (qa) All query areas in our tests are squares of the
same size. Default value is 40k u2 (side length
200 u).

Query location qa’s are centered in the position of objects
issuing queries.

TABLE I: Data and workload generation parameters.
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B. Experimental Results

In the following we report on some experimental results
obtained by our GPU-based optimized software, denoted by
GPUOpt, which exploits bitmaps during the filtering phase.
We compare GPUOpt with two baselines: the CPU-only imple-
mentation [2], denoted by Seq, and the GPU-based version,
denoted by GPUBLine, which uses thread synchronization to
correctly enqueue the list of results.

In the first batch of tests we study the behavior of GPUOpt

when we change the amount of moving objects, the query
size, and the query rate. Figure 5 plots the execution time as a
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Fig. 5: Varying objects, running time per tick.

function of the number of objects, when the query size is fixed
at 40k u2, and the query rate is fixed at 100%. While GPUBLine

has just a marginal advantage over Seq, GPUOpt consistently
outperforms both Seq and GPUBLine. The figure also shows
how the speedup obtained by GPUOpt stabilizes around 20x,
even when the amount of moving entities becomes very big
(> 1M entities). This also shows the scalability of GPUOpt.

If a reader considers how the grid cells are dimensioned,
s/he could argue that the relatively small query size, compared
to the size of the spatial region, may favor GPUOpt. Thus, in
the next batch of experiments we show the effects of varying
the query area while keeping fixed the number of moving
objects (at 700k) and the query rate (at 100%). In Figure 6

��

�����

�����

�����

�����

������

������

������� ������� ������� �	����� �
����� �������

��

��

��

���

���

���

���

���

���

���

���

�
	


�
��
�
�
�	
�
�
��


�
�

�
�
�
�
�
�
�

�������������

������������	
�������������	�	�������������

����	��������������� ��!��"#�$������������������%

��	
���
���

��	���

�&����&���	����������

�&����&���	���������	
���

Fig. 6: Varying query area, running time per tick.

we can see how the advantage of GPUOpt decrease when the
query area increases. This hints that an optimal grid cell size
indirectly allows us to find a balance between the average

amount of joins per query actually computed, and a proper
workload distribution over the different SMs of the GPU, by
avoiding too many/few objects in some cells.

Due to space limitations, we do not show the plots of
execution time vs. query rate. Obviously, the execution time
depends linearly on the query rate. Moreover, if we increase
the query rate, also the speedups obtained by both GPUOpt and
GPUBLine with respect to Seq increases, since the number of
(independent) computations per tick gets larger thus favouring
GPU-based parallel solutions.

In order to assess one of the challenge this problem present,
we now pass to study the size of the output, i.e., the result sets
of the queries in each time tick. This output is larger than the
input for typical settings, and it grows when |P |, |Q|, or the
query area increase. Given a uniform spatial distribution of
the objects in the the spatial area (sa), the output of any query
approximatively contains a number of objects equal to:

ρ = |P | · qa
sa

(3)

where qa is the query area. If we denote with ca the area of
each cell, we can also compute the average amount of objects
per cell as ρc = |P | · casa . Considered the spatial indexing used
and the fact that all the queries are equally sized, we have that
ca = qa and thus ρ = ρc. The size of the cumulative output of
all the queries Q in a tick thus contains a number of objects
equal to:

|R| = ρ · |Q| (4)

Recall that for the experiments of Figure 5, the query area
is fixed at 40k u2 while the query rate is fixed at 100%
(|Q| = |P |). Thus, the size of the cumulative output (see Eq.
4) becomes quadratic in |P |, since |R| = ρ · |Q| = |P |2 · qa

sa .
For example, still referring to Figure 5, for |P | = 100k
we have that |R| ≈ 790k, and for |P | = 1.5M we have
that |R| ≈ 17.850M , whereas the value computed using the
equations are, respectively, 800k and 18M

Finally, we study how the various pipeline stages of
GPUOpt (see Section III-C) behave when we change either |P |
or qa. For simplicity we measure monolithically phases 1–3,
considered their limited computational weights with respect to
phases 4 and 5. When |P | is varied, qa is fixed at 40k u2 and
the query rate is 100% (thus |P | = |Q|), phases 1–3 exhibit
a linear behaviour, while phases 4 and 5 exhibit a quadratic
behaviour. This is expected, considered the Equations 1 and
2. More interesting are the experiments in which qa is varied
in the [40k u2 . . . 640k u2] range, |P | = |Q| are kept fixed
at 700k and the query rate is fixed at 100%. From Figure 7
we can observe that phases 1–3 have constant timings (|P |
and |Q| are always the same), while phases 4 and 5 have
a linear behaviour with respect to qa. This is explained by
considering that the overall amount of containment tests is
given by

∑
c∈CA

|Qc| · |P c| = sa
ca · 4ρc · ρ = 4 sa

caρ
2
c = 4|P |2 ca

sa
(since ρc = ρ, see Eq.3), where sa

ca gives the amount of cells
while the second term gives the average amount of containment
tests per cell.

V. RELATED WORK

The idea of using the abundant and cheap computational
power offered by GPUs to boost spatial joins dates back to the
era when GPUs did not offer real general purpose computing
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Fig. 7: Profiling analysis, varying query area, running time per
tick.

capabilities [4]. As pointed out in an extensive review [2],
the need for managing continuously incoming and evolving
spatial data can be addressed by the usage of simple, light-
weight (and, in many cases, throwaway) data structures, a fact
that is particularly interesting when we consider the use of
GPUs. However, it is crucial that data structures and algorithms
contend effectively with skewed data distributions and avoid
redundant spatial joins and bad workload distributions as
much as possible. Recent studies [6], [7] show how uniform
grid-based approaches like the one adopted in this work are
particularly attractive when managing continuously incoming
and evolving spatial data in main-memory multi-core settings.
Other works consider the problems of building R-trees from
scratch [13] and compute range queries using R-trees [3], [13]
through an hybrid approach based on the combined use of CPU
and GPU. We are unaware of any existing studies of repeated
range queries on moving objects on GPUs. The most closely
related work is focused on point-in-polygon joins [10]. Even
if it would be possible to adapt parts of this approach to our
scenario, there are key difficulties to consider: (i) the processed
data is static, and the problem of managing continuous streams
of updates and queries is not considered; (ii) applying this
approach at each tick independently to deal with the dynamic
scenario would be inefficient. A quadtree-derived data structure
is used to partition the set of points as uniformly as possible,
and the authors shows that this operation is quite expensive.

VI. CONCLUSIONS

We presented a novel and scalable techniques capable of
computing on a GPU a massive number of repeated range
queries over a huge amount of continuously moving objects.
To achieve this goal we also introduced a new bitmap-based
intermediate data structure that avoids memory access con-
tention during parallel result output. The approach used and
the data structure is general and can be reused in other contexts
to improve the performance of operations that concurrently
write interlaced list of results using coalesced memory access.
We extensively tested the proposed algorithms to study their
sensitivity to several parameters, and proved that there is a
significant performance gain over a couple of baselines.

Skewed spatial distributions and variably sized queries may
represent serious challenges for devising an efficient GPU-
based solution to the problem of the repeated range queries

on moving objects. The main issues are related to possible
workload imbalance among GPU’s SMs and cores. Many
assumptions made for uniform distributions do not hold in
such scenarios. In future works we aim to test different index-
ing methods and algorithms able to manage effectively such
scenarios, while still fully exploiting the GPU computational
power.
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