
The VLDB Journal (2010) 19:363–384
DOI 10.1007/s00778-009-0169-7

REGULAR PAPER

Enabling search services on outsourced private spatial data

Man Lung Yiu · Gabriel Ghinita ·
Christian S. Jensen · Panos Kalnis

Received: 15 December 2008 / Revised: 5 October 2009 / Accepted: 6 October 2009 / Published online: 30 October 2009
© Springer-Verlag 2009

Abstract Cloud computing services enable organizations
and individuals to outsource the management of their data to a
service provider in order to save on hardware investments and
reduce maintenance costs. Only authorized users are allowed
to access the data. Nobody else, including the service pro-
vider, should be able to view the data. For instance, a real-
estate company that owns a large database of properties wants
to allow its paying customers to query for houses according
to location. On the other hand, the untrusted service provider
should not be able to learn the property locations and, e.g.,
selling the information to a competitor. To tackle the prob-
lem, we propose to transform the location datasets before
uploading them to the service provider. The paper devel-
ops a spatial transformation that re-distributes the locations
in space, and it also proposes a cryptographic-based trans-
formation. The data owner selects the transformation key
and shares it with authorized users. Without the key, it is
infeasible to reconstruct the original data points from the

M. L. Yiu (B)
Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China
e-mail: csmlyiu@comp.polyu.edu.hk

G. Ghinita
Department of Computer Science, Purdue University,
West Lafayette, IN, USA
e-mail: gghinita@cs.purdue.edu

C. S. Jensen
Department of Computer Science, Aalborg University,
Aalborg, Denmark
e-mail: csj@cs.aau.dk

P. Kalnis
Division of Mathematical and Computer Sciences and Engineering,
KAUST University, Thuwal, Saudi Arabia
e-mail: panos.kalnis@kaust.edu.sa

transformed points. The proposed transformations present
distinct trade-offs between query efficiency and data confi-
dentiality. In addition, we describe attack models for study-
ing the security properties of the transformations. Empirical
studies demonstrate that the proposed methods are efficient
and applicable in practice.

Keywords Data outsourcing · Spatial query processing

1 Introduction

Cloud computing services enable individuals and organiza-
tions to outsource the management of their data with ease and
at low cost, even if they lack IT expertise. Cloud computing
enables scalability with respect to storage and computational
resources as the number of service requests grows, without
the need for costly investments in hardware and maintenance.

1.1 Motivating applications

Consider the example of a real-estate company that owns a
large database with descriptions of properties and their loca-
tions. The company (i.e., the private data owner) wishes to
allow authorized users (e.g., paying customers) to query for
properties situated within a certain geographical region. To
save on hardware investments and maintenance costs, the
data owner outsources the management of its dataset to a ser-
vice provider (SP) that specializes in data storage and query
processing. However, the SP may not be fully trusted, and
could sell the data to a competitor. Furthermore, even if the
SP is trusted, a malicious attacker can compromise the SP and
gain unauthorized access to the data. To prevent such attacks,
the data owner first encrypts the dataset according to a secret
transformation and then uploads the encrypted data to the SP.

123

banart
Text Box
The VLDB Journal, Volume 19, Number 3, pp 363-384, June 2010.
URL: http://www.springerlink.com/content/68k6n4176t48q211/
The original publication is available at springerlink.com
Copyright © Springer-Verlag

364 M. L. Yiu et al.

Only authorized users who know the transformation are able
to learn the property locations.

The illustrated scenario is relevant for other applications
as well: for instance, a research institute that deploys a large
sensor network is able to outsource collected data (which
include the geo-spatial tag of the originating sensor), with-
out disclosing the locations of the sensors to the SP.

Outdoor advertising companies determine the pricing for
billboards placed in geo-referenced spots such as at bus stops,
on buildings or along roads. Significant human effort is spent
on assessing the pricing of billboards so the constructed data-
set is valuable to its owner. In the outsourcing context, the
owner allows its dataset to be queried only by business part-
ners who are contractually obligated not to share the data
with others.

Marketing companies employ databases for managing var-
ious demographic information (e.g., income, age range) of
geo-referenced households. Such databases can be rather
large. These companies wish to outsource the management
of their data while allowing their paying users to access the
data. For instance, a paying user could be a financial com-
pany that may want to access the data in order to run targeted
advertising and marketing campaigns (e.g., by direct mail).

1.2 Problem scenario

The paper focuses on the outsourcing of spatial datasets. Our
objective is to enforce the user authorization specified by the
data owner, even when the SP cannot be trusted. The paper
presents techniques that protect location data from attackers,
while allowing authorized users to issue spatial queries that
are executed efficiently by the SP. Any non-spatial content
(e.g., text, images, etc.) is assumed to be encrypted using con-
ventional encryption, and it can be decrypted by authorized
users. Given a set P of data points, the data owner maps P
to another point set P ′ using a transformation with a secret
key. The data owner uploads P ′ to the SP and sends the key
to authorized users through a secure channel. Since the SP
does not know the key, it cannot derive P . At query time,
an authorized user U maps a query q to another query q ′ by
using the key and then submits q ′ to the SP. Next, the SP
executes q ′ against P ′ and returns the result R′ ⊆ P ′ to U ,
who uses the key to decode R′ and obtain the actual result
R ⊆ P .

1.3 Challenges

A brute-force solution is to apply conventional encryption
(e.g., AES [1]) to the whole dataset P and then store the
encrypted file at the server. This solution is secure because the
server is unable to learn any information from the encrypted
file. At query time, the whole encrypted file is downloaded to
the client, decrypted, and searched for the requested results.

p1

p2

p3 p4

q
q'

p'1

p'2

p'3 p'4
x'=2x-1

y'=1.5y-2

x x'

y y'

Fig. 1 Example of an insecure transformation

This solution is inefficient for typical queries that only require
access to a small fraction of the data.

We require that the transformation method must satisfy
two essential criteria: (i) it should be infeasible to recon-
struct the precise points of P from P ′ without the key, and
(ii) it should support efficient and accurate computation of
range queries. Consider for instance a simple transforma-
tion that maps the x and y coordinate of each point in P to
x′ = a1x + a2 and y′ = b1y + b2, respectively (see Fig. 1).
Suppose that the key is 〈a1, a2, b1, b2〉. The above trans-
formation satisfies the second condition, since U can easily
map a query rectangle q to a rectangle q ′, and the SP can
employ any spatial index to answer q ′ efficiently. However,
the first condition is not satisfied. An attacker who learns the
original and transformed versions of 4 non-collinear points
can compute the key by solving a system of 4 linear equa-
tions; therefore, the database is compromised. We call this a
tailored attack, since it relies on knowledge about the actual
transformation technique used. For certain transformations,
the tailored attack is computationally hard. In this case, the
attacker may resort to performing a general attack, which
is a transformation-independent method of estimating the
approximate locations of original points. The paper contrib-
utes definitions of these two attack models, which are then
used to evaluate the security of the proposed transformations.

1.4 Contributions

The paper substantially extends preliminary work [37].
Table 1 summarizes the trade-offs of our proposed techniques
in terms of data security and query efficiency. Each entry with
“N/A” indicates that the attack that the column concerns is
computationally infeasible to perform on the transformation
technique that the row concerns.

First, we propose spatial transformations that protect data
by altering the spatial distribution. Two preliminary build-
ing blocks in this category are Hierarchical Space Division
(HSD) and Error-Based Transformation (ERB). HSD utilizes
a spatial partitioning technique for redistributing the trans-
formed data; it is strong against the general attack but weak
against the tailored attack. ERB exploits a secure hash func-
tion for injecting noise into the data; it is immune to the

123

Enabling search services on outsourced private spatial data 365

Table 1 Trade-offs among the proposed transformation techniques

Method Tailored General Transferred Round
attack attack data cost trips

HSD Feasible Ineffective Low 1
(preliminary)

ERB N/A Effective High, 1
(preliminary) rises as ε

HSD* N/A Ineffective Low 1

CRT N/A N/A Moderate Tree
height

tailored attack, but it incurs high query cost. Thus, we design
an advanced method called Enhanced HSD (HSD*) that inte-
grates the desirable features of HSD and ERB.

Second, we develop a Cryptographic Transformation
(CRT) technique that completely prevents the disclosure of
location data. CRT is the most secure against all attacks;
however, it requires multiple communication rounds during
query evaluation.

Recently, there has been substantial interest in database
outsourcing. Most related work [2,8,16,17] assumes that a
tamper-proof device (or trusted software) exists in front of
the SP. This device holds the decryption keys and performs
the encryption and decryption operations during query pro-
cessing. Since the device resides at the SP, there is no com-
munication cost, so transformations can be complex. In our
setting, it is not feasible for every data owner to install her
own secure device at the SP. If query processing requires
on-the-fly transformations, these must be done by the user;
therefore, the techniques must achieve low communication
cost.

Finally, the term “database outsourcing” has been used
to denote the process of authenticating the correctness and
completeness of query results, without hiding user-generated
content from the SP. This issue is orthogonal to our work;
any related method [36] can be used on top of our transfor-
mations. Our work is also orthogonal to spatial anonymity
methods [11,12,27], which protect the location of the query-
ing user, but do not hide the content being queried from the
SP.

In summary, our contributions are:

– We present a framework for protecting the confidentiality
of spatial data that is outsourced to a SP, while supporting
the efficient processing of spatial queries (i.e., range and
k nearest neighbor queries) on the data.

– We develop tailored and general attack models for assess-
ing the security of the transformations.

– We propose two transformation techniques (HSD* and
CRT) that represent different trade-offs between data
security and query efficiency.

– We present an extensive experimental evaluation of our
techniques using real datasets.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the general prob-
lem setting. Section 4 introduces the attack models and
presents the spatial transformations. Section 5 presents the
CRT. An empirical evaluation is presented in Sect. 6. Finally,
Sect. 7 concludes and discusses future research directions.

2 Related work

2.1 Outsourced databases

The outsourcing of database services to an SP was introduced
by Hacigümüs et al. [17]. The confidentiality of outsourced
data was subsequently addressed by Hacigümüs et al. [16]. In
their solution, the SP stores the encrypted tuples together with
auxiliary bucketing information to facilitate indexing. This
bucketing technique returns a superset of the actual query
results, which calls for potentially expensive filtering.

Agrawal et al. [2] point out that bucketing is vulnera-
ble to estimation exposure, i.e., an attacker can infer the
approximate values of the encrypted data. Motivated by these
limitations, they propose an order-preserving encryption
scheme (OPES) [2] for one-dimensional numeric values
(e.g., salaries) that transforms the input data distribution
(e.g., Zipfian) into a user-specified target distribution (e.g.,
Gaussian). While this scheme supports efficient processing
of range queries at the SP, it assumes that an attacker cannot
stage a known plaintext attack. In contrast, our techniques
support the general case where an attacker knows a sam-
ple of the data points as well as their encrypted values (i.e.,
plaintext attack).

In a proposal by Damiani et al. [8], the data owner builds
a B+-tree on one-dimensional data and then encrypts each
node using conventional cryptographic techniques (e.g.,
AES). Since such encryption does not preserve order, the
decryption key is required in order to process queries.
A trusted front-end at the SP is assumed. In practice, a tam-
per-resistant device can be used for this purpose. Our CRT
technique uses a similar approach in conjunction with an
R∗-tree (for two-dimensional data). However, in our case, the
SP is likely to serve a large number of data owners, each with
a distinct encryption key. Furthermore, the SP may offer the
service for free, rendering it financially infeasible to employ
one tamper-resistant device per data owner. For this reason,
the SP and the user must employ a multi-stage protocol during
query processing; therefore, we must minimize the commu-
nication cost.

Wong et al. [35] study the computation of k nearest neigh-
bor queries on encrypted tuples stored at an untrusted server.
The encryption key is a (d + 1) × (d + 1) invertible matrix,
where d is the data dimensionality. Their encryption scheme
enables the server to decide, among two encrypted data points

123

366 M. L. Yiu et al.

p′
1 and p′

2, the one closer to the encrypted query point q ′, with
respect to the original space. They propose two optimizations
to strengthen the security: (i) splitting each data point (or
query point) into two random parts, and (ii) inserting arti-
ficial random dimensions into the dataset. To achieve high
security, Wong et al. [35] suggest to use 80 artificial dimen-
sions. However, there is no effective index for (encrypted)
points in the resulting high dimensional space, due to the
dimensionality curse [33]. Thus, at query time, the server is
forced to scan the entire dataset. In contrast, our proposed
solutions simply re-distribute the locations of points in the
two-dimensional space. Any spatial index (e.g., the R-tree)
can be built on the transformed dataset for facilitating effi-
cient query processing.

A related issue in data outsourcing is the authentication
of query results, which must be sound (the SP does not alter
the data), and complete (the SP returns all valid results). The
Merkle Hash Tree (MH-tree) [26] is a main memory binary
tree for indexing 1D values that has been applied for the
authentication of range queries [9]. Disk-based indices for
authenticating the results of multi-dimensional range que-
ries have been proposed recently [7,36]. Authentication is
orthogonal to our problem (i.e., confidentiality), and existing
authentication schemes can be used on top of our transfor-
mations.

2.2 Privacy-preserving data publication

Confidentiality has also been addressed in the context of pri-
vacy-preserving publication of sensitive datasets. In this set-
ting, the data owner (e.g., a hospital) wishes to release data
records (e.g., for research purposes) without violating the
privacy of individuals concerned. Even though directly iden-
tifying data (e.g., names) are not disclosed, the records still
contain quasi-identifier (QID) attributes, such as Age or
ZipCode, which can be used by an attacker to re-identify
records. The k-anonymity principle [30] addresses this threat
by requiring each tuple to be indistinguishable from at least
k − 1 other tuples, with respect to the QID. To achieve
k-anonymity, it is common to generalize QID values [13,22].
More recent data privacy paradigms include �-diversity [25],
which prevents association between QID values and sensi-
tive attributes (e.g., medical condition), and t-closeness [23],
which attempts to reproduce the overall distribution of the
sensitive attributes in each class (whose tuples have the same
generalized QID). In all these methods, the generalization
process alters the dataset in a way that prevents exact query
answers, rendering the data useful only for statistical pur-
poses.

Papadimitriou et al. [29] apply perturbation techniques on
time-series data before they are published. Correlated noise
is added into the time series such that (i) the utility of the
perturbed data is bounded by a specified threshold, and (ii)

the error between the adversary’s reconstructed data and the
original data is maximized. They consider two attack models:
filtering and true value leakage. These attacks are analogous
to the noise removal attack and the general attack that we will
discuss in Sect. 4.1, respectively. The above technique is inap-
plicable to our problem because there is no key for accurately
reconstructing the original data from the perturbed data.

The above-mentioned privacy-preserving publication
methods belong to the category of input perturbation
techniques. More recently, Dwork et al. [10] introduced the
concept of differential privacy, which is an output pertur-
bation technique. In this setting, the data are never pub-
lished. Instead, a statistical database management system
answers aggregate queries (e.g., count, sum) on top of the
data, perturbing the query results to preserve privacy. Given
any two datasets P and P ′ of equal cardinality and that differ
in exactly one tuple, a statistical database is said to satisfy
ε-indistinguishability if for any transcript (i.e., sequence of
queries) Q and the associated result R, it holds that
Pr(Q(P) = R) ≤ exp(ε)·Pr(Q(P ′) = R). In other words,
an attacker is not able to learn whether the result R was
obtained by answering Q from P or from P ′. The property
of ε-indistinguishability is achieved by adding random noise
to the result of each aggregate query. The differential privacy
model is not suitable to our problem for two reasons: First,
data outsourcing requires disclosing the entire (transformed)
dataset to the SP, whereas in the differential privacy model,
the data owner only discloses results to a restricted set of
queries. Second, differential privacy addresses only approx-
imate aggregate queries, as opposed to our model where the
actual data points (and exact locations) must be returned to
the authorized users.

In privacy-preserving data mining, a mining task (e.g.,
classification, clustering) is outsourced to the SP for extract-
ing “hidden patterns” from the perturbed data, without the
original data being revealed. For instance, various data per-
turbation techniques [3,24] can be utilized for introducing
noise into the data. These techniques do not guarantee exact
answers over the perturbed data and therefore are inapplica-
ble to our problem.

2.3 Location privacy

Privacy preservation of location data has been studied in the
context of spatial queries. Mobile users issue spatial queries
such as “find the French restaurant nearest to my location,”
which are answered by a public service (e.g., Google Maps).
Users do not want to reveal their exact location to the ser-
vice. Therefore, a user location is first generalized according
to the spatial k-anonymity principle, often by employing a
trusted location anonymizer [11,15,19,27]. The anonymiz-
er maintains the locations of all subscribed users, and upon
receiving a query from a user, it constructs an Anonymizing

123

Enabling search services on outsourced private spatial data 367

Spatial Region (ASR) that encloses the locations of that user
and k − 1 other users. The service processes the query based
on the ASR, instead of the exact user location. Observe that
spatial k-anonymity hides the query user’s location from the
service, but does not protect the data being queried; therefore,
it is orthogonal to our problem.

Other approaches to enabling private nearest-neighbor
queries [12,21,38] adopt privacy definitions that differ from
spatial k-anonymity. One solution [21] employs the Hilbert
curve mapping [6] for transforming the set of data points into
1D values. In a preprocessing stage, a trusted entity trans-
forms each point pi into its Hilbert value H(pi) and then
uploads the values to the service. The parameters of the trans-
formation (curve orientation, scale, etc.) act as the encryption
key and are kept secret from the service. In addition, users
possess tamper-resistant devices containing the key. Upon
issuing a query q, the user computes H(q) and requests the
closest data value (in terms of 1D Hilbert values) from the
service. By applying the inverse mapping H−1 to the value
received, the user obtains the answer. This solution is approx-
imate in nature and does not provide any guarantee on the
result accuracy. In addition, the evaluation of range queries
remains to be addressed. A possible solution is to decom-
pose a region query W into multiple 1D Hilbert intervals and
issue these separate interval queries to the service. The disad-
vantages are: (i) the number of decomposed intervals can be
large, leading to high processing and communication costs,
and (ii) the decomposition of intervals provides hints for an
attacker to reverse engineer the transformation.

3 Problem setting

This section introduces formally the problem of confiden-
tial spatial data outsourcing. We focus on two-dimensional
point datasets, which are the most common type of spatial
data. Table 2 summarizes the notation used. In the sequel, we
focus on the most popular query—the range query.

Table 2 Summary of notations

Symbol Description

P Original point set

P ′ Transformed point set

pi , p′
i Point belonging to P , P ′

p.x, p.y X , Y -coordinate of point p

dist (pi , p j) Euclidean distance between points pi and p j

ϒ Number of parameters in transformation key

S Subset of points in P known by the attacker

S′ Set of transformed points from S

V(p, S) Feature vector of p with respect to set S

Definition 1 (range query) Given a rectangular query range
W = [xl ,xh]×[yl , yh] and a set P of points, the range query
retrieves each p ∈ P that intersects with W .

We assume the architecture of Fig. 2. In a pre-process-
ing phase, the data owner chooses a secret transformation
key, and then converts the original point set P into the trans-
formed point set P ′ (step 1.1). Next (step 1.2), the data owner
builds a multi-dimensional index IND(P ′) over P ′; this step
is optional. The transformed dataset is sent to the SP. The
data owner trusts all her authorized users and sends them
the transformation key (step 1.3) over a secure communi-
cation channel (e.g., SSL). Note that the key size is much
smaller than the size of P . Furthermore, since the data owner
trusts the users, expensive tamper-resistant devices are not
necessary.

To issue a query q, the user U encodes q to q ′ using the key
and sends q ′ to the SP (step 2.1). The SP evaluates the query
over P ′ and returns the encoded results to U (step 2.2). At
this point, if the optional authentication information exists,
U can verify the correctness and completeness of the result.
Finally, U decodes the results using the key, thus obtaining
the original points.

We envision that the SP will offer services by utilizing
existing cloud computing infrastructure. Depending on the
setting, the revenue of the SP may come via different combi-
nations of advertisement revenues, storage fees (paid by the
data owners), and query fees (paid by the query users).

Our objective is to develop transformation techniques that
satisfy the following criteria:

1. It must be hard for an attacker (including the SP) to
recover precisely the original dataset P from the trans-
formed dataset P ′.

2. The computational overhead of the transformation
method should be low, so that the users can efficiently
encode queries and decode query results.

3. The encoded result set returned by the SP must cover all
the actual results. The number of false positives in the
encoded result set should be as small as possible.

4 Spatial transformations

We first formulate the notion of spatial transformation. For
the sake of discussion, we assume that the spatial domain is
the unit square [0, 1]2, for both the original point set P and
the transformed point set P ′. Given a point p = (x, y) in
P , we compute its transformed point p′ = (x′, y′) in P ′, as
follows:

x′ = FX (x, y), y′ = FY (x, y), (1)

123

368 M. L. Yiu et al.

Fig. 2 Our framework for
private spatial data outsourcing

where FX (·) and FY (·) are the transformation functions for
thex andy coordinate, respectively. These functions are asso-
ciated with a hidden transformation key, which will be elab-
orated upon for each specific transformation technique. The
key length ϒ indicates the number of parameters used in the
key. In addition, we define the inverse functions F−1

X (·) and
F−1

Y (·), which use the same transformation key to decode
the original point p = (x, y) from the transformed point
p′ = (x′, y′):

x = F−1
X (x′, y′), y = F−1

Y (x′, y′). (2)

As an example, consider a simple geometric transforma-
tion (GEO), the transformation key of which consists of four
parameters: the rotation angle θ ∈ [0, 2π), the scaling fac-
tor λ, and translations Xt , Yt (along the X -axis and Y -axis,
respectively). The original point p = (x, y) in P is converted
into the transformed point p′ = (x′, y′) in P ′ as follows:

x′ = FX (x, y) = (x cos θ − y sin θ) · λ + Xt ,

y′ = FY (x, y) = (x sin θ + y cos θ) · λ + Yt . (3)

It is easy to define the inverse functions F−1
X (·) and F−1

Y (·),
which also depend on θ , λ, Xt , and Yt . In terms of query
processing, given a range query W = [xl ,xh] × [yl , yh] in
the original space, we apply the functions FX (·) and FY (·)
to transform the four corners of W , i.e., (xl , yl), (xh, yl),
(xh, yh), (xl , yh), and obtain (x′

l , y
′
l), (x′

h, y′
l), (x′

h, y′
h),

(x′
l , y

′
h). By connecting the transformed points (using straight

lines) in the anti-clockwise direction, we obtain a new query
W ′ that can be efficiently processed at the SP with any spa-
tial index. In terms of security, however, GEO can easily be
compromised (to be seen shortly).

Section 4.1 presents several attack models for spatial trans-
formations. Section 4.2 proposes the HSD transformation,

which applies a spatial partitioning technique for redistrib-
uting the transformed data. Section 4.3 discusses the ERB
transformation, which introduces bounded errors into the
data that are reversible with the help of the key. These two
transformations are preliminary methods that are used as
building blocks. Section 4.4 uses them for obtaining a hybrid
solution called HSD*, which avoids the disadvantages of
HSD and ERB. For each technique, we study three aspects:
(i) the transformation of data points, (ii) the transformation
of range queries, and (iii) the analysis of attacks. Finally, in
Sect. 4.5, we discuss how to evaluate k nearest neighbor que-
ries in the context of our proposed transformation methods.

4.1 Attack models

This section introduces the concept of estimation distortion
and then studies a wide range of attack models for spatial
transformation methods.

Let P be the original dataset and P ′ be the transformed
dataset. We assume that the attacker knows the dataset P ′ but
not P . The attacker may obtain some background knowledge,
e.g., a subset of mappings between P and P ′ (to be discussed
shortly). Then, the attacker applies some attack method (to be
studied soon) to estimate the original locations of the objects
as the estimated dataset P∗.

4.1.1 Estimation distortion

We define the estimation distortion between the original data-
set P and the estimated dataset P∗ as:

DT (P, P∗) = AVGp.id=p∗.id,p∈P,p∗∈P∗ dist (p, p∗), (4)

123

Enabling search services on outsourced private spatial data 369

p1p2

p3

p4

p5
p′1

p′2

p′3

p′4

p′5

p*1p*2

p*3

p*4

p*5

(a) (b) (c)

Fig. 3 Sets of data points. a Original set P , b transformed set P ′,
c estimated set P∗

where dist (p, p∗) denotes the Euclidean distance between
p and p∗.

A low DT (P, P∗) value suggests that the transformation
method is vulnerable to attacks. Fig. 3a shows the points in
the original dataset P . After applying the GEO transforma-
tion on P , we obtain the transformed dataset P ′ as shown
in Fig. 3b. As we will see later, the attacker can break GEO
easily and estimate the locations of the original points as
the dataset P∗ shown in Figure 3c. It is worth noticing that
DT (P, P∗) is very small, even though the distances between
the points in P and P ′ are large.

Thus, the estimation distortion DT (P, P∗) serves as an
intuitive measure of the security of a transformation method.

4.1.2 Attacks without background knowledge

Kargupta et al. [20] propose a noise removal attack method
that aims at reconstructing approximately the original data-
set from the transformed dataset P ′, without needing prior
background knowledge of any actual point in the original
dataset. This attack is effective in recovering original data
from perturbed data [20].

For the purpose of data privacy analysis, the data owner
can apply the above attack to P ′ to obtain a reconstructed
dataset P∗ and then measure the distortion DT (P, P∗)
between P and P∗. A transformation technique is said to
be vulnerable to an attack if DT (P, P∗) is small. We will
study experimentally the effect of the above noise removal
attack on our transformation techniques.

4.1.3 Attacks with background knowledge

We introduce a new attack model that is analogous to the
known-plaintext attack in the cryptography literature.1 In
practice, an attacker may acquire prior background knowl-
edge of the dataset. For example, in the scenario outlined
in Sect. 1, the attacker may know that a neighbor registered
a property for sale (i.e., one data point is known) and, in
the worst case, predicts correctly its transformed point. Even

1 This attack was not considered in the work of Agrawal et al. [2].

though the attacker has some prior knowledge of the data-
set, it is worth preventing him from learning any meaningful
information (e.g., distribution, dense regions, outliers) about
the remaining data points.

Recall that P and P ′ are the original and transformed data-
sets, respectively. Assume the attacker knows the following
information:

– A set S ⊂ P of m points, S = {s1, s2, . . . , sm}.
– The set S′ ⊂ P ′ of transformed points, S′ = {s′

1, s′
2, . . . ,

s′
m}, where s′

i is the transformed point of si .

In the above example, the attacker passively knows the
subsets S and S′; the attacker cannot actively choose S (and
S′) as he wishes. Note that although the attacker knows each
transformed location in P ′ − S′, he does not know the loca-
tion of any point in P − S. The attacker attempts to infer
the original location of each point in P ′ − S′. Our goal is to
protect the original data points.

Based on the above attack model, we present two
instances: a tailored attack and a general attack.

4.1.3.1 Tailored attack

If the attacker knows the precise transformation technique
used by the data owner to encode points, he can devise a
specific attack for the transformation, which is defined as
follows.

Definition 2 (tailored attack) Given the known subsets S
and S′, the tailored attack is a technique specific to the trans-
formation F (and F−1) such that it computes the exact
transformation key value.

To recover the original dataset, the attacker may deter-
mine the values of the key parameters by solving a system of
equations. As an example, we apply the tailored attack to the
GEO transformation discussed earlier. Assume the attacker
knows a set S ⊂ P of 4 non-collinear points and the corre-
sponding set S′ of points in P ′. Since Eq. 3 utilizes only four
parameters, the attacker can solve the system of four equa-
tions corresponding to the known points to obtain the exact
parameter values. Thus, GEO is insecure.

4.1.3.2 General attack

In scenarios where the tailored attack is computationally hard
to perform (see Sects. 4.3, 4.4), the attacker may attempt
an attack independent of the transformation. We define this
attack as follows:

Definition 3 (general attack) Given the known subsets S and
S′, the general attack is a transformation-independent method

123

370 M. L. Yiu et al.

that estimates an approximate original location of some trans-
formed point in P ′ − S′.

We propose a (heuristic-based) general attack method that
allows the attacker to estimate a reasonable approximation
of the original data, by exploiting his limited knowledge of
known points. Formally, for a point p′ ∈ P ′ − S′, we define
its feature vector over S′ as:

V(p′, S′) = 〈dist (p′, s′
1), dist (p′, s′

2), . . . , dist (p′, s′
m)〉,

where dist (·) denotes the Euclidean distance. Given a loca-
tion c in the original domain space, its feature vector over S
is:

V(c, S) = 〈dist (c, s1), dist (c, s2), . . . , dist (c, sm)〉.
An attacker can identify the candidate point c as the orig-

inal location of the transformed point p′ if the feature vec-
tors V(p′, S′) and V(c, S) exhibit coherent patterns. To allow
direct comparison, we normalize V(p′, S′) and V(c, S) by
their magnitudes |V(p′, S′)| and |V(c, S)|, respectively.
Then, the dissimilarity between c and p′ is defined as:

�(c, p′) = L1

(V(p′, S′)
|V(p′, S′)| ,

V(c, S)

|V(c, S)|
)

,

where L1 is the Manhattan distance.2 Based on this concept,
the attacker estimates the original location of p′ as p∗, which
is defined as the location c having the smallest �(c, p′) value:

p∗ = argminc �(c, p′). (5)

Consider an example of this general attack method.
Figure 4a illustrates a transformed space with S′={s′

1, s′
2, s′

3}.
The attacker attempts to estimate the original location of a
point p′ ∈ P ′−S′. The lines connecting the points are labeled
with the corresponding Euclidean distances. The attacker cal-
culates V(p′, S′) = 〈1, 3, 2〉. Figure 4b depicts the original
space with S = {s1, s2, s3} and a location c. The attacker
derives V(c, S) = 〈2, 6, 4〉, and computes the value of
�(c, p′), which equals 0. Since �(c, p′) reaches the min-
imum value, the attacker estimates p∗ = c to be the original
location of p′.

Observe that Eq. 5 is not in closed form, as the deriva-
tion of p∗ takes into account an infinite number of candi-
date locations c in the original space. In our experiments,
we assume that the attacker applies a randomized numerical
method (e.g., the Monte Carlo method) to obtain an accurate
approximation of p∗ within reasonable time.

2 We chose the L1 norm because it is robust for multi-dimensional fea-
ture vectors. We have also experimented with the L2 and L∞ norms,
finding that L1 yields a higher success probability for the attacker (i.e.,
lower estimation error).

p'
s'1

s'2
s'3

1

2
3 cs1

s2

s3

2 4

6

(a) (b)

Fig. 4 General attack example. a Transformed space, b original space

By applying the general attack on the transformed dataset
P ′, the attacker obtains a reconstructed dataset P∗:

P∗ = { argminc �(c, p′) | p′ ∈ P ′ }.

The attacker’s estimation error is defined as the distortion
DT (P, P∗) between P∗ and the original dataset P .

Note that the attacker cannot compute DT (P, P∗), since
he does not know P . On the other hand, the data owner is able
to conduct a “what-if” analysis for the value DT (P, P∗),
based on specific instances of S and S′. For example, “What
is the average estimation error of the attack, if the attacker
already knows the exact locations of 10 points of P?”

Intuitively, the attacker’s estimation error decreases as the
set S increases. Furthermore, the distribution of the points
in S (in the original space) can also influence the estimation
error. If the points in S are close to each other, there is a
considerable amount of redundant information in the feature
vector V(c, S), leading to a poor estimation by the attacker.
In Sect. 6, we study these issues empirically.

We now demonstrate that the GEO transformation men-
tioned earlier is completely vulnerable to the general attack.
Even though the distances between the original dataset P and
the transformed dataset P ′ are large, it does not mean that
GEO is secure against the general attack. Let p′ be a trans-
formed point in P ′ − S′ and let p be the original point. The
following lemma shows that �(p, p′) is always 0, for any dis-
tance-preserving transformation function (e.g., GEO). Thus,
the attacker would estimate the location of p as the original
point of the transformed point p′. In other words, the attacker
can completely reconstruct the original dataset P∗ because
the estimation distortion DT (P, P∗) is zero.

Lemma 1 Let 	 be a distance preserving transformation
function. Let S ⊂ P be a set of actual points and its cor-
responding transformed point set be S′ ⊂ P ′. Let p′ be a
transformed point in P ′ − S′ and let p be the original point
of p′. It holds that �(p, p′) = 0.

Proof Since the function 	 preserves the exact distances
among the points in the transformed space, we obtain:
dist (p, si) = dist (p′, s′

i) for each si ∈ S. Thus, we derive
�(p, p′) = 0. ��

123

Enabling search services on outsourced private spatial data 371

4.1.4 Discussion

The focus of our work is to protect outsourced datasets against
location-based attacks, i.e., attacks that rely on spatial infor-
mation. Such an approach is common for many related works
on privacy of location data, e.g., private spatial queries (e.g.,
[11,15,21,38]). Note that other types of attacks may exist,
such as timing-based or frequency-based attacks. For
instance, consider the example from Sect. 1 of the real-estate
company that outsources its datasets of properties. Follow-
ing a public announcement of, e.g., the construction of a new
metro station, the customer interest in a particular region
can increase sharply. Therefore, a malicious attacker may
infer that the large number of points queried immediately
after the announcement are nearby the metro construction
site. Furthermore, the frequency of data point accesses can
also disclose information about their location. For instance,
points in the central city areas, or famous touristic land-
marks are more likely to be queried by users. Both of the
above-mentioned threats are possible because the malicious
attacker is able to observe the access pattern of the data points.
Techniques targeted at protecting the privacy of access pat-
terns have been reported previously in the literature. For
instance, oblivious RAM (random-access memory) solutions
have been proposed [14,34]. Such techniques rely on
re-encrypting and re-shuffling the dataset after a certain num-
ber of accesses. A similar re-shuffling can be applied to our
transformations. However, such extensions are beyond the
scope of this paper.

4.2 Preliminary method: HSD transformation

The HSD is a spatial transformation that hides the data by
altering the distribution of the points in the transformed space.
This way, the attacker cannot get any insight into the original
data through inspecting the data distribution in the trans-
formed space. HSD achieves this goal by means of a kD-tree
partitioning of the data points.

4.2.1 Data point transformation

The transformation key of HSD contains 2(2E − 1) param-
eters, where E is an even integer specifying the granularity.
The original point set from the data owner is denoted by P .
A target point set T is used to capture the data distribution
in the transformed space. In its simplest form, T can be a
uniform dataset. Alternatively, T can be set to a publicly
known data distribution (e.g., known maps of other cities) in
order to mislead the attacker.

Algorithm 1 shows the HSD pseudo-code for extracting
key parameters from P and T . Initially, the transformed space
domain (x′

l ,x
′
h] × (y′

l , y
′
h] is set to (0, 1] × (0, 1]. In Line 1,

a root node Z is created. If E is an even number, only the X

Algorithm 1 HSD Key Parameter Generation

 of points in and ;

coordinate values are processed (Lines 3–12); otherwise, the
Y coordinate values are considered (Line 14). In Lines 3–4,
we record for node Z the following values: (i) Z .v′, the
median X value of the points in T , and (ii) Z .v, the median
X value of the points in P . When E is non-zero (Line 5),
the set P is divided into two sets, such that PH contains all
tuples of P with X values above Z .v, whereas PL has the
remaining tuples of P . Similarly, the set T is divided into
two sets TL and TH . The algorithm is first performed on PL

and TL recursively to obtain the left child node (i.e., ZL) of
the current node Z . Then, the algorithm is applied on PH and
TH recursively to obtain the right child node (i.e., Z H) of Z .
Finally, the current node Z is returned to the caller.

The output of Algorithm 1 is an E-level tree with 2E − 1
nodes, where each node Z stores the splitting X -values (or
Y -values) Z .v and Z .v′ for the original and the transformed
space, respectively. Clearly, the tree offers a partitioning of
both spaces. Figure 5a shows the original point set P and
Fig. 5b depicts the target point set T . The corresponding
transformation tree with E = 2 levels is shown in Fig. 5c.

To transform an original point p = (x, y) into p′ =
(x′, y′), it suffices to follow one path of the tree (i.e., the
path leading to p). During the traversal, we maintain the
rectangle A = [Axl , Axh] × [Ayl , Ayh] that contains p in
the original space. We also derive the corresponding rectan-
gle A′ = [A′xl , A′xh] × [A′yl , A′yh] that encloses p′ in the
transformed space. The transformed point p′ = (x′, y′) is
determined as:

x′ = FX (x) = A′xl + (A′xh − A′xl) · x − Axl

Axh − Axl
,

(6)
y′ = FY (y) = A′yl + (A′yh − A′yl) · y − Ayl

Ayh − Ayl
.

Figure 5d depicts the location of points in P ′ after
performing the above transformation. For instance, the leaf

123

372 M. L. Yiu et al.

0 1.0

1.0

0.4

0.3

0.7

p1

p4

p2

p3

p8

p7

p6

p5

0 1.0

1.0

0.5

0.6

0.4

(a) (b)

p.x > 0.4?

p.y > 0.3?p.y > 0.7?

yes

yes

no

yes nono

p.x' > 0.5?

p.y' > 0.4? p.y' > 0.6?

p′1

p′4

p′2
p′3 p′8

p′7

p′6
p′5

0 1.0

1.0

0.5

0.6

0.4

(c) (d)

Fig. 5 HSD transformation example, E = 2. a Original set P , b target
set T , c transformation tree, d transformed set P ′

rectangle A = (0, 0.4]×(0, 0.7] containing the original point
p3 corresponds to rectangle A′ = (0, 0.5]× (0, 0.4] contain-
ing the transformed point p′

3. Observe that the distribution
of points in P ′ becomes more similar to T and different
from P .

To decode a transformed point p′ = (x′, y′), we also apply
the transformation procedure described above. The only dif-
ference is that we compute the rectangle A′ that contains p′
in the transformed space and then search the tree in order to
derive the corresponding rectangle A in the original space.
The original point p is determined as:

x = F−1
X (x′) = Axl + (Axh − Axl) · x′ − A′xl

A′xh − A′xl
,

(7)

y = F−1
Y (y′) = Ayl + (Ayh − Ayl) · y′ − A′yl

A′yh − A′yl
.

Both the encoding and the decoding of a point take O(E)

time, since E is the height of the transformation tree.

4.2.2 Range query transformation

The transformation of a range query W is similar to that of
a point, except that all branches of the tree intersecting W
are followed. In this case, we may obtain multiple rectangles
Ai in the original space along with their corresponding rect-
angles A′

i in the transformed space. Figure 6a depicts three
example queries, W1, W2, and W3, in the original space. The
transformed queries are depicted in Fig. 6b. Leaf rectangles
in the original and transformed spaces are labeled Ai and
A′

i , respectively. For instance, W1 intersects only A1, so it
is transformed to region W ′

1 inside rectangle A′
1. Next, W2

1.0

0 1.00.4

0.3

0.7
A1

A2 A4

A3
W1

W2

W3 1.0

0 1.00.5

A′1

A′4

A′3

A′2

W′′′′1

W′′′′2
W′′′′3

0.6

0.4

(a) (b)

Fig. 6 HSD query example, E = 2. a Original P , b transformed P ′

intersects both A3 and A4, so it corresponds to two regions in
A′

3 and A′
4. To avoid leaking any partitioning information to

the attacker, these two regions are not used directly. Instead,
their minimum bounding rectangle (MBR) is taken as the
transformed range query W ′

2. Query W3 is also transformed
into two regions in A′

2 and A′
4. Again, we take their MBR as

the transformed range query W ′
3. In this case, W ′

3 contains
extra space; therefore, some false positives may be retrieved
from the SP. These false positives are discarded by the user
after transforming the result into the original space.

Note that the false positives only affect the query evalua-
tion and communication costs, but do not affect the correct-
ness of the final result. Our experiments show that the number
of false positives tends to be negligible when the query rect-
angle is small compared to the area of a space partition.

4.2.3 Analysis of tailored attack

Recall that the attacker needs to know a subset S ⊆ P of
points before launching the attack. The attacker substitutes
the coordinates of each known point p ∈ S (and the trans-
formed p′ ∈ S′) in Eq. 6. The partitioning rectangle of p′
(i.e., the values of A′xl , A′xh , A′yl , A′yh) can be derived
immediately from p′ provided that the attacker also knows
the value of E . The values of the unknowns Axl , Axh , Ayl ,
Ayh can be found if the attacker knows another point of S in
the same partitioning rectangle as p.

In the HSD transformation key, there are 2E − 1 indepen-
dent key parameters obtained from the distribution of P . To
break the HSD transformation, the attacker needs to acquire
a known subset S ⊆ P with at least 2E − 1 points such that
the subset S contains at least a point for each partition. Such
a worst-case scenario is unlikely to occur. In case most of the
points of S are located in the same partition, the attacker can
only break the local transformation in that partition, not in
the other partitions.

A nice feature of HSD is that all partitions contain the
same number of points, i.e., the maximum number of points
in any partition is minimized. This minimizes the success
probability of the tailored attack.

123

Enabling search services on outsourced private spatial data 373

Table 3 ERB transformation
example, ε = 0.1 Original point Transformed coordinates

〈id,x, y〉 x′ y′

〈id1, 0.4, 0.7〉 0.9·0.4 + 0.1·0.8 = 0.44 0.9·0.7 + 0.1·0.1 = 0.64

〈id2, 0.4, 0.7〉 0.9·0.4 + 0.1·0.3 = 0.39 0.9·0.7 + 0.1·0.8 = 0.71

〈id3, 0.5, 0.6〉 0.9·0.5 + 0.1·0.0 = 0.45 0.9·0.6 + 0.1·0.9 = 0.63

4.3 Preliminary method: ERB transformation

In the literature, perturbation techniques [3,24] have been
applied to inject noise into datasets that are outsourced to
SP for performing data mining tasks. However, this process
is irreversible—individual original points cannot be recon-
structed perfectly from the outsourced data points. We pres-
ent an error-injection technique that is reversible by the data
owner (and query users), but is computationally infeasible to
compromise for an attacker.

A secure hash function converts an arbitrary-length plain-
text message into a fixed-length digest message. It is compu-
tationally infeasible for the attacker to (i) recover the original
message from the digest message, or (ii) find another plain-
text message for generating the same digest message. The
SHA-512 function, approved as a NIST standard [28], com-
putes a 512-bit digest message from its input message. This
function is readily deployable in existing systems. Our Error-
Based Transformation (ERB) is built on top of such a secure
hash function. The core idea is that by dividing the digest
message with its domain size, we obtain a real number in
[0, 1) that can be viewed as a pseudo-random number gen-
erated deterministically from the original message.

4.3.1 Data point transformation

In ERB, the data owner specifies a transformation key con-
sisting of three parameters: an error threshold ε ∈ [0, 1)

and two 512-bit key values KX and KY (whose length is the
security strength of the hash function). We assume that each
point has a unique identifier id. Given an original data point
p = 〈id,x, y〉, its transformed point p′ = 〈id,x′, y′〉 is
computed as follows:

x′ = (1 − ε) · x + ε · SHA(KX ◦ id),

y′ = (1 − ε) · y + ε · SHA(KY ◦ id), (8)

where SHA returns a real number in [0, 1] and ◦ denotes
concatenation.

Table 3 shows an example of the ERB transformation with
error threshold ε = 0.1. Each value generated by SHA is
underlined. Although the locations of the points with IDs
id1 and id2 coincide in the original space, their transformed
locations differ (due to their different IDs). The transformed
locations for the points with IDs id1 and id3 are near to each

other although their original locations are not close. Indeed,
ERB resembles a potential many-to-many mapping, which
is fundamentally different from the one-to-one mapping of
HSD.

Knowing the threshold ε and the key values KX and KY ,
it is trivial to use the ID of a point p′ and its transformed
location (x′, y′) to reconstruct its original location (x, y):

x = (x′ − ε · SHA(KX ◦ id))/(1 − ε),

y = (y′ − ε · SHA(KY ◦ id))/(1 − ε). (9)

4.3.2 Range query transformation

To guarantee that range queries are evaluated correctly, it
suffices to convert an original query W = [xl ,xh]× [yl , yh]
into a transformed query W ′ = [x′

l ,x
′
h]×[y′

l , y
′
h] as follows:

x′
l = (1 − ε) · xl + ε · 0,

x′
h = (1 − ε) · xh + ε · 1. (10)

This is so because any SHA value is bounded between 0
and 1. The values of y′

l and y′
h are derived similarly.

Upon receiving the result of the transformed query W ′
(from the server), the client decodes each transformed result
point p′ back into p and then checks whether p is an actual
result. Observe that there may exist false positives (but not
false negatives) among the points returned by the server. The
parameter ε enables trade-offs between the data distortion
and the number of false positives. For large ε, the transformed
data undergo substantial distortion, but the number of false
positives increases.

4.3.3 Analysis of attacks

Recall that the attacker knows a subset S ⊂ P and the cor-
responding subset S′ ⊂ P ′. In case S is large, it is possi-
ble for the attacker to derive an approximate value of the
error threshold ε (e.g., by employing linear least-squares fit-
ting). For the tailored attack, the attacker substitutes the above
known points and the ε value into Eq. 8, obtaining the SHA
values. These are then exploited to recover their original mes-
sages, in order to discover the keys KX and KY . However,
it is impractical to perform this attack against SHA-512 with
existing computational resources [28].

Regarding the general attack, the attacker’s estimation
error is roughly at the value ε. The reason is that each original

123

374 M. L. Yiu et al.

point coordinate is mapped to a value in an ε-length interval
in the transformed space.

4.3.4 Communication cost analysis

The parameter ε affects the (encoded) result size. To simplify
our analysis, we assume that the original dataset contains n
data points that are uniformly distributed in the unit square
[0, 1]2. We assume that the range query q is a square with side
length r . Let the original query be W = [xl ,xh] × [yl , yh]
and the transformed query be W ′ = [x′

l ,x
′
h] × [y′

l , y
′
h].

According to Theodoridis and Sellis [32], the actual num-
ber of (original) data points that fall into the query range W
is derived as:

RSOPT = n · r2.

Based on the assumption of the square query, we have:

xh − xl = yh − yl = r.

According to the transformation of a range query (see
Eq. 10), we obtain the side length of the transformed query:

x′
h − x′

l = (1 − ε)r + ε.

Since the original dataset follows a uniform distribution,
the transformed dataset also follows a uniform distribution.
Thus, the number of transformed data points that fall into the
transformed query range W ′ is derived as:

RSERB = n · (r + ε(1 − r))2 . (11)

From the above equation, we observe that the communica-
tion overhead of ERB (over the optimal cost) becomes low
when ε is small or r is large.

4.4 Enhanced method: HSD* transformation

The HSD transformation technique partitions the space and
then applies a distinct linear transformation function for each
partition. However, an attacker who knows two points in the
same partition can infer the precise transformation function
used in that partition. Although the ERB transformation is
resistant against the above attack, it incurs high query costs
for typical values of ε.

We develop a novel transformation called Enhanced HSD
(HSD*) that exploits the strengths of HSD and ERB: It
applies the HSD transformation for the global space and then
performs the ERB transformation at the level of partitions.

4.4.1 Transformation of data points and range queries

In HSD*, the transformation key consists of 2(2E −1) parti-
tioning values, as in HSD, and an error threshold ε together
with two 512-bit keys KX and KY , as in ERB.

First, we apply Algorithm 1 to decompose the space into
2E disjoint partitions. To transform an original point p =
〈id,x, y〉 into p′ = 〈id,x′, y′〉, it suffices to find the rect-
angle A = [Axl , Axh] × [Ayl , Ayh] that contains (x, y)

in the original space, and the corresponding rectangle A′ =
[A′xl , A′xh]×[A′yl , A′yh] that encloses (x′, y′) in the trans-
formed space. Value x′ is then computed as follows:

x′ = A′xl + (A′xh − A′xl)

·
(

(1 − ε) · x − Axl

Axh − Axl
+ ε · SHA(KX ◦ id)

)
. (12)

Value y′ is computed similarly.
For the transformation of a range query W , we follow the

procedure presented in Sect. 4.2. The only difference is that
we now apply Eq. 12 in each local partition to convert each
subquery (in a partition) into a subquery in the transformed
space.

4.4.2 Analysis of attacks

We now examine the tailored attack on the HSD* method.
As in HSD, the attacker formulates a system of equations
by substituting the coordinates of known points. However,
even if the attacker knows two points in the same partition,
the SHA values in the transformed points prevent the leakage
of the transformation key in that partition. HSD* inherits its
security strength from ERB and is thus computationally hard
to break, as explained in Sect. 4.3.

4.5 Supporting k nearest neighbor search

We proceed to develop a method for processing k nearest
neighbor (kNN) queries on transformed data. It is designed
to guarantee the retrieval of exact kNN results. Also, the
proposed method is generic and thus applicable to all the
transformations (HSD, ERB, HSD*) described earlier.

4.5.1 Transformed incremental kNN search

Algorithm 2 shows the pseudo-code of a client-side method
for performing kNN search on transformed data at the server.
The querying user specifies the query point q and the number
k of required results. In addition to that, the algorithm also
needs to know the transformation method T RN and the key
value K used for the transformation.

First, it employs a result heap RH for maintaining the k
points closest to q seen so far. The variable γ denotes the
top distance (i.e., the largest one) stored in RH. The query
point q is converted to a query point q ′ in the transformed
space. The client then issues the incremental nearest neigh-
bor search (INN) query [18] to the server, in order to retrieve
(transformed) points in ascending order of their distances

123

Enabling search services on outsourced private spatial data 375

from q ′. It is worth noticing that we replace the distance
metric used in INN by the L∞ norm in order to simplify geo-
metric comparisons that we will encounter shortly. In Line
7, the point p′ is retrieved from the server as the next closest
point to q ′ (in the transformed space). The variable τ repre-
sents the largest L∞ distance from q ′ of points seen. We then
define a square region SQ′ with q ′ as its center and 2τ as its
side length. The property of INN search guarantees that any
(transformed) point in SQ′ has been retrieved.

Next, the client decodes the transformed point p′ back to
its original point p. In case q is closer to p than some existing
point in the result heap RH, we update RH and the kNN dis-
tance γ by using p. We then formulate another square region
W with q as its center and 2γ as its side length. Observe
that the region W is guaranteed to cover the actual kNN of
q, regardless of whether the actual kNN results have been
retrieved or not. In Line 14, we apply the transformation to
convert W into a set of rectangles B. The loop in Lines 6–15
terminates if the searched region SQ′ covers each rectangle
of B, as the actual kNN of q must then have been retrieved.
After that, the client terminates the incremental NN query at
the server and reports the points of RH as the result to the
query user.

4.5.2 Example

We illustrate the running steps of the above algorithm using
an example. Assume that the user wishes to perform a kNN
search at the query location q, with k = 1. Figure 7a, b
shows the locations of points in the transformed space and
the original space, respectively.

Algorithm 2 Transformed Incremental NN Search Method
at Client-Side

q′
p′1

p′2

SQ′1

SQ′2

W′
q

p1

p2

γ

2γ

W

(a) (b)

Fig. 7 Example of transformed incremental kNN search, at k = 1.
a Transformed space, b original space

First, the client computes the transformed query point q ′
and issues the incremental NN query at q ′ to the server (using
the L∞ norm as the distance metric), in Fig. 7a. The server
reports the point p′

1. Based on the property of INN search,
we conclude that any (transformed) point in the square region
SQ′

1 has been retrieved. The client then computes the corre-
sponding original point p1 from p′

1 and updates the NN to be
p1 (see Fig. 7b). The current NN distance γ is dist (q, p1).
Then the square region W is defined by its center q and side
length 2γ . It is guaranteed that W contains the actual NN of q.

The client then converts W to the rectangle W ′ in the
transformed space, as shown in Fig. 7a. Since the region SQ′

1
does not contain W ′, the search continues. Next, the server
retrieves the point p′

2 as the next closest point to q ′. The
region SQ′

2 (defined by p′
2) now contains W ′, meaning that

it is not possible to find other points in W ′ in the future. The
client algorithm terminates and returns p1 as the actual NN
of q.

It is worth noticing that the server only knows the trans-
formed query point q ′, the retrieved points p′

1 and p′
2 (and

their associated square regions SQ′
1 and SQ′

2). The server
does not know the original query point q and the rectangles
W and W ′ (computed at the client side).

5 Cryptographic transformation

This section presents our CRT technique and discusses how
to minimize the query processing cost incurred by this tech-
nique.

5.1 CRT transformation

The CRT employs conventional cryptographic techniques
(e.g., AES [1]) to achieve data confidentiality. CRT pro-
vides provable confidentiality guarantees, inherited from the
encryption technique. The advantage of CRT is that spa-
tial information is completely obscured in the transformed
data, thwarting any type of location-based attack (such as the

123

376 M. L. Yiu et al.

general attack). However, query processing at the SP is
rendered difficult.

5.1.1 Range search

CRT employs R∗-trees, and it is a substantial extension over
the encrypted B+-trees of Damiani et al. [8]. The objective of
CRT is to let the user learn the exact query result, while mini-
mizing the communication cost between the user and the SP.
In contrast to the setting assumed by Damiani et al. [8], our
architecture does not require the existence of a tamper-resis-
tant device at the SP. This creates the additional challenge
of answering queries through a distributed, multiple-round
protocol between the query user and the SP.

The functionality of CRT is exemplified in Fig. 8. Data
points (e.g., a, b, c) are stored in an encrypted index (only
the relevant part is shown). To find the result for query q, the
encrypted root (node A) is sent to user U , who decrypts A
and determines that the MBR of node B intersects q. Then U
retrieves node B from the SP and computes the query result
(i.e., point b). Every index node that intersects q must be
sent to the user. The protocol operates in this level-by-level
manner, and the number of communication rounds equals the
tree height.

Assuming an average node fan-out f , the user needs to
retrieve f pairs of encrypted coordinates for each node; there-
fore, the communication cost is proportional to f . However,
a large f translates into a lower index height and a smaller
number of accessed internal nodes. Therefore, an optimal
choice of f exists that minimizes the communication cost.
Observe that CRT is likely to incur higher communication
cost than HSD, especially for queries with small extent. The
reason is that CRT will always return at least one entire leaf
node. If, for instance, the result set contains a single point,
CRT returns the entire node, incurring a cost proportional
to f .

5.1.2 kNN search

As before, we apply the state-of-the-art incremental nearest
neighbor algorithm [18] for performing the kNN search on
top of CRT.

a b c

Request B

Send A
A

c

b

a

q

B

B

MBR(B) ...

A (root)

...

...
Send B

SP

Decrypt A

Decrypt B

Result = b

User

(a) (b) (c)

Fig. 8 Query processing in CRT. a Data, b Encrypted Index, c Query
Protocol

Table 4 Experimental parameter settings

Parameter Values

Method BULK, OPT, HSD, ERB, HSD*, CRT

Dataset OL, TG, NE, NA, SF

Target set (for HSD/HSD*) OL, TG, UI, NA, SF

Key size ϒ (for HSD/HSD*) 64, 256, 1024, 4096

Error ε (for ERB/HSD*) 0.05, 0.10, 0.15, 0.20, 0.25

Node capacity (for CRT) 5, 10, 20, 50, 100, 200

Query window extent 0.005, 0.01, 0.02, 0.05, 0.1

k 1, 2, 5, 10, 20

|S| 20, 50, 100, 200, 500

Covering radius of S 0.05, 0.10, 0.25, 0.50, 1.00

(a) (b.1) (c.1)

(b.2) (c.2)

Fig. 9 Visualization of North America points (NA). a Original points,
b.1 HSD encoded, b.2 general attack, c.1 ERB encoded, c.2 general
attack

Let mindist (q, e) denote the minimum distance between
a query point q and an R-tree entry e [18]. At the client
side, a min-heap H is employed for organizing entries of the
tree to be visited in the ascending order of their (minimum)
distances from q. The client first requests the encrypted root
node from the server, and then it decrypts the node and inserts
all entries of the node into H .

In each iteration, the client deheaps the top entry ecur

of H , and checks whether mindist (q, ecur) is greater than
the best kNN distance found so far. If so, the client termi-
nates the search, as it is guaranteed to have found the actual
kNN objects. Otherwise, the client requests the child node of
ecur from the server and then decrypts the node. In case the
retrieved node is a leaf node, the entries in the node are used
to update the kNN objects found so far. If the retrieved node
is a non-leaf node, its entries are inserted into the min-heap
H . The above procedure is repeated until the termination
condition (discussed earlier) is satisfied.

123

Enabling search services on outsourced private spatial data 377

As a remark, the number of communication rounds of this
search method is equal to the number of node requests sent
from the client to the server.

5.2 Analysis of communication cost

To determine the optimal fan-out f for the R∗-tree, we
employ the analysis of Böhm [4] to determine the expected
number of nodes accessed by a range query, assuming a uni-
form data distribution. Given a generic index, i.e., a parti-
tioning of n data points into a set of nodes represented as
hyper-rectangles, each with capacity f , and a (square) range
query q with side r , the estimated number of nodes inter-

sected by q is
(

r
√

n
f + 1 − 1

f

)2
. By applying this at each

level of the R∗-tree, the total number of nodes accessed by q
becomes:

Cost(f, r, n) =
�log f n�∑

i=1

(
r

√
n

f i
+ 1 − 1

f i

)2

. (13)

Therefore, the communication cost is f · Cost(f, r, n).
We can determine the f value that minimizes the cost using
numerical methods. The end-to-end user time is computed
as:

RT T · �log f n� + f · Cost(f, r, n) · (ϑT + ϑD) ,

where RT T is the round-trip network time and ϑT and ϑD

are the average data transfer time and decryption time per
entry.

6 Experimental study

Table 4 summarizes the techniques and parameter values
used in the study. Unless stated otherwise, their default val-
ues, shown in bold, are used. In addition to our proposed
solutions (HSD*, CRT), we cover two preliminary solutions
(HSD, ERB) and also introduce two benchmark methods in
our comparison. Thus, BULK is a secure solution that stores
the whole encrypted dataset at the server; when a query is
issued, the client retrieves the entire dataset in a brute-force
manner. In contrast, OPT is an insecure solution that stores
the original dataset at the server and has optimal communi-
cation cost (i.e., no false positives).

We evaluate the techniques using four real spatial datasets:
Oldenburg (OL: 6, 105 points), San Joaquin County (TG:
18, 263 points), San Francisco (SF: 174, 956 points), North
America (NA: 175, 813 points), and North East USA (NE:
123, 593 points). The datasets OL, TG, and SF were obtained

(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)

(a.3) (b.3) (c.3)

Fig. 10 Visualization of perturbed points and recovered points. a.1
DIAG dataset, a.2 noise, a.3 recovered, b.1 CIRC dataset, b.2 noise,
b.3 recovered, c.1 NA dataset, c.2 noise, c.3 recovered

from Brinkhoff et al. [5], the dataset NA was available at the
Digital Chart of the World,3 and the dataset NE was obtained
from the R-tree portal.4 In particular, the points in the NE
dataset correspond to real postal addresses in New York,
Philadelphia, and Boston, so the dataset matches well the
real-estate company outsourcing application covered in the
introduction.

The domain of each dataset is normalized to the unit square
[0, 1]×[0, 1]. The target set (for HSD/HSD*) is used to spec-
ify the distribution of points in the transformed space; it is
fixed to the uniform independent distribution (UI) by default.
The key size ϒ (for HSD/HSD*) denotes the number of val-
ues in the spatial transformation key. ERB/HSD* requires an
error threshold value ε, whereas CRT uses a node capacity
parameter.

Regarding the query distribution, we generate each range
query as a randomly distributed square region with a default
side length of 2% of the domain space extent. The query
point of each kNN query is randomly generated from the
domain space, and the default value of k is 5. We assess the
query performance in terms of communication cost, which is

3 http://www.maproom.psu.edu/dcw.
4 http://www.rtreeportal.org.

123

http://www.maproom.psu.edu/dcw
http://www.rtreeportal.org

378 M. L. Yiu et al.

Table 5 Communication cost
(KBytes) of queries, default
setting

Dataset BULK OPT HSD ERB HSD* CRT

Range query cost

OL 119.23 0.17 0.30 9.05 0.36 3.77

TG 356.69 1.62 3.66 53.29 4.04 7.12

NE 2413.92 4.61 9.21 218.65 10.88 13.43

SF 3417.10 12.02 22.98 417.75 26.04 24.17

NA 3433.84 4.97 8.50 305.22 10.35 13.92

kNN query cost

OL 119.23 0.098 0.64 8.74 0.73 3.51

TG 356.69 0.098 1.69 47.19 1.91 3.79

NE 2413.92 0.098 0.60 186.44 1.06 5.36

SF 3417.10 0.098 2.90 353.22 3.70 5.44

NA 3433.84 0.098 0.37 254.65 0.90 4.85

the dominant cost component. The reported cost is taken as
the average over 100 experimental instances. We represent
each identifier (ID) by 4 bytes, and each point coordinate in
double precision IEEE 754 format (8 bytes). Hence, a data
point takes 20 bytes (i.e., ID and 2 coordinates). In the CRT
method, each non-leaf MBR entry takes 36 bytes (i.e., ID
and 4 coordinates). The cost of CRT includes the messages
sent from the SP to the user (i.e., encrypted blocks), as well
as those sent from the user to the SP (i.e., requests for indi-
vidual data blocks). For some experiments, we report the
end-to-end-user time, which captures not only the communi-
cation time, but also the round trip delay and the decryption
time at the client side.

We consider the robustness of our methods against var-
ious attacks, in which the attacker knows a subset S ⊂ P
of the original points and its transformed set S′ ⊂ P ′. S is
generated by picking a random subset of P , based on two
parameters: the cardinality |S| and the covering radius r of
S (i.e., the radius of the minimum enclosing circle of S).
The general attack is applicable to HSD, ERB, and HSD*,
which employ spatial transformations of the data. Here, we

measure the security in terms of the attacker’s estimation
error, as mentioned in Sect. 4.1. The tailored attack requires
the attacker to derive the exact locations of original points,
so it is applicable only to HSD. In this case, we measure
the security by the leakage percentage, i.e., the fraction of
key parameters derivable by the attacker (the lower the
better). Recall from Sects. 4.3 and 4.4, that it is computa-
tionally infeasible to launch the tailored attack against ERB
and HSD*. CRT is used in conjunction with the 256-bit
key AES [1] encryption scheme, and therefore it inherits
the provable security guarantees of AES. CRT is vulnera-
ble to neither tailored nor general attacks based on spatial
information.

6.1 Visualization and attacks

We visualize the proposed transformations using the real spa-
tial point set NA. Figure 9a shows the original point set.
Note that the Western and Eastern parts have comparatively
high densities. Figure 9b.1 depicts the data transformed by
HSD, with ϒ = 1, 024, i.e., E = 10. The transformed data

Fig. 11 End-to-end user time
(s), NE data. a Range query
cost, b kNN query cost

0

5

 10

 15

 20

 25

OPT HSD ERB HSD* CRT

E
nd

-t
o-

en
d

us
er

 ti
m

e
(s

ec
on

ds
)

Method

Decryption
RoundTrip

Transfer

0

2

4

6

8

 10

 12

 14

 16

 18

 20

OPT HSD ERB HSD* CRT

E
nd

-t
o-

en
d

us
er

 ti
m

e
(s

ec
on

ds
)

Method

Decryption
RoundTrip

Transfer

(a) (b)

123

Enabling search services on outsourced private spatial data 379

distribution is completely different from the original one.
Figure 9c.1 illustrates the data transformed by ERB, at
ε = 0.15. The distortion achieved is weaker than that of HSD.
Nevertheless, it is able to hide particular characteristics from
the original dataset, e.g., the “holes” in the West, the exact
densities of dense regions, and outliers (in the Northwest,
South, and Southeast). We then apply the general attack (with
the default parameter values) on these transformed datasets
obtained from HSD and ERB. The corresponding estimated
datasets are shown in Fig. 9b.2, c.2, respectively. The attacker
learns vaguely that few of the points are distributed at the
boundary of the map. However, the attacker cannot precisely
reconstruct the exact locations of all original data points.

Next, we study whether a dataset transformed by ERB
(i.e., a perturbation method) can be exploited by the noise
removal attack [20] for reconstructing the original dataset. In
addition to the real dataset NA, we introduce two synthetic
datasets for the sake of comparison: (i) the DIAG dataset
(in Fig. 10a.1) contains 5,000 points following a diagonal
pattern, and (ii) the CIRC dataset (in Fig. 10b.1) contains
5,000 points following a circular pattern.

Figure 10a.1, a.2, a.3 shows the original DIAG dataset, the
transformed DIAG dataset (by ERB), and the reconstructed
dataset from the transformed data, respectively. The noise
removal attack successfully reconstructs the original data-
set in this case. Figure 10b.1, b.2, b.3 illustrates the original
CIRC dataset, the transformed CIRC dataset (by ERB), and
the reconstructed dataset, respectively. The noise removal
attack fails to reconstruct the original data from the trans-
formed data, even though the original data follows only a sim-
ple distribution. Figure 10c.1, c.2, c.3 depicts the original NA
dataset, the transformed NA dataset (by ERB), and the recon-
structed dataset, respectively. The ERB transformation suc-
cessfully protects the NA dataset against the noise removal
attack.

The robustness of ERB against the attack described by
Kargupta et al. [20] is explained as follows: previous pertur-
bation techniques (which are easily compromised by noise
filtering) do not use secret transformation keys; therefore,
data processing and noise filtering have equal capabilities.
To preserve utility of processing, the noise introduced cannot
be very large, so the filtering is also successful. On the other
hand, the secret transformation keys KX,Y used in ERB give
authorized users additional information to correctly recon-
struct the data, even if the magnitude of injected noise is
large. In contrast, such information is not available to the
attacker; therefore, noise filtering is not successful.

6.2 Effect of data distribution

The next experiment studies the effect of data distribution on
our transformation techniques. Table 5 shows the communi-
cation cost of range queries and kNN queries for different

Table 6 Attacker estimation error

Dataset HSD ERB HSD*

OL 0.1186 0.0745 0.1181

TG 0.1940 0.0807 0.1933

NE 0.2045 0.0834 0.2041

SF 0.1342 0.0837 0.1347

NA 0.1254 0.0793 0.1250

datasets. In general, the cost trends for both range and kNN
queries are similar. The costs of our techniques (HSD, ERB,
HSD*, CRT) are much lower than that of the baseline solution
BULK. ERB is relatively expensive because the amount of
query expansion depends on the error threshold ε. The HSD*
solution shares the features of both HSD and ERB, yet its
cost is much below that of ERB. CRT incurs the overhead of
transferring the intermediate nodes; this overhead becomes
especially high in the case of kNN queries. Observe that in
the CRT method, the server is required to send at least one
path of tree nodes to the client, so its communication cost for
kNN queries is much higher than that of HSD/HSD*.

Figure 11 illustrates the end-to-end user time of the pro-
posed methods evaluating range queries and kNN queries on
the NE dataset. The end-to-end user time has three compo-
nents: (i) the data transfer time, (ii) the round-trip network
delay time, and (iii) the client-side decryption time. The cli-
ent used in this experiment is a Pocket PC (HP iPAQ hw6915,
with a 416MHz CPU). The AES decryption time and the SHA
computation time for a data point are both 20μs at the cli-
ent side. The transfer bandwidth of GPRS is 80 Kbits/s and
the round-trip delay time is 1 s [31]. The cost of BULK is
not shown here because it uses 241 s for transferring the data
alone, not to mention its high client-side decryption time. The
cost of OPT is shown for comparison purpose only. Observe
that all of HSD, ERB, HSD*, and CRT incur only a low client-
side decryption time. HSD* is slightly more expensive than
HSD. In this experiment, CRT incurs an average of 4 round-
trips per range query and 6.5 round-trips per kNN query. In
comparison, HSD/HSD* only incurs a single round-trip per
query. Thus, the end-to-end user time of CRT is substan-
tially higher than that of HSD/HSD*, even though they have
comparable data transfer time.

We proceed to study the robustness of our methods against
the general attack. Table 6 shows the attacker’s estimation
error for all datasets; the higher this value, the better. HSD*
has an estimation error similar to that of HSD because the
global distortion of the data in HSD* is determined by the
key parameters in HSD, not by the value of ε. HSD/HSD*
consistently leads to a higher estimation error than ERB, for
all datasets.

We also considered the tailored attack on HSD, measur-
ing the percentage of parameters of the transformation key

123

380 M. L. Yiu et al.

(a) (b.1) (c.1) (d.1) (e.1) (f.1)

(b.2) (c.2) (d.2) (e.2) (f.2)

(b.3) (c.3) (d.3) (e.3) (f.3)

Fig. 12 Effect of the target set on the transformed dataset by
HSD/HSD*. a P = NE data, b.1 T = UI data, b.2 NE �UI, b.3 general
attack, c.1 T = OL data, c.2 NE � OL, c.3 general attack, d.1 T = TG

data, d.2 NE �TG, d.3 general attack, e.1 T = NA data, e.2 NE�NA,
e.3 general attack, f.1 T = SF data, f.2 NE � SF, f.3 general attack

that can be determined by the attacker (i.e., leaking percent-
age). We found that the leakage of HSD remains low (i.e., at
most 5%) across all datasets, and we found that the method
is insensitive to the data distribution.

Table 7 Attacker estimation
error, P = NE dataset Target set T HSD HSD*

UI 0.2045 0.2041

OL 0.2536 0.2535

TG 0.2757 0.2743

SF 0.1903 0.1896

NA 0.2273 0.2277

Table 8 Communication cost (KBytes), P = NE dataset

Target set T Range query cost kNN query cost

HSD HSD* HSD HSD*

UI 9.217 10.889 0.602 1.063

OL 11.616 13.485 2.006 2.692

TG 10.580 12.417 5.739 10.132

SF 10.376 12.119 2.478 4.266

NA 11.501 13.379 0.918 1.802

In subsequent experiments, dataset NE is used as the
default.

6.3 Effect of target set distribution

Recall that HSD/HSD* employs a target dataset T for extract-
ing part of the key parameters for transformation. Specifi-
cally, the original dataset P is transformed in such a way that
its distribution becomes similar to that of T .

In the next experiment, we fix P to the NE dataset (see
Fig. 12a). Then, we study the impact of the estimation error,
with respect to various distributions of T (see Fig. 12b.1–
f.1). The caption “NE � UI” of Fig. 12b.2 corresponds to
the transformed dataset obtained by fixing P to NE and set-
ting T to UI. The other transformed datasets are shown in
Fig. 12c.2–f.2. Clearly, the transformed datasets appear very
similar to their respective target dataset, but are different from
the original dataset. We then apply the general attack (with
the default setting) on these transformed datasets, and obtain
their corresponding estimated datasets in Fig. 12b.3–f.3. The
attacker only learns that most of the points are distributed
on the left side of the map; however, the data distributions
of these estimated datasets remain significantly different
from the original dataset P . Specifically, the estimation error

123

Enabling search services on outsourced private spatial data 381

Fig. 13 Effect of the key size
ϒ on HSD/HSD*. a Range
query cost, b kNN query cost,
c leakage percentage

 5

 10

 15

 20

 64 256 1024 4096

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

Key size

HSD
HSD*

 0

 1

 2

 3

 4

 5

 64 256 1024 4096

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

Key size

HSD
HSD*

(a) (b)

 0

 20

 40

 60

 80

 100

 64 256 1024 4096

Le
ak

ag
e

%
 o

f k
ey

 p
ar

am
et

er
s

Key size

HSD(c)

of each estimated dataset from the original dataset is listed in
Table 7. Depending on the target data distribution, the esti-
mation error ranges from 0.189 to 0.275. Although the NE
dataset (original) looks similar to the SF dataset (target), the
estimation error remains acceptable. Observe that the esti-
mated dataset in Fig. 12f.3 appears very different from the
original dataset in Fig. 12a.

We proceed to study the communication cost of range
and kNN queries on the above transformed datasets. Table 8
shows the query cost for various target sets T . For range que-
ries, the cost of HSD/HSD* is relatively insensitive to the
distribution of the target set, and HSD* is only 20% more
expensive than HSD. The cost of kNN queries is more sen-
sitive to the distribution of T . Interestingly, the target set TG
that incurs the highest query cost for kNN queries is also the
one that leads to the highest estimation error (see Table 7).

6.4 Effect of method-specific parameters

Figure 13a, b illustrates the query cost of HSD/HSD* for
range queries and kNN queries, respectively, for different
values of the key size ϒ . The cost of HSD rises slightly as
ϒ increases. At a large ϒ value, the area of each partition
becomes small, so the relative amount of noise injected by
HSD* into the dataset also becomes small. This explains
why the cost of HSD* decreases when ϒ increases. We then
investigate the tailored attack on HSD—Fig. 13c illustrates
the leakage percentage of HSD as a function of ϒ . The leak-
age percentage drops quickly as ϒ increases. It is practically
safe to use a moderate key size (e.g., 1,024) for HSD.

Figure 14a, b shows the cost of ERB/HSD* for range
and kNN queries as a function of ε. Observe that the cost
of HSD* is much lower than that of ERB and that the perfor-
mance gap widens as ε increases. Next, we study the impact
of the general attack on ERB/HSD*; Fig. 14c plots the esti-
mation error with respect to ε. ERB provides the data owner
flexibility in tuning the attacker’s estimation error (by chang-
ing the ε value). The estimation error of HSD* is not signifi-
cantly influenced by ε. The reason is that the rough outline of
the transformation is defined by the parameters of the spatial
transformation key; the value ε is only used to displace the
points within the same partition.

Figure 15a, b shows the end-to-end user time of CRT for
range and kNN queries when varying the node capacity of the
encrypted R∗-tree. At a small node capacity value, the tree
has many levels, so the majority of time is spent on the round-
trips. On the other hand, the data transfer time becomes high
at a large node capacity. The cost of CRT follows a “U”-
shaped trend, which is consistent with the prediction of our
cost model from Sect. 5.2. Since the optimal capacity stays
close to 50, we fix the node capacity value to 50 in the remain-
ing experiments.

6.5 Effect of query parameters

Figure 16a, b plots the communication cost of range and kNN
queries as a function of the query extent and k, respectively.
ERB incurs a much higher cost when compared to its com-
petitors. Due to the overhead of intermediate nodes, CRT is
more expensive than HSD/HSD* for small query extents or

123

382 M. L. Yiu et al.

Fig. 14 Effect of the error
threshold ε on ERB/HSD*.
a Range query cost, b kNN
query cost, c estimation error

 0

 100

 200

 300

 400

 500

 600

 0.05 0.1 0.15 0.2 0.25

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

Epsilon

ERB
HSD*

 0

 100

 200

 300

 400

 500

 0.05 0.1 0.15 0.2 0.25

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

Epsilon

(a) (b)

 0

 0.1

 0.2

 0.3

 0.05 0.1 0.15 0.2 0.25

A
tta

ck
er

 e
st

im
at

io
n

er
ro

r

Epsilon

(c)

ERB
HSD*

ERB
HSD*

Fig. 15 Effect of node capacity
on end-to-end user time (s).
a Range query cost, b kNN
query cost

 0

 2

 4

 6

 8

 10

5 10 20 50 100 200

E
nd

-t
o-

en
d

us
er

 ti
m

e
(s

ec
on

ds
)

Node capacity

Decryption
RoundTrip

Transfer

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

5 10 20 50 100 200

E
nd

-t
o-

en
d

us
er

 ti
m

e
(s

ec
on

ds
)

Node capacity

(a) (b)

Decryption
RoundTrip

Transfer

Fig. 16 Effect of query
parameters on query
communication cost. a Varying
range extent, b varying k

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 0.02 0.04 0.06 0.08 0.1

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

Query window extent

HSD
ERB

HSD*
CRT

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20

C
om

m
un

ic
at

io
n

C
os

t (
K

B
yt

es
)

k

(a) (b)

HSD
ERB

HSD*
CRT

123

Enabling search services on outsourced private spatial data 383

Fig. 17 Estimation error with
respect to S a versus |S|,
b versus covering radius of S

 0

 0.1

 0.2

 0.3

 0 50 100 150 200 250 300 350 400 450 500

A
tta

ck
er

 e
st

im
at

io
n

er
ro

r
|S|

HSD
ERB

HSD*

 0

 0.1

 0.2

 0.3

 0 0.2 0.4 0.6 0.8 1

A
tta

ck
er

 e
st

im
at

io
n

er
ro

r

Covering radius of S

(a) (b)
HSD
ERB

HSD*

small k. However, for large query extents or large k, the over-
head of CRT becomes relatively small, and its cost becomes
close to that of HSD/HSD*.

6.6 Effect of the known set S

We proceed to study the impact of the general attack on
HSD/ERB/HSD*. Figure 17a plots the attacker estimation
error as a function of the number |S| of known points. When
|S| increases, the estimation error decreases and then con-
verges to a constant value. The convergence occurs because,
for a larger S (and a fixed covering radius r), the known points
tend to cluster together, thus carrying redundant information.
Hence, the attacker gains no additional knowledge. The pro-
tection of HSD/HSD* is better than that of ERB.

Figure 17b shows the estimation error with respect to the
covering radius r of S. Compared to ERB, HSD/HSD* is
more powerful in distorting the space of transformed points.
When r is low, all points in S are close to each other, and
little information is leaked to the attacker. As r grows, the
known points are more uniformly distributed in the original
space, increasing the success probability of an attack (i.e.,
lower estimation error). The error for HSD/HSD* stabilizes
after the covering radius reaches 50% of the space, thus con-
firming its robustness.

7 Conclusion

Content sharing and collaboration services allow subscrib-
ers to share private spatial data (e.g., points of interest, geo-
tagged business data) with authorized users. In this scenario,
it is attractive to be able to maintain data confidentiality
with respect to untrusted parties, including the SP. The paper
presents methods to encode a dataset such that only autho-
rized users can access the content, while the SP “blindly”
evaluates queries, without seeing the actual data. We con-
tribute a spatial transformation HSD*, that allows efficient
spatial query processing. We study its security guarantees
under tailored and general attack models. We also contribute

the CRT method, which is based on encryption and offers
very high confidentiality guarantees, but also incurs a large
number of communication rounds.

It is important for the data owner to choose an appropriate
transformation method that best matches her requirements.
Recall that our transformation methods achieve different
trade-offs between data privacy and query efficiency. In case
the data owner requires perfect data privacy, we recommend
the CRT method, whose end-to-end user time is only three
times that of the optimal method (OPT). For other cases, we
recommend the HSD* method because it offers the advan-
tages of both of the preliminary methods HSD and ERB: (i)
efficient query processing, (ii) robustness against the general
attack, and (iii) robustness against the tailored attack when
the adversary has polynomially bounded computational
power.

A promising future direction is to extend the proposed
techniques to also support other types of spatial queries in
addition to the fundamental range and kNN queries, includ-
ing spatial joins and skyline queries.

References

1. Advanced Encryption Standard (AES): NIST—Federal Informa-
tion Processing Standards Publication 197, Nov (2001)

2. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving
encryption for numeric data. In: SIGMOD (2004)

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIG-
MOD (2000)

4. Böhm, C.: A cost model for query processing in high-dimensional
data spaces. ACM TODS 25(2), 129–178 (2000)

5. Brinkhoff, T.: A framework for generating network-based moving
objects. GeoInformatica 6(2), 153–180 (2002)

6. Butz, A.R.: Alternative algorithm for Hilbert’s space-filling
curve. IEEE Trans. Comput. C-20(4), 424–426 (1971)

7. Cheng, W., Pang, H., Tan, K.-L.: Authenticating multi-dimensional
query results in data publishing. In: DBSec (2006)

8. Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S.,
Samarati, P.: Balancing confidentiality and efficiency in untrust-
ed relational DBMSs. In: CCS (2003)

9. Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.G.: Authentic
data publication over the Internet. J. Comput. Secur. 11(3), 291–
314 (2003)

123

384 M. L. Yiu et al.

10. Dwork, C.: Differential privacy: a survey of results. In: TAMC,
pp. 1–19 (2008)

11. Gedik, B., Liu, L.: Location privacy in mobile systems: a person-
alized anonymization model. In: ICDCS (2005)

12. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.:
Private queries in location based services: anonymizers are not
necessary. In: SIGMOD (2008)

13. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anony-
mization with low information loss. In: VLDB (2007)

14. Goldreich, O., Ostrovsky, R.: Software protection and simulation
on oblivious rams. J. ACM 43, 431–473 (1996)

15. Gruteser, M., Grunwald, D.: Anonymous usage of location-based
services through spatial and temporal cloaking. In: USENIX
MobiSys (2003)

16. Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL
over encrypted data in the database-service-provider model. In:
SIGMOD (2002)

17. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a
service. In: ICDE (2002)

18. Hjaltason, G.R., Samet, H.: Distance browsing in spatial dat-
abases. TODS 24(2), 265–318 (1999)

19. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Prevent-
ing location-based identity inference in anonymous spatial que-
ries. IEEE TKDE 19(12), 1719–1733 (2007)

20. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy
preserving properties of random data perturbation techniques. In:
ICDM (2003)

21. Khoshgozaran, A., Shahabi, C.: Blind evaluation of nearest neigh-
bor queries using space transformation to preserve location privacy.
In: SSTD (2007)

22. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidi-
mensional k-anonymity. In: ICDE (2006)

23. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond
k-anonymity and l-diversity. In: ICDE (2007)

24. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multi-
plicative data perturbation for privacy preserving distributed data
mining. IEEE TKDE 18(1), 92–106 (2006)

25. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam,
M.: l-Diversity: privacy beyond k-anonymity. In: ICDE (2006)

26. Merkle, R.C.: A certified digital signature. In: CRYPTO (1989)
27. Mokbel, M.F., Chow, C.-Y., Aref, W.G.: The new casper: query

processing for location services without compromising privacy.
In: VLDB (2006)

28. National Institute of Standards and Technology. Secure Hashing.
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

29. Papadimitriou, S., Li, F., Kollios, G., Yu, P.S.: Time series com-
pressibility and privacy. In: VLDB (2007)

30. Samarati, P.: Protecting respondents’ identities in microdata
release. IEEE TKDE 13(6), 1010–1027 (2001)

31. Stuckmann, P., Ehlers, N., Wouters, B.: GPRS traffic perfor-
mance measurements. In: IEEE Vehicular Technology Conference
(2002)

32. Theodoridis, Y., Sellis, T.K.: A model for the prediction of R-tree
performance. In: PODS (1996)

33. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. In: VLDB (1998)

34. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud:
practical access pattern privacy and correctness on untrusted stor-
age. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS), pp. 139–148 (2008)

35. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure k-NN
computation on encrypted databases. In: SIGMOD (2009)

36. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial out-
sourcing for location-based services. In: ICDE (2008)

37. Yiu, M.L., Ghinita, G., Jensen, C.S., Kalnis, P.: Outsourcing search
services on private spatial data. In: ICDE (2009)

38. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: Manag-
ing the trade-offs among location privacy, query performance, and
query accuracy in mobile services. In: ICDE (2008)

123

http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

	Enabling search services on outsourced private spatial data
	Abstract
	1 Introduction
	1.1 Motivating applications
	1.2 Problem scenario
	1.3 Challenges
	1.4 Contributions

	2 Related work
	2.1 Outsourced databases
	2.2 Privacy-preserving data publication
	2.3 Location privacy

	3 Problem setting
	4 Spatial transformations
	4.1 Attack models
	4.1.1 Estimation distortion
	4.1.2 Attacks without background knowledge
	4.1.3 Attacks with background knowledge
	4.1.4 Discussion

	4.2 Preliminary method: HSD transformation
	4.2.1 Data point transformation
	4.2.2 Range query transformation
	4.2.3 Analysis of tailored attack

	4.3 Preliminary method: ERB transformation
	4.3.1 Data point transformation
	4.3.2 Range query transformation
	4.3.3 Analysis of attacks
	4.3.4 Communication cost analysis

	4.4 Enhanced method: HSD* transformation
	4.4.1 Transformation of data points and range queries
	4.4.2 Analysis of attacks

	4.5 Supporting k nearest neighbor search
	4.5.1 Transformed incremental kNN search
	4.5.2 Example

	5 Cryptographic transformation
	5.1 CRT transformation
	5.1.1 Range search
	5.1.2 kNN search

	5.2 Analysis of communication cost

	6 Experimental study
	6.1 Visualization and attacks
	6.2 Effect of data distribution
	6.3 Effect of target set distribution
	6.4 Effect of method-specific parameters
	6.5 Effect of query parameters
	6.6 Effect of the known set S

	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

