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Using Incomplete Information for Complete
Weight Annotation of Road Networks

Bin Yang, Manohar Kaul, and Christian S. Jensen, Fellow, IEEE

Abstract—We are witnessing increasing interests in the effective use of road networks. For example, to enable effective vehicle
routing, weighted-graph models of transportation networks are used, where the weight of an edge captures some cost associated
with traversing the edge, e.g., greenhouse gas (GHG) emissions or travel time. It is a precondition to using a graph model for routing
that all edges have weights. Weights that capture travel times and GHG emissions can be extracted from GPS trajectory data
collected from the network. However, GPS trajectory data typically lack the coverage needed to assign weights to all edges. This
paper formulates and addresses the problem of annotating all edges in a road network with travel cost based weights from a set of
trips in the network that cover only a small fraction of the edges, each with an associated ground-truth travel cost. A general
framework is proposed to solve the problem. Specifically, the problem is modeled as a regression problem and solved by minimizing a
judiciously designed objective function that takes into account the topology of the road network. In particular, the use of weighted
PageRank values of edges is explored for assigning appropriate weights to all edges, and the property of directional adjacency of
edges is also taken into account to assign weights. Empirical studies with weights capturing travel time and GHG emissions on two
road networks (Skagen, Denmark, and North Jutland, Denmark) offer insight into the design properties of the proposed techniques
and offer evidence that the techniques are effective.

Index Terms—Spatial databases and GIS, correlation and regression analysis

1 INTRODUCTION

REDUCTION in greenhouse gas (GHG) emissions is cru-
cial in combating global climate change. For example,

the EU has committed to reduce GHG emissions to 20%
below 1990 levels by 2020 [1]. To achieve these reductions,
the transportation sector needs to achieve reductions. For
example, in the EU, emissions from transportation account
for nearly a quarter of the total GHG emissions [2], mak-
ing transportation the second largest GHG emitting sector,
trailing only the energy sector.

While improved vehicle and engine design are likely
to yield GHG emission reductions, eco-routing is read-
ily deployable and is a simple yet effective approach to
reducing GHG emissions from road transportation [3].
Specifically, eco-routing can effectively reduce fuel usage
and CO2 emissions. Studies suggest that by providing eco-
routes to drivers, approximately 8–20% in fuel savings and
lower CO2 emissions are possible in different settings, e.g.,
during peak versus off-peak hours, on highways versus
areal roads, for light versus heavy duty vehicles [4], [5].
For example, an interesting municipal solid waste col-
lection scenario, where a truck collects solid waste from

• B. Yang and M. Kaul are with the Department of Computer
Science, Aarhus University, Aarhus DK-8200, Denmark. E-mail: {byang,
mkaul}@cs.au.dk.

• C. S. Jensen is with the Department of Computer Science, Aalborg
University, Aalborg Øst DK-9220, Denmark. E-mail: csj@cs.aau.dk.

Manuscript received 31 July 2012; revised 24 Apr. 2013; accepted 28 May
2013. Date of publication 9 June 2013; date of current version 7 May 2014.
Recommended for acceptance by C. Shahabi.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier 10.1109/TKDE.2013.89

several locations on Santiago Island, demonstrates a 12%
fuel reduction due to eco-routes [6].

Vehicle routing relies on a weighted-graph representa-
tion of the underlying road network. To achieve effective
eco-routing, it is essential that accurate edge weights that
capture environmental costs, e.g., fuel consumption or
GHG emissions, associated with traversing the edges are
available. Given a graph with appropriate weights, eco-
routes can be efficiently computed by existing routing
algorithms, e.g., based on Dijkstra’s algorithm or the A∗
algorithm. However, accurate weights that capture environ-
mental impact are not always readily available for a road
network. This paper addresses the task of obtaining such
weights for a road network from a collection of measured
(trip, cost) pairs, where the cost can be any cost associ-
ated with a trip, e.g., GHG emissions, fuel consumption,
or travel time.

Because the trips given in the input collection of pairs
generally do not cover all edges of the road network and
also do not cover all times of the day, data sparsity is a key
problem. The cost of a trip, e.g., GHG emissions, differs dur-
ing peak versus off-peak hours. Thus, it is inappropriate to
use costs associated with peak-hour trips for obtaining edge
weights to be used for eco-routing during off-peak hours.

Considering the road network and trips shown in Fig. 1,
assume that the GHG emissions of trip 1 (traversed from
7:30 to 7:33) and trip 2 (traversed from 23:15 to 23:17) are
also given, and assume that we are interested in assigning
GHG emission weights to all edges in the network. The
assignment of these weights to a large number of edges,
e.g., BC, BD, EG, and FG, cannot be done directly since they
are not covered by any trip. However, for example, BD can
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Fig. 1. Trips on a road network.

be annotated by considering its neighbor road segment AB
which is covered by trip 2.

Assuming that the period from 6:00 to 8:00 is the sole
peak-hour period (the remaining times being off-peak),
trip 1 is not useful for assigning an off-peak weight to the
edge AE because trip 1 traversed AE during peak hours. By
taking into account the off-peak weights of IA and AB (cov-
ered by trip 2), it is, however, possible to obtain an off-peak
weight for AE.

This paper proposes general techniques that take as
input (i) a collection of (trip, cost) pairs, where trip captures
the edges used and the times when the edges are traversed
and the cost represents the cost of the entire trip; and (ii) an
unweighted graph model of the road network in which the
trips occurred. The techniques then assign travel cost based
weights to all edges in the graph.

To the best of our knowledge, this paper is the first to
study complete weight annotation of road networks using
incomplete information. In particular, the paper makes four
contributions. First, a novel problem, road network weight
annotation, is proposed and formalized. Second, a gen-
eral framework for assigning time-varying trip cost based
weights to the edges of the road network is presented, along
with supportive models, including a directed, weighted
graph model capable of capturing time-varying edge
weights and a trip cost model based on time varying edge
weights. Third, two novel and judiciously designed objec-
tive functions are proposed to contend with the data spar-
sity. A weighted PageRank-based objective function aims
to measure the variance of weights on road segments with
similar traffic flows, and a second objective function aims
to measure the weight difference on road segments that
are directionally adjacent. Fourth, comprehensive empiri-
cal evaluations with real data sets are conducted to elicit
pertinent design properties of the proposed framework.

The remainder of this paper is organized as follows.
Following a survey of related work in Section 2, Section 3
covers problem definition and a general framework for
solving the problem. Section 4 details the objective func-
tions. Section 5 reports the empirical evaluation, and
Section 6 concludes and discusses research directions.

2 RELATED WORK

Little work has been done on weight annotation of road
neworks. Trip cost estimation is a core component of our
weight annotation solution. Given a set of (trip, cost) pairs
as input, trip cost estimation aims to estimate the costs for
trips that do not exist in the given input set. Weight anno-
tation can be regarded as a generalized version of trip cost

estimation, since if pertinent weights can be assigned to
a road network, the cost of any trip on the road network
can be estimated. For example, if a GHG emissions based
weighted graph is available, the GHG emissions of a cer-
tain trip can be estimated as the sum of the weights of the
road segments that the trip traverses.

Most existing work on trip cost estimation [7]–[10] focuses
on travel-time estimation. In other words, their work focuses
on travel time as the trip cost. In general, the methods for
estimating the travel times of trips can be classified into
two categories: (i) segment models and (ii) trip models.

Segment models [9]–[12] concern travel time estimation
for individual road segments. For example, observers (e.g.,
Bluetooth sensors or loop detectors deployed along road
segments) monitor the traffic on road segments, record-
ing the flows of vehicles along the road segments. Thus,
travel-time estimation tends to concern particular road seg-
ments. For example, some studies model travel time on a
particular road segment as a time series and apply autore-
gressive models [9] to estimate the travel time on the road
segment. T-Drive [10] models time-dependent travel time
distributions on road segments using sets of histograms and
enables the inference of future travel times using Markov
chains [13]. One study incorporates Lagrangian measure-
ments [12] into existing traffic flow models for freeways to
estimate travel time distributions on specific freeways.

Segment models assume “hot” road segments where,
preferably, substantial data is available. However, far from
every road segment may have enough historical data in prac-
tical settings, e.g., due to the limited deployment of costly
sensors. Segment models are not well suited for the weight
annotation problem because the given (trip, cost) pairs typ-
ically fail to cover the whole network, meaning that many
road segments lack the data needed to apply such models.

The trip models focus on estimating the costs of indi-
vidual trips. Specifically, the costs of trips are considered
more interesting than the costs of individual road segments.
Given a collection of trips and their corresponding travel
times, one study [8] proposes a Gaussian process regres-
sion based method to predict the travel times for unseen
trips. However, the study has the limitation that all the
trips are required to share the same source and target. This
limitation renders the study of limited interest to us, since
we aim at annotating every edge with a pertinent weight.
Trajectory regression [7] was proposed recently to infer the
travel times of arbitrary trips. The method is able to esti-
mate the travel times of trips consisting of road segments
with no or little traversal history by considering the travel
time correlation of spatially adjacent road segments.

Trajectory regression is the most related method to our
weight annotation problem. However, our study distin-
guishes itself with several unique characteristics. First, we
propose a general framework for annotating edges in a road
network with a range of trip cost based weights and are
not constrained to travel time. Second, we identify the cost
correlation of road segments sharing similar traffic flows,
and we quantify this by using weighted PageRank val-
ues. Third, we consider the temporal cost correlation of
adjacent road segments. For example, although two road
segments AB and BC are adjacent, the cost of traversing
AB during peak hours is not necessarily correlated to the
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TABLE 1
Key Notation

cost of traversing BC during off-peak hours. Fourth, we take
into account the directionality of road segments and con-
sider only directional adjacency when determining the cost
correlation of spatially adjacent road segments. Last but not
least, we conduct comprehensive experiments on real data
sets (real trips and real road networks) to demonstrate the
effectiveness of annotating road networks with both travel
time based weights and GHG emissions based weights.
The earlier study on trajectory regression [7] considers only
synthetic data and estimates only travel times of trips.

In the intelligent transportation system research field [3],
[14], [15], other travel costs (besides travel time) of trips are
studied. For example, fuel consumption and GHG emis-
sions of a trip can be computed based on instantaneous
vehicle velocities and accelerations, the slopes of the road
segments traversed, and the engine type. However, these
methods are designed to estimate the costs of individual
trips and are not readily applicable to the problem of anno-
tating graph edges with trip cost based weights, notably
edges that do not have any traversed trips.

3 PRELIMINARIES

We cover the modeling that underlies the proposed frame-
work, and we provide an overview of the framework and
its setting.

We use blackboard bold upper case letter for sets, e.g., E,
bold lower case letters for vectors, e.g., d, and bold upper
case letters for matrices, e.g., M. Unless stated otherwise,
the vectors used are column vectors. The i-th element of
vector d is denoted as d[i], and the element in the i-th row
and j-th column of matrix M is denoted as M[i, j]. Matrix
MT is M transposed. An overview of key notation used in
the paper is provided in Table 1.

3.1 Modeling a Temporal Road Network
A road network is modeled as a directed, weighted graph
G = (V, E, L, F, H), where V and E are the vertex and edge
sets, respectively; L is a function that records the lengths of
edges; F is a function that maps times to traffic categories;
and H is a function that assigns time-varying weights to
edges. We proceed to cover each component in more detail.

A vertex vi ∈ V represents a road intersection or an end
of a road. An edge ek ∈ E ⊆ V×V is defined by a pair of ver-
tices and represents a directed road segment that connects
the (intersections represented by) two vertices. For example,
edge (vi, vj) represents a road segments that enables travel
from vertex vi to vertex vj. For convenience, we call this
graph representation of a road network the primal graph.

Fig. 2. Road network.

Fig. 2 captures the upper right part of the road network
shown in Fig. 1 in more detail. Here, Avenue 1 and Avenue 2
are bidirectional roads, and Street 3 is a one-way road that
only allows travel from vertex B to vertex D.

The corresponding primal graph is shown in Fig. 3. In
order to capture the bidirectional Avenue 1, two edges (A, B)

and (B, A) are generated. Since Street 3 is a one-way road,
only one edge, (B, D), is created.

It is essential to model a road network as a directed
graph because the cost associated with traveling in two dif-
ferent directions may differ very substantially. For example,
traveling uphill is likely to have a higher fuel cost than trav-
eling downhill. As another example, the congestion may
also vary greatly for the two directions of a road.

Function L : E → R takes as input an edge and outputs
the length of the road segment that the edge represents. If
road segment AB is 135 meters long, we have G.L((A, B)) =
G.L((B, A)) = 135.

Next, the cost of traversing the same edge may differ
across time. This is typically due to varying degrees of
congestions. Thus, GHG emissions or fuel consumption are
likely to differ during peak versus off-peak times. To this
end, function F : TD → TAGS models the varying traffic
intensity during different periods. Specifically, F partitions
time TD and assigns a traffic category tag in TAGS to each
partition. The granularity of the tags are chosen so that
the traffic intensity can be assumed to be constant dur-
ing the time associated with the same tag. For example,
F([0:00, 7:00)) = OFFPEAK, F([7:00, 9:00)) = PEAK, F([9:00,
17:00)) = OFFPEAK, etc.

Finally, function H : E × TAGS → R assigns time depen-
dent weights to all edges. In particular, H takes as input an
edge and a traffic tag, and outputs the weight for the edge
during the traffic tag.

Specifically, G.H(ei, tagj) = d(ei, tagj)· G.L(ei), where
d(ei, tagj) indicates the cost per unit length of traversing
edge ei during tag tagj and G.L(ei) is the length of edge ei.
To maintain the different costs on different edges during
different traffic tags, function H maintains |E|·|TAGS| cost
variables, denoted as d(ei, tagj) (where 1 � i � |E| and 1 �
j � |TAGS|).

We organize all the cost variables into a cost vector d ∈
R

(|E|·|TAGS|) and d= [d(e1, tag1), . . ., d(e|E|, tag1), d(e1, tag2), . . .,

Fig. 3. Primal graph.
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d(e|E|, tag2), . . ., d(e1, tag|TAGS|), . . ., d(e|E|, tag|TAGS|)]
T. The x-th

element of the vector, i.e., d[x], equals d(ei, tagj) and x =
pos(i, j) = (j − 1) ·|TAGS| + i. Note that if the cost vector d
becomes available, the function G.H also becomes available.

The proposed model is attractive in our setting. It is
simpler than existing models capable of capturing time-
varying weights (e.g., time-expanded graphs [16] and time-
aggregated graphs [17]), and yet it is sufficiently expressive
for the problem we solve.

3.2 Trips and Trip Costs
Since vehicle tracking using GPS is widespread and grow-
ing, we take into account trips derived from GPS obser-
vations. A GPS trajectory gpsTr = (gps1, gps2, . . . , gpsn) is
a sequence of GPS observations, where a GPS observation
gpsi specifies the location of a vehicle at a particular time
point. After map matching and some pre-processing, a GPS
trajectory is transformed into a trip t = (l1, l2, . . . , lm) that
consists of a sequence of link records li of the form:

link record li: (e, ts, te),

where e ∈ E indicates an edge in G and ts and te indicate the
time points of the first and last GPS observations on edge ei.

If a graph G is available that contains relevant edge costs,
the cost of a trip t = (l1, l2, . . . , lm) can be estimated by
Equation 1.

cost(t) =
∑

li∈t

∑

tagj∈TAGS

weight(li, tagj) · G.H(li.e, tagj), (1)

where

weight(li, tagj) =
∑

I∈G.F−1(tagj)
|I ∩ [li.ts, li.te]|

|[li.ts, li.te]| .

Here, G.F−1 indicates the inverse function of F defined in
G, which takes as input a traffic tag and outputs the set
of its corresponding time intervals. Next, | · | denotes the
length of an interval. For example, given a trip that contains
link record li = (ej, 6:51, 7:05) and the traffic tags given in
Section 3.1, the cost of the trip is 10

15 · G.H(ej, OFFPEAK) +
5

15 · G.H(ej, PEAK) = 10
15 · d(ej,OFFPEAK) · G.L(ej)+ 5

15 · d(ej,PEAK)

· G.L(ej).

3.3 Framework Overview
Fig. 4 gives an overview of the framework for assigning
trip cost based weights to a road network. Various types
of raw data collected from a road network, such as GPS
observations with corresponding CAN bus data and sensor
data, are fed into a pre-processing module. While the GPS
observations are obligatory, the CAN bus and sensor data
are optional.

Pre-processing module: The GPS observations are
map matched and transformed into trips as defined in
Section 3.2. Next, a cost is associated with each trip. If only
GPS observations are available, some costs, e.g., travel time,
can be associated with trips directly. Other costs, e.g., GHG
emissions, can be derived. For example, models are avail-
able in the literature that are able to provide an estimate of
a trip’s GHG emissions and fuel consumption based on the
GPS observations of the trip [3]. If CAN bus data and sensor

Fig. 4. Framework overview.

data are also available along with the GPS data, actual and
more accurate fuel consumption and GHG emissions can
be obtained directly, and thus can be associated with trips.

The pre-processing module outputs a set of (trip, cost)
pairs {(t(i), c(i))}, which then serve as input to the edge anno-
tation module. For example, if the goal is to assign GHG
emissions based weights, cost value c(i) indicates the GHG
emissions of trip t(i). Note that the cost c(i) is the total
cost associated with the i-th trip, meaning that the cost for
each individual link record in the i-th trip is not required
to be known. This makes it easier to collect (trip, cost)
pairs. Because pairs may be obtained in wide variety of
ways, the proposed framework has the potential for wide
applicability.

Weight annotation module: The (trip, cost) pairs
along with a corresponding un-weighted graph G′′ =
(V, E, L, F, null) are fed into the weight annotation mod-
ule. This module assigns pertinent weights to the edges
of the graph, and it outputs an weighted graph G =
(V, E, L, F, H).

Recall that function G.H from Section 3.1 is defined
by the cost vector d. Given a set of (trip, cost) pairs
TC = {(t(i), c(i))}, the core task of this module is to estimate
appropriate cost variables in vector d. We formulate the
weight annotation problem as a supervised learning prob-
lem, namely a regression problem [18] that employs TC as
the training data set to estimate cost variables in vector d.

The regression problem is solved by minimizing a judi-
ciously designed objective function composed of three
sub-objective items. The first item measures the misfit
between the given actual cost and the estimated cost (i.e., the
cost obtained from the cost model described in Equation 1)
for every trip in TC. The second item measures the differences
between the cost variables of two edges whose expected traf-
fic flows (based on topological structures) are similar. The
third item measures the differences between the cost vari-
ables of two edges which are directionally adjacent. Further,
other appropriate metrics that can quantify the difference
between the cost variables of two edges can also be incor-
porated into the module. Finally, minimizing the objective
function is handled by solving a system of linear equations.

4 OBJECTIVE FUNCTIONS

Since we regard the problem as a regression problem, we
elaborate on the design of the proposed objective function
and the solution to minimizing the objective function.
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4.1 Residual Sum of Squares
In order to obtain an appropriate estimation of the cost
vector d, we need to make sure that for every (trip, cost)
pair (t(i), c(i)) ∈ TC, the misfit between the actual cost
(e.g., c(i)) and the estimated cost (e.g., cost(t(i)) evaluated
by Equation 1, which employs d), is as small as possible.
To quantify the misfit, the residual sum of squares (RSS)
function is applied, where

RSS(d) =
∑

(t(i),c(i))∈TC

(c(i) − cost(t(i)))2.

To facilitate the following discussion, we derive a matrix
representation of the RSS function, as shown in Equation 2.

RSS(d) = ||c − QTd||22. (2)

Let the cardinality of the set TC be N (i.e., |TC| = N). We
define a vector c ∈ R

N = [c(1), c(2), . . ., c(N)]T, where c(i)

is the given actual cost of the trip t(i), and (t(i), c(i)) ∈ TC.
A matrix Q ∈ R

|d|×N = [q(1), q(2), . . ., q(N)] is introduced
to enable us to rephrase Equation 1 into a matrix repre-
sentation. Specifically, q(k) is the k-th column vector in Q
which corresponds to trip t(k). If trip t(k) contains a link
record l whose corresponding edge is ei (i.e., l.e = ei), then
q(k)[pos(i, j)] = G.L(ei) · weight(l, tagj) where 1 � j � |TAGS|;
otherwise, it is set to 0.

Different from ordinary regression problems, minimiz-
ing Equation 2 is insufficient for determining every cost
variable in d because the trips in TC may not cover all
the edges in the road network, e.g., all the edges in E. For
the edges that are never traversed by any trip in TC, their
corresponding cost variables in d cannot be determined by
only minimizing the RSS function.

In this case, annotating the edges that do not appear in
TC with weights seems to be difficult and even unsolvable.
In the following, we try to use the topology of the road net-
work to further propagate and constrain the cost variables
in order to assign an appropriate weight to every edge.

4.2 Topological Constraint
The topology of a road network is highly correlated with
human movement flow [19], [20], including the movement
of both pedestrians and vehicles. Edges with similar move-
ment flows can be expected to have similar cost variables.
Thus, if an edge is covered in TC, its cost variable infor-
mation can be propagated to the edges that have similar
movement flows. To this end, we study how to quan-
tify movement flow based similarity between edges using
topological information of road networks.

4.2.1 Modeling Traffic Flows with PageRank
We transfer the idea of using PageRank for the modeling
of web surfers to the modeling of vehicle movement in
road networks. The original PageRank employs the hyper-
link structure of the web to build a first-order Markov
chain, where each web page corresponds to a state [21].
The Markov chain is governed by a transition probability
matrix M. If web page i has a hyperlink pointing to web
page j then M[i, j] is set to 1

outDegree(i) ; otherwise, it is set
to 0. M[i, j] indicates the probability of transition from state

i to state j. PageRank models a user browsing the web as a
Markov process based on matrix M, and the final PageRank
vector is the stationary distribution vector x of matrix M.
The PageRank of web page i, i.e., x[i], indicates the proba-
bility that the user visits page i or, equivalently, the fraction
of time the user spends on page i in the long run [21].

The modeling movements of vehicles on a road network
as stochastic processes is well studied in the transportation
field [22]. In particular, the modeling of vehicle move-
ments as Markov processes is an easy-to-use and effective
approach [20]. Thus, we build a first-order Markov chain
with a transition probability matrix derived from both the
topology of the road network and the trips that occur in
the road network. A state corresponds to an edge in the
primal graph (i.e., a directed road segment), not a vertex
(i.e., a road intersection).

The PageRank value of a state indicates the probabil-
ity that a vehicle travels on the edge or, equivalently,
the fraction of time a vehicle spends on the edge in
the long run. Thus, the PageRank value is expected to
reflect the traffic flow on the edge. Further, a series of
topological metrics [19], including centrality-based metrics,
small-world metrics, space-syntax metrics, and PageRank
metrics, have been applied to capture human movement
flows in urban environments. When using a graph rep-
resentation of an urban environment, it is found that the
classical and weighted PageRank metrics are highly corre-
lated with human movements [19], [23]. Thus, if two edges
have similar PageRank values, the traffic flow on the two
segments should be similar.

When modeling web surfers, PageRank assumes that the
Markov chain is time-homogeneous, meaning that the prob-
ability of transferring from page i to page j has the same
fixed value at all times. In other words, matrix M is static
across time. In contrast, the time-homogenous assumption
does not hold for vehicles traveling in road networks. For
example, during peak hours, the transition probability from
edge i to edge j may be substantially different from the
probability during off-peak hours. Thus, we maintain a
distinct transition probability matrix Mk for each traffic cat-
egory tag tagk. During a particular traffic tag, we assume
the Markov chain to be time-homogeneous.

4.2.2 PageRank on Dual Graphs
PageRank was originally proposed to assign prestige to web
pages in a web graph, where web pages are modeled as
vertices and the hyper-links between web pages are mod-
eled as edges. Unlike the web graph, we are not interested
in the prestige of vertices (i.e., road intersections) in the
primal graph representation of a road network; rather, we
are interested in the prestige of edges (i.e., directed road
segments).

In order to assign PageRank values to edges, the primal
graph G = (V, E, L, F, H) is transformed into a dual graph
G′ = (V′, E

′), where each vertex in V
′ corresponds to an edge

in the primal graph, and where each edge in E
′, denoted

by a pair of vertices in V
′, corresponds to a vertex in the

primal graph. Since functions L, F, and H are not of interest
in this section, we do not keep them in the dual graph.

To avoid ambiguity, we use the terms edge and vertex
when referring to primal graphs and use dual edge and dual
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Fig. 5. Dual graph.

vertex when referring to dual graphs. Further, we use the
term weight when referring to the weight of an edge in a
primal graph, and we use dual weight in the context of dual
edges in a dual graph.

We define a mapping D2P : V′ ∪ E
′ → V ∪ E to record

the correspondence between the elements in the dual and
primal graphs. Fig. 5 show the dual graph that corresponds
to the primal graph shown in Fig. 3. Since the dual vertex
AB corresponds to the edge (A, B) in Fig. 3, D2P(AB) =
(A, B). Similarly, since the dual edge (CB, BA) corresponds
to the vertex B in Fig. 3, D2P((CB, BA)) = B.

The dual graph is able to model an important charac-
teristic of a road network: at a particular intersection, the
probability of which segment a vehicle follows depends on
the segment via which the vehicle entered the intersection.
Considering the road network shown in Fig. 2, at intersec-
tion (i.e., vertex) B, a vehicle can proceed to follow segments
(i.e., edges) (B, A), (B, C), or (B, D). If a vehicle entered the
intersection using segment (C, B), it may be unlikely that
the vehicle takes a u-turn to follow segment (B, C), while
is more likely that it will use the other segments. Similar
cases exist if a vehicle arrived at the intersection using
segment (A, B).

Modeling this characteristic in a primal graph is not easy.
For example, we need to maintain two sets of probabilities
on edge (B, C), for the vehicles came from edge (C, B) ver-
sus edge (A, B). In contrast, modeling this in a dual graph is
straightforward, as how a vehicle entered a particular inter-
section is clearly represented as a dual vertex. For example,
the probabilities on dual edges (CB, BC) and (AB, BC)

record the probabilities that a vehicle entered intersec-
tion B from edge (C, B) and edge (A, B), respectively, and
continues along edge (B, C).

Given the dual graph G′ = (V′, E
′), original PageRank

values are defined formally as follows.

PR(v′
i) = 1 − df

|V′| + df ·
∑

v′
j∈IN(v′

i)

PR(v′
j)

|OUT(v′
j)|

, v′
i ∈ V

′, (3)

where PR(v′
i) indicates the PageRank value of dual vertex

v′
i; IN(v′

i) indicates the set of in-link neighbors of v′
i, i.e.,

IN(v′
i) = {v′

x|(v′
x, v′

i) ∈ E
′}; and OUT(v′

j) indicates the set of
out-link neighbors of v′

j, i.e., OUT(v′
j) = {v′

x|(v′
j, v′

x) ∈ E
′}.

Further, df ∈ [0, 1] is a damping factor, which is normally
set to 0.85 for ranking a web graph.

The intuition behind Equation 3 is that the PageRank val-
ues are composed of two parts: jumping to another random
vertex and continuing the random walk. This assumption
works fine on the web graph, but we need to adapt this
to the different characteristics of the graph representing a
road network. In a road network, it is impossible for a

TABLE 2
Numbers of Trips Occurred on Dual Edges

vehicle to choose a random edge to traverse when at an
intersection. Rather, it can only choose to continue along
one of the out-link (dual) edges. Based on this observation,
we set the damping factor df to 1. Some existing empirical
studies [19] also suggest that with the damping factor set
to 1, the resulting PageRank values have the best correlation
with the human movement flows.

4.2.3 Weighted PageRank Computation
Definition of Dual Weights: In the original PageRank algo-
rithm, a vertex propagates its PageRank value evenly to
all its out-link neighbors. In other words, the dual weight
for each dual edge from dual vertex v′

j is set uniformly
to 1

|OUT(v′
j)|

. The uniform weights on the web graph indi-

cate that a web surfer chooses its next target web page
without any preferences to continue its random surfing.
However, in a road network, such non-preference surfing
usually does not occur. For example, the next step where a
vehicle continues often depends on where the vehicle came
from, as discussed in Section 4.2.2. Also, if Avenue 1 and
Avenue 2 are the main roads in the road network shown
in Fig. 2, more vehicles travel from AB to BC than from
AB to BD. Further, during different traffic category tags,
the transitions between dual vertices may also be quite
different.

With the availability of very large collections of GPS
data, we are able to capture the probability that a vehicle
transits from one road segment to another at an intersec-
tion during different traffic category tags. Assume we only
distinguish between peak and off-peak hours, i.e., there are
only two corresponding tags in TAGS. Suppose we obtain
the number of trips occurred on dual edges, as shown in
Table 2.

For example, among all the trips that occurred on dual
vertex AB during the peak hours, 30 trips proceeded to fol-
low BC, and 10 trips followed BD; during off-peak hours,
5 trips followed BC, and 5 trips followed BD. These obser-
vations suggest that the dual weight on dual edge (AB,
BC) should be greater than the dual weight on dual edge
(AB, BD) during peak hours; while they should be the same
during off-peak hours.

As the dual graph has different dual weights for different
traffic tags, we need to maintain a dual graph for each traf-
fic tag. Specifically, the training data set TC is partitioned
into TC1, TC2, . . ., TC|TAGS| according to the traversal times.
Partition TCk consists only of the trips that are occurred
during the time period indicated by the traffic tag tagk, i.e.,
G.F−1(tagk).

The dual weight of a dual edge (v′
i, v′

j) during tag tagk is
related to the ratio of the number of trips that traversed the
dual vertices v′

i and v′
j to the number of trips that traversed

the dual vertex v′
i, during tag tagk. Further, to contend with
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data sparsity, Laplace smoothing is applied to smooth the
dual weight values for the dual edges that are not covered
by any trip in TC. The dual weight of dual edge (v′

i, v′
j)

for the dual graph within tagk (denoted as G′
k) is computed

based on Equation 4.

Wk(v′
i, v′

j) =
|Tripk(v′

i, v′
j)| + 1

∑
v′

x∈OUT(v′
i)

|Tripk(v′
i, v′

x)| + |OUT(v′
i)|

, (4)

where Tripk(v′
i, v′

j) returns the set of trips in partition TCk

that traversed the dual vertices v′
i and v′

j.
Continuing the example shown in Table 2, although no

trip goes from the dual vertex AB directly back to BA in
TC, this does not mean that such a trip will not occur in
the future. Thus, we need to give a small, non-zero value
to the dual weight of dual edge (AB, BA). Using the dual
weights provided by Equation 4, the dual weights of the
out-linking dual edges of dual vertex AB are: WPEAK(AB,
BC) = 31

43 , WPEAK(AB, BD) = 11
43 , and WPEAK(AB, BA) = 1

43 ;
and WOFFPEAK(AB, BC) = 6

13 , WOFFPEAK(AB, BD) = 6
13 , and

WOFFPEAK(AB, BA) = 1
13 .

Note that for a given dual vertex v′
i, if no trips in TC

are available to assign the dual weights during a traffic tag
tagk, i.e., |Tripk(v

′
i, v′

x)| = 0 for every v′
x ∈ OUT(v′

i), Equation 4
assigns weights with 1

|OUT(v′
i)|

to each dual edge, which is

exactly what the original PageRank algorithm does. For
instance, if no trips are available for dual vertex AB (i.e., if
the numbers in Table 2 are all zeros), the dual weights for
Wk(AB, BC), Wk(AB, BD), and Wk(AB, BA) are all 1

3 .
Computing Weighted PageRank Values: Based on the dual
weights obtained from Equation 4, we construct the transi-
tion probability matrices Mk∈R

|V′|×|V′|. Specifically, the ith
row and jth column element in Mk, i.e., Mk[i, j], equals
Wk(v′

i, v′
j) if the dual edge (v′

i, v′
j) exists in the dual graph;

otherwise, it equals 0. Note that the sum of all elements in
a row equals 1, i.e.,

∑|V′|
j=1Mk[i, j] = 1 for every 1 � i � |V′|.

Let vector vk∈R
|V′| record the PageRank values for every

dual vertex in G′
k. Specifically, vk[i] = PRk(v′

i), which is the
PageRank value of v′

i during traffic category tag tagk. This
way, the PageRank values can be computed iteratively as
follows until converged.

vk
(n+1) = Mk

T · vk
(n),

where vk
(n) is the PageRank vector in the n-th iteration.

4.2.4 PageRank-Based Topological Constraint
Objective Function

After obtaining the weighted PageRank values for every
dual edge, the topological similarity between two edges in
the primal graph is quantified in Equation 5.

SPR
k (ei, ej) =

min(PRk(v′
ei
), PRk(v′

ej
))

max(PRk(v′
ei), PRk(v′

ej))
. (5)

The topological similarity between edges ei and ej,
denoted as SPR

k (ei, ej), is defined based on the weighted
PageRank values of the two dual vertices representing the
edges. To be specific, v′

ei
and v′

ej
indicate the correspond-

ing dual vertices of edges ei and ej, i.e., D2P(v′
ei
) = ei and

D2P(v′
ej
) = ej. Note that Equation 5 returns a high similarity

if two edges have similar weighted PageRank scores and
that it returns a low similarity, otherwise.

Based on the topological similarity, a PageRank-based
Topological Constraint (PRTC) function is incorporated into
the overall objective function. The intuition behind the
PRTC function is that for the same traffic category tag,
if two edges have similar traffic flows (as measured by
Equation 5), their cost variables tend to be similar as well.
The PRTC function is defined in Equation 6.

PRTC(d) =
|TAGS|∑

k=1

PRTC(d, k), (6)

where

PRTC(d, k) =
|G.E|∑

i,j=1

SPR
k (ei, ej) · (d(ei,tagk) − d(ej,tagk))

2.

The value of the PRTC function over the cost vector d is
the sum of PRTC(d, k) for every 1 � k � |TAGS|. The func-
tion PRTC(d, k) computes the weighted (decided by SPR

k )
sum of the squared differences of between each pair of road
segments’ cost variables during traffic tag tagk.

The PRTC function has two important features: (i) if the
PageRank values of two edges are similar, the similarity
value SPR

k is large, thus making the difference between their
cost variables obvious; (ii) if two edges’ PageRank values
are dissimilar, the similarity value SPR

k with a small value
smoothes down the difference between their cost variables.
This way, minimizing the PRTC function corresponds to
minimizing the overall difference between two cost vari-
ables whose corresponding road segments have similar
traffic flows.

To obtain the matrix representation of the PRTC func-
tion, we introduce a matrix A ∈ R

|d|×|d|, which is a block
diagonal matrix.

A =

⎡

⎢⎢⎣

A1
A2

. . .

A|TAGS|

⎤

⎥⎥⎦ , (7)

where Ak ∈ R
|E|×|E| and Ak[i, j] = SPR

k (ei, ej), which obvi-
ously is a symmetric matrix. Let matrix LA be the graph
Laplacian induced by the similarity matrix A. Specifically,
LA[i, j] = δi,j·

∑
xA[i, x] − A[i, j], where δi,j returns 1 if i

equals j, and 0 otherwise. The matrix representation of
PRTC function is shown in Equation 8.

PRTC(d) = dTLAd. (8)

4.2.5 Properties of PageRank on Road Networks
Web graphs and road network graphs are quite differ-
ent, rendering it of interest to study the distributions of
PageRank values on the two kinds of graphs. Fig. 6 shows
the normalized (to (1, 100]) PageRank values with respect
to the percentage of vertices having the PageRank values,
on a graph (WEB) representing a part of the Web1 and a
dual graph (NJ) representing the road network of North
Jutland, Denmark.

1. http://snap.stanford.edu/data/web-Google.html
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(a) (b)

Fig. 6. PageRank on the web and a road network. (a) Web. (b) Road
networks.

Fig. 6 suggests that PageRank values on NJ are dis-
tributed more uniformly than for WEB. With this type of
distribution, many vertices have the same or very simi-
lar high PageRank values, which renders the distribution
ineffective for ranking when compared to WEB. However,
the distribution is effective for our objective of identifying
road segments with similar traffic flows based on PageRank
values.

4.3 Adjacency Constraint
The PRTC function is derived from the overall structure
of the road network. In this section, we consider a finer-
grained topological aspect of the road network, namely,
directional adjacency.

An important feature of a road network is that an event
at one road segment may propagate to influence adjacent
road segments. Consider a typical event in a road network,
e.g., traffic congestion. If congestion occurs on road segment
(A, B) in Fig. 2, road segment (B, C) may also experience
congestion, or at least the traffic on (B, C) is affected by
the congestion that occurs on (A, B). Thus, the cost vari-
ables of two directionally adjacent road segments should be
similar.

The directional adjacency we discus here is represented
clearly in the dual graph. If and only if two dual vertices
are connected by an dual edge in the dual graph, the two
corresponding road segments are directionally adjacent. For
example, although edges (B, D) and (B, C) (in Fig. 3) inter-
sect, their cost variables may not necessarily tend to be sim-
ilar because no vehicle can travel between these two edges.
Directional adjacency is distinct from the “non-directional”
adjacency considered in previous work [7].

Another point worth noting is that if two road segments
represent opposite directions of the same physical road seg-
ment, they are not directionally adjacent. It is natural that
an event on a physical road only yields congestion in one
direction, but not both directions. Considering the edges
(A, B) and (B, A) (in Fig. 3), their corresponding vertices
in the dual graph (AB and BA in Fig. 5) are connected by
two edges, however, their cost variables are not necessarily
similar.

Directional adjacency is also temporally sensitive. For
example, although edges (A, B) and (B, C) are direction-
ally adjacent, the general traffic situation (indicated by the
cost variable) on edge (A, B) during peak hours is not nec-
essarily correlated with the traffic on edge (B, C) during
non-peak hours.

To incorporate directional adjacency, we incorporate a
Directionally Adjacent Temporal Constraint (DATC) func-
tion into the overall objective function.

DATC(d) =
k=|TAGS|∑

k=1

DATC(d, k), (9)

where

DATC(d, k) =
|G.E|∑

i,j=1

W′
k(v

′
ei
, v′

ej
) · (d(ei,tagk) − d(ej,tagk))

2,

and where v′
ei

and v′
ej

have the same meaning as in
Equation 5. W′

k(v
′
ei
, v′

ej
) is as defined in Equation 4 if

v′
ei

and v′
ej

do not indicate the same physical road seg-
ment; and W′

k(v
′
ei
, v′

ej
) equals 0 otherwise. For instance,

although WPEAK(AB, BA) = 1
43 as discussed in Section 4.2.3,

W′
PEAK(AB, BA) = 0 since AB and BA indicate the same

physical road segment, Avenue 1.
The DATC function aims to make the cost variables sat-

isfy the following property: given road segments ei and ej,
if a many of the trips that follow ei also follow ej, as indi-
cated by W′

k(v
′
ei
, v′

ej
), the cost variables on the two edges

tend to be more correlated.
Similar to the discussion in Section 4.2.4, we introduce

a block diagonal matrix B ∈ R
|d|×|d| with the same format

as matrix A (defined in Equation 7). In particular, in each
block matrix, Bk[i, j] = max(W′

k(v
′
ei
, v′

ej
), W′

k(v
′
ei
, v′

ej
)), which

guarantees that matrix Bk, and hence matrix B, are sym-
metric. Note that it is not possible that both W′

k(v
′
ei
, v′

ej
) and

W′
k(v

′
ej
, v′

ei
) are non-zero because if edge D2P(v′

ei
) is direc-

tionally adjacent to edge D2P(v′
ej
) then edge D2P(v′

ej
) cannot

be directionally adjacent to edge D2P(v′
ei
). Let LB to be the

graph Laplacian derived by matrix B. The DATC function
is represented by Equation 10.

DATC(d) = dTLBd (10)

4.4 Solving the Problem
Combining the three individual objective functions and
a classical L2 regularizer, we obtain the overall objective
function O(d):

O(d) = RSS(d) + α · PRTC(d) + β · DATC(d) + γ · ||d||22,
where α, β, and γ are hyper-parameters that control the
tradeoff among the losses on RSS, PRTC, DATC, and the
L2 regularizer. The matrix representation of the objective
function is shown in Equation 11.

O(d) = ||c − QTd||22 + α · dTLAd + β · dTLBd + γ · ||d||22.
(11)

By differentiating Equation 11 w.r.t. vector d and setting it
to 0, we get

[QQT + α · LA + β · LB + γ · I]d = Qc. (12)

The solution to Equation 12 is the optimal solution to
the cost vector, denoted as d̂, that minimizes the over-
all objective function in Equation 11. The linear system in
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Equation 12 can be solved efficiently by several iterative
algorithms such as the conjugate gradient algorithm [24].

Finally, feeding the optimized cost variable vector d̂ to
function G.H, the time varying weights of the graph become
available.

4.5 Discussion
In addition to the topology of a road network, other aspects
of edges may be useful for identifying similarities among
edges, e.g., the shapes and capacities of edges and the
points of interest along edges [25]. Such information is not
always available in digital maps and can be difficult to
obtain. However, it is of interest to extend the proposed
methods to take additional information, when available,
into account. To achieve general applicability of the paper’s
methods, we minimize the requirements of the input graph
G′′: both PRTC and DATC rely solely on the topology of a
road network, which can be obtained easily from any digital
map.

The weight annotation problem is finally handled by
solving a system of linear equations, i.e., Equation 12.
Alternative edge similarity metrics (e.g., considering the
shapes and capacities of edges) can be easily incorpo-
rated into the linear system by adding new terms of the
form ϕ · LM, where ϕ is the hyper-parameter and LM is
the Laplacian matrix derived by an alternative similarity
metric. An alternative similarity metric sim should satisfy
symmetry: sim(ei, ej) = sim(ej, ei). Both PRTC and DATC
satisfy symmetry.

The core operations in solving a system of linear equa-
tions using a conjugate gradient algorithm are matrix
multiplication and transposition. This means that existing
scalable matrix computation algorithms [26], [27] can be
applied directly to make the proposed framework scalable
and applicable to large road networks.

5 EXPERIMENTAL STUDY

We study the effectiveness of the proposed method for
weight annotation of road networks with both travel time
(TTWA) and GHG emissions (GEWA).

5.1 Experimental Setup
Road Networks: We use two road networks. The SK net-
work is from Skagen, Denmark and has a primal graph
with 543 vertices and 1, 244 edges. The NJ network con-
tains almost all of North Jutland, Denmark and has a primal
graph with 17, 956 vertices and 39, 372 edges.

Trips: We use GPS observations collected from 28 vehi-
cles in the period 2007-10-01 to 2007-10-15. When the
vehicles were moving, positions were sampled at 1 Hz.
The data is collected as part of an experiment where young
drivers start out with a substantial rebate on their car insur-
ance and then are warned if they exceed the speed limit and
are penalized financially if they continue to speed.

We apply an existing tool for map matching GPS obser-
vations onto road segments, thus obtaining 431 trips in the
SK network and 11, 516 trips in the NJ network.

For TTWA, we use the total travel time for each trip,
which can be obtained directly from the GPS observations
of the trip, as the cost.

TABLE 3
Traffic Category Tag Function G.F

For GEWA, we use the GHG emissions of each trip as trip
cost. Ideally, the exact fuel consumption should be obtained
from CAN bus sensor data. Since such data is hard to
obtain in a scalable fashion, we use instead the VT-micro
model [15] that is able to compute the GHG emissions of
trips based on the instantaneous velocities and accelera-
tions derived from the GPS records of the trips in a robust
fashion [3]. The 1 Hz GPS sampling frequency makes the
VT-Micro model easy to use.

Traffic Category Tags: In transporation research, PEAK
and OFFPEAK periods are used widely to distinguish dif-
ferent traffic flows over the course of a day [28]. Thus, we
use PEAK and OFFPEAK as traffic category tags. Further,
we distinguish between weekdays from weekend days, as
traffic differs between weekdays and weekend days. To
appropriately assign PEAK and OFFPEAK tags to the data
set, we plot the numbers of GPS records according to their
corresponding observed time at an one-hour granularity
for weekdays and weekend days, respectively. Based on
the generated histograms, we identify PEAK and OFFPEAK
periods for weekdays. We find no clear peak periods during
weekends and thus use WEEKENDS as the single tag for
weekends. Table 3 provides the mapping (i.e., the function
G.F) from time periods to tags.

T-Drive [10] is able to assign distinct and fine-grained
traffic tags to individual edges. The precondition of the
method is that sufficient GPS data is associated with edges.
However, a substantial fraction of all edges have no GPS
data in our setting. Thus, we use traffic tags at the coarse
granularity shown in Table 3.

Implementation Details: The PageRank computation
is implemented in C using the iGraph library ver-
sion 0.5.4 [29]. All remaining experiments are implemented
in Java, where the conjugate gradient algorithm for solving
a linear system is implemented using the MTJ (matrix-
toolkits-java) package [30].

We use the threshold 0.95 to filter the entries in the
PageRank-based similarity matrix A (Equation 7): if the
value of an entry in A is smaller than 0.95, the entry is
set to 0. We use the speed limits associated with roads to
classify the edges into two categories, highways (with speed
limits above 90 km/h) and urban roads (with speed limits
below 90 km/h). We only apply adjacency constraint on
pairs of edges in the same category.

Due to the space limitation, the experiments only report
the results using the best set of hyper-parameters, which
are is obtained by manual tuning on a separate data set
using cross validation. This is a well known method [18]
for choosing hyper-parameters.
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TABLE 4
Effectiveness on TTWA

5.2 Experimental Results
5.2.1 Effectiveness Measurements
To gain insight into the accuracy of the obtained trip cost
based weights, we split the set of (trip, cost) pairs into a
training set TCtrain and a testing set TCtest. We use the
training set to annotate the spatial network with weights,
and we use the testing set to evaluate the accuracy of the
weights. In the following experiments, we randomly choose
50% of the pairs for training and the remaining 50% for
testing, unless explicitly stated otherwise.

Since no ground-truth time-dependent weights exist
for the two road networks, the accuracy of the obtained
weights can only be evaluated using the trips in testing set
TCtest. If the obtained weights (using TCtrain) actually reflect
the travel costs, the difference between the actual cost and
the estimated cost using the obtained weights (i.e., by using
Equation 1 defined in Section 3.2) for each trip in the testing
set TCtest should be small.

We use the sum of squared loss (SSL) value (defined
in Equation 13) between the actual cost c(i) and the esti-
mated cost cost(t(i)) over every trip in the testing set TCtest
to measure the accuracy of the obtained weights.

SSL(TCtest) =
∑

(t(i),c(i))∈TCtest

(c(i) − cost(t(i)))2 (13)

For example, if the GHG emissions based weights really
reflect the actual GHG emissions, the sum of squared loss
between the actual GHG emissions and the estimated GHG
emissions over every testing trip should tend to be small.
The smaller the sum of squared loss, the more accurate the
weights.

To gain insight into the effectiveness of the proposed
objective functions, we compare four combinations of the
functions:

1) F1=RSS(d) + γ · ||d||22.
2) F2=RSS(d) + α · PRTC(d) + γ · ||d||22.
3) F3=RSS(d) + β · DATC(d) + γ · ||d||22.
4) F4=RSS(d) + α · PRTC(d) + β · DATC(d)+ γ · ||d||22.

Function F1 only considers the residual sum of squares.
Functions F2 and F3 take into account the PageRank-based
topological constraint and the directional adjacency con-
straint, respectively. Function F4 takes into account both
constraints.

As the objective function used in trajectory regression [7]
also considers adjacency, we can view the method using
function F3 as an improved version of trajectory regression
because (i) function F3 works not only for travel times, but
also other travel costs, e.g., GHG emissions; (ii) function
F3 considers the temporal variations of travel costs, while
trajectory regression does not; and (iii) function F3 consid-
ers directional adjacency, while trajectory regression models

TABLE 5
Coverage of Weight Annotation

a road network as a undirected graph and only considers
undirected adjacency.

The sum of squared loss value for using objective func-
tion Fi is denoted as SSLFi(TCtest). In order to show the
relative effectiveness of the proposed objective functions,

we report the ratios RatioF2 =
SSLF2 (TCtest)

SSLF1 (TCtest)
, RatioF3 =

SSLF3 (TCtest)

SSLF1 (TCtest)
,

and RatioF4 =
SSLF4 (TCtest)

SSLF1 (TCtest)
.

Coverage, defined in Equation 14, is introduced as
another measurement.

CoveFi(TCtrain) = |{e|e ∈ G.E ∧ annotated(e)}|
|G.E| , (14)

where annotated(e) holds if edge e is annotated with weights
using TCtrain. Function CoveFi indicates the ratio of the num-
ber of edges whose weights have been annotated by using
objective function Fi to the total number of edges in the
road network. The higher the coverage is, the more edges
in the road network are annotated with weights, and thus
the better performance.

5.2.2 Travel Time Based Weight Annotation
Effectiveness of objective functions: Table 4 reports the
results on travel time based weight annotation. Column
SSLF1 reports the absolute SSL values over all test trips
when using objective function F1 for both data sets. NJ has
much larger SSL values than SK because it has much more
testing trips. For both road networks, the weights annotated
using objective function F4 have the least SSL values.

We also observe that the PageRank based topological
constraint works more effectively on NJ than on SK. The
reason is that Skagen is a small town in which few road
segments have similar topology (e.g., similar weighted
PageRank values). In the NJ network, the PageRank based
topological constraint gives a better accuracy improve-
ment since more road segments have similarly weighted
PageRank values.

The coverage reported in Table 5 also justifies the obser-
vation. When using objective function F1, only the edges
in the set of training trips can be annotated, which can be
expected to be a small portion of the road network. When
using objective function F2, the coverage of the SK network
increases much less than for the NJ network. This suggests
that in a large road network, the PageRank based topolog-
ical constraint substantially increases the coverage of the
annotation, thus improving the overall annotation accuracy.

The directed adjacency topological constraint yields sim-
ilar accuracy improvements on both road networks, and
the accuracy improvement is more substantial than the
improvement given by the PageRank based topological con-
straint. This is as expected because a road network is fully
connected, and DATC is able to finally affect almost every
edge, which gives more information for the edges that
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TABLE 6
Comparison with Baselines on TTWA

are not traversed by trips in the training set. This can be
observed from the third column of Table 5.

For both road networks, PRTC and DATC together give
the best accuracy, as shown in column RatioF4 in Table 4.
This finding offers evidence of the overall effectiveness of
the proposed objective functions.

Accuracy comparison with a baseline: The test tips
contain edges that are not covered by any training trips.
Therefore, existing methods [10] that can estimate travel
time based on historical data are inapplicable as baseline.

If the speed limit of every edge in a road network is
available, we can use speed limit derived weights as a base-
line for travel time based weight annotation. While it is
difficult to obtain a speed limit for every road segment in
a road network, we can use default values were values are
missing. In the NJ network, 62 edges lack a speed limit and
are assigned a default value (50 km/h).

Given an edge e and its speed limit sl(e) and length
G.L(e), the corresponding travel time based weight for e
is λ · G.L(e)

sl(e) if e is an urban road (where λ ≥ 1) and G.L(e)
sl(e) if

e is a highway.
The factor λ is used because vehicles tend to travel at

speeds below the speed limit on urban roads and at the
speed limit on highways. Previous work [7] uses λ = 2,
meaning that vehicles normally travel at half the speed limit
in urban regions. However, we find that λ = 1 works the
best for our data. The reason may be two-fold: (i) the data
we use is collected from young drivers who tend to drive
more aggressively than average drivers. (ii) the SK and NJ
networks are relatively congestion-free when compared to
Kyoto, Japan, which is simulated in previous work [7].

The above allows us to treat the speed limit derived
weights as a baseline method for travel time based weight
annotation. To observe the accuracy of the baseline method,
its accuracy is also evaluated using SSL over every test-
ing trip. Specifically, the baseline with λ = 2 is denoted
as SSLBL,λ=2(TCtest), and the baseline with λ = 1 is
denoted as SSLBL,λ=1(TCtest). The two resulting baselines
are compared with the proposed method, and the results
are reported in Table 6, where Ratioλ=2=

SSLF4 (TCtest)

SSLBL,λ=2(TCtest)
and

Ratioλ=1=
SSLF4 (TCtest)

SSLBL,λ=1(TCtest)
. The ratios Ratioλ=1 on the two road

(a) (b)

Fig. 7. ALR comparison on TTWA of NJ. (a) Baseline with λ = 2.
(b) Baseline with λ = 1.

Fig. 8. ALR Comparison on GEWA of NJ.

networks show that the weights obtained by our method
are substantially better than the best cases of the weight
obtained from the speed limits.

The same deviation has quite a different meaning for
long versus short trips. For example, a 50-second devia-
tion can be considered as a very good estimation error for
a 30-minute trip, while it is a poor estimation error for a
2-minute trip. Thus, to better understand how the overall
SSL values are distributed, we plot the number of test trips
whose absolute loss ratio (ALR) values are within x percent-
age in Fig. 7. Given a test pair (t(i), c(i)) ∈ TCtest, its ALR
value equals the absolute difference between the estimated
and actual costs divided by the actual cost, as defined in
Equation 15.

ALR((t(i), c(i))) = absolute(cost(t(i)) − c(i))

c(i)
. (15)

Our method shows the best result as the majority of the test
trips have smaller ALR values. Assume that we consider
and ALR below 30% as a good estimation. Fig. 7 shows
that 84.3% of test trips have good estimations using the
proposed method. In contrast, only 67.4% and 22.1% of test
trips have good estimations using baseline methods with
λ = 1 and λ = 2, respectively.

We do not integrate speed limits into our method
because (i) for edges without available speed limits, the
obtained weights are quite sensitive to the assigned default
speed limits: inaccurate defaults deteriorate the perfor-
mance severely; and (ii) speed limits do not give obvious
benefits when annotating edges with GHG emissions based
weights, as we will see shortly in Section 5.2.3 (in particular,
in Fig. 8).

5.2.3 GHG Emissions Based Weight Annotation
Effectiveness of objective functions: Table 7 reports the
results on GHG emissions based weight annotation. In gen-
eral, the results are consistent with the results from the
travel time based weight annotation (as shown in Table 4):
(i) The PageRank-based topological constraint works more
effectively on the NJ network than on the SK network;
(ii) the directed adjacency constraint works more effectively

TABLE 7
Effectiveness on GEWA
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Fig. 9. Results on different size of TCtrain.

than the PageRank-based topological constraint; (iii) the
weights obtained by using both PRTC and DATC give the
best accuracy. The coverage when using the different objec-
tive functions is exactly the same as what was reported in
Table 5.

Comparison with a baseline: As we did for travel times,
we use speed limits to devise a baseline for GHG emis-
sions based weight annotation. Assuming a vehicle travels
on an edge at constant speed (e.g., the speed limit of the
edge), we can simulate a sequence of instantaneous veloc-
ities. For example, let an edge be 100 meters long and the
speed limit be 60 km/h. The simulated trip on the road
segment is represented by a sequence of 6 records, each
with 60 km/h as the instantaneous velocity. This allows us
to apply the VT-micro model to estimate GHG emissions
based edge weights. Since in the previous set of experi-
ments, we have already found that the speed limit (i.e.,
λ = 1) is the best fit for our data we simply use the speed
limit here.

We obtain Ratioλ=1 = 24.7% for SK and Ratioλ=1 = 29.8%
on NJ. Fig. 8 shows the percentage of test trips whose ALR
values are less than x% using the baseline with λ = 1 and
the proposed method, respectively. These results clearly
show the better performance of the proposed method, as
the majority of test trips have smaller ALR values.

5.2.4 Effectiveness of the Size of Training Trips
In this section, we study the accuracy when varying the
training set size. Specifically, on the NJ network, we reserve
20% of the (trip, cost) pairs as the testing set, denoted as
TCtest, and the remaining 80% as the training set, denoted
as TCtrain. In order to observe the accuracy of weight anno-
tation on different sizes of TCtrain, we use 100%, 80%,
60%, 40%, and 20% of TCtrain to annotate the weights,
respectively. The results are shown in Fig. 9.

For travel time, when only 20% of TCtrain is used, the
accuracy of our method is worse than the baseline method
with λ = 1 because the baseline has a rough estimation
for the costs of all edges, while the 20% of TCtrain covers
only 16.3% of the edges in the road network. Although our
method propagates weights to edges that are not covered
by the training trips, the accuracy suffers when the initial
coverage of the training trips is low. When 40% of TCtrain is
used, the accuracy of our method is much better than that
of the baseline. In this case, the training trips cover 23.3%
of all edges. As the training set size increases, the accuracy
of the travel time weights also increases. When we use all
trips in TCtrain, the accuracy of our method is almost twice
that of the baseline.

For GHG emissions, we observe a similar trend: with
more training trips, the accuracy of the corresponding
weights improves, and our method always outperforms the
baseline when annotating edges with GHG emissions based
weights.

This experiment justifies that (i) our method works effec-
tively even when the coverage of the trips in the training
set is low; (ii) if the coverage of the trips in the train-
ing set increases, e.g., by providing more (trip, cost) pairs
as training set, the accuracy of the obtained weights also
increases.

6 CONCLUSION AND OUTLOOK

Reduction in GHG emissions from transportation calls for
effective eco-routing, and road network graphs where all
edges are annotated with accurate weights that capture
environmental costs, e.g., fuel usage or GHG emissions,
are needed for eco-routing. However, such weights are not
always readily available for a road network. This paper pro-
poses a general framework that takes as input a collection
of (trip, cost) pairs and assigns trip cost based weights to a
graph representing a road network, where trip cost based
weights may reflect GHG emissions, fuel consumption, or
travel time. By using the framework, edge weights captur-
ing environmental impact can be computed for the whole
road network, thus enabling eco-routing. To the best of our
knowledge, this is the first work that provides a general
framework for assigning trip cost based edge weights based
on a set of (trip, cost) pairs.

Two directions for future work are of particular interest.
It is of interest to explore whether accuracy improvement
is possible by using distinct PEAK and OFFPEAK tags for
different road segments. Likewise, it is of interest to explore
means of updating weights in real time. A module that
takes as input real time streaming data, e.g., real time GPS
observations along with costs, can be incorporated into the
framework.
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