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Abstract—In step with the web being used widely by mobile
users, user location is becoming an essential signal in services,
including local intent search. Given a large set of spatial web
objects consisting of a geographical location and a textual
description (e.g., online business directory entries of restaurants,
bars, and shops), how can we find sets of objects that are both
spatially and textually relevant to a query? Most of existing
studies solve the problem by requiring that all query keywords
are covered by the returned objects and then rank the sets
by spatial proximity. The needs for identifying sets with more
textually relevant objects render these studies inapplicable. We
propose localitySearch, a query that returns top-k sets of spatial
web objects and integrates spatial distance and textual relevance
in one ranking function. We show that computing the query is
NP-hard, and we present two efficient exact algorithms and one
generic approximate algorithm based on greedy strategies for
computing the query. We report on findings from an empirical
study with three real-life datasets. The study offers insight into
the efficiency and effectiveness of the proposed algorithms.

I. INTRODUCTION

Users usually report their geographical locations by geo-
enabled devices (e.g., smartphones and tablets), which is an
important signal in many mobile and web services. We are
witnessing a development where increasing volumes of web
content is being associated with location, yielding what we
term spatial web objects that have a location and a text de-
scription [1]. Examples include web pages that represent places
such as shops, bars, and restaurants; microblogging entries
with locations; and location-based social network postings [2].
It has been reported that 25% of tweets from mobile devices
are associated with locations [3]. One of the most important
services on the web is keyword search. Billions of search
queries are processed each day. A substantial fraction of such
queries have local intent, meaning that they target web content
that relates to places near the user. Studies report that 20% of
Google desktop searches and 53% of mobile Bing searches
have local intent [3].

This entire development gives prominence to spatial key-
word queries. Such a query typically takes a location and user-
supplied keywords as arguments and returns objects that are
not only near the query location, but are also textually relevant
to the query keywords. Motivated by such applications, we
formulate a query that enables spatial locality search for co-
located spatial web objects, called localitySearch. Informally,
localitySearch enables a user to find the top-k sets of co-
located spatial web objects that are near a query location and
are the most relevant to given query keywords.

Several studies are linked with the problem. In spatial
keyword querying, we are aware of spatial keyword queries [3],
[4], [5], [6]. Most of these return a single set of objects, and
they evaluate sets by spatial proximity. For textual descriptions,
the existing studies often use Boolean conditions that require
a candidate set to cover all the query keywords [4], [6]. The
needs for identifying sets with more relevant objects render the
Boolean method inapplicable. This paper provides an approach
to top-k querying that also considers the textual relevance in
set evaluation. The returned results as the k most relevant sets
in both the spatial and textual dimensions. In particular, we
provide two spatial metrics: 1) pairwise distance in order to
measure the spatial similarity of a set of objects; 2) distance
between a set of objects and a query location.

Our contribution is fivefold. i) We formulate locality-
Search and prove it NP-hard. ii) In terms of object locations,
we provide a basic method that returns exact top-k results.
iii) To improve the basic method, we suggest to index objects
by their locations and textual descriptions. As an example to
explain our techniques, we use a grid cell index for simplicity.
With indexing structures on the objects, we derive approximate
bounds on grid cells and integrate them into the search to prune
the search space. iv) We propose a generic approximate algo-
rithm, which can be applied with different greedy strategies. v)
We conduct extensive experiments on three real-life datasets
to elicit pertinent design properties of the provided algorithms,
including efficiency and effectiveness.

The rest of the paper is organized as follows. The problem
is formally stated in Section II. Section III provides exact and
approximate solutions to solve the5 problem. An experimental
study is reported in Section IV. We review the state of the art
in Section V, and we conclude the paper in Section VI.

II. PROBLEM STATEMENT

We formalize the problem setting and the localitySearch
query in the section. The query aims to find the top-k sets of
spatial web objects co-locating within a diameter τ bounded
spatial range.

The localitySearch query takes as argument a finite set of
spatial web objects: O = {o1, o2, . . . , on} in R2. An object
oi ∈ O thus has a geographical location μ, and also a textual
description ψ, i.e., a set of textual keywords.

Before we formulate localitySearch, we introduce three
terms that are used to evaluate how good a candidate set R of
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objects is. The three terms measure 1) the distance between a
set and a query location, 2) the textual similarity between a
set of spatial web objects and a set of query keywords, and 3)
the co-locality or spatial similarity between any two objects in
a set. Specifically, Θ(R,Q.μ) captures the spatial proximity
between a set R and the query location Q.μ; Ω(R,Q) denotes
the textual relevance of the spatial web objects in R to Q.ψ;
and �(R) measures the mutual average discrepancy of the
objects contained by R. Weight parameters α and β take
values in the range [0, 1], and α+ β < 1. The weights control
the relative importance of the three terms. To keep the same
magnitude, each term is normalized into the range [0, 1]. In
the following, we elaborate on each term.

We prefer sets of objects that are close to the query
location, and a spatial proximity function Θ(R,Q.μ) measures
the distance between the set R of objects and the query location
Q.μ. Without loss of generality, we let Θ(R,Q.μ) return the
distance between the query location and the closest object
in R: minoi∈R(dist(oi.μ,Q.μ)) where dist(·, ·) computes the
Euclidean distance between its arguments. To normalize the
distance, we divide the distance by the maximum possible
Euclidean distance of the region in R2 covering O, denoted as
distmax . Then we have the following function:

Θ(R,Q.μ) = 1− minoi∈R(dist(oi.μ,Q.μ))

distmax

. (1)

Objects have textual descriptions, and localitySearch re-
turns a set of objects that are relevant to given query keywords.
We thus need a textual relevance function Ω(R,Q) to compute
the total relevance of a set of objects to the query keywords.
Different from Boolean conditions [4], [6], Ω(R,Q) is able
to identify sets with more textually relevant objects. Although
several definitions of this function are possible [7], we use
the vector space model (VSM) [8], which is a well-established
information retrieval model. We define the textual relevance
of an object set to the query keywords as the total textual
relevance divided by a factor ℘(τ) for normalization:

Ω(R,Q) =

∑
oi∈R

VSM (oi .ψ,Q .ψ)

℘(τ)
, (2)

where ℘(τ) returns the maximum number of relevant objects
within a spatial range with diameter τ .

We propose a mutual average discrepancy function �(R)
to measure the ”co-locality” between the objects in a set. For
uniformity, we use τ as a factor to normalize the distance. The
function is thus defined based on the average mutual distance
as:

�(R) = 1−

∑
1≤i<j≤|R|

dist(oi.μ, oj .μ)

τ · (|R|
2

) . (3)

We proceed to present the definition of the localitySearch
query that returns k subsets of spatial web objects in O.

Definition 1 (localitySearch): The localitySearch query
Q = 〈μ, ψ, τ〉 takes three parameters, where μ is a query loca-
tion, ψ is a query keyword set, and τ is a diameter threshold to
define the co-locality that is the maximal distance between two
objects. The number of objects in a result set R, namely |R|,
is required to exceed 1. A result set R must satisfy the query
keywords, meaning that it has to cover all the query keywords

in Q.ψ, i.e., ∀oi ∈ R (oi.ψ ∩Q.ψ �= ∅) ∧ ∪oi∈Roi.ψ ⊇ Q.ψ.
Among all possible such sets, the k sets with the highest scores
according to the following scoring function are returned.

ξ(R,Q) = αΘ(R,Q.μ) + βΩ(R,Q) + (1−α− β)�(R) (4)

The summation form of the scoring function has been
widely used in previous studies [3], [7], [8], [4]. This function
can be extended to support other terms. Our techniques are
applicable to other kinds of terms that have similar mathe-
matical properties. For instance, the spatial proximity function
Θ(R,Q.μ) can be replaced by network distance; the textual
relevance function Ω(R,Q) can be replaced by frequency
or numerical support (e.g., Facebook Likes); and the mutual
average discrepancy function �(R) can be used for social
similarity or pairwise diversity.

Despite the simplicity of Equation 4, computing the local-
itySearch query is expensive. Given a localitySearch query,
the objective function can be regarded as a binary non-linear
function where the variables represent objects and are set to
0 or 1, capturing their existence in a result set. Since solving
a non-linear integer programming problem is often NP-hard,
and it is likely that the proposed problem is NP-hard as well.
We confirm this in Theorem 1.

Theorem 1: The localitySearch query is NP-hard (0 <
α+ β < 1, α, β �= 0).

Proof: We reduce the maximal independent set problem in
graphs to an instance of the localitySearch problem. Here, we
assume the simplest case where any subset of objects/vertices
covers the query keywords.

In the decision version of localitySearch, given a set of
objects O = {o1, o2, . . . , on} and a value ξ̃, we ask whether
or not a subset exists with a score larger than ξ̃, while the
distance between any two objects in the subset does not exceed
diameter threshold τ .

An instance of the independent set problem is defined as
follows: given an undirected graph G = (V,E) and an integer
k, determine whether G contains an independent set I (I ⊆ V )
of size larger than k that satisfies the condition that the vertices
are not connected, i.e., ∀i, j ∈ I(e(i, j) �∈ E).

We assign weights to all pairs of vertices in graph G.
For connected vertices, each edge of a pair is assigned a
weight of at least τ , and unconnected pairs are connected with
a virtual edge that has a weight less than τ . The assigned
weights in the new graph satisfy the triangle inequality and
are regarded as distances between vertices in an instance of

localitySearch where each vertex is an object. We set τ < 1/ξ̃
in the instance. Each vertex in the graph also has a weight
denoting the textual relevance to the query keywords Q.ψ that

is τ . We set k < � ξ̃−2
τ � × |O|, where � ξ̃−2τ � × |O| represents

the smallest value of k when the score is ξ̃ according to
Equation 4. The reduction is in polynomial time as we assign(
n
2

)
edges. A solution exists for the instance of independent

sets if there is a solution for localitySearch, since connected
vertices with e(i, j) ∈ E cannot be contained in the solution
to localitySearch instance under the constraint dist(i, j) < τ .
Additionally, k′ > k, as k is less than the smallest value

� ξ̃−2τ � × |O|. Since the average distance is always smaller
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Fig. 1. Generating New Candidate Sets Based on Lemma 1.

than τ (note that τ < 1/ξ̃), the score ξ of the localitySearch
solution is larger than ξ̃ according to Equation 3. Thus, G
contains an independent set with size larger than k, which
satisfies that ∀i, j ∈ I(e(i, j) �∈ E). The reduction implies that
if we had a polynomial time algorithm for localitySearch
then we would have a polynomial time algorithm for the
independent set problem, which would imply that P=NP. We
therefore have that localitySearch is NP-hard.

III. SOLUTION TO LOCALITYSEARCH

We aim to provide efficient algorithms to return exact top-k
sets to answer the localitySearch query.

A. Baseline Algorithm

A naive method to process a localitySearch query is to
compute the ranking score (according to Equation 4) of each
candidate in the power set 2O , and return the k sets with the
highest ranking scores. The naive method is inefficient as to
search the whole space of 2O sets is expensive.

We propose an exact baseline algorithm (BA) such that
not every set in 2O is processed. The results of the baseline
algorithm are guaranteed to be correct.

Considering an algorithm that examines the objects in O
from near to far according to a query location Q.μ, Lemma 1
is established before we present the algorithm BA.

Lemma 1: Given the i-th nearest neighbor oi with respect
to the query location Q.μ, a candidate object set temp can
be removed from the whole candidate set Map if there
exists an object oj ∈ temp that satisfies dist(oi .μ,Q .μ) −
dist(oj .μ,Q .μ) > τ .

Proof: A candidate set temp can be safely removed
from Map if and only if temp with an object that is going
to be examined in the following steps of the algorithm cannot
become a new candidate set.

According to the triangle equality, we have
dist(oi .μ, oj .μ) > dist(oi .μ,Q .μ) − dist(oj .μ,Q .μ).
Since dist(oi .μ,Q .μ) − dist( oj .μ,Q.μ) > τ , we have
dist(oi .μ, oj .μ) > τ . For any object ol that will be
examined in the following steps, we have dist( ol.μ,Q.μ) >
dist(oi.μ,Q.μ) because the algorithm examines objects from
near to far. Hence, we have dist(ol.μ,Q.μ) − dist(oj .μ,
Q.μ) > dist(oi.μ,Q.μ) − dist(oj .μ,Q.μ) > τ , which
suggests that it is not possible that temp can “grow” to

a bigger candidate set with any unexamined object while
satisfying the diameter bound τ . This completes the proof.

An example that exemplifies Lemma 1 is shown in Fig-
ure 1. Assume that temp = {oj , o′j } is a candidate set in Map
and oi is being examined (note that oi is further away than
oj and o′j from Q). Since dist(oi.μ, oj .μ) > τ , the union of
temp and another further-away and unexamined object, e.g.,
ol , cannot become a new candidate set because ol is definitely
located further than the diameter bound τ from oj . Thus, temp
can be removed safely.

We proceed to present BA in Algorithm 1. Assuming that
we have a circular window with diameter τ , the baseline
algorithm simulates a process where the circular window
moves around in R2. In particular, the center of the window
starts moving from the nearest object with respect to the query
location Q.μ, and it moves to the next nearest objects in the
following iterations. When the circular window moves to a
new location and covers different objects compared to those
of its previous location, candidate sets are enumerated, and
their scores are evaluated. Finally, the object sets with the top-
k largest scores are returned.

Algorithm 1: Baseline Algorithm (BA)

Input : objects O and a query Q.
Output: The top-k results.

1 begin
2 Min-priority Queue: U(score, objectset)← null;
3 Buffer Map ← ∅;
4 while oi ← nextNearestNeighbor(Q.μ,O) do
5 Map ← Map ∪ {{oi}};
6 if ξ({oi},Q) > U.GetScore(k) then
7 U.Enqueue(ξ({oi},Q), {oi});

/* Generating new candidate sets

according to Lemma 1 */

8 foreach temp in Map do
9 if ∀oj ∈

temp, dist(oi .μ,Q .μ)− dist(oj .μ,Q .μ) ≤ τ
then

10 temp′ ← temp ∪ oi ;
11 Map ← Map ∪ temp′;
12 if ξ(temp′,Q) > U.GetScore(k) then
13 U.Enqueue(ξ(temp′,Q), temp′);

14 else
15 Map ← Map \ temp;

16 return U.Top(k);

A min-priority queue U of size k is initialized to record
the candidate object sets along with their scores (line 2). A
memory buffer Map is created to keep all the set candidates
for enumeration (line 3). The algorithm iteratively examines
objects from near to far with respect to the query location Q.μ
(line 4). When the algorithm examines object oi , a candidate
object set {oi} that only contains the object is added to Map
(line 5); and if the score of the object set ξ({oi}, Q) exceeds
the minimum score in U , the score along with the object set
(ξ({oi}, Q), {oi}) is enqueued into U (lines 6–7).
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Fig. 2. An Indexing Example.

Further, if the distance of every object in a candidate set
temp ∈ Map to oi is smaller than τ , the union of temp and
oi becomes a new candidate set temp′. Later, temp′ is added
to buffer Map , and is enqueued into U if its score exceeds the
minimum score in U (lines 9–13). If there exists at least an
object oj further than τ from oi , temp can be safely removed
from Map due to Lemma 1 (line 15). Finally, U that stores
the top-k most relevant object sets is returned (line 16).

Theorem 2: Algorithm 1 reports correct exact results of
the localitySearch query.

Proof: We prove the theorem by contradiction. Assume
that Algorithm 1 misses a top-k object set R′ = {o′i , . . . , o′j }
in the results of a localitySearch query Q. This means that
ξ(R′, Q) exceeds the minimum score in U but that there is
not such an object set R′ in Map . This contradicts the algo-
rithm since Map keeps all possible object sets with pairwise
distances smaller than τ .

B. Enhanced Algorithm

The exact enhanced algorithm (EEA) applies two
performance-enhancing techniques to the BA algorithm. The
first employs a grid index on the objects and applies approxi-
mate similarity bounds to prune irrelevant objects in indexing
blocks. The second technique combines the algorithm with the
derived distance bounds.

1) Approximating Candidate Bounds: We assume that all
online objects O are indexed. In particular, a uniform grid is
used. However, the proposed technique is also applicable with
minor modifications to other indexing structures such as the
R-tree.

Figure 2 shows several objects indexed by a grid. Cells that
do not contain any object are not considered in our algorithm.
The general idea of the first technique is to use similarity
bounds to prune grid cells that can only contain irrelevant
objects (i.e., the objects that cannot be in a result candidate).
In order to prune a grid cell cij , we estimate the upper bound
of a candidate set that can be found with the objects in cij .
Let l be the grid cell size (we assume that l < τ ). The objects,
whose distances from cij are within the diameter bound τ ,
are contained by cells in a square with side length 2�τ/l�+1
centered at cij . To reduce the size of the candidates, we only
consider cells in the square whose distances to the objects in
cij are smaller than diameter τ . Consider Figure 2: assuming

that �τ/l� = 2 (2�τ/l� + 1=5), it is possible for objects o2
and o3 in cell cij to combine with other objects in their 2-
level neighbor cells (shaded in Figure 2) to become a candidate
object set. In the figure, the shaded region does not include the
cells that are further than τ away from objects in cij and those
cells without any objects. Thus, we can examine a cell cij as
well as its neighbors within a circular window with diameter
τ to determine whether we can prune cij .

To speed up the examination, we use the following def-
initions and lemmas to approximate the ranking score of a
candidate object set by estimating upper and lower bounds.

Definition 2: (MIN ξ) Given a set of cells C =
⋃
cij , we

denote the set of objects that locate in C by OC . The minimal
ranking score between an object set located in C and a query
Q, denoted by MIN ξ(C,Q), is defined as MIN ξ(C,Q) =
minR∈2OC ξ(R,Q), where 2OC is the power set of OC .

Note that the computation of MIN ξ(C,Q) is quite expensive
especially when C contains many objects. We thus have to
find an effective way to estimate the minimal ranking score.
As we know each function in ξ(R,Q) outputs positive values,
e.g., Θ(R,Q) > 0 where R,Q �= ∅, we have MIN ξ(C,Q) =
min

R∈2OC

ξ(R,Q) > min
R∈2OC

(α ·Θ(R,Q)) + min
R∈2OC

(β · �(R))
+ min
R∈2OC

((1−α−β) ·Ω(R,Q)). Thus, the estimated minimal

score can be regarded as the summation of the minimal values
of the three functions, which are much easier to compute since
the minimal value of a function can be estimated locally by
its properties, e.g. linearity.

We define MAX ξ(C,Q) as the maximal ranking score
between the objects in a region C and Q. According to the
definitions of MIN ξ(C,Q) and MAX ξ(C,Q), we deduce the
following score bounds for a candidate object set in a cell.

Lemma 2: Given a cell cij , and the set of objects Ocij in

cij , the score of an object set R ∈ 2Ocij in the cell cij satisfies
the bounds as follows:

1− D(cij , Q.μ)︸ ︷︷ ︸
min of Θ

+min(Ω(R,Q .ψ))︸ ︷︷ ︸
min of Ω

+1−
√
2l/τ︸ ︷︷ ︸

min of �

< ξ(R,Q) <

1−D(cij , Q.μ)︸ ︷︷ ︸
max of Θ

+max(Ω(R,Q.ψ))︸ ︷︷ ︸
max of Ω

+ 1︸︷︷︸
max of �

,

(5)

where D(Ocij , Q.μ) and D(Ocij , Q.μ) are the normalized
maximal and minimal spatial proximity between cij and the
query location Q.μ. For simplicity, we omit the weight param-
eters α and β.

The proof is omitted due to the space limitation. To compute
the bounds for a cell cij and its neighbors when there is a
candidate set where objects locate both in cij and its neighbors,
we develop the bounds shown in Lemma 3.

Lemma 3: Given a cell cij and its neighbors N(cij), the
bounds of a candidate set R with objects both in cij andN(cij)
are
1− D(N(cij) ∪ cij , Q.μ)︸ ︷︷ ︸

min of Θ

+min(Ω(R,Q .ψ))︸ ︷︷ ︸
min of Ω

+1− 2
√
2l/τ︸ ︷︷ ︸

min of �

< ξ(R,Q) <
1−D(N(cij) ∪ cij , Q.μ)︸ ︷︷ ︸

max of Θ

+max(Ω(R,Q.ψ))︸ ︷︷ ︸
max of Ω

+ 1︸︷︷︸
max of �

.

272



C4

C1 C2

C

C3

l
2l

2l

2
√
2l

i

j

cij

Fig. 3. Maximal Mutual Distance.

To obtain Lemma 3, the spatial proximities and the textual
relevance are calculated with respect to a set of cells. Details
are omitted due to the space limitation. Note that since there
is at least one object in cij to form such a candidate set, we
need to find the most and least relevant objects in the cij and
N(cij), respectively, to get the bounds on textual relevance. For
the part on mutual discrepancy, we use Figure 3 to illustrate
the maximal mutual distance for such a candidate set, which
is applied for lower bound computation. The shaded region
in Figure 3 denotes a cell cij and its neighbors N(cij). The
maximal distance between an object in cij and an object in

N(cij) is 2
√
2l. Based on Equation 3, we have that the minimal

mutual average discrepancy is 1− 2√2l/τ .
With Lemmas 2 and 3, we can prune some cells that cannot

contain any candidate set before we exhaustively search the
objects. For example, an idea similar to the threshold algorithm
is: if a cell’s upper bounds in the two lemmas are smaller than
the k-th candidate score that has been seen, the cell can be
pruned since one cannot find a candidate set in the cell or
with objects in its neighbors to form a better candidate.

We find upper and lower bounds for each of the three terms
used in the ranking function; and the sums of the upper and
lower bounds are used as the final bounds. And we assume
the three terms are independent. The bounds thus may not be
the tightest ones but they are easy to compute, especially with
the help of grid cells.

2) Bounding Search Space: The first technique estimates
the approximate bounds of grid cells, which enables the
algorithm to prune grid cells and not examine their objects.
Next, we present the second technique based on bounded
search regions. We proceed to discuss the related definitions
and lemmas.

Definition 3: Search region (R2
search): A search region

R2
search is a subset of R2 with objects that may form a top-k

result.
Lemma 4: Given an arbitrary object oi and the k-th

candidate set R̂k , we have oi ∈ R2
search if oi satisfies:

dist(oi .μ,Q.μ) ≤ Γti where Γti = (2 − (ξ(R̂k ,Q) − 1)/α) ·
distmax .

Proof: Let R denote a candidate set satisfying ξ(R, Q) >
ξ(R̂k , Q), and let oi be an arbitrary object in R. Without loss
of generality, we assume that oi is the object closest to the
query location Q .μ among the objects in R. By definition, we
have

ξ(R,Q) = α · (1− dist(oi .μ,Q .μ)

distmax

) + β · Ω(R,Q)

+(1− α− β) · �(R) < α · (1− dist(oi .μ,Q .μ)

distmax

) + 1− α.

As we know ξ(R, Q) > ξ(R̂k , Q), it then follows that

α · (1 − dist(oi .μ,Q .μ)

distmax

) + 1− α ≥ ξ(R̂k ,Q).

We therefore obtain the bound on the search region as

dist(oi .μ,Q .μ) ≤ (2 − (ξ(R̂k ,Q)− 1)/α) · distmax = Γti .

This completes the proof.

Definition 4: Suspect region (R2
suspect): A suspect region

R2
suspect is a subset of R2, where subsets of the contained

objects cannot form a top-k result set independently, but a
subset may be contained by a top-k result set R, i.e., ∃oi, oj ∈
R that satisfy oi ∈ R2

suspect and oj �∈ R2
suspect

We establish Lemma 5 to tell if an arbitrary object is in
R2

suspect .

Lemma 5: Given an arbitrary object oi, we have oi ∈
R2

search if oi satisfies Γti + τ > dist(oi .μ,Q .μ) > Γti

Proof: The lemma is based on Lemma 4, where we have
the bound of search the region as Γti . For a candidate R, if we
have oj ∈ R where oj ∈ R2

search , we have oj ≤ Γti . By the
diameter threshold, if oi ∈ R, oi �∈ R2

search , and dist(oi, oj) <
τ , then we have Γti + τ > dist(oi .μ,Q .μ) > Γti .

By now, we conclude that only the objects in the search
region and the suspect region need to be examined. All other
objects can be safely disregarded.

Example 1: Figure 4 shows an example to illustrate the
bounded search space, where the query position is in the
middle of the grid. During query processing, we obtain the
boundary of search region Γti by Lemma 4. Further, we divide
the grid region into three regions, R2

search , the circular region,
R2

suspect , the shaded region, and R
2
pruned , the remaining region.

We only need to search the candidate sets in R2
search and

R2
suspect . Objects in R

2
suspect have to be combined with ones in

R2
search to form candidate sets. Objects in R2

pruned , e.g., o4 and
o5, can be safely disregarded. Note that the first technique can
be utilized before accessing objects in R2

search and R2
suspect .

o4

o5

o1
Q

o3

Γti

τ

o2

Fig. 4. Illustration of Bounded Search Space.

3) Algorithm Details: The enhanced algorithm EEA that
uses the two proposed techniques is presented in Algorithm 2.
The algorithm iterates on grid cells instead of iterating on
individual spatial web objects (as Algorithm 1 does). The upper
bound of the candidate object sets generated by a grid cell
cij is calculated (line 5). The algorithm continues processing
the subset Ccij

if its upper bound is greater than that of the
minimum score in U (line 6). Otherwise, cij can be removed
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Algorithm 2: Enhanced Exact Algorithm (EEA)

Input : Indexed spatial web objects O and a query Q.
Output: The top-k results.

1 begin
2 Min-priority Queue: U(score, objectSet)← null;
3 Buffer: isEnumerated ← ∅;
4 while cij ← nextNearestGridCell(Q .μ,O) do
5 Estimate the upper bound of a candidate in the

region Ccij
centered at cij within τ ;

6 if MAX ξ(Ccij
, Q) > ξ(R̂k, Q) then

7 U ← GenerateSets(Ccij
,U , isEnumerated)

;
8 isEnumerated ← isEnumerated ∪Ccij

;

9 else
10 CellSet .remove(cij);

11 return U.Top(k);

(line 10). When a region Ccij
possibly contains a candidate

object set with a higher score, procedureGenerateSets , which
can generate candidate object sets in the region, is called
(line 7). While processing a region, it considers all its neighbor
cells within the diameter bound that overlaps other regions.
Algorithm 2 keeps track of grid cells that have been processed
(line 8). It completes when there is no available cij (line 11).

Algorithm 3: Generate Set Candidate (GenerateSets)

Input : Set of grid cells Ccij
, min-priority queue U ,

and buffer isEnumerated .
Output: updated U .

1 begin
2 foreach c′ij ∈ Ccij

do

3 if c′ij �∈ isEnumerated then
4 calculate bounds of the single grid cell c′ij ;

5 if MAX ξ(c′ij , Q) < ξ(R̂k, Q)||
MAX ξ(c′ij ,Q) < max

c∈Ccij
/c′ij

(MIN ξ(c,Q))

then flag the grid cell c′ij ;

6 expand candidates with c′ij else

enumerate candidates in c′ij ;

7 expand the candidates

8 else
9 flag the grid cell c′ij ;

10 expand candidates with c′ij ;

11 enumerate c′ij with previously enumerated
cells that are not in the same region;

12 for each R of candidates, call Update(R);

13 return the min-priority queue U ;
14 Update(R) {
15 U ∪R if ξ(R,Q) > ξ(R̂k, Q);
16 update R2

pruned, R
2

suspect, and R2

search;

17 prune objects in O;}

The procedure GenerateSets is described in Algorithm 3.
It exploits bounds of the cells in the buffer isEnumerated to

prune candidates in R2

search according to the cell-based prun-
ing technique. Thus, the procedure can generate candidates
without performing an exhaustive search.

The procedure iterates through the cells intersecting with
a region (i.e., a cell set) Ccij

(line 2 in Algorithm 3). In each
iteration, it checks whether cell c′ij was already processed or
whether it is not possible to find a candidate object set in the
cell. Once we find a candidate, we call Update() in line 12 in
Algorithm 3 to enqueue the candidate such that we can get a

better score ξ(R̂k ,Q). Meanwhile the procedure recalculates
the regions in order to further prune candidates in subsequent
iterations. Thus, cij in each iteration contains at least one
object in R2

search (line 4 in Algorithm 2). Otherwise, cij is
pruned. In a cij , the objects in R2

pruned , but not in R2
suspect

are also pruned according to Lemma 5 (line 17 in Algorithm 3).

In an iteration, if a cell c′ij has been processed, c′ij is
flagged (line 9 in Algorithm 3). A flagged cell indicates
that there is no need to generate candidates that are only
contained in the cell. The flagging is implemented to avoid
duplicate computation. But an existing candidate may include
some objects of c′ij and may become a new candidate with a
higher score. Thus the current candidates are expanded with
the objects contained in c′ij (line 6 in Algorithm 3).

For the overlapping cells that have been processed, we
have to examine new candidates among these cells if they
never co-appeared in the same Ccij

. To efficiently implement
this examination, we keep track of information in line 8 in
Algorithm 2 such that we can know which co-appearing cells
that have been enumerated.

C. Approximate Algorithms

In this section, we present a generic approximation algo-
rithm that can use different greedy strategies. Based on the
terms in Equation 4, systematic greedy strategies are exem-
plified and embedded into the generic approximate algorithm.
The algorithms presented in Section III-C2–III-C4 are object-
based and do not consider grid cells. The algorithm presented
in Section III-C5 is grid based and searches grid cells instead of
objects. The pseudo code for the specific algorithms is omitted
due to the space limitation.

1) A Generic Approximate Algorithm: The generic ap-
proximate algorithm works iteratively. In each iteration, the
algorithm forms an initial candidate set with the unvisited
nearest neighbor oi of query Q. An object is visited if we
have already formed an initial candidate set with the object.
With an initial candidate set, the generic algorithm tries to
find objects within diameter bound τ to form a set with oi
using a greedy function ft. We employ the pruning techniques
developed in Section III-B.

The pseudocode of the generic algorithm is presented in
Algorithm 4. Given an unvisited nearest neighbor oi that is
not in the pruned region (oi �∈ R2

pruned ), an initial candidate
set Rinit is created (line 4) for object oi. This set is expanded
by continuously including neighbor objects whose distances to
oi are within the diameter bound τ (lines 5–9).

A neighbor object is identified according to ob-
jective function ft (line 9). We apply a procedure
CallObjective(ft,Neighbors) to select a neighbor by ft. If

274



the initial set together with the identified object results in a
higher-score set, the identified object is added to the initial
set. Otherwise, the expansion is completed, and we employ the
second technique from Section III-B to prune the search region
(line 9). The boundary of the pruned region is recalculated
once a new candidate set is inserted into the result priority
queue by procedure Recalc() in line 9. We omit the description
of this procedure since it is quite similar to Update() in
Algorithm 3. According to the space-based pruning technique
(Section III-B2), the generic algorithm terminates when no
unvisited objects can form an initial region in the search region
(line 3). The top-k regions are reported finally in line 10.

The generic algorithm examines objects from near to far.
For each candidate set, the distance from the initial object to
the query location is that from the set to the query location.
Thus, our greedy strategies consider the other two terms, the
mutual average discrepancy and the textual relevance, in order
to include neighbors within the diameter bound of the initial
object.

Algorithm 4: Generic Approximate Algorithm (Generic)

Input : Spatial web Objects O and a query Q.
Output: topK (O,Q).

1 begin
2 Min-priority Queue: U(score, region)← null;
3 while oi ← nextNearestNeighbor(Q.μ,O) where

oi ∈ R2
search do

4 Rinit ← {oi};
5 Neighbors ← {oj} where dist(oi.μ, oj .μ) < τ ;
6 while Neighbors �= ∅ do
7 oj ← CallObjective(ft ,Neighbors);
8 remove oj from Neighbors ;
9 if ξ(Rinit ∪ oj , Q) > ξ(Rinit, Q) then

Rinit ← Rinit ∪ oj else Recalc() and break

10 return U.mathitT op(k);

2) Approximate Algorithm 1 (Appro1): Algorithm Appro1
applies a greedy strategy in relation to the mutual average
discrepancy function �(R) . It performs a best-first search
within the diameter bound in each iteration in order to include
objects that increase the �(R) value. Specifically, for each
initial set Rinit formed by oi in line 3 in Algorithm 4, Appro1
considers objects within distance τ and tries to include the
objects according to

ft = argmax
oj∈Neighbors

�(Rinit ∪ {oj}), (6)

which is called by procedure CallObjective(ft,Neighbors) it
line 7 in Algorithm 4. In an iteration, the neighbor search ter-
minates if the score of an objective candidate is not increased.
The highest scored candidate set before termination is inserted
into the top-k results if its score exceeds the k-th one in line 9
in Algorithm 4. The process iterates until there is no unvisited
object in R2

search to form an initial set.

3) Approximate Algorithm 2 (Appro2): Given a query Q,
the idea of algorithm Appro2 is to perform a best-first search
in relation to Ω(R,Q). Initially, the unvisited nearest neighbor
oi is selected to form an initial candidate set Rinit (line 3

in Algorithm 4). Then, Appro2 visits objects within diameter
bound τ and tries to include them according to

ft = argmax
oj∈Neighbors

Ω(oj , Q), (7)

which is called by procedure CallObjective(ft,Neighbors) in
line 7 in Aglorithm 4. If a best selected object in Neighbors
cannot result in a higher-score object set, we terminate the
search and try to insert a candidate (line 9 in Algorithm 4).
The process ends when there is no unvisited object in R2

search,
as for Appro1.

4) Approximate Algorithm 3 (Appro3): Algorithm Appro3
uses both terms �(R) and Ω(R,Q) with weights to expand
the initial set Rinit . The objective function is defined as

ft = argmax
oj∈Neighbors

(β · �(Rinit ∪ oj) + γ · Ω(oj , Q)), (8)

where β and γ control the importance of the two terms.

5) Approximate Algorithm 4 (Appro4): Algorithm Appro4
exploits the grid index that we used to improve the efficiency
of the BA algorithm. With the grid index, it is possible for
Appro4 to rank and select grid cells at a coarse granularity
instead of examining single spatial web objects one by one.
Appro4 identifies a region of grid cells that contains a set of
objects with high-ranking scores. However, Appro4 does not
aim to find the largest subset of objects in the region; instead,
it reports all the objects contained by the region.

Given a query Q, Appro4 forms an initial set Rinit with
the unvisited nearest neighbor cell cij that contains at least
one object oi ∈ R2

search. Since a cell may contain more than
one object, we use the objective function in Equation 9 which
takes both �(R) and Ω(R,Q) into consideration.

ft = argmax
c′

ij
∈Neigbors

(β · �(Rinit ∪ c′ij ) + γ · Ω(c′ij , Q)), (9)

where Ω(c′ij , Q) is based on the normalization of the Ω(R,Q)
term in Equation 2.

The objective function ft uses both of the two normalized
terms, �(R) and Ω(R,Q), along with their weight parameters.
The � value of a cell is high if it contains a large number
of objects. To simplify the computation without accessing the
objects contained by a cell cij , we use the cardinality of a cell
for �(cij) instead of exactly calculating the average pairwise
distance. Thus we have �(Rinit ∪c′ij ) ≈ |ORinit∪cij

|/(|Rinit ∪
cij | · |O|) where |ORinit∪cij

| denotes the cardinality of objects
in the expanded cell set Rinit ∪ cij as defined in Definition 2,
|Rinit ∪cij | is the number of cells, and |O| is the total number
of objects.

We implement the grid cells with external index informa-
tion on the objects, including the number of objects contained
by a cell. As a result, to compute objective function ft for
a cell. It is not necessary to access the objects in the cell.
For the objective function ft, we can also use ideas similar
to those presented in Sections III-C2 and III-C3. Since these
ideas have similar functions and properties as the algorithms
in Sections III-C2 and III-C3, we omit these heuristics. Note
that we return a set R that consists of all the objects contained
by the corresponding cell set that Appro4 finds in the top-k
results. Although a subset of a result set R could be better
than R according to their ranking scores, it is much easier to
compute the approximate result set R.
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Algorithms

IV. EXPERIMENTAL STUDY

We employ three real-life datasets [4] in the performance
study: Hotel has 20, 790 spatial web objects and 80, 845
keywords; Web has 579, 727 objects and 249, 132, 883 key-
words; GN, extracted from the U.S. Board on Geographic
Names (geonames.usgs.gov), contains 1, 868, 821 objects and
18, 374, 228 keywords. Dataset Hotel is memory resident for
algorithm evaluation, and the other two are used to evaluate the
proposed algorithms when the data and index are disk resident.

We generate 5 query sets for each dataset. As the number
of keywords in Q.ψ may influence the text relevance, the 5
query sets have different numbers of query keywords, namely
3, 6, 9, 12, and 15. For each set, we randomly generate 50
locations. For each location, we first generate a set with 3
keywords by picking 3 keywords from the whole collection of
keywords of a dataset to obtain a query. Then, we add sets
of 3 keywords to incrementally generate the other four query
sets. The procedure allows us to fix the location of a query
while varying the number of keywords to study the effects.
We report the average cost of 50 such queries for each query
set.

We implement the algorithms in Java SE 1.7.0 and run on
an Intel(R) Core(TM) i5-2520M CPU @2.50GHz with 8GB
RAM. Without further explanation, we set default values for
weight parameters in the scoring function in Equation 4 as
α = 0.3 and β = 0.3. Each cell in the implemented grid index
has a pointer to a keyword list that contains all the keywords
associated with the contained objects. The cardinality of the
contained objects in each cell is also recorded in the cell. Note
that in this section, we define γ = 1− α− β.

Exact algorithms. The objective of this set of experiments
is to study the effects on the performance of the exact
algorithms of varying the settings of the parameters. We only
use the small dataset Hotel to evaluate the exact algorithms
as they are not scalable to large datasets. For the enhanced
exact algorithm, we use a grid index with 100 · 100 cells by

the default. The region containing all the objects in Hotel is
thus divided into 100 ·100 cells. And diameter bound τ is 30m
by default.

1) Varying the number of keywords in Q.ψ and di-
ameter bound τ . In this set of experiments, we run the 5
sets of queries containing 3–15 keywords and vary diameter
bound τ . In the experiments, k is set to 10. The runtime of the
enhanced exact algorithm (EEA) in Figure 5(b) is significantly
shorter than that of the baseline algorithm (BA) in Figure 5(a).
As we use diameter bound τ to release memory in BA, the
number of candidates in memory grows with increasing τ
according to Lemma 1. The runtime increases as τ increases,
since more candidates are becoming memory residents, which
lead to expensive enumeration. Figure 5(a) shows that BA is
not sensitive to the number of query keywords. This is because
BA has to enumerate all the combinations regardless of the text
relevance score.

On the other hand, Figure 5(b) shows that the runtime of
queries with more keywords is worse for EEA with a same
diameter bound. According to the first technique of EEA, the
reason is that more keywords enlarge the upper bound of a grid
cell or a set of grid cells, which reduces the pruning capability
of EEA. For a query set, the performance gets slightly worse
as we increase the diameter in Figure 5(b). This finding fits
with the nature of the second technique of EEA. Although a
larger diameter means a larger suspect region, the performance
depends on the number of contained objects in S2suspect as well
as the number of sets that can be expanded with these objects.

2) Varying the number of returned sets k. Figure 6(a)
shows the performance of the two exact algorithms when we
vary the value of k that is the number of returned sets. The
runtime of the exact baseline algorithm has no obvious change
when we increase the value of k. However, the runtime of the
enhanced exact algorithm increases with k. The reasons for
these results are that the baseline algorithm only depends on
τ , while the enhanced algorithm’s bounds depend on the k-th
best set of spatial web objects.

3) Varying weight parameters α, β, and γ. In this set
of experiments, we vary one parameter from 0.2 to 0.8, and
meanwhile keep the other two parameters constant at 0.3. As
a result, the three parameters do not sum up to 1 in this set
of experiments. The queries used have 3 keywords. Each line
in Figure 6(b) denotes the runtime along with the variation
of a parameter for BA. The findings suggest that the runtime
of BA is not sensitive to the three parameters. But for EEA
(see Figure 7(a)), the runtime gets better if we increase the
value of α. The reason is that the increase of α means that
EEA prefers sets close to the query point. This makes the
first pruning technique more effective. On the other hand, the
pruned region S2pruned at ti decreases with the increase of β
and γ, which consequently increases the runtime.

4) Varying grid granularity. The granularity is the total
number of cells to index the objects. The findings are shown
in Figure 7(b) where top-10 results (k = 10) with diameter
bound 30m (τ = 30) are returned. The results suggest that
the 100 · 100 granularity is best for the default τ on Hotel,
so we use a grid index with 100 · 100 cells as the default.
The first two granularities used in the figure are 20 · 20 and
30 · 30. Note that the side length l of a grid cell should satisfy
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l < τ , but it cannot be too small. For example, each grid cell
at most contains one spatial web object when l is smaller than
the minimal distance between two objects in the dataset, and
thus the use of cells becomes ineffective.

Approximation algorithms. We run the four approxima-
tion algorithms on Hotel with the same default settings as
for exact algorithms. To evaluate the computational efficiency
and scalability on larger datasets, we use GN and Web for
disk-based query processing and indexing. The default grid
granularity for the approximation algorithms on the two large
datasets is 1000 · 1000, k is 10, and the diameter is 30m by
default.

1) Varying the number of keywords. Figure 8(a) shows
the runtime of the four approximation algorithms on Hotel.
The algorithms are evaluated using query sets with varying
numbers of keywords and report top-10 results. The cell-
based algorithm Appro4 performs the best. Figure 9 shows the
scalability of our approximation algorithms on large datasets.
The runtime of BA is not shown in Figure 9(a) as it cannot
finish within 30 minutes. Regarding EEA, as the runtime
superlinerly scales from 104 to 105 in Figure 9(a), we also
remove it from the figure. For the same reason, we only
present the runtime of the four approximation algorithms for
the even larger dataset GN used Figure 9(b). Figure 9(a) and
Figure 9(b) indicate that the four approximation algorithms
scale well with the number of keywords. The results also show
that Appro4 scales much better than the other three. This is

because Appro1, Appro2, and Appro3 compare and enumerate
individual spatial web objects. In contrast, Appro4 can avoid
the enumeration and approximates the sets directly according
to grid cells. Figure 9(b) shows that Appro2 performs the
best among the three object-based methods since Appro1 and
Appro3 have to calculate pairwise average distance in the
objective function in order to select a containing object within
its neighborhood. This costly step has to be executed whenever
there is any change to the candidate set. For Appro2, on the
other hand, text relevance of one object to a query Q does not
change with the candidate set. Thus, it is not necessary for
Appro2 to recompute the text relevance for one object if it is
already computed for Q.

2) Approximation ratio. We evaluate the results returned
by the four approximation algorithms in terms of the exact
results. The evaluation is performed with 3 keyword query
sets on Hotel. We compute the average score (s1) of the top-k
sets returned by EEA and then compute the average score (s2)
returned by the approximation algorithms. With the average
scores, we obtain approximation ratios as s2/s1. The findings
on Dataset Hotel are reported in Figure 8(b). On Dataset Web,
the approximation ratios for Appro1, Appro2, Appro3, and
Appro4 are 0.91, 0.84, 0.88, and 0.81 when top-1 results are
returned. On Dataset GN, the approximation ratios for Appro1,
Appro2, Appro3, and Appro4 are 0.88, 0.86, 0.87, and 0.75
when top-1 results are returned. The results thus show that
the approximation algorithms achieve good performance in the
setting.

3) Varying parameters. Figure 10(a) shows that the per-
formance of Appro4, which employs the cell-based pruning
technique, decreases when we increase the granularity from
1000·1000 to 5000·5000 (represented as 1K–5K in the figure).
As Appro4 searches the regions by visiting grid cells, it has to
enumerate more regions when there are more cells. For varying
k and diameter bound τ on GN and Web, we observe findings
in Figure 10(b), Figure 11(a), and Figure 11(b). In the figures,
Appro4 performs the best among the four when we increase
the number of results as well as the diameter bound.
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V. RELATED WORK

[Spatial Keyword Queries]. Web objects extracted from
web pages have attracted much attention [1], [2], [9]. Spatial
web objects, which possess geographical locations and text
descriptions, are gaining in prevalence [3], and the problem
of extracting locations from web pages (e.g., [1]) has been
studied, yielding spatial web objects that can subsequently
be queried [10], [11]. Most of the existing work on spatial
keyword queries aims to find single objects that are close to a
query location and are relevant to query keywords [10], [12].
Many recent studies are reviewed by Cao et al. [3].

[Collective Spatial Keyword Queries]. Two studies [5],
[1] find a single group of objects. The query in the studies takes
a set of m keywords as an argument and returns m objects
of minimum diameter that match the m keywords. They do
not consider a query location. Several studies propose to find
groups of spatial web objects according to a query location.
They consider a collective spatial keyword query [4], [6] that
takes as arguments a location and a set of keywords. Cao et
al. [4] present two types of collective spatial keyword queries.
The first type of query finds a group of spatial web objects
that collectively cover the query keywords and whose total dis-
tances to the query location are minimized. The second type of
query finds a group of objects such that they collectively cover
the keywords and the sum of their diameter and their maximum
distance to the query point is minimized. The collective spatial
keyword query is substantially different from our problem. It
considers keywords as Boolean conditions and finds a group
of objects that collectively covers all the query keywords. It
only considers two specific distance-based measurements in
ranking the groups of objects. In contrast, we retrieve the k
most relevant sets with a general and unified approach, and the
semantics are different from those in collective spatial keyword
querying. For example, we include text relevance when ranking
sets of objects.

[Continuous Queries]. There exist studies on continuous
queries [13], [14]. These queries report results with the change
of query location. To optimize the computation, safe zones are
used. The query we consider in this paper is a one-time query
rather than a continuous query. We leave a continuous version
for future work.

[Scoring Functions]. The general problem of maximizing
a scoring function has received much attention in both theoret-
ical and practical settings. Some studies [15], [16], [17], [18]
present several approximate methods to contend with particular
functions. Most of the functions have good properties, e.g.,
submodularity, supermodularity, monotonity, additivity, and
linearity. Such properties make it possible to approximate the
objective functions with tight bounds. In contrast, our objective
function does not have such properties, but our solutions are
easy to compute especially with the help of grid cells.

VI. CONCLUSION AND FUTURE WORK

We propose the problem of localitySearch that returns the
best top-k sets of co-located spatial web objects that are ranked
by both spatial proximity and textual relevance. This problem
is NP-hard. We provide efficient exact algorithms and a generic
approximate algorithm which is scalable for large datasets.

The generic approximate algorithm is able to use a variety of
greedy strategies. The experimental findings demonstrate the
efficiency of the solutions as well as effectiveness properties.

localitySearch points to direction in spatial querying
where a spatial query incorporates non-spatial preferences,
and many other scenarios, e.g., in social-spatial search, can
be considered as an extension of this work. We leave more
efficient and continuous solutions for future work.
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