2013 IEEE 14th International Conference on Mobile Data Management

©2013 |IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Routing Service Quality—Local Driver Behavior
Versus Routing Services

Vaida Ceikuté

Christian S. Jensen

Department of Computer Science, Aarhus University, Denmark
{ceikute, csj}@cs.au.dk

Abstract—Mobile location-based services is a very successful
class of services that are being used frequently by users with
GPS-enabled mobile devices such as smartphones. This paper
presents a study of how to exploit GPS trajectory data, which is
available in increasing volumes, for the assessment of the quality
of one kind of location-based service, namely routing services.
Specifically, the paper presents a framework that enables the
comparison of the routes provided by routing services with the
actual driving behaviors of local drivers. Comparisons include
route length, travel time, and also route popularity, which
are enabled by common driving behaviors found in available
trajectory data.

The ability to evaluate the quality of routing services enables
service providers to improve the quality of their services and
enables users to identify the services that best serve their needs.
The paper covers experiments with real vehicle trajectory data
and an existing online navigation service. It is found that the
availability of information about previous trips enables better
prediction of route travel time and makes it possible to provide
the users with more popular routes than does a conventional
navigation service.

I. INTRODUCTION

Traveling is part of most peoples’ daily life, and each day
we travel to different places for different reasons. Car drivers
often possess a good knowledge of their local area and tend
to follow familiar routes to different destinations. Depending
on specific driving habits, local drivers may follow routes
with few turns or with few traffic lights or speed bumps, and
they may have special shortcuts. Such preferred routes are not
necessarily the shortest or the fastest.

When we travel to unknown destinations, we often depend
on an available navigation service. In particular, when we plan
a trip, most probably, we would like to use the best route
possible. Depending on our preferences, the best route can be
the fastest or the shortest route, one that is mostly constrained
to the main roads, etc. By entering start and end locations,
with only one click, we receive all the information needed to
proceed with the trip. As users, we simply rely on the provided
route, and we often do not consider possibly better alternatives.

Consider three different routes between start location S and
destination D, as shown in Figure 1. Route f1 (dotted line)
covers the longest segment of the road with speed limit 70,
and this route is the fastest, since all other roads have speed
limit 50. Route #2 (solid line) is the shortest route. It goes
straight to the destination and does not include any detours.
Next, local drivers prefer Route £3 (dashed line). It can be seen
that Route f1 passes by Food Store and its parking lot. This
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Fig. 1. Example of Trips

often causes inconveniences due to cars entering and leaving
the lot. Route #2 passes by Shopping Mall and intersection C,
which is controlled by traffic lights. When taking this route, it
is easy to get stuck in a traffic jam, especially during rush hour.
Thus, Route #3 is the preferred one, and navigation services
can benefit from knowledge of the habits of local drivers.

Several techniques have been introduced that aim to improve
the quality of routing services by using drivers’ trajectories [5],
[7], [21]. The main idea of these proposals is to form a road
network from the road segments that are covered by trajectory
data set. A resulting route is formed by prioritizing parts of
roads that are taken mostly by the specific driver [5] or by
other drivers [7], [21].

Thus, a suggested route is the most favorite or the most
popular route in the available data set. To evaluate the quality
of proposed routes, Ying et al. [21] compare their time
consumption with the time consumption of the ones provided
by Google Maps. Since it is possible that routing services
are already providing the same route, this time-focused com-
parison does not provide any insight into how good routing
services are at suggesting the preferred routes. Not only the
time consumption is important, but also the route itself.

We present a framework that enables the comparison of the
routes provided by routing services with the travel behavior
of local drivers. The framework relies on the availability
of vehicle trajectory data for its operations. As such data
becomes available in increasing volumes, the framework gains
in applicability and utility. The framework has three main
modules: GPS data preprocessing, route identification, and
route comparison.

The preprocessing module employs a set of methods to
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clean the GPS data and to identify trajectories. These trajec-
tories are grouped such that the trajectories in a group are
between the same pair of a start and a destination location.
In the route identification module, trajectories that follow the
same route are identified. Comparison between trajectories is
done using a similarity definition that is based on the concept
of Longest Common Subsequence (LCSS) [19]. The route
comparison module implements a set of experiments that com-
pare the routes of local drivers against the routes provided by
a navigation service. Routes are compared according to three
metrics: route length, route travel time, and route popularity.
Example findings from the empirical study include:

e Drivers follow multiple routes between source and des-
tination locations, and 61% of these pairs have a route
that matches the one provided by the navigation service
considered.

« When drivers follow a route provided by the navigation
service, that route is typically the most frequently used
among the alternatives.

« Routes that are more popular among drivers than the ones
provided by the navigation service are not necessarily
shorter or take less time.

o The travel time predicted by the navigation service varies
on average +20% from the average time used by drivers.

The paper’s objective is to provide data-based insight into
routing service quality, rather than to provide new, scalable
GPS data processing algorithms. The ability to evaluate the
quality of a navigation service brings benefits to both service
providers and users. Service providers can evaluate the quality
of their services and, if needed, improve on them, e.g., by
taking into account information about previously taken trips.
For example, route recommendations to a driver ca be based
on the driving habits of other drivers with similar demographic
profile. Users can determine which routing services best meet
their needs and can choose a service to use on this basis.

Our study can also enable the creation of a meta-routing ser-
vice that makes use of several preexisting navigation services.
Together with the trajectory data, comparisons of results from
different services can be made, and the user can be provided
with the route that best reflects local driver behavior.

In summary, the main contributions of the paper are:

« We propose a framework with concepts and techniques
that enables comparison of routes collected using GPS
device and routes provided by a navigation service.

o We report findings from a study with real data from 144
drivers covering a period of four months that provides
insight into travel behavior of local drivers, i.e., route
diversity and popularity.

« We evaluate the performance of a popular navigation
service using three metrics: route length, travel time, and
route popularity.

« We provide empirical evidence that the use of travel
histories of drivers can increase the quality of a navigation
service by providing users with more popular routes and
make travel time predictions more accurate.

98

The remainder of the paper is organized as follows. Sec-
tion II provides the main definitions and presents the proposed
framework. Section III reports on the results of the empirical
study. Related work is covered in Section IV. Section V
concludes the paper.

II. ROUTING SERVICE QUALITY EVALUATION
FRAMEWORK

We proceed to define key concepts used in the paper. Then
we describe proposed framework that enables the comparison
of the routes provided by routing services with the actual
driving behaviors of local drivers.

A. Definitions

A GPS log is a collection of GPS points pt = (p,t), where
p = (x,y) is a point location in two-dimensional Euclidean
space R? and ¢ is a timestamp. Such a log captures the
trajectory of a moving object during a monitoring period. We
consider logs obtained from users that are driving vehicles.
Locations where users stay for longer than certain duration of
time, the stay duration threshold, are called stay points. Each
stay point can be either at the beginning or at the end of a
trip.

We consolidate stay points that are near each other by
grouping them into a location object, which is a circular
region. To avoid location objects with large radiuses, start and
end stay points are assigned to separate location objects.

Definition 1: A location object lo is defined as a triple
(c, tp, P). Here ¢ = (pg, rd) € R? x R denotes the circle with
center po and radius rd; tp € {1,0} captures the object type,
i.e., begin or end, respectively; and P is a set of stay points.
The center pg of the circle is the mass center of the set of stay
points in P. We denote the set of all location objects by LO.

A trip made by a user from one stay point to another is
called a traversal and is defined as follows.

Definition 2: A traversal {r is a pair (u, pl), where u € U
identifies a user and pl = (pt,,...,pty) is a polyline defined
by a sequence of timestamped points pt, = (p;,t;), where
pi € Pandt; € T.Here, N >2and t; < t;11,i=1,...,N.
The set of all traversals is TR.

The polyline in a traversal is the traversal’s trajectory. The
number of points in a trajectory depends on the sampling fre-
quency of the GPS device used, the duration of the monitoring
period, and the stay duration threshold.

A traversal starts and ends at particular start and end
location objects. Traversals that share the same pair of location
objects are identified by the corresponding source—destination
pair.

Definition 3: A source—destination pair sdp is a pair
(los, log) of two location objects los and loy. We use SDP
to denote the set of all source—destination pairs.

We use dot notation to reference the components of a
structured element. Thus, two traversals ¢r, tr’ € TR belong
to the same source—destination pair sdp = (log,log) iff
los.tp = 1 and los.c spatially contains tr.pt,.p and tr'.pt,.p



and log.tp
tr' . pt n.p.

In our setting, it is helpful to be able to collect all geograph-
ically similar traversals for a source—destination pair into a
single structure, which we call a route object.

Definition 4: A route object r is defined as a four-tuple
(sdp, {ui}, {pl;}, timeqyq), where sdp is a source—destination
pair, the u; are users, the pl, are trajectory polylines, and
time gy = (Zf\]:1 pl;.ptyi.t — pl;.pt;.t))/N is the average
time needed to traverse a polyline in the route object. Each
user and each polyline in a routes object stem from some
traversal that belongs to the object’s source—destination pair.
The set R denotes the set of all possible routes objects.

Example 1: Figure 2 illustrates three traversals by the
users ui,us, and ws. The polylines of the traversals are
given by ply, ply, pl5. The figure shows their projections into
R2. Polyline pl; is formed from a sequence of six points:
ply = ((p1,t1), (p2,t2), ..., (Ps,t6))- Begin and end location
objects are formed from the stay points of the three traversals:
A= (Cl7la{p17p77p9})» B = (02707 {pmp&pm}), where
c1 = (pr,rd1) and c3 = (pg, rd3).

0 and log4.c spatially contains ¢r.pt,.p and
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Fig. 2.

Example of Trips

Location objects A and B are combined into the source—
destination pair sdp (A, B). Three traversals belong to
sdp, e.g., the traversal try = (uq1,pl;). Two routes objects
are formed: r; (sdp, {ur,us}, {ply, ply}, timeqyg,) and
ry = (sdp, {us}, {pl3}, timegyg,). O

There can be several different routes between a source—
destination pair. To be able to identify the route that is the
most preferred among users, we define a preference function.

Definition 5: (Preference Function) Given a route object
r = (sdp,{u:},{pl;}, timeqny) € R, the score of a route is
defined as follows:

score(r) = a|r.U| + (1 — a) |r.PL|,

where 0 < a <1 is user-provided parameter that can balance
the importance of the number of different users taking the
route and the number of traversals.

We define the preferred route pr for a source-destination
pair sdp’ as the route object for that pair with the highest
score:

pr = argmax (score(r))

re€R,r.sdp=sdp’

Example 2: Continuing with the example from Figure 2, let
a = 0.5, meaning that the number of drivers taking a route and
the number of traversals are equally important in calculating
the score of the route. Then score(ry) = 0.5-2+(1—-0.5)-2 = 2
and score(rg) = 0.5-14 (1 —0.5) - 1 = 1, which means that
route 7 is the preferred route between the source—destination
pair sdp = (4, B).
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B. Framework

The framework for routing service quality evaluation en-
compasses the system whose architecture is described in
Figure 3. It consists of four main data processing components.
All computation is done in an offline mode.
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Preprocessing

Trajectory
DB

l‘

GPS Logs II

A2
> Route
Routes DB '™ Identification Routing

J Planning %
= Service 15
S g store match Service 2
5 £ Q
E|® route data XML Request [~4
| -
= o .
@ Rou“? Routing Routing o

Comparison Service Service Route
Routes DB Preparation
Fig. 3. Framework Overview

1) GPS Data Preprocessing: In this step, GPS data is
processed to identify separate traversals of different routes
based on GPS log data from local drivers.

Trajectory Segmentation: We identify trajectories, each of
which represents one route traversal. The GPS log contains
GPS points obtained from the cars during the monitoring
period. To distinguish the different trips made by a driver in
a car, the log of GPS points from each car was partitioned
when duration between the timestamps of consecutive GPS
points exceeded a stay duration threshold of mazT sec. In
addition, outlier GPS points caused by malfunctioning of the
GPS device were removed. Depending on the specifics of the
GPS logs used, additional steps might be included, e.g., the
identification of stay points [23].

Trajectory Filtering: In our setting, GPS points were
generally obtained from a car when the car’s engine was
on. Due to the different driving-related habits of different
individuals, some of the traversals initially identified based
on the GPS points are of little use in our study. To achieve
a higher-quality evaluation, we thus filter the initial set of
traversals.

First, we remove traversals that are shorter than minLen m
and have a time duration of less than minT sec. Next, we re-
move traversals that have ||pl.pt,.p, pl.pt 5.p|| < minDist m,
where ||-,-|| denotes Euclidean distance. This eliminates
traversals where a driver visits a destination, but does not
turn off the car and then returns near to the start loca-
tion. Finally, we remove traversals that have length(pl) >
0- ||pl.pty.p, pl.pt 5 .p||, where length(-) denotes the length
of an argument polyline. This filters traversals that involve
substantial detours, which can occur for many reasons. For
example, a driver on the way to work may pick up a co-worker
who lives further away than the place of work.

Detection of Source-Destination Pairs: In this step, we
identify meaningful locations for the drivers and the traversals
that occur between these locations.



Using Algorithm 1, a set of location objects is identified.
Begin and end points of the trips are joined into location
objects with separate types (lines 2-6). In lines 4 and 5
location objects are created using Algorithm 2.

In Algorithm 2, if there exists an object of the right type
that spatially contains a new point then the new point is added
to the point set, and the mass center of the circle is updated
(lines 2—4). If such an object does not exist then a new location
object of the provided type is created with an initial radius of
rad m (lines 5-6).

Algorithm 1 createLocObjs(PL;y,)
IN: PL;, C PL
OUT: LO,.: C LO
1: LO u < 0;
2: for pl € PL;, do
3. ps < pl.pty.p; pe < pl.pty.p;
4 LO,y < addLocObj(ps, 1, LO sut);
5 LO,yut + addLocObj(pe, 0, LO out);
6
7
8
9

: end for
: for lo € LO,,; do
© Tmaz < max(||lo.c.po, pil| : pi € lo.P);
: lo.cor — Toazs
10: end for
11: if CheckOverlap(LO ,y;) = true then
122 LO ,yt < merge overlapping circles;
13: end if
14: return LO ,;

Algorithm 2 addLocObj(psn, type, LO ;)
IN: p;, € P type € R, LO;;, C LO
OUT: LO,, C LO

1: lo+ 1;

2: if 3lo € LOy, : Contains(lo.c, pi,) A lo.tp = type then
3: lo.P < lo.PUDpi,;

4: lo.c.pg < mass center of p € lo.P;

5: else
6
7
8
9

o ¢+ (pin,rad); lo « (¢, type); LOpn < LO;y, Ulo;
: end if

: LOout < LOm,

: return LO ,q4;

Continuing with Algorithm 1, after all begin and end points
are assigned to location objects, the radiuses are tightened to
remove empty space from the circles (lines 7-10). Further, we
check whether the regions of the objects overlap and combine
intersecting objects into larger ones (lines 11-13). Only one
iteration of overlap checking is done. This is to avoid having
location objects with overly large radiuses.

Algorithm 3 identifies source—destination pairs. First, a set
of location objects LO is retrieved using Algorithm 1 (line 1).
Then sets of start and end objects are identified (lines 2-3).
Finally, location objects are paired into a source—destination
pair if at least 3 traversals exist between them (line 4). We take

into consideration only such trips because our study focuses
on popular routes.

Algorithm 3 identifySourceDestPairs(PL;;,)
IN: PL;, C PL
ouT: SDP,,; C SDP
1: LO ¢« createLocObjs(PL;y);
LOs + {lollo = (¢, tp,P) € LO : tp = 1};
LO4 + {lollo = (¢, tp, P) € LO : tp = 0};
SDP s < {sdp | sdp = (los,loq),los € LOg,log €
LOg, pl;.pty.p € los.P, pl,.ptni.p € log.P, pl, € PL* C
PLin,|PL*| > 3}:
5. return SDP ,,;;

e

2) Routing Service Route Preparation: Algorithm 4 is used
to obtain a route from a routing service for each source—
destination pair. We use the Google Directions API because
this is a popular and state-of-the-art service.

Algorithm 4 getGoogleRoutes(SDP,;,)
IN: SDP;, C SDP
OUT: Ryoogie C R
1: for sdp € SDP;, do
2: ps < sdp.los.c.pg; pe < sdp.log.c.po;
3. (pl, time) <+ getRouteFromGoogle API(ps, p.);
4 1y < (sdp,0,{pl}, time);
5
6
7

Rgoogle — Rgoogle ) Tgs
: end for
:return Ryoogie;

For each source—destination pair, we query the Google
Directions API to obtain the route that Google proposes
(lines 1-6). The API takes two point locations as arguments.
As the start location, we take the center of the source location
object, and as the end location, we use the center of destination
location object (line 2). Then the API returns a polyline and a
travel time. The algorithm creates a route object using returned
polyline and time (line 4).

3) Route Identification: In this step, distinct routes between
source—destination pairs are identified.

Different drivers tend to follow diverse routes between the
same start and end locations. In order to be able to determine
how many different routes were taken, we define a similarity
measure between traversals.

The set of traversals between the same source—destination
pair may have different lengths, and the polylines of differ-
ent traversals may also have different numbers of sampling
points. Therefore, a measure based on Euclidean distance is
not useful for computing the similarity between traversals.
Instead, we exploit the notion of Longest Common Subse-
quence (LCSS) [19], [20] to define the similarity between two
traversals that are represented by sequences of coordinates.

We project the polyline of a traversal into R? by omitting its
timestamps. Consider two such polylines: pl = (p1,...,Dn)
and pl' = (p},...,p),). Given an integer distance threshold



¢, the longest common subsequence LCSS(pl, pl’) between
polylines pl and pl’ is defined as follows, where pl; is pl
constrained to its first ¢ points.

LCSS (pl,pl') =
Oifn=0vm=0
LCSS(ply_y,pli_1) + 1 if |pix — pfa| <e
Alpi-y — Pyl < €
max{LCSS.(pl,, pl;71)7 LCSS(pl;_q, pl;-)} otherwise

We then define the similarity S; between two trajectories
pl and pl’ with a given integer value ¢, as follows:

_ length(LCSS(pl, pl'))
B length(pl)

Here, length(LCSS(pl, pl')) returns the length of the poly-
line that forms the longest common subsequence.

The match between a pair of traversals thus depends on the
length of the traversal. If a trip is long, the similarity has to
be higher.

We then use function S; to identify separate routes for
a source—destination pair. Whether two polylines pl and pl’
represent separate routes is decided by the following predicate
that uses Algorithm 5:

-100%

S1(pl, pl', )

if S1(pl, pl',€) > getMatch(pl, pl)

false otherwise

true

Ci(pl,pl',e) = {

Algorithm 5 getMatch(pl, pl’)
IN: pl,pl' € PL
OUT: sim € R
1: lengyg < (length(pl) + length(pl’))/2;
20 stm 4 100% — max{simmn, (100 — lengyy) -
$iMmaz /100};
3: return sim;

Two parameters, Sim,;, € N and sim,., € N, are
used to calculate the similarity value to be satisfied. The
possible difference between two polylines is in the range
[$iMmin, SiMmas] and takes into account the average length
of polylines pl and pl’ (line 2).

Example 3: Figure 4 depicts two trajectories pl
(p1,...,p11) and pl' = (p},...,p},). The gray buffer around
trajectory pl exemplifies the threshold e. Let length(pl) =
104, length(pl’) = 110, sim i, = 1, and sim.,q, = 10.

Then length(LCSS(pl,pl')) = length({p1,p2, - - ., p7)) +
length({(p10,p11)) = 61 + 12 = 73 is the length of the
LCSS trajectory. To obtain a match between pl and pl’, we
require that getMatch returns 99%. The similarity function
Sy gives S1(pl,pl',€) = 2 - 100% = 70%. Therefore, the
two polylines are considered as traversals of different routes:
Ci(pl', pl”,€) = false. O

4) Route Comparison: In the last step, we determine the
similarity between routes obtained from the GPS logs and
routes obtained from the Google Directions APL
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Fig. 4. Comparison of Trajectories

Drivers often start their trips from a parking lot, which is
not on the road, while Google routes start from road locations.
Therefore, to obtain a more accurate comparison of the length
and time consumption of routes, an additional preprocessing
step is performed: polyline trimming.

All the polylines between source—destination pairs are
trimmed using Algorithm 6. The idea is to remove the be-
ginnings and endings from the GPS polylines, so that their
starts and ends are closer to the first and last points in the
Google routes.

Algorithm 6 trimPolylines(R,, Rq)
IN: R;,,R;CR

OUT: Ry
1: for r, € Ry do
2 ply < ry.pl;
3: for vy € Rg:rg.sdp =ry.5dp do
4:  PL «
5. for pl € rq4.PL, do
6:  pl’ < subpolyline(pl, ply.pty, ply.pty);
7: PL' « PL'upl’;
8: end for
9.  ry.PL, < PL;
10: end for
11: end for
12: return R;;

The algorithm takes a set of GPS routes and a set of Google
routes as input and returns a set of GPS routes with updated
polylines. For each Google route, a set of GPS routes with the
same source—destination pair is selected (lines 1-3). First, a
set of new polylines is assigned to an empty set (line 4). Then,
for each old polyline of the route, new trimmed polylines are
computed using function subpolyline(pl, pl,.pty, pl,.pty)
(lines 5-8). Finally, a new set of polylines is assigned to the
route object (line 9).

To complete the framework, we define the notion of a
match between a GPS route and a Google route. We again use
LCSS-based similarity, which allows gaps between sequences
and is able to handle situations where one of the traversals
is represented by a more sparse polyline than is the other
traversal.

Definition 6: Let rq and r, be a GPS route and a navigation
service route, respectively. A match occurs between 7, and
Ty (rqg = 1g4), When:

1) 74 and 74 have the same start—destination pair and

2) 3pl € rq.PL. : Ci(pl,pl,) = true, where pl, €

79.PL;.



III. EMPIRICAL ANALYSIS OF ROUTE QUALITY

This section presents the evaluation of route quality. Eval-
uation is done by comparing routes proposed by a routing
service against routes taken by local drivers.

A. Data Description

We use high-quality data collected at 1 Hz from drivers
in the “Pay as You Speed” project'. The project took place
in North Jutland, Denmark and was conducted by the Traffic
Research Group at Aalborg University. In the project, young
drivers who took part in an intelligent speed adaptation
experiment were tracked. This data is well suited for our
study because comparison of traversals can be done using
the sampled GPS points directly. In contrast, the use of
data sampled at a low rate calls for additional preprocessing,
including complex map matching [22].

Parameter settings that were found to yield meaningful
results in our study are given in Table L.

TABLE I
EXPERIMENTAL SETTINGS
Parameter Value Parameter Value
mazxT (sec) 180 minLen (m) 500
manDur (sec) 180 mainDist (m) 500
) 3 rad (m) 20
€ 50 [$1Mmin, SiMmaz] (%) | [1,10]

The subset of the entire data set that we use contains
53,129,702 GPS points from 144 cars and drivers during
a monitoring period that extends from October 1, 2007 to
January 31, 2008. The numbers of traversals after each pre-
processing step are given in Table II.

TABLE 11
GPS DATA PREPROCESSING RESULTS

Preprocessing Step # Traversals
Trajectory segmentation ~71,700
Trajectory filtering 53,638
Source—destination pairs 24,735

The final dataset contains 24,735 traversals involving
1,374 source and 1,277 destination objects that have average
radiuses of 18 and 16 m, respectively. From this set of
traversals, we identified 2,910 source—destination pairs with
4,950 distinct routes.

The GPS routes were evaluated against the top-1 result
provided by the Google Directions API>.

Figure 5 show distribution of routes and traversals across
different route lengths. Most routes are shorter than 20 km,
and 2% of all routes exceed 50 km. Similar observations hold
for traversals.

Figure 6 presents the distribution of distinct routes between
source—destination pairs across average route length. For all
average route length intervals, the minimum number of distinct
routes for a source—destination pair is one, while the highest
number of distinct routes for a source—destination pair is 12.

Uhttp://www.sparpaafarten.dk
Zhttps://developers.google.com/maps/documentation/directions/
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Fig. 5. Distribution of Routes and Traversals

On average, a source—destination pair has between one and
two routes. Thus, a source—destination pair typically has only
few distinct routes taken by local drivers. Routes with average
length above 80 km form only a small part of our dataset and
are not shown.
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Fig. 6. Route Diversity
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Figure 7 shows how often on average the identified routes
were traversed across different route lengths. We see that one
distinct route was taken at most 6 and at least 2 times, on
average.

avg traversal count

0.5-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-220
route length (km)

Fig. 7. Average Usage

B. Local Driver Routes vs. Routing Service Routes

We aim to compare routes taken by local drivers against the
routes that are provided by the online routing service.

As explained earlier, our cleaned dataset contains
2910 source—destination pairs. Using Definition 6 (match
between routes), 61% of these pairs have at least one route
that matches the route provided by the Google Directions API.

Figure 8 shows the percentage of source—destination pairs
that have a matching Google route for different average route
lengths. The largest percentages of matches are found for the
shorter routes. For example, for routes between 0.5 and 10 km,
about 73% matches exist. Routes between 10 and 20 km have



matching traversals in 56% of the cases. The percentages of
matches decrease with increasing route length. This might be
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Fig. 8. Matching of Driver Routes to Google Routes

due to an increase in the possible routes between sources and
destinations that are further apart. The increase in matches for
routes with length between 60 and 80 km may simply be due
to the fact that the dataset has few distinct routes in this length
range.

Even if a GPS route has a matching Google route, the GPS
route may not be popular. Thus, we investigate the numbers
of traversals of GPS routes that match Google routes. For
example, assume one source—destination pair has 10 traversals
and 2 of them have a matching Google route. Then, 20% of
the traversals correspond to the route provided by the Google
Directions API. The results presented in Figure 9 show that
Google routes are quite popular, accounting for more than 60%
of all matching traversals.

on avg equal (%)

0.5-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
route length (km)

Fig. 9. Traversals With a Matching Google Route

Now let us consider how many Google routes are preferred
routes for source—destination pairs in the dataset. When calcu-
lating the score of each route we used o = 0.5, which assigns
the same weight to the number of different drivers taking a
route and the number of traversals of the route. The results
are shown in Figure 10.

Most source—destination pairs in our dataset concern routes
that are up to 20 km long. Here we see that the Google routes
coincide with the route preferred by drivers for 73% of the
source—destination pairs for routes up to 10 km, while the
Google routes are the preferred routes for 56% of the source—
destination pairs with length 10 to 20 km. As the number of
routes available in our dataset decreases, the percentage of
Google routes that are preferred also decreases.

103

1600 ; ; ; ; ; — .
Drivers routes mmmmm
Google routes &
1400 4

1200 -

i73%

1000 - R

800

600

400

# source-destination pairs

200

route length (km)
Fig. 10. Preferred Routes

C. Analysis of Routes Taken by Multiple Drivers

Recall that we have trips made by 144 drivers during a
4-month period. We proceed to investigate the selection of
routes depending on how many different drivers share a route.
Among the 4,950 routes in our dataset, 553 were taken by two
or more drivers. Note that several routes can be shared among
multiple drivers for one source—destination pair. As shown in
Figure 11, the number of drivers taking the same shared route
varies from 2 to 9. A total of 334 routes are shared by two
drivers, and 55% of these differ from the route suggested by
Google.

350 —
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Google route:

# routes

2 3 4 5 6 9
# drivers

Fig. 11. Analysis of Shared Routes

Our data set contains 248 source—destination pairs that have
only one distinct route that is taken by multiple drivers. An
analysis of this data is shown in Figure 12. When comparing
to the percentages in Figure 11, we see higher percentages
for routes taken by 2, 3, and 4 drivers, 61%, 51%, and 57%,
respectively. The rest of the percentages stay almost the same.

D. Analysis of Travel Time

We proceed to study route travel time. First, we compare
the travel times provided by the Google Directions API with
the travel times of corresponding route traversals found in
our dataset. Second, we investigate the time consumption and
lengths of routes for routes that are preferred by drivers, but
are different from the routes provided by Google.

Out of the 2,910 source—destination pairs in our dataset,
1,764 pairs have a route that matches the route provided by
Google for the pair. Among these 1,764 routes, 308 take
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longer to traverse than the time provided by Google. In
Figure 13, bars show the distribution of routes across different
route lengths. The numbers at the top of each bar state the
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percentage of the matching routes of the given length that take
more time. It is shown that shorter trips take up to 19-23%
longer time than predicted.

Next, Figure 14 considers the time consumption for routes
that take less time than predicted by Google. Our dataset
contains 1,417 such routes. Again, bars show the distribution
of routes across different lengths. Numbers on top of each bar
indicate the percentage of the matching routes of the same
length that take less time. On average, routes take 19% less
time than predicted. In our data set, 39 routes take the same
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Fig. 14. Matching Routes That Take Less Time

time as predicted by Google.
This experiment shows that most of the matching routes,
ie., 82%, take less time than predicted; and it shows that
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on average, the predicted times are 20% higher or less than
the actual times. Thus, the use of GPS data has a substantial
potential for improving travel time estimation.

We also studied the GPS routes between source—destination
pairs for which no route matches the Google route. We have
1,146 such pairs. Comparison is done using preferred routes
from local drivers. To calculate the score of each route we
used oo = 0.75, to prioritize routes taken by multiple drivers.

First, we present an analysis in relation to route length.
Routes that are preferred by drivers are not necessarily shorter.
We identified 636 routes, i.e., 55%, that are shorter than the
Google routes between the same source—destination pairs.

Results are shown in Figure 15. Bars show the number of
source—destination pairs that do not have a route that matches
the Google route for the pair. Numbers at the top of each
bar give the percentage of such pairs among full dataset. The
two curves indicate how much longer or shorter the preferred
routes are on average.
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Fig. 15. Analysis of Not Matching Routes Length

It can be observed that the differences in length vary from
4% to 8% for routes between 30 and 70 km long, and from
10% to 15% for routes up to 30 km long. The length range
increased considerably for trips between 70 and 80 km long.
However, we have only 4 source—destination pairs for this
range.

Finally, we consider travel time. We found 873 preferred
routes, i.e., 76% of all the routes considered, that take less time
than the Google route for the same source—destination pair.
Figure 16 shows that on average, the travel times of preferred
routes vary from 15% lower to 18% higher.
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Fig. 16. Travel Times of Routes Without a Matching Google Route

This experiment shows that drivers do not necessarily prefer
routes that are shorter or take less time. We can only assume
that the many “long” and “slow” preferred routes have other
desired properties that are known to local drivers.



IV. RELATED WORK
GPS Data in Routing Services

Some previous studies attempt to increase the quality of
routing results by employing knowledge of previous trips.
Yuan et al. [21] propose a service that uses taxi trajectory
data for route planning. A road network is created from roads
that are covered by GPS data. This study also includes a
comparison with routes from Google Maps. It is found that
when using roads that are often used by taxis, travel time can
be reduced by up to 26%. This study only considers travel
time; the actual routes taken are not studied.

A framework presented by Chang et al. [5] focuses on
the discovery of personalized routes. A road network is
constructed from segments that are identified from a historical
trajectory data set. Routes are synthesized by using the most
frequently traveled road segments in the trajectory data set,
and the top-k personalized routes are returned. In our study, we
do not compute routes. Rather, we focus solely on analyzing
routes taken by local drivers and on comparing them with the
routes provided by an existing routing service.

Chen et al. [7] present an algorithm that finds the most
popular routes from one location to another using historical
trajectory data. The authors suggest that this service is benefi-
cial for tourists who are unfamiliar with the surroundings. The
routes provided to the users are based on the travel behaviors
found in the data set used. A transfer network is formed
using transfer nodes that are significant location for the users.
An edge between two such nodes models the existence of
a trajectory that starts at one node and ends at the other.
Similarly, when we discover routes taken by local drivers,
we form location objects that may be seen as representing
locations that are important to the drivers. However, in contrast
to this study, we do not need to know how the location
objects connect with one another because we analyze routes
separately.

Trajectory Representation and Similarity

A driver who has taken the same route multiple times is
likely to know the surroundings. Therefore, one part of our
study aims to identify popular routes from historical trajectory
data. A GPS trajectory is a smooth polyline corresponding to
a time-ordered sequence of GPS points. A typical sampling
frequency is 1 Hz. In contrast, a trajectory from the Google
Directions API consists only of key points along a polyline.
The present study calls for means of comparing such differ-
ently represented trajectories.

A first step in our framework is to identify separate trajec-
tories in a GPS log. An existing trajectory cleaning frame-
work [10] suggests three preprocessing steps. When an object
stays in a location relatively long, a stay point is identified, and
the GPS log is split. Then missing segments are interpolated
for trips with gaps. Finally, GPS points that have the same
coordinates, but different timestamps, or have speed equal to
zero are removed, and trajectories with too few points are
eliminated.
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Zheng et al. [22] provide interesting techniques for the
creation of routes from low-frequency GPS data.

Our preprocessing follows steps similar to the above. We
split a GPS log into separate trajectories and then filter them.
We remove short trajectories, eliminate trips with possible
detours, and remove those that have start and end points in
close proximity. We use a high-frequency GPS data set that
does not call for use of the Zheng et al.’s techniques.

Next, existing approaches to trajectory comparison fall into
three categories.

The first category is sequence based. Comparison based
on Euclidean distance is sensitive to noise and cannot be
applied to sequences with different lengths [4], [9]. The use
of Dynamic Time Warping (DTW) distance [2], [8], [15]
enables comparison between sequences of different lengths,
but the mapping between sequences has to be continuous and
monotonic. Since GPS trajectories can have gaps due to device
malfunction, DTW approaches may not give good similarity
results. Longest Common Subsequence (LCSS) [19], [20] is
a more flexible similarity comparison technique because it
allows to leave some points in the sequences unmatched. Edit
Distance on Real sequences (EDR) [6] is a similar approach
that takes into consideration gaps assigning penalties. It is
based on edit distance on strings and is suitable for comparison
of trajectories with substantial noise. We base our trajectory
comparison on LCSS because it allows for gaps in the GPS
data. We were satisfied with the quality of the results after
extensive visual inspection.

The second category shape-based similarity measures [1],
[11], [12]. These methods ignore the ordering of the points in
a trajectory. Alt et al. [1] use Fréchet distance to compare
trajectories. Pelekis et al. [12] study geometric issues of
trajectories and propose a set of trajectory distance operators
based on space, time, speed, and direction.

The third category considers trajectory similarity under road
network constraints [13], [14], [16], [17]. Here, raw trajectory
data must be transformed into a form that ensures given
motion restrictions. A spatial network can be represented as a
directed graph. Therefore, a trajectory can be represented as a
sequence of timestamped graph nodes [17] or a sequence of
edges [13], [14], [16]. This typically calls for map-matching,
which makes the quality of the results sensitive to the map-
matching performance. Two network-represented trajectories
match if the graph nodes or edges in the trajectories are in
close proximity. Thus, trajectories do not have to follow the
same exact routes to match.

Although we use GPS data received from cars, we chose to
not use network-based trajectory similarity. The main reason
is the inaccuracy of map-matching algorithms. Roh et al. [14]
study map-matching quality but consider only 213 real trajec-
tories. Later work [13] reports on experiments with a larger
real data set, but the quality of map-matching is not discussed.
Other proposals [16], [17] use synthetic data [3] to evaluate
their proposals, rendering map-matching unnecessary.

Trasarti et al. [18] propose methodology for extracting
mobility profiles for individual from GPS traces. In order to



identify typical behaviors of users from their GPS traces, trips
are formed and clustered, with outliers being removed. Then
representative trips are extracted. In comparison, we identify
routes between sources and destinations, in part to determine
how many alternative routes drivers have. While it would
also have been possible to extract representative trips for each
identified route, we instead compare each traversal to routes
provided by the Google Directions API and identify the most
similar one.

A final study takes spatial and temporal concepts into
account when grouping trips [18]. This was done in order
to identify differences in routes taken during the day. In our
setting, we consider spatial aspects, since in our study, it does
not matter when a trip was taken.

V. CONCLUSIONS AND FUTURE WORK

We present a framework that enables the comparison of
routes provided by an available, state-of-the-art routing service
with the travel behavior of local drivers. The framework
uses vehicle trajectory data formed from GPS tracking logs
for its operation. Its techniques and algorithms enable the
transformation of GPS data into a format that is suited for
the comparison of GPS routes with the differently represented
routes provided by a routing service. In addition, it provides
means of accomplishing this comparison.

The framework consists of three modules. The preprocess-
ing module provides techniques that enable the cleaning of
the GPS data and the identification of trajectories. The route
identification module uses a trajectory similarity notion based
on Longest Common Subsequence to identify trajectories that
follow the same route. The route comparison module provides
tools that enable the comparison of the routes taken by local
drivers with those provided by available routing services.

We report on a study that compares routes according to
three metrics: route distance, travel time, and route popularity.
Specifically, we report on experiments that show that the
use of travel histories of local drivers as captured by GPS
devices hold the potential to significantly increase the quality
of existing routing services. The experimental findings show
that not only can the travel time be predicted more accurately,
but users can also be provided with routes that reflect the
behavior of local drivers. In many cases, local drivers prefer
routes that are neither the shortest nor the fastest.

The study can be extended to cover also temporal aspects
such as daily, weekly, or seasonal patterns in the routes chosen
by drivers. This will yield drivers’ route preferences.

The study focuses on routes between locations that are
important to specific individuals. It may also be of interest
to study drivers’ behaviors in relation to shorter and more
frequent trips, e.g., between major junctions or significant
points of interest.

Next, it is an interesting and challenging research direc-
tion to attempt to incorporate the techniques in the paper’s
framework into a navigation service to improve routing quality.
One more specific challenge is the use of driver behavior in a
feedback loop that enables continuous improvement of routing
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quality. The development of a system that is able to ingest and
use past driving data in route prediction is among our future
plans.
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