
Effective Online Group Discovery
in Trajectory Databases

Xiaohui Li, Vaida �Ceikut _e, Christian S. Jensen, Fellow, IEEE, and Kian-Lee Tan

Abstract—GPS-enabled devices are pervasive nowadays. Finding movement patterns in trajectory data stream is gaining in

importance. We propose a group discovery framework that aims to efficiently support the online discovery of moving objects that travel

together. The framework adopts a sampling-independent approach that makes no assumptions about when positions are sampled,

gives no special importance to sampling points, and naturally supports the use of approximate trajectories. The framework’s algorithms

exploit state-of-the-art, density-based clustering (DBScan) to identify groups. The groups are scored based on their cardinality and

duration, and the top-k groups are returned. To avoid returning similar subgroups in a result, notions of domination and similarity are

introduced that enable the pruning of low-interest groups. Empirical studies on real and synthetic data sets offer insight into the

effectiveness and efficiency of the proposed framework.

Index Terms—Moving objects, trajectory, travel patterns

Ç

1 INTRODUCTION

TODAY’S Internet-enabled mobile devices are equipped
with geopositioning sensors that can readily identify

location information, notably GPS data. This has resulted in
the availability of rapidly increasing volumes of trajectory
data that capture the movements of a variety of objects,
including smartphone users, animals, vehicles, and vessels.

This development renders it increasingly important to be
able to extract movement patterns from trajectory data. A
central pattern is that of objects that have traveled together.
Existing definitions, notably flock [12], [13], convoy [17], and
swarm [21], capture different notions of objects traveling
together. For example, a flock consists of objects that travel
together within a disk of a user-specified radius. However,
the disk radius influences the result greatly and is a
difficult-to-set parameter. Convoys, on the other hand, do
away with this parameter by employing the notion of
density-connectedness. Swarms also relax the requirement
that objects must form groups for consecutive time points.

We may think of the true trajectory trT of a moving
object as a continuous function from the time domain TT to
points in the n-dimensional euclidean space IRn, where the
movement occurs. For most typical applications, n ¼ 2. In
practice, the trajectory of an object is collected by sampling
the object’s positions according to some policy, resulting in
a set of sampling points ðt;~rÞ 2 TT� IRn. A trajectory tr is
then given by the stepwise linear function obtained by
connecting temporally consecutive sampling points with

line segments, as shown in Fig. 1a. Different sets of
sampling points may represent the same such function.
This holds for fð3; 3Þ; ð7; 7Þg and fð3; 3Þ; ð5; 5Þ; ð7; 7Þg, shown
in Fig. 1b.

The use of different representations (sampling points)
of the same trajectory in an algorithm should not affect
the outcome of the algorithm. We call this property
sampling independence.

Definition 1 (Sampling Independence1). Let two trajectory

sampling point sets trrepa and trrepb that represent the same
trajectory be denoted as trrepa � tr

rep
b . Next, two collections of

trajectory sampling point sets, TR0 and TR1, represent the

same trajectories, denoted as TR0 � TR1, if and only if 8i 2
f0; 1g ð8trrepa 2 TRi ð9trrepb 2 TR1�iðtrrepa � tr

rep
b ÞÞÞ.

With these definitions in place, we say that an algorithm
A operating on collections of trajectory point sets satisfies
sampling independence if and only if 8TTRa; TRbðTRa �
TRb) AðTRaÞ ¼ AðTRbÞÞ.

Sampling independence has several benefits. First, we
observe that sampling-dependent approaches that simply
compare trajectories as of given sampling times suffer from
the lossy-pattern problem. Consider the trajectories of two
objects o1 and o2 in Fig. 1b and assume that for a set of
objects to form a group, their distance e must not exceed 2
for at least 2 time units. The two trajectories satisfy this
requirement because they are within distance 2 from time 3
to time 5. However, the two trajectories are sampled at
different times. If we introduce an artificial sampling point
for o2 at time 3, which existing techniques (e.g., convoys and
swarms) would do to enable comparison, no group is found
because we are missing a sampling point at time 5.
Sampling independence rules out such approaches.

Second, the approach of adding sampling points so that
all points are sampled at the same times is not scalable. To

2752 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

. X. Li and K.-L. Tan are with the School of Computing, National University
of Singapore, 13 Computing Drive, Singapore 117417.
E-mail: {lixiaohui, tankl}@comp.nus.edu.sg.

. V. �Ceikut _e and C.S. Jensen are with the Department of Computer Science,
Aarhus University, Aabogade 34, DK-8200 Aarhus N, Denmark.
E-mail: {ceikute, csj}@cs.au.dk.

Manuscript received 31 Oct. 2011; revised 20 Mar. 2012; accepted 22 Sept.
2012; published online 1 Oct. 2012.
Recommended for acceptance by T. Sellis.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-10-0663.
Digital Object Identifier no. 10.1109/TKDE.2012.193.

1. While the term “sampling point independence” may be more precise,
we use the shorter term “sampling independence” throughout this paper.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

JacobN
Text Box
©2013 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

see why, assume a trajectory collection TR in which each
trajectory is sampled S times, and let the sampling times be
chosen at random from a continuous time domain. Each
time a new trajectory is added to the collection, a total of
2jTRjS artificial sampling points must be added (S to
each existing trajectory, and jTRjS to the new trajectory).
While these assumptions are extreme, the argument
illustrates well that sampling dependence does not scale
with jTRj and S.

Third, sampling independence offers a foundation for
seamless integration of approximate trajectories. With
sampling independence, a computation does not have to
occur at each sampling time, and approximate trajectories
can be used seamlessly in place of more accurate
trajectories.

Sampling independence requires decoupling defining
and finding travel-together patterns from sampling points.
Among the existing definitions, only flocks satisfy this
property, while the other definitions, for example, of
convoy and swarm, are based on sampling points and so
cannot be used in a sampling-independent framework.

Our framework achieves sampling independence by first
defining a travel-together pattern that is independent of
sampling points, and second, by adopting an event-based
approach that is also sampling independent.

The second property that the framework considers is
density-connectedness that aims to avoid the lossy-flock
problem identified by Jeung et al. [17]. The problem occurs
because 1) a flock is very sensitive to a user-specified disc
size that is independent of the data distribution and 2) the
use of circular shape may not always be appropriate. To
achieve this property, our framework employs DBScan [10]
for continuous clustering.

The third property of the framework is to support online
processing, where sampling data arrive continuously.
Efficiency is a key factor in online processing. Processing
the raw trajectories may be too time consuming, so the
framework needs to support online trajectory simplification
that trades result accuracy with efficiency. This is the fourth
property of the framework.

Table 1 categorizes previous work and our proposed
solution (denoted Group) with respect to the four require-
ments as discussed above. Previous work is discussed in
detail in Section 2.2.

In our framework, a group is a cluster that has at least m
moving objects being density-connected for at least a
specified duration of time. This definition fundamentally
differs from sampling dependent definitions (e.g., convoy

and swarm) by requiring moving objects to be density-
connected for a time duration instead of at consecutive or
nonconsecutive sampling times (continuous versus discrete).

To find groups from a collection of trajectories without
relying on sampling points, our main idea is to predict
events that can happen in the future according to the
motions of the moving objects. This is carried out by the
continuous clustering function module in the framework
(Fig. 2). This module first uses DBScan to find clusters with
an arbitrary spatial extent and to avoid a disk radius
parameter. As new data arrive, these clusters are con-
tinuously monitored. Objects exiting or joining a cluster
and cluster expiry or merging are all modeled as future
events, and then processed when they actually occur. The
event-based approach enables sampling independence—
computation occurs when events occur, not at sampling
times. This design also enables online processing: as new
trajectory samples arrive, events can be derived and
processed in due course. There is no need to recompute
the entire result. Online trajectory simplification is applied
when new data arrive to smoothen the trajectories and,
thus, reduce the total number of events.

The second module serves to handle efficiently the
history of each existing group to find groups to return to
the user. This module inherently has high time complexity
because it potentially has to consider exponential numbers
of subgroups. To improve its efficiency, we avoid
materializing every subgroup by exploiting the relations
between subgroups. The main idea is that a group may
have many subgroups that may contain a subset of its
objects or may exist for a subinterval of its time interval.
Such dominated subgroups do not offer new information
and are pruned early.

Next, two groups may share too many common
members. We propose a similarity measure for groups
and return only a set of groups such that no two groups are
more similar than a given similarity threshold.

Further, we score groups according to their cardinality
and duration and then return the top-k groups. To enable
this functionality, the framework maintains a candidate
result list and a variable minScore that is the lowest score
among all the candidates found so far. For each group to
be scored, the framework first computes an upper bound
on the score of the group for its entire lifespan. The group is
pruned if the upper bound is smaller than minScore.

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2753

Fig. 1. Trajectory semantics and pattern loss.

TABLE 1
Algorithm Comparison

Fig. 2. The sampling-independent framework.

Otherwise, possible groups with higher scores in the cluster
are inserted into the candidate list, and minScore is updated.

In Section 2, we formalize the notions covered above.
The main contributions of the paper are as follows:

. We propose a novel definition of group that we
believe enables the computation of interesting
patterns.

. We propose a corresponding, efficient group dis-
covery framework that is the first to satisfy the four
requirements listed in Table 1.

. We conducted an extensive empirical study on both
real and synthetic data sets to evaluate the proposed
framework. Our results offer insight into the effec-
tiveness and efficiency of the proposed framework.

The remainder of the paper is organized as follows:
Definitions and related work are covered in Section 2. We
describe the GroupDiscovery framework in Section 3.
Section 4 reports on the empirical evaluation of the
GroupDiscovery framework. Finally, Section 5 concludes
this paper with directions for future work.

2 PRELIMINARIES AND RELATED WORK

2.1 Definitions

We proceed to define the group query along with

supporting definitions. The notations used in this section

and throughout the paper are summarized in Table 2.
As we aim to return interesting groups to the user, we

introduce a scoring function for groups.

Definition 2 (Scoring Function). Let C be a set of Nc objects

that travel together during a time interval ½ts; te�. The score

of C is

ScoreðCÞ ¼ �Nc þ ð1� �Þ�;

where � ð0 � � � 1Þ is a user-provided parameter and � ¼
ðte � tsÞ.

The idea underlying the definition is that larger and

longer groups are more interesting than smaller and

shorter groups. Parameter � allows us to balance cardin-

ality and duration.
Next, we define a domination relation that allows us to

prune groups that do not contribute any new information.

Some other related work, for example, [12] and [21], has

similar notions, either explicitly or implicitly.

Definition 3 (Domination). Given two groups C1 and C2, we

say C1 dominates C2, denoted by C1 � C2, if:

1. C1 is a superset of C2, and
2. the time interval of C1 contains that of C2.

Now, we are ready to define the group query to be
supported.

Definition 4 (Group Query). Given a trajectory collection TR,
a distance threshold e, a cardinality threshold m, a duration
threshold � , an integer k, and the scoring function given above,
the group query returns k groups of objects, so that each group

1. is a density-connected cluster w.r.t. e and m,
2. has a duration no shorter than � ,
3. is not dominated by any other group, and
4. has a top-k score.

2.2 Related Work

2.2.1 Co-Movement Discovery

Several recent proposals aim to identify objects that travel
together based on trajectory data.

The notion of flock was introduced by Laube and Imfeld
[19] and further studied by others [1], [3], [5], [12], [13], [25].
A flock is a set of moving objects that travel together in a
disk of radius r for a time interval whose duration is at least
k consecutive time points. One similar notion identifies a
set of objects as a moving cluster [18] if the objects when
clustered at consecutive sampling times exhibit overlaps
above a given threshold. Another similar notion, Herd [14],
relies on the F-score to identify cluster overlaps at
consecutive sampling times. A recent study by Jeung
et al. [17] proposes the notion of convoy that uses density
connectedness [10] for spatial clustering. Aung and Tan [2]
proposed the notion of evolving convoys to better under-
stand the states of convoys. Specifically, an evolving convoy
contains both dynamic members and persisted members.
As time passes, the dynamic members are allowed to move
into or out of the evolving convoy, creating many stages
of the same convoy. At the end, the evolving convoys
with their stages are returned. The differences between
evolving convoys and our work are: 1) evolving convoys
are sampling dependent, and 2) instead of collapsing
convoys into stages, our work relies on a scoring function
to return meaningful results. The advantages of the scoring
approach are its simplicity and the control it offers.

In contrast to the above, the notions of group pattern [28]
and swarm [21] permit patterns where moving objects
travel together for a number of nonconsecutive sampling
times. Group patterns rely on disk-based clustering, while
swarms use density connectedness for the spatial clustering.

None of the above proposals satisfies the four require-
ments that motivate our work.

To avoid running expensive incremental clustering
(e.g., DBscan) at each time point, our proposal predicts
the time when an event may occur. The motivation is that
the number of events can be much fewer than the total
number of time points, which can be very large,
depending on the sampling technique.

The techniques used for supporting convoy and swarm
discovery are capable of exploiting trajectory simplification.
In convoy discovery, line segments are first clustered to
identify candidate clusters. Then, a refinement step con-
siders the sampling points for these candidates. Thus, the
accurate trajectories are only needed in the refinement step.

2754 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

TABLE 2
Symbols Summary

The techniques used for swarm discovery apply sampling
in a preprocessing step.

The techniques for computing convoys and swarms
cannot be adapted easily to online settings. Convoys are
computed by partitioning the time domain into intervals,
upon which line segment clustering is applied to each
interval. When new data stream in, the time domain needs
to be redivided, and the computation needs to start from
scratch. The techniques used for swarm discovery assume a
static trajectory collection; without this assumption, swarms
may not be maximal w.r.t. time. The pruning rules used in
swarm discovery also require the time domain to be known
beforehand. In contrast, our proposed solution employs an
existing online simplification technique in the preprocessing
step, monitors clusters continuously and records the histories
of clusters. The evaluation of groups is only dependent on
the most recent history, so the GroupDiscovery framework
is amenable to online processing.

2.2.2 Moving Objects and Trajectory Clustering

The continuous clustering of the current positions of
moving objects is related to the problem studied here.
Jensen et al. [16] proposed a disk-based, incremental
approach to continuously cluster moving objects. The
scheme incrementally maintains and exploits a summary
structure, called a clustering feature, for each cluster. During
a time period, a moving object may be inserted into, or
deleted from, a moving cluster. Next, the techniques
monitor the average radiuses of moving clusters, which
change over time as the member objects move. When the
average radius of a cluster c exceeds a threshold, c is split.
In addition, a cluster is split if its cardinality exceeds a given
threshold. Clusters may be merged if their cardinalities fall
below a threshold.

Since this approach is disk based, it is lossy as pointed
out by Jeung et al. [17]. As such, it cannot be directly
applied in our scheme, which uses density-connectedness
to avoid the lossy problem.

Another line of research is trajectory clustering, in which
the goal is to find the common paths of a group of moving
objects. Trajectory clustering builds on advances in time-
series data analysis. Thus, many clustering techniques that
resemble their counterparts in time-series data analysis
have been proposed, such as Dynamic Time Warping
(DTW) [29], Longest Common Subsequences (LCSS) [27],
Edit Distance on Real Sequence (EDR) [7], Edit distance
with Real Penalty (ERP) [6], and a partition-and-group
framework [20]. Li et al. [21] point out that these
approaches are ill suited to find groups because the
trajectories in a group may be quite different although
they are close to each other (e.g., straight line trajectories
versus wave-like trajectories).

2.2.3 Trajectory Simplification

Trajectory simplification can improve the efficiency of many
algorithms that operate on the trajectories by removing
relatively unimportant data points. Trajectory simplification
algorithms can be classified into batch or online algorithms.
Batch algorithms, such as the Douglas-Peucker (DP)
algorithm [9] and its variants, require the entire trajectory
to be available, and thus are expected to produce relatively

high-quality approximation. In contrast, online algorithms,
such as reservoir sampling algorithms [26] and sliding
window algorithms [22], can work with partial trajectories
and can be used for compressing data streams.

The GroupDiscovery framework employs the Normal
Opening Window (NOPW) algorithm [22]. This algorithm
starts by initializing an empty sliding window and setting
the first point as an anchor point pa. When a new location
point pi is added into the sliding window, a line segment
papi is used to fit every location point in the sliding window.
If no location point deviates from papi by more than a user-
specified error bound, the sliding window grows by
including the next new point piþ1. Otherwise, the point
with the highest error pe is selected. The line segment pape is
included as part of the approximate trajectory, and pe is set
as the new anchor point. The time complexity of NOPW is
Oðn2Þ, where n is the number of data points in a trajectory.

In another line of research, Fagin et al. [11] propose the
Threshold Algorithm (TA) that has some similarity with the
history handler module. TA operates on a database where
each object has m grades, one for each of m attributes, for
example, a multimedia database. Given a monotone
aggregation function, for example, min or average, that
combines the individual grades to obtain an overall grade,
TA finds the objects with top-k overall grades by concur-
rently accessing the sorted list of the attributes. It is shown
that TA is instance optimal.

3 GROUP DISCOVERY FRAMEWORK

In this section, we describe the GroupDiscovery framework
and its two functional modules in detail. This online
algorithm (Algorithm 1) first initializes the variable U to
store the unclassified objects, H to store the history of the
clusters, and R to store the result. It then receives new
trajectory data at each iteration, and calls NOPW to simplify
the trajectory that are then processed by the Continuous
Cluster and History Handling modules to find groups.

3.1 Continuous Clustering Module

3.1.1 Overview

Given a trajectory collection TR, we aim to discover groups
of objects that travel together. A trajectory represents the
movement history of an object for some time interval. As all
trajectories are not defined for the same time interval, TR
represents the movement of a dynamic set O of objects. The
objects in O at time t can be retrieved by the function
getObjectsðTR; tÞ.

The overall approach is to maintain a heap eventQ that
contains events that affect the clustering of the moving
objects. Each event is associated with the time when it occurs,

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2755

and the heap is ordered on these times. Events are inserted

into eventQ that correspond to the object movements given

by the trajectories in TR. The module then processes events

in eventQ in time order, causing additional events to be

entered into eventQ and eventually processed.
An event has the format ðt; obj; cid1; cid2; typeÞ, where t is

the time when the event occurs, obj is an object, cid1 and
cid2 are cluster identifiers, and type is the event type, which
is one of the following:

. APPEAR. An object appears in the system. Four
mutually exclusive cases can happen: The object
may stay by itself being unclassified; it may join an
existing cluster, thus causing a JOIN event to be
created; it may cause multiple clusters to merge, thus
causing one or more MERGE events to be created; or
it may form a new cluster with other objects.

. DISAPPEAR. An object disappears from the system.
As for object appearance, there are four cases: No
clusters are affected; a cluster loses a member,
causing an EXIT event to be created; a cluster splits
into multiple smaller clusters; or a cluster expires,
which results in the creation of an EXPIRE event.

. UPDATE. An object updates its velocity, which
affects the predicted exit time of object(s), which in
turn possibly affects the merging or expiry of clusters.

. EXIT. An object exits from a cluster. The exit event
can cause a cluster to expire, for example, because it
has fewer than m members, in which case an
EXPIRE event is inserted into eventQ.

. JOIN. An object joins a cluster.

. EXPIRE. A cluster expires. When this occurs, the
former cluster members may be in no new cluster,
rendering them unclassified.

. MERGE. Multiple (at least two) clusters merge.

. SPLIT. One cluster splits into multiple clusters.

Among these events, the first three events, APPEAR,

DISAPPEAR, and UPDATE, can be read directly from the

data stream, and thus are called primary events. In contrast,

EXIT, JOIN, EXPIRE, MERGE, and SPLIT are secondary events.
Each object o in the system has a data structure

ðoid;~p;~v; cid; labelÞ, where oid is its identifier, ~p and ~v are
its current location and velocity, and cid is the identifier of
the cluster o currently belongs to, if any. An object o initially
has o:cid ¼ 0, indicating that it is unclassified. The field label
represents the type of the object in the cluster. In DBScan
[10], clusters contain two types of objects. A core object has at
least MinPts objects in its e-neighborhood, where MinPts

is a user-specified parameter that we set to m. Any other
object is a border object. A core object has (o:label ¼ CORE); a
border object has (o:label ¼ BORDER).

The top-level algorithm keeps the currently unclassified
objects in a set U , and attempts to cluster them each time an
event occurs. In addition to eventQ, we employ a mapping
getMemByCid from cluster identifiers to the sets of objects
in a cluster.

Upon termination of the algorithm, the histories of

clusters are recorded in a data structure that is passed on

to the history handler module for computation of domina-

tion relations and thus the true groups.

3.1.2 Event Processing

Algorithm 2 contains the pseudocode of FindConti-
nuousCluster, the top-level continuous clustering algorithm.
It takes the following arguments: a trajectory collection TR,
the four parameters e, m, � , and k from the group query
definition, � for RangeQuery, and U and H for storing the
unclassified objects and the cluster history, respectively.

The algorithm initially scans TR and inserts APPEAR,
DISAPPEAR, and UPDATE events into eventQ. The algo-
rithm then repeatedly pops and processes events. Given an
event ðt; o;?;?;APPEARÞ; o is inserted into U . Given an
event ðt; o;?;?;DISAPPEARÞ, o is removed from the
system. If o is a member of the cluster C, o is also removed
from C which then expires if it has less than m members.

Given an event ðt; o;?;?;UPDATEÞ, if o is a border
object of the cluster C identified by cid, o’s exit time is re-
computed and updated in eventQ. If o is a core object, the
algorithm recomputes the exit times of the border objects in
o’s e-neighborhood and the expected split time, and

2756 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

updates the eventQ. Lastly, if o is a unclassified object, the
procedure Insert is eventually called to cluster o.

Given an event ðt; o; cid;?;EXITÞ, the object o is
removed from the cluster identified by cid and marked as
unclassified. If o is a border object, CheckCore procedure is
called to check whether o’s core object still has enough
neighbors. If o is a core object, o’s border neighbors that are
not density-connected by any other core objects are also
removed. The cluster identified by cid expires if it has fewer
than m members after the event. Given an event
ðt; o; cid;?;EXPIREÞ, all objects in the identified cluster C
are marked as unclassified and inserted into U .

Given an event ðt; o; cid1; cid2;MERGEÞ, the two clusters
identified by cid1 and cid2 are merged. The cid field of the
members of the new cluster is updated.

Given an event ðt; o; cid;?; SPLITÞ, the cluster identified
by cid splits into two clusters. Depending on their specific
connectedness to core members, the members in C have
their cid field updated. In Algorithm 2, we provide
pseudocode for APPEAR, EXIT, and JOIN events.

The Insert procedure used at the end of Algorithm 2
inserts a unclassified object into an existing cluster if the
object moves into the cluster, and detects any new clusters
in U that contains the set of unclassified objects. The
detailed pseudocode of the Insert procedure is shown in
Algorithm 3. It first initializes a variable G that records
already classified objects that are in the e-neighborhood of
any object in U . Variable G is populated by calling a
RangeQuery procedure for each object o in U that returns all
objects in O that are in the e-neighborhood of o (lines 2-6).

In lines 7-11, if the RangeQuery result for an object o 2 G
contains at least m objects, o’s label is updated to CORE,
and every unclassified object in o’s neighborhood is
removed from U and inserted into the cluster that o belongs
to. The procedure ExpandCluster (line 12) recursively
expands a cluster by exploring the new core object. After

every object in G is considered, if U still has at least m
objects, the procedure clusters the remaining objects in U

(lines 13-19). It uses a variable CS that contains a set of
clusters. First, it clusters all the moving objects as of the
current time. Second, it calculates the exit time for each
border object. These objects and their time to exit are
inserted into eventQ as events.

The ExpandCluster procedure expands a cluster by
recursively exploring the new core object of the cluster.
The detailed pseudocode is shown in Algorithm 4. In the
parameters, crObj is a core object of cluster C and L is
crObj’s current neighbors. The global variable crTime

records the current time. For each o0 2 L, if o0 is unclassified,
a JOIN event is detected (line 3). The global variable crTime
records current time. Then, the procedure retrieves o0

neighbors in line 4. If o0 has at least m neighbors, o0 is also
a core object, and thus ExpandCluster is called recursively
(lines 5-7). If o0 has fewer than m neighbors (it is a border
object), the procedure calculates the exit time of o0. An EXIT
event is created for o0 and inserted into eventQ (lines 8-11).

When o0 is a core object from another cluster, cluster C is
merged with the cluster identified by o0:cid. A MERGE
event is created and inserted into eventQ (line 13).

3.1.3 Detecting Cluster Expiry and Split Events

The exit of a single object can cause a cluster to expire. We
show how to detect when cluster expiry occurs, so that
repeated checking is avoided.

In DBScan, an object o is directly density-reachable from an
object o0 if o is within o0’s e-neighborhood, and o0 is
surrounded by sufficiently many objects. Next, o is called
density-reachable from o0 if there is a sequence of objects
o1; o2; . . . ; on with o1 ¼ o0 and on ¼ o such that oiþ1 is directly
density-reachable from oi. Then, an object o is density-

connected to an object o0 w.r.t. e and m if there is an object o00

such that both o and o0 are density-reachable from o00 w.r.t. e
and m.

Since a group is required by definition to have at least
m objects, and at least one object in the group is a core
object by the definition of density-connectedness, core
objects should have at least ðm� 1Þ neighbors within their

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2757

e-neighborhood, whereas border objects have fewer neigh-
bor objects.

The removal of a border object o from a cluster C causes
C to expire if only ðm� 1Þmembers remain. The removal of
a core object o from C is more complicated. The neighbors
of o may no longer be connected after the removal of o.
Thus, we have to check 1) the possibility to remove o’s
neighbors and 2) the cardinality of C to determine whether
or not C expires.

Two core objects may travel apart from each other,
causing the cluster to split. The expected time of such each
can also be calculated in a similar way.

3.1.4 Object Exit Time and Join

Once a cluster has formed, the getExitTime procedure
computes the exit time for each border object in the
cluster. It starts by identifying the boarder objects and the
core objects. Next, it models the movement of an object o
in IR2 as a linear function of time: o ¼ ðxtref ; ytref ; vx; vyÞ,
where ðxtref ; ytref Þ is the position of o at reference time tref
and ðvx; vyÞ is its latest reported velocity. Then, it computes
the exit time for a boarder object by calculating the time
when the distance between boarder object and its core
object is e [4].

After a boarder object exits its cluster, its core object has
one less neighbor. When the core object has less than m� 1
neighbors, this core object becomes a boarder object.

We follow a passive strategy for detecting join events,
which is carried out by the Insert procedure at the end of
each iteration.

3.1.5 Distance Bounds

With line simplification, in order not to miss clusters, a
relationship has to be established between the simplified
and original trajectories. In the Insert procedures using
RangeQuery, the following lemma is applied.

Lemma 3.1. Let tri; trj be the trajectories of oi and let oj,
and let tr0i; tr

0
j be their trajectories after trajectory simpli-

fication with the sliding window algorithm. Let triðtÞ be the
position of oi at time t. Then, Dðtr0iðtÞ; tr0jðtÞÞ > 2� þ e)
DðtriðtÞ; trjðtÞÞ > e.

Proof. To prove the lemma by contradiction, assume the
inequality DðtriðtÞ; trjðtÞÞ � e holds. After simplification,
tr0iðtÞ is either the position of a sampling point or a
position on a line segment. By definition of the sliding
window algorithm, in the first case, tr0iðtÞ ¼ triðtÞ, and in
the second case, Dðtr0iðtÞ; triðtÞÞ � �. In both cases,
Dðtr0iðtÞ; triðtÞÞ � �. Similarly, we have Dðtr0jðtÞ; trjðtÞÞ �
�. According to the triangle inequality, we have Dðtr0iðtÞ;
tr0jðtÞÞ � Dðtr0iðtÞ; triðtÞÞ þ Dðtr0jðtÞ; trjðtÞÞ þ DðtriðtÞ;
trjðtÞÞ � 2� þ e. This contradicts the assumption that
Dðtr0iðtÞ; tr0jðtÞÞ > 2� þ e. tu

According to Lemma 3.1, the range search distance 2� þ
e used in the GroupDiscovery framework is safe.

3.2 A Running Example

Fig. 3 shows the trajectories of six moving objects, o1; . . . ; o6

being sampled at every time point from time t0 to time t9. It
is assumed that the objects move beyond the 10 time units

shown. We use o1; . . . ; o6 as the identifiers of the objects.

APPEAR events are solid squares, UPDATE events are solid

dots, and DISAPPEAR events are crosses. In contrast,

hollow and square points mean that there are no primary

events. For instance, object o4 has an APPEAR event, an

UPDATE event, and a DISAPPEAR event.
Let the group query parameters m (cardinality) and �

(duration) each be 3. Parameter e (clustering distance

threshold) is as shown in the figure, and parameter k is

not needed. FindContinuousCluster runs as follows:
As the trajectory data stream in, at t1, events ðt1; o1;?;?;

APPEARÞ and ðt1; o3;?;?;APPEARÞ are handled, result-

ing in U ¼ fo1; o3g (unclassified objects).
At time t2, five events are handled. Objects o2, o4, and o5

appear and are added to set U , and objects o1 and o3 update

their velocities. Then, Insert finds a cluster C1 ¼ fo1; o2; o3;

o4g, where o3 and o4 are core objects, and o1 and o2 are border

objects. Suppose both o1 and o2 are calculated to exit at t10.

Then, exit events for border objects are inserted into eventQ:

ðt10; o1; C1;?;EXITÞ and ðt10; o2; C1;?;EXITÞ. After this

iteration, U ¼ fo5g.
No events occur at time t3. At t4, o2 and o3 update their

velocities. A join event for o5 is detected and handled. The
result is that C1 ¼ fo1; o2; o3; o4; o5g, where o2 is promoted to
a core object. Thus, the exit event for o2 in eventQ is deleted.
Finally, an exit event is created for o5, ðt7; o5; C1;?;EXITÞ,
as o5 is a border object.

At t5, objects o2, o3, o4, and o5 update their velocities. It is

detected that o3 becomes a border object and that o5

becomes a core object. The exit event of o5 in eventQ is

deleted. A new exit event ðt6; o3; C1;?;EXITÞ is created and

inserted into eventQ.
At t6, o6 appears and is added to U . Core object o2

updates its velocity, causing border objects to update their

expected exit time and to update the eventQ. Object o3 exits

C1, and o5 becomes a border object. An exit event is created

f o r o5: ðt7; o5; C1;?;EXITÞ. N o w , U ¼ fo3; o6g a n d

C1 ¼ fo1; o2; o4; o5g.
At time t7, o3 disappears and o1 updates its velocity.

After the exit of o5, o2 downgrades to a border object,

triggering the expiry of C1 because no core objects exist. An

expire event ðt7; o5; C1;?;EXPIREÞ is created and inserted

into eventQ. It is then immediately handled yielding

U ¼ fo1; o2; o4; o5; o6g. Insert then finds a new cluster

C2 ¼ fo1; o4; o6g. New exit events are created for border

objects o4 and o6. Now, U ¼ fo2; o5g

2758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

Fig. 3. Trajectories of six moving objects.

At time t8, o4 disappears, resulting in the expiry of C2

because jC2j < m. Now U ¼ fo1; o2; o5; o6g.

3.3 History Handler Module

The GroupDiscovery framework needs to deal with
potentially large numbers of groups. In our first approach,
the history handler module manages the groups using a
trie. However, we observe that not all subgroups need to be
materialized. Based on this, the history handler module can
employ a hash structure that maps clusterIDs to lists of
cluster statuses (called cluster histories). We call the first
method GroupDiscovery (GD) and the improved method
GroupDiscoveryPlus(GD+).

3.3.1 Group Discovery

In this approach, the history handler module employs a
modified trie to represent subgroups during group dis-
covery. A trie, or prefix tree, is an ordered tree data
structure, where each vertex represents a string (a word or a
prefix). The descendants of a vertex have the string
associated with that node as a common prefix; the root is
associated with the empty string.

We represent a subgroup as the string that contains the
identifiers of its member objects in sorted order. Each path
in the trie structure represents a subgroup, and each leaf
contains the subgroup members, and the subgroup’s start
and end time for computing the subgroup’s score.

In our running example in Section 3.2, cluster C1 ¼
fo1; o2; o3; o4g is formed at time t2. Its subgroups are shown
in Fig. 4 with m ¼ 3. The starting time of all subgroups is
t2. The ending time (te) is undefined initially, but is set to
the time when a cluster expires.

When an object joins a cluster, new subgroups containing
the object are created, and new paths are inserted into the
trie. In our running example, object o5 joins C1 at t4. The trie
of the resulting cluster is presented in Fig. 5. The starting
time of each new path with object o5 is set to t4.

When a border object exits a cluster, every path in the trie
representing a subgroup that contains this object should be

removed. Before the removal, the algorithm follows these
paths, retrieve the leaf nodes, and sets the end times (te) in
these leaf nodes to be current time. These leaf nodes
represent subgroups that are then scored and returned. In
our running example, when o3 (a border object) exits C1 at
time t6, the resulting trie structure is presented in Fig. 6a.

If an exiting object is a core object, its exit can cause other
objects to also exit the cluster. Then, every path containing
any exit object is removed from the trie. Suppose object o2 is
a core object of a cluster C1 ¼ fo1; o2; o4; o5; o6g, which starts
from time t7. Its exiting causes the exit of o5. The resulting
cluster is then fo1; o4; o6g. The corresponding trie is shown
in Fig. 6b.

When two clusters are merged, it is straightforward to
update the trie with new paths. No paths are removed
because objects in existing subgroups still travel together.
However, updating the trie when a cluster expires is
complicated because some objects from the old cluster
may form a new cluster after reclustering.

Suppose C1 ¼ fo1; o2; o3; o4g expires and that C2 ¼
fo1; o3; o4; o7g and C3 ¼ fo2; o5; o6g result from reclustering.
Although o2 is in a new cluster, o1, o3, and o4 still travel
together. This fact can be found by intersecting C1 and C2.
In general, when a cluster expires, all its subgroups are
enumerated. It is then checked for each subgroup whether
its members belong to the same cluster after reclustering. If
not, the path representing the subgroup is removed. After
removing a path, its leaf node is then checked by the
procedure CheckCandidate (Algorithm 6).

3.3.2 Group Discovery Plus

In the naive approach, many subgroups are materialized
and inserted into the trie. Although search for subgroups is
efficient, there are still an exponential number of subgroups.
Thus, the trie becomes a bottleneck for large clusters.

The following simple, yet important, observation con-
tributes to solving the exponential subgroup problem.

Lemma 3.2. A subgroup that forms no earlier and expires no later
than does a superset group is dominated by that superset group.

Proof. Let C2 be a subgroup of C1 with a lifetime contained
in that of C1. Then, jC1j � jC2j, C1:ts � C2:ts, and C2:te �
C1:te. Thus, C1 dominates C2. tu

Thus, only subgroups that are formed earlier or expire
later than their superset clusters need to be considered.
The GroupDiscoveryPlus algorithm only maintains such
subgroups.

GD+ uses a hash table H that maps cluster identifiers to
the history statuses of the clusters. A history status is
similar to a leaf in the trie and contains the object identifiers
of the members in the cluster together with a time interval.

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2759

Fig. 4. Trie, for example, cluster C1 at time t2.

Fig. 5. Trie after insertion of o5.

Fig. 6. Tries after removals.

Update occurs only to the most recent information, called
the active status. Once an event happens the active status is
updated, and the score is computed. Then, a new active
status is appended to the list. In case a cluster expires, GD+
goes through the history of the cluster and generates each
possible candidate.

In our running example, we have a cluster C1 ¼ fo1; o2;

o3; o4g at t2, and m ¼ 3. GDþ inserts hC1; hfo1; o2; o3; o4g;
t2; nilii into H. At t4, o5 joins C1, which becomes C1 ¼ fo1;

o2; o3; o4; o5g. GDþ then sets the end time in the active entry
to t3 and appends a new entry hfo1; o2; o3; o4; o5g; t4; nili to
the history for C1 in H.

At t6, o3 leaves C1. At t7, the exits of o2 and o5 cause C1 to
expire. Then, C2 ¼ fo1; o4; o6g forms. At t9, cluster C2 also
expires. At this time, the entries in H are fhC1; hfo1; o2;

o3; o4g; t2; t3i; hfo1; o2; o3; o4; o5g; t4; t5i, hfo1; o2; o4; o5g; t6; t6ii,
hC2; hfo1; o4; o6g; t7; t8iig

GDþ accesses the entry for each cid in reverse order and

finds

1. that o1, o2, and o4 travel together from t2 to t6,
2. that o1, o2, o3, and o4 travel together from t2 to t5,
3. that o1, o2, o3, o4, and o5 travel together from t4 to t5,
4. that o1, o2, o4, and o5 travel together from t4 to t6, and
5. that o1, o4, and o6 travel together from t7 to t8.

So the final entries in H are fhC1; hfo1; o2; o3; o4g; t2; t5i;
hfo1; o2; o3; o4; o5g; t4; t5i, hfo1; o2; o4; o5g; t4; t6i; hfo1; o2; o4g;
t2; t6ii hC2; hfo1; o4; o6g; t7; t8iig.

The RevHist algorithm that manages the history statuses
of clusters is shown in Algorithm 5. Recall that the history
statuses of a cluster is a list of items with members and their
starting and ending times.

The procedure starts from the last item (curr) of the list,
and compares the previous items (prev) in reverse order. If
curr is a subset of prev, the current subgroup actually travels
together from the previous item’s start time. If curr is a
superset of prev, the previous subgroup travels together
until the current item’s end time. Lastly, if the intersection
between curr and prev has at least m objects, a new entry is
created with the previous item’s start time and the current
item’s end time. This new entry is then inserted into the list.

3.4 Returning Meaningful Results

The GD and GD+ algorithms may return groups that are
similar to each other. To improve the quality of results, we
propose a similarity measure for groups.

Definition 5. We define the similarity of two groups C1 and
C2 as

SimðC1; C2Þ ¼
kC1 \ C2k
kC1 [C2k

:

We then require that result groups are more diverse than
a given threshold �. The following statement should then be
true. 8C1; C2 2 RðC1 6¼ C2) ðSimðC1; C2Þ � �ÞÞ. The simi-
larity checking is carried out by the Algorithm 6.

The CheckCandidate procedure takes a candidate group
collection S, the top-k set R, a threshold �, and k as
parameters. The groups with top-k scores are to be inserted
into R, and R:minScore ¼ minC2RC:score, i.e., the smallest
top-k score. The procedure iterates over every candidate
group C, and validates that the duration of C exceeds � . The
variable dominated captures whetherC is dominated by some
entry inR. The variable updated captures whetherR has been
updated. The variable Csim refers to a similar entry in R, if
any, and is set to null initially. For each entry C0 in the
candidate list R, if C0 dominates C, then dominated is set to
true. C cannot be in the result and the program terminates.
Otherwise, if C dominates C0, C0 is removed from R, as C0

cannot be in the result. If C0 and C are similar, then Csim
refers to C0. If C is neither dominated by nor similar to any
entry, C is inserted into R, and updated is set to true.
Otherwise, the algorithm includes into R the group with the
higher score between C and Csim, and it excludes the other
group. Updated is set to true if R is updated. In the end, if R
is updated and its size exceeds k, the algorithm picks the top-
k groups in R. R:minScore is updated accordingly.

3.5 Avoiding RevHist Calls

Recall that the group query returns k results that score the
highest and that a cluster generates many groups or

2760 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

subgroups during its entire life. We can save actual-score
computations (invocations of the RevHist procedure) by
computing instead upper bounds on the scores of groups. If
the upper bound score for a cluster is smaller than the
lowest actual score of the kth candidate group, the groups
generated by the cluster cannot be in the result.

Here, we develop an upper bound score of a cluster.
Suppose that the candidate list initially maintains k
candidates. When a cluster C expires, we compare the upper
bound of C with R:minScore. The RevHist procedure is
invoked only if the upper bound of C exceeds R:minScore.

The cardinality of a cluster C can change over time. We
calculate the upper bound score of C by using C’s
maximal cardinality.

Definition 6. Let Nmax denote the maximal cardinality of C

during its lifetime, the duration of which is �C . The upper
bound score of C, ScoreUBðCÞ, is defined as

ScoreUBðCÞ ¼ �Nmax þ ð1� �Þ�C:

The upper bound score of C is never smaller than the
actual score of any group of C.

Lemma 3.3. Let ScoreUBðCÞ be as defined as above and let Ci be

a group generated by C. We have

ScoreðCiÞ � ScoreUBðCÞ:

Proof. Because Ci is a group of C, we have jCij � Nmax.
The lifetime of Ci also cannot exceed the lifetime of C,
so �Ci � �C . Thus, ScoreðCiÞ ¼ �NCi þ ð1� �Þ�Ci �
�Nmax þ ð1� �Þ�C ¼ ScoreUBðCÞ. tu

3.6 Complexity Analysis

In this section, we characterize the running time of the GD
and GD+ algorithms.

Lemma 3.4. Let TR be a trajectory collection of N trajectories, let
Q be the total number of primary events in TR, and let M be
the total number of events that change the status of any
cluster, i.e., exit, join, expire, and merge events. The running
time of FindContinuousCluster is OðQþMNlgNÞ.

Proof. We use a Fibonacci-heap to implement eventQ,
where an insertion takes Oð1Þ time. We also assume
that RangeQuery has time complexity OðlgNÞ. Find-
ContinuousCluster first inserts primary events into
eventQ, taking OðQÞ time. For each event that changes
the status of clusters, FindContinuousCluster calls the
Insert procedure. In Insert, U and G are mutually
exclusive sets that sum up to N . Each object in either U
or G calls RangeQuery at most once, so the two loops in
Insert take OðNlgNÞ time. Lastly, the Insert procedure
calls DBScan, which has complexity OðNlgNÞ. So the
Insert procedure has time complexity OðNlgNÞ.
The total complexity of calling Insert for M events is
OðMNlgNÞ. The time complexity of FindContinuous-
Cluster is then OðQþMNlgNÞ. tu
Next, we consider the time complexity of handling

subgroups.

Lemma 3.5. Given P clusters, the time complexity for the

History Handler module in GD is OðM
PP

i¼1 2NiÞ, wherePP
i¼1 Ni ¼ N and 0 � P � N

m .

Proof. In the History Handler module, every operation
needed when the statuses of clusters are updated is
performed on the trie structure. If the objects do not form
clusters, there is no need to update the trie, so the worst
case is that every moving object is a member of a cluster.
Let the N moving objects form P clusters ð0 � P � N

mÞ
at each event time. The worst case is that these clusters
have to be completely rebuilt at each event time. Let
the cardinalities of these clusters be N1; N2; . . . ; NP

ð
PP

i¼1 Ni ¼ NÞ. For a cluster Ci, the number of combina-
tions is

Ni

m

� �
þ Ni

mþ 1

� �
þ 	 	 	 þ Ni

Ni

� �
� 2Ni ;

where m is the cardinality threshold. Then, the total

number of combinations for all clusters is
PP

i¼1 2Ni .

Again, let M be the number of events that change the

status of clusters, the complexity is OðM
PP

i¼1 2NiÞ. tu

Lemma 3.6. Given P clusters, the time complexity for the

History Handler module in GD+ is OðPM2Þ.
Proof. We consider again the worst case where every object

is in a cluster and let the N moving objects form

P clusters at each event time. The worst case is that for

each event time, every cluster has to create a new

snapshot at the end of its history list. In total, each cluster

has to create M snapshots. Maintaining the data

structures of these snapshots takes linear time. The input

size for RevHist is P clusters, each with a list of

snapshots of size M. For each cluster, every snapshot

may have to intersect with the snapshots in front of it,

which takes time OðM2Þ in the worst case. Therefore, the

complexity of going through every cluster is OðPM2Þ. So,

the complexity of the History Handler module in GDþ is

OðPM þ PM2Þ ¼ OðPM2Þ. tu
Theorem 3.7. The time complexity for GD is Oð

PN
i¼1 n

2
i þQ þ

MNlgN þM
PP

i¼1 2NiÞ, whereas the time complexity for

GDþ is Oð
PN

i¼1 n
2
i þQþMNlgN þ PM2Þ, where ni is the

number of data points in the ith trajectory.

Proof. The time complexity of the framework is the total of

NOPW and its two functional modules. The time

complexity of NOPW is Oð
PN

i¼1 n
2
i Þ. From the lemmas

above, Continuous Clustering in either GD or GDþ has

complexity OðQþMNlgNÞ. In GD and GD+, the History

Handler Module has complexity OðM
PP

i¼1 2NiÞ and

OðPM2Þ, respectively. Therefore, GD has complexity

Oð
PN

i¼1 n
2
i þQþMNlgN þM

PP
i¼1 2NiÞ. GDþ has com-

plexity Oð
PN

i¼1 n
2
i þQþMNlgN þ PM2Þ. tu

4 EXPERIMENTS

The experiments were performed on a PC with Intel Xeon
(2.66 Ghz) quad-core and 8 GB of main memory running
Linux (kernel version 2.6.32). Every instantiation of JVM
allocates 2 GB of virtual memory. All the algorithms were
implemented in Java, including the Convoy algorithm [17].

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2761

4.1 Data Sets and Parameter Settings

To evaluate the performance of the proposed framework,
we use three real trajectory data sets obtained from vehicles
and animals, and one synthetic data set generated by a free
space trajectory data generator, the GSTD generator [23].

Fig. 7 shows a subset of trajectories from these data sets.
Car. This data set stems from the INFATI project [15],

and has around 1.8 million data points obtained from
20 different vehicles collected during a 4-month period. A
new trajectory is created each time the duration between
two consecutive data points from the same vehicle exceeds
10 minutes. Also, to increase the probability of finding more
objects that travel together, we omit the dates from time
stamps and consider only the time of day. After preproces-
sing, 2,305 separate trajectories were obtained.

Truck. This data set contains 111,930 data points,
representing 267 trajectories from 50 trucks moving in the
Athens, Greece region.2 As in Car, the dates are removed.
Each trip of a truck is represented as one trajectory.

Starkey. This data set contains 252 trajectories obtained
from the Starkey Project,3 a radio-telemetry study of elk
habitats (elk, mule deer, and cattle) in Northeastern Oregon
from 1993 to 1996. The collection has 268,216 data points.
Each trajectory represents the movement of a particular
animal. In this data set, dates were taken into account
because each animal was tracked for a long period of time.
Also, because the sampling varies substantially across
different animals, it was difficult to consistently partition
the trajectory of an animal into shorter trajectories.

GSTD. We use the GSTD generator to generate data sets
with varying numbers of trajectories. The data points are
assumed to be taken from the same day.

We partition Car, Truck, and GSTD into 144 parts, each
containing data for 10 min, and we partition Starkey into
146 parts, each containing data for 10 days. In the following
experiments, after GD and GD+ process one part, the next
part is streamed in as new data, resulting in new events

being inserted into eventQ. Statistics on the data sets and
default settings for key parameters are shown in Table 3.

We report on both efficiency and effectiveness studies of
our proposed framework, and we compare with the
Convoy algorithm [17]. In the studies of the effects of
polyline simplification, we use the existing online simpli-
fication technique, Normal Opening Window [22]. For Car
and Truck, the reduction rate is high even for small
tolerances. Table 4 shows the number of remaining data
points when the tolerance � ranges from 25 to 200 in Car
and Starkey and from 5 to 25 in Truck. The numbers of data
points in GSTD (both original and after simplification) are
summarized in Table 5.

4.2 Effects of Varying mm, ee, and ��

We proceed to consider the number of groups returned
when varying cardinality m, distance threshold e, and
lifetime � . We use Starkey with tolerance values being 0
(original), 50, 100, and 200 meters. Starkey0, thus, serves as
the ground truth. Fig. 8 shows the result.

As the cardinality threshold m increases, the number of
discovered groups decreases quickly with all simplification
tolerances because more animals are needed to form
clusters. For Starkey0 and Starkey50, very few groups are
discovered when m > 10, whereas for Starkey100 and
Starkey200, a marked decrease is observed even before
m ¼ 10. It is also observed that Starkey50 displays the
pattern that is most similar to Starkey0, whereas Starkey200
deviates the most from Starkey0. The four collections
behave similarly when varying distance threshold e—as e
increases, groups are allowed to be less dense, and more
groups are found.

Finally, all collections exhibit a decreasing trend as
parameter � is increased.

4.3 Comparing GD and GD+

To observe the practical implication of the observation in
Lemma 3.2, which is exploited in GD+, we ran GD and GD+
on Car and counted the number of candidate groups. Fig. 9
shows that the running time of GD is around 10 times that
of GD+. Fig. 10 shows that the number of checked
candidates by GD+ is reduced by up to three orders of
magnitude. Note that both figures have a log-scaled y-axis.

2762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

Fig. 7. Visualization of data sets.

TABLE 3
Settings for Experiments

TABLE 4
Simplification

TABLE 5
Synthetic Data Set

2. http://www.rtreeportal.org.
3. http://www.fs.fed.us/pnw/starkey/data/tables/.

We were only able to run GD on Car as GD is rather
inefficient because of frequent trie updates when the
memberships of clusters changes. On the other data sets,
GD exhausted the Java heap space. In conclusion,
Lemma 3.2 greatly improves the performance of the
GroupDiscovery framework.

4.4 Effect of Varying ��

Fig. 11a (y-axis logscaled) shows the effect of � on the
number of pruned candidate groups. It is observed that
with the increase of the � value, fewer candidate groups are
pruned. When � is small, more candidate groups having
common objects are treated as similar groups and are thus
discarded by CheckCandidate. Among the three data sets,
Car has the least pruned similar candidate groups, whereas
Starkey has the most pruned similar candidate groups.
Recall that for Car and Truck, we disregard the dates to
increase the number of similar trajectories to find groups,
while in Starkey, we take dates into account when tracking
the same groups for three years. Thus, many more similar
groups are found in Starkey due to recurring patterns. In
Truck, the routes that the vehicles follow are more fixed
than in Car, so more similar groups are found in Truck.
Note that in both Truck and Starkey, many similar
candidate groups are found along the way even when � is
large (0.8). Also note that no candidate groups are pruned
when � ¼ 1:0 for the three data sets.

Fig. 11b shows that for each data set, the average
similarity among the top-k groups actually increases with
the increase of �, though the difference between any two
average similarity values is not significant in the same data
set. It is also observed that the average similarity value
depends highly on the data set.

There is a tradeoff between the total score of the groups
in the top-k list and the average similarity. To have more

diversity in the top-k list, we need to decrease the � value,
which may result in pruning some high-scoring candidates
in the top-k list because they are similar to other group
candidates in the top-k list. Fig. 11c shows that with the
increase of �, the total score ratio (normalized by total value
when � ¼ 1) increases, and the average similarity among
the top-k also increases, i.e., the diversity decreases.

4.5 Effect of Varying ��

We conduct experiments on the effect of � on the average
cardinality and duration of the results, which can be seen in
Fig. 12. The average duration of the result drops greatly
when � increases from 0 to 0.2, and then decreases slowly.
In contrast, the average cardinality of the result increases
slowly from 5.53 to 6.28 with the increase of �.

Recall the score definition in Section 2.1. Generally, small
� values favor groups of longer durations, whereas large �
values favor groups of larger sizes.

4.6 Effect of Varying kk on Runtime

Fig. 13a shows the effect on the runtime of GD+ of varying k
when using Starkey. The figure shows that when k is
smaller than 15, the running time is relatively low. But
when k exceeds 15, the running time increases markedly.
The reason is that many candidates have already been
pruned based on the upper bound on group scores and
R:minScore. Thus, the use of pruning based on the lower
bound on group scores is effective, and GD+ is able to
exploit small k values to obtain better performance.

4.7 Comparing Top-kk Results

We next consider the effect of simplification on the top-k
results produced on Starkey. We compare the results
obtained from the original and from default simplified data
sets. We apply the Precision@k ranking performance metric

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2763

Fig. 8. Effect of varying m, e, and � on groups identified.

Fig. 9. Running time versus tolerance. Fig. 10. Checked candidates versus tolerance.

that measures the fraction of the number of groups that are
found in both original and simplified data sets versus total
number of found groups (k). The metric Precision@k is
widely used in information retrieval.

We vary the cardinality threshold m from 5 to 15
(Fig. 13b) and the distance threshold e from 500 to
2,000 meters (Fig. 13c), while using the simplification
tolerance values 50, 100, and 200. When varying m, the
precision ranges from 61 to 89 percent. The results are
affected only little by simplification for m ¼ 7 and m ¼ 10.
The highest drop in precision occurs for m ¼ 15 and
� ¼ 200. Next, when varying e, the precision for different
simplification tolerances ranges from 35 to 95 percent. The
highest precisions are obtained when � ¼ 50 and e ¼ 2;000.

It is also observed that varying the distance threshold
affects the results more than varying the cardinality
threshold. The results from varying the distance threshold
are also less stable.

4.8 Comparing GD+ and Convoy

We proceed to consider the runtime performance of the GD+
algorithm when varying the polyline simplification �,
comparing with the Convoy algorithm [17]. To be fair, we
run both algorithms in an offline setting, because Convoy can
only be applied offline. The Douglas-Peucker polyline
simplification algorithm [9] is used to simplify the trajec-
tories for both algorithms. The results are shown in Fig. 14.

As � increases, fewer data points remain in the
trajectories, which in turn improves the runtimes of both
algorithms. The GroupDiscovery framework achieves
speedups because fewer events need to be handled. The
situation for the Convoy algorithm is more complex. This
algorithm has a filter step that applies DBScan to line
segments, and it has a refinement step that applies DBScan
to data points. In both steps, with fewer sampling points, a

line segment may have more time-overlapping line seg-
ments for each clustering, but the total number of clustering
performed is reduced.

On Car and Starkey, GD+ outperforms Convoy for all
tolerances. However, on Truck, GD+ only runs faster than
Convoy when the tolerance is high. When applied to Truck,
GD+ finds much larger numbers of groups than does
Convoy for small tolerance values, as shown in Fig. 15.
When the tolerance value is high, although GD+ still finds
more groups, the filter step in Convoy takes more time
because of larger numbers of candidates, so GD+ outper-
forms Convoy.

We also studied the effect of simplification on the
number of discovered groups in both GD+ and Convoy.
We first ran GD+ with � ¼ 0 on each data set to obtain the
total numbers of groups, which is treated as the base-line.
Then, we applied simplification with various � values and
ran both GD+ and Convoy on the simplified data sets. For
each tolerance value, the groups obtained by the two
algorithms are compared with each other and with the
baseline. It is observed that the groups returned by Convoy
were consistently subsets of those returned by GD+. Fig. 15
shows the ratio of the number of groups found with
different tolerance values with the baseline.

It is seen that more groups are found than with Convoy.
As discussed before, GD+ is able to find patterns that are
missing by Convoy because of sampling independence. The
reduction in the number of sample points due to simplifica-
tion affects both Convoy and GD+. We observe that GD+
consistently finds increasing numbers of groups for all data
sets as the tolerance is increased. The number of convoys
found also increases with the tolerance for Truck and
Starkey. The main reason is that the smoothing effect of
trajectory simplification results in clusters of longer dura-
tion. However, the number of convoys in Car decreases for
small tolerance values. This is mainly because with small
tolerance values, the number of sampled points decreases
significantly, which affects the Convoy algorithm very
much. For both Car and Truck, the numbers of groups
and convoys found are very sensitive to simplification
because cars and trucks are constrained by a road network,
and the smoothing effect of simplification is significant.

Next, we compare GD+ and Convoy on the synthetic data
sets. Fig. 16 shows the result, when the number of trajectories
varies from 5k to 25k. It is observed that GD+ consistently
outperforms Convoy. The performance gap between GD+
and Convoy increases with the number of trajectories.

The filtering step in Convoy relies on time-domain
partitioning and segment clustering. With a larger number

2764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

Fig. 11. Effect of varying �.

Fig. 12. Average cardinality and duration versus �.

of trajectories, it is more likely to have many trajectories

near each other during certain time periods. Thus, the

filtering step in Convoy is less effective, resulting in more

candidates to be checked by the time-consuming refining

step. In contrary, thanks to the event-driven design, GD+

always processes events when necessary. So it is less

affected by the increased number of trajectories.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed the concept of trajectory group

that is different from related notions in previous works and

that enables the prioritized discovery of interesting moving
object clusters from trajectories. We have also proposed the
first framework that satisfies the four requirements explained
in Section 1. Techniques based on the continuous clustering
of moving objects using an effective pruning strategy are
proposed to efficiently discover such groups. A scoring
function enables the ranking of the discovered groups
according to their size and duration. The effectiveness and
efficiency of our schemes are studied using real data sets.

To reduce the number of events in the Continuous
Cluster module and, thus, to further improve performance,
trajectories should be as smooth as possible. To this end,
future work can employ shared prediction-based tracking
[8], [24] when collecting locations points.

Tries are used widely due to their simplicity and
efficiency. Although the computational overhead is sub-
stantial, using a trie for storing and representing clusters is
promising, and future work that aims to reduce the
computational overhead is in order.

ACKNOWLEDGMENTS

Xiaohui Li and Kian-Lee Tan would like to acknowledge the
support of NExT Research Center funded by MDA,
Singapore, under the research grant: WBS:R-252-300-001-
490. Vaida �Ceikut _e and Christian S. Jensen were supported
in part by the Geocrowd Initial Training Network funded
by the European Commission as an FP7 - People Marie
Curie Action.

REFERENCES

[1] G. Al-Naymat, S. Chawla, and J. Gudmundsson, “Dimensionality
Reduction for Long Duration and Complex Spatio-Temporal
Queries,” Proc. ACM Symp. Applied Computing (SAC), pp. 393-
397, 2007.

LI ET AL.: EFFECTIVE ONLINE GROUP DISCOVERY IN TRAJECTORY DATABASES 2765

Fig. 13. Top-k results.

Fig. 14. Effect of simplification tolerance on efficiency.

Fig. 15. Effect of simplification tolerance on error.

Fig. 16. Effect of number trajectories.

[2] H.H. Aung and K.-L. Tan, “Discovery of Evolving Convoys,” Proc.
22nd Int’l Conf. Scientific and Statistical Database Management
(SSDBM), pp. 196-213, 2010.

[3] H.H. Aung and K.-L. Tan, “Finding Closed Memos,” Proc. 23rd
Int’l Conf. Scientific and Statistical Database Management (SSDBM),
pp. 369-386, 369.

[4] R. Benetis, C.S. Jensen, G. Kar�ciauskas, and S. �Saltenis, “Nearest
and Reverse Nearest Neighbor Queries for Moving Objects,” The
VLDB J., vol. 15, no. 3, pp. 229-249, 2006.

[5] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle, “Reporting
Flock Patterns,” Computational Geometry Theory Applications,
vol. 41, pp. 111-125, Nov. 2008.

[6] L. Chen and R. Ng, “On the Marriage of Lp-Norms and Edit
Distance,” Proc. 30th Int’l Conf. Very Large Data Bases (VLDB),
pp. 792-803, 2004.

[7] L. Chen, M.T. Özsu, and V. Oria, “Robust and Fast Similarity
Search for Moving Object Trajectories,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’05), pp. 491-502, 2005.

[8] A. Civilis, C.S. Jensen, and S. Pakalnis, “Techniques for Efficient
Road-Network-Based Tracking of Moving Objects,” IEEE Trans.
Knowledge and Data Eng., vol. 17, no. 5, pp. 698-712, May 2005.

[9] D. Douglas and T. Peucker, “Algorithms for the Reduction of the
Number of Points Required to Represent a Line or Its Character,”
The Am. Cartographer, vol. 10, no. 42, pp. 112-122, 1973.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases
with Noise,” Proc. Second Int’l Conf. Knowledge Discovery and Data
Mining (KDD), pp. 226-231, 1996.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” Proc. 20th ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS), pp. 102-113,
2001.

[12] J. Gudmundsson and M. van Kreveld, “Computing Longest
Duration Flocks in Trajectory Data,” Proc. 14th Ann. ACM Int’l
Symp. Advances in Geographic Information Systems (GIS), pp. 35-42,
2006.

[13] J. Gudmundsson, M. van Kreveld, and B. Speckmann, “Efficient
Detection of Motion Patterns in Spatio-Temporal Data Sets,” Proc.
12th Ann. ACM Int’l Workshop Geographic Information Systems (GIS),
pp. 250-257, 2004.

[14] Y. Huang, C. Chen, and P. Dong, “Modeling Herds and Their
Evolvements from Trajectory Data,” Proc. Fifth Int’l Conf.
Geographic Information Science (GIScience), pp. 90-105, 2008.

[15] C.S. Jensen, L.H., S. Pakalnis, and J. Runge, “The INFATI Data,”
Aalborg Univ., TimeCenter TR-79, 2004.

[16] C.S. Jensen, D. Lin, and B.C. Ooi, “Continuous Clustering of
Moving Objects,” IEEE Trans. Knowledge and Data Eng., vol. 19,
no. 9, pp. 1161-1174, Sept. 2007.

[17] H. Jeung, M.L. Yiu, X. Zhou, C.S. Jensen, and H.T. Shen,
“Discovery of Convoys in Trajectory Databases,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 1068-1080, 2008.

[18] P. Kalnis, N. Mamoulis, and S. Bakiras, “On Discovering Moving
Clusters in Spatio-Temporal Data,” Proc. Ninth Int’l Conf. Advances
in Spatial and Temporal Databases (SSTD), pp. 364-381, 2005.

[19] P. Laube and S. Imfeld, “Analyzing Relative Motion within
Groups of Trackable Moving Point Objects,” Proc. Second Int’l
Conf. Geographic Information Science (GIS), pp. 132-144, 2002.

[20] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory Clustering: A
Partition-and-Group Framework,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 593-604, 2007.

[21] Z. Li, B. Ding, J. Han, and R. Kays, “Swarm: Mining Relaxed
Temporal Moving Object Clusters,” Proc. VLDB Endowment, vol. 3,
no. 1, pp. 723-734, 2010.

[22] N. Meratnia and R.A. de By, “Spatiotemporal Compression
Techniques for Moving Point Objects,” Proc. Ninth Int’l Conf.
Extending Database Technology (EDBT), pp. 765-782, 2004.

[23] Y. Theodoridis, J.R.O. Silva, and M.A. Nascimento, “On the
Generation of Spatiotemporal Datasets,” Proc. Sixth Int’l Symp.
Advances in Spatial Databases (SSD), 1999.

[24] D. Tiesyte and C.S. Jensen, “Recovery of Vehicle Trajectories from
Tracking Data for Analysis Purposes,” Proc. Sixth European
Congress and Exhibition Intelligent Transport Systems and Services,
June 2007.

[25] M.R. Vieira, P. Bakalov, and V.J. Tsotras, “On-Line Discovery of
Flock Patterns in Spatio-Temporal Data,” Proc. 17th ACM
SIGSPATIAL Int’l Conf. Advances in Geographic Information Systems
(GIS), pp. 286-295, 2009.

[26] J.S. Vitter, “Random Sampling with a Reservoir,” ACM Trans.
Math. Software, vol. 11, pp. 37-57, Mar. 1985.

[27] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering Similar
Multidimensional Trajectories,” Proc. 18th Int’l Conf. Data Eng.
(ICDE), pp. 673-684, 2002.

[28] Y. Wang, E.-P. Lim, and S.-Y. Hwang, “Efficient Mining of Group
Patterns from User Movement Data,” Data Knowledge Eng., vol. 57,
pp. 240-282, June 2006.

[29] B.-K. Yi, H.V. Jagadish, and C. Faloutsos, “Efficient Retrieval of
Similar Time Sequences under Time Warping,” Proc. 14th Int’l
Conf. Data Eng. (ICDE), pp. 201-208, 1998.

Xiaohui Li received the bachelor’s degree in
computer science and the bachelor’s degree
in statistics from the National University of
Singapore in 2008, and is currently working
toward the PhD degree in the School of
Computing, National University of Singapore.
He was a visiting scholar at Aarhus University,
Denmark from 2010 to 2011. His current re-
search interest is moving objects and trajectory
data management.

Vaida �Ceikut _e received the MS degree
in computer science from Vilnius University,
Lithuania, in 2009, and is currently working
toward the PhD degree in the Department of
Computer Science at Aarhus University, Den-
mark. Her research interests include trajectory
pattern mining, geocontext in location-based
services, and intelligent transportation systems.

Christian S. Jensen is a professor of computer
science at Aarhus University, Denmark, and he
was previously with Aalborg University for two
decades. He recently spent a 1-year sabbatical
at Google Inc., Mountain View, California. His
research concerns data management and data-
intensive systems, and it concerns primarily
temporal and spatiotemporal data management.
He has received several national and interna-
tional awards for his research. He is a vice chair

of ACM SIGMOD and an editor-in-chief of The VLDB Journal, and he
has served on the editorial boards of the ACM Transactions on
Database Systems, IEEE Transactions on Knowledge and Data
Engineering, and the IEEE Data Engineering Bulletin. He was the PC
chair or cochair for SSTD 2001, EDBT 2002, VLDB 2005, MobiDE 2006,
MDM 2007, DMSN 2008, TIME 2008, ACM SIGSPATIAL GIS 2011,
APWeb 2012, and ICDE 2013. He is a fellow of the ACM and the IEEE,
a member of the Royal Danish Academy of Sciences and Letters, the
Danish Academy of Technical Sciences, and the EDBT Endowment,
and a trustee emeritus of the VLDB Endowment.

Kian-Lee Tan received the PhD degree in
computer science in 1994 from National Uni-
versity of Singapore (NUS). He is a professor
of computer science in the School of Comput-
ing, National University of Singapore. His
current research interests include multimedia
information retrieval, query processing and
optimization in multiprocessor and distributed
systems, database performance, and database
security and privacy. He has published numer-

ous papers in conferences such as SIGMOD, VLDB, ICDE and EDBT,
and journals such as the ACM Transactions on Database Systems,
IEEE Transactions on Knowledge and Data Engineering, and VLDB
Journal. He is a member of the ACM. He is a co-editor-in-chief of The
VLDB Journal and an associate editor of the IEEE Transactions on
Knowledge and Data Engineering and the WWW Journal. He was a
technical program cochair of VLDB ’2010, and ICDE ’2011.

2766 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 12, DECEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

