©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or 1
lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Flexible and Efficient Resolution of Skyline
Query Size Constraints

Hua Lu, Member, IEEE, Christian S. Jensen, Fellow, IEEE Zhenjie Zhang Student Member, IEEE

Abstract—Given a set of multi-dimensional points, a skyline query returns the interesting points that are not dominated by other points.
It has been observed that the actual cardinality (s) of a skyline query result may differ substantially from the desired result cardinality
(k), which has prompted studies on how to reduce s for the case where k < s.

This paper goes further by addressing the general case where the relationship between k£ and s is not known beforehand. Due to
their complexity, the existing pointwise ranking and set-wide maximization techniques are not well suited for this problem. Moreover,
the former often incurs too many ties in its ranking, and the latter is inapplicable for £k > s. Based on these observations, the paper
proposes a new approach, called skyline ordering, that forms a skyline-based partitioning of a given data set, such that an order exists
among the partitions. Then set-wide maximization techniques may be applied within each partition. Efficient algorithms are developed
for skyline ordering and for resolving size constraints using the skyline order. The results of extensive experiments show that skyline

ordering yields a flexible framework for the efficient and scalable resolution of arbitrary size constraints on skyline queries.

Index Terms—Skyline Queries, Query Processing, Database Management.

1 INTRODUCTION

Given a set of d-dimensional points, a skyline query [5]
returns a subset of points that are interesting in that they
are not dominated by other points. Point p; dominates
po if p; is better than p, in at least one dimension and no
worse than p; in any other dimension. The skyline query
is thus fundamental to multi-criteria decision making [5],
[12], [18], [23], [26].

Consider the example shown in Figure 1. Each of the
hotels has two attributes: room price and distance to the
beach. For a tourist who prefers a low-cost hotel close to
the beach, hotels A, B, C, and D are interesting—these
are exactly the skyline of the hotels in the figure.

A Distance to the beach (miles)
40+
Al ___
: Eo Ho
30 ! I
Be - K Fe
201 l G,
Co—--——- 1°
= i
bl
1 1 1 1 1

50 100 150 200 250 Price (3)

Fig. 1. Skyline of Hotels

e Hua Lu and Christian S. Jensen are with the Department of Computer
Science, Aalborg University, Denmark. The work was conducted in part
when Christian S. Jensen was a Visiting Scientist at Google Inc.

E-mail: {luhua, csj}@cs.aau.dk

e Zhenjie Zhang is with School of Computing, National University of
Singapore, Singapore.

E-mail: zhenjie@comp.nus.edu.sg

Although skyline queries are effective in identifying
interesting points in multi-dimensional data sets, they
also have a well-known weakness—their result cardinal-
ities may vary. The result cardinality can be very large,
especially when the dimensionality is high or the data
is anti-correlated.

To contend with large skyline results, four categories
of approaches have been proposed. In the first category,
namely pointwise ranking, all d-dimensional points are
totally ordered according to some specific scoring func-
tion or mapping function, and only the top points are
returned [7], [23]. Such approaches face the difficulty of
reflecting the multiple criteria in the scoring functions.
In the second category, namely subspace reference, all sub-
spaces of the full d-dimensional space are investigated,
and those points preferred in subspaces are favored
in the result [6], [7], [30]. Such approaches incur high
computation costs in the traversal of all subspaces. In
the third category of approaches, namely set-wide maxi-
mization, a subset of the skyline is deliberately selected
such that a collective quantity based objective, e.g., the
number of points dominated by those in that subset,
is maximized [21]. The problem has NP-hard compu-
tational complexity, so only approximate results can
be computed efficiently. In the fourth category, namely
approximate selection, points are compared approximately
with a predefined threshold such that more points are
identified as being dominated [17]. The approach in this
category is not able to fully control the result cardinality.

It is meaningful for an approach to belong to different
categories. For example, the subspace skyline frequency
method [7] belongs to the first two categories. Section 2.2
offers a detailed review of previous approaches.

The above approaches focus on reducing large sky-
lines; however, small skylines can also be a problem.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by
authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by
each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

banart
Text Box
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

banart
Text Box
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Consider again the classical example in Figure 1. The
tourist now specifies a parameter k—the number of
interesting hotels to be returned in the query result. A
conventional skyline query usually, if not always, fails
to return precisely k hotels. If k£ is 3, the skyline is
too big. On the other hand, a large k value can offer
practical convenience. Suppose a large number of hotel
rooms are needed to accommodate all participants to a
popular event to take place. To make sure to get enough
rooms, the event organizer may specify k£ to be 5 or
even larger, if all hotels in the skyline (namely A, B, C
and D) together provide fewer vacant rooms. In such
cases where skylines may be too small, the use of large
k values is well motivated.

Another real-life example comes from online shop-
ping. Many online shopping sites, such as eBay, allow
users to specify multiple product dimensions (e.g., price,
quality, guarantee, etc.) as criteria for good bargains.
The resulting user requests are well captured by skyline
queries against the background product database. Spec-
ifying only a few dimensions in a query tends to result
in a skyline set of low cardinality; a user may find that
such a set does not offer enough alternatives and may
desire a larger set. In such cases, it makes practical sense
to extend the small skyline to a larger size as expected
by the user.

The skyline cardinality s of an arbitrary d-dimensional
data set can be considerably smaller than a user-specified
number £, and there is no good, straightforward way to
increase s to k. We conclude that an approach is needed
that supports skyline querying for arbitrary k.

This paper studies size constrained skyline queries, which
takes an arbitrary size constraint k£ as a parameter and
retrieves k desirable points from a d-dimensional data
set. We assume that when a user issues such a query
with a specific k, the original skyline of the data set
is unknown. Therefore it is also unknown whether % is
larger than, equal to, or smaller than the skyline size.

The conventional relevant techniques, pointwise rank-
ing and set-wide maximization, are not well suited for
arbitrary size constraints. Pointwise ranking approaches
sometimes prefer non-skyline points to skyline points.
Also, such approaches usually prefer points with similar
features, since similar points are likely to get similar
ranking scores, which limits the variety in query results.
With set-wide maximization it is possible to return re-
sults with larger variety, but set-wide maximization is
not applicable to arbitrary query size constraints—cases
where k£ > s cannot be handled. Set-wide maximization
is also computationally expensive due to its counting
and set-wide optimization characteristics.

Motivated by these shortcomings, we propose a new
approach, called skyline ordering, that supports arbitrary
size constraint over the conventional skyline query. Sky-
line ordering introduces a skyline-based partitioning of
a given data set, it provides an ordering among the
partitions, and it reserves room for the use of various
set-wide maximization techniques within partitions.

Skyline ordering aims to overcome the limitations of
pointwise ranking and set-wide maximization by com-
bining them into a uniform framework. In particular,
given the partitions in skyline order, the following hold:
(1) no point can dominate any other point in the same
partition or in a previous partition; (2) any point in a
partition, except in the first partition, must be dominated
by some point(s) in the previous partition.

When answering a size constrained skyline query with
skyline ordering, we start from the first partition and
continue to output partitions until at least &£ points have
been output; the last partition is pruned to return exact
k points as the result. This way, arbitrary size constraints
on skyline queries can be computed efficiently within a
flexible framework built upon skyline ordering.

Our approach differs from skyband-based ranking[27].
The latter first retrieves from the database a K-
skyband [24], a set of K points dominated by at most
K — 1 other ones, that has the smallest K > k. Then
it returns the & best points from the K-skyband. In con-
trast, the partitioning in our approach neither counts nor
minimizes the numbers of dominators. When selecting
k points as the result, our approach may involve several
consecutive partitions rather than a single K-skyband.

The paper makes the following contributions. First, its
proposal supports arbitrary size constraints on skyline
queries, which facilitates both reducing and expanding
an original skyline. Second, it includes a comprehen-
sive review of previous approaches that modify the
cardinality of a skyline, it analyzes their application
to arbitrary skyline size constraints, and it proposes a
simple yet efficient estimation-based method for select-
ing representative skyline points from a large skyline.
Third, it proposes the skyline ordering concept, together
with algorithms for computing skyline orders. Fourth, it
defines size constrained skyline queries based on skyline
order and develops various query processing algorithms.
Fifth, the paper offers results of empirical evaluations of
skyline order computation and size constrained skyline
query processing.

The rest of this paper is organized as follows. Section 2
gives a general problem definition of size constrained
skyline queries and briefly reviews related work. Sec-
tion 3 discusses different approaches for tuning skyline
cardinality. Section 4 covers the skyline order definition
and computation. Section 5 applies skyline ordering to
size constrained skyline queries. Section 6 presents the
empirical studies. Section 7 concludes the paper.

2 PRELIMINARIES

2.1 Problem Definition

Given a d-dimensional data set P with cardinality N,
each data point p represents a choice of interest to a
user. Without loss of generality, we assume that the user
interests cover all d dimensions and that smaller values
are preferred in each dimension. For two points p and ¢

in P, we use p < ¢ to represent that p dominates ¢ under
the conventional skyline definition [5].

We may define a size constrained skyline query Q7 (P)
informally as a subset S of P consisting of k points
that are good in terms of user interest. In this informal
definition, the query parameter k explicitly specifies the
cardinality of the result to be returned. But what it means
for a k-point subset of P to be good, and in what sense
one subset of points is better than another, remain to be
formalized. Put differently, we need criteria to determine
which skyline points to discard or which non-skyline
points to include when necessary. By applying such
precise criteria to the result point selection, we are able
to give formal definitions. These issues are covered in
Sections 3 and 5.

Table 1 lists the notation used in this paper.

TABLE 1
Table of Notations
[Notation | Description]
P Argument data set
N Cardinality of P
d Dimensionality of P
R d-dimensional space
Sp Skyline of P
S Size of Sp
Q7 (P) A k-size constrained skyline query on P
Sp Skyline order of P
Si i-th skyline order subset of Sp
n Skyline order length
D7 (p) All points in P that are dominated by p
D5 (S) All points in P\ S dominated by point(s) in S

2.2 Related Work
2.2.1 Skyline Algorithms

Two categories of skyline algorithms exist. Algorithms in
the first category do not rely on indexes on the data set.
The theoretical algorithms for maximal vector computa-
tion [1], [3], [19] fall into this category. Borzonyi et al. [5]
introduce the skyline query into databases, defining
Block Nested Loop (BNL) and Divide-and-Conquer (D&C)
algorithms. Chomicki et al. [10] propose a variant of BNL
called the Sort-Filter-Skyline (SFS) algorithm. Godfrey et
al. [12] provide a comprehensive analysis of these non-
index-based algorithms and propose a hybrid method
with improvements. Bartolini et al. [2] propose a pre-
sorting based algorithm that is able to stop dominance
tests early. Zhang et al. [31] propose a dynamic indexing
tree for skyline points (not for the data set), which helps
reduce CPU costs in sort-based algorithms [10], [12], [2].

Algorithms in the second category require specific in-
dexes. Tan et al. [26] propose two progressive algorithms:
Bitmap and Index. The former represents points by means
of bit vectors, while the latter utilizes data transforma-
tion and B*-tree indexing. Kossmann et al. [18] propose
a Nearest Neighbor (NN) method that identifies skyline
points by recursively invoking R*-tree based depth-first

NN search over different data portions. Papadias et
al. [23] propose a Branch-and-Bound Skyline (BBS) method
based on the best-first nearest neighbor algorithm [13].

2.2.2 Dominance Based Skyline Query Derivatives

Several skyline query derivatives based on dominance
have been proposed. All approaches known to the au-
thors are listed in Table 2. For each approach, we con-
sider its methodological nature, its applicability to the
case where the number of points expected (k) is less than
the skyline size (s) and the opposite case (k > s), and
its relevant algorithm. For the nature of an approach, we
consider four types: pointwise ranking, subspace reference,
set-wide maximization, and approximate selection.

Papadias et al. [23] propose the top-k dominating
query that retrieves points that dominate the largest
number of points. Yiu and Mamoulis [29] design efficient
processing algorithms for this problem. The top-k domi-
nating query belongs to the pointwise ranking category.

By utilizing the frequency of points’ membership in
subspace skylines, Chan et al. [7] formalize a top-k
ranking problem that gives priority to points that ap-
pear more frequently in subspace skylines. This skyline
frequency approach is able to return a fixed number of
points for both cases. Zhang et al. [30] propose the con-
cept of strong skyline points, which appear frequently
in small-sized subspace skylines in high-dimensional
spaces. This method does not return a fixed number of
points in the case of kK < s, and it is not applicable
to the case of £k > s. Chan et al. [6] propose a K-
dominant' skyline for high dimensional space. The strict
dominance covering all dimensions is relaxed to only K
dimensions in any subspace. A K-dominant skyline does
not return a fixed number of points in the case of £ < s,
and it is not applicable to the case of k > s. All the
three approaches just covered use subspaces for result
determination, while the skyline frequency approach can
also be regarded as a total pointwise ranking.

Lin et al. [21] propose the k most representative
skyline points problem (top-k RSP for short), which
selects a portion of the points from the traditional skyline
that maximizes the total number of dominated points.
However, the results can turn out to not be representa-
tive. Based on this observation, Tao et al. [25] propose
techniques that aim to minimize the distance between
a non-representative skyline point and its nearest repre-
sentative one in the selection. These two approaches are
instances of set-wide maximization.

Koltun and Papadimitriou [17] introduce approxi-
mately dominating representatives, which produces a
smaller, but not fixed-size, so-called e-ADR skyline. In
particular, before a point is compared with others, it
is first enlarged by € in all dimensions (larger values
are assumed to be preferred). This approach is not
applicable to the case of k > s. Xia et al. [28] define

1. This K carries a different meaning than does k in our problem
definition.

TABLE 2
Previous Approaches to Dominance Based Skyline Query Derivatives

[Approach Nature [Approach Name [E<s[k>s] Remarks]

pointwise ranking Top-k dominating query [23] + +

Skyline frequency [7] + + Also a pointwise ranking.
Subspace reference Strong skyline point [30] - X

K-dominant skyline [6] — X
Set-wide maximization | Top-k RSP [21], [25] + X
Approximate selection | e-ADR dominance [17] — X

e-skyline [28] - —

Thick skyline [16] X —

+: Result of exact k points; —: Result of uncontrolled size; x: Inapplicable.

a slightly different, so-called e-skyline that allows user-
specified weights on each dimension. By varying ¢ and
the weights, it is possible to both increase and decrease
the size of an e-skyline. However, this arrangement
offers only indirect and rough control. The skyline does
not accept an explicit result size constraint k£ as input.
Thus, the e-skyline does not afford the user the kind of
fine-grained control offered by this paper’s proposal.

Rather than evaluating single data points, Jin et al. [16]
extend the conventional skyline, which they term a thin
skyline, to a so-called thick skyline, by including points
in the proximity of the conventional skyline points. This
approach is only applicable to the case of k£ > s, and
it cannot return a fixed number of points. Both of the
above approaches perform approximate selections, as
they employ approximate measures when evaluating
point candidates.

3 SKYLINE SIZE TUNING
3.1 Pointwise Ranking

To support size constraints on skyline queries, we need
criteria for point candidates that select satisfactory ones
and rule out undesirable ones. In this section, we discuss
options to resolve the query size constraint by ranking
all points with a dominance-based scoring function.

To enable pointwise ranking of all points in P, a
mapping function f : P — C, is needed that maps
each point p in P to a value f(p) in a totally ordered
domain C. As a result, all points in P can be ranked in
terms of their f(p) values.

The pointwise ranking approach essentially converts
the multiple criteria optimization that underlies a size
constrained skyline query to a top-k ranking problem. It
is capable of fully controlling the result size according
to arbitrary k£ from O to |P|, as C is totally ordered.
However, this approach needs a careful design of the
mapping function f, which is expected to be dominance
based, and invariant to dimension scaling and shifting.

One option is to take dominating capabilities into
account when defining a mapping function f. A straight-
forward way is to count for a point p the number of
points it dominates [23]. As a result, the mapping func-
tion is fpn(p) = |Dp(p)|, where D5 (p) = {qlg € P Ap <
q} is the set of points from P that are dominated by p.

This definition is simple, but it sometimes prefers non-
skyline points over skyline points. Referring to Figure 1,
we have fpy(A) = 0 because point A dominates nobody,
fon(F) = 2 because F dominates H and I. Following
the same line of reasoning, we have fpn(B) = 3,
fon(C) = 5, and fpn(D) = 2. If a size constrained
skyline query based on fpy asks for k& = 4 points, points
C, B, D, and F are returned, but the skyline point A
is suppressed. However, since F is dominated by C, F
is unlikely to be interesting to the user. In this sense,
the result actually offers fewer options compared to the
result that includes A instead.

Another way to rank all points in P is to consider for
each point p its frequency of appearance in the subspace
skylines. The mapping function is defined as fssr(p) =

R € 2R" | pR' € Spr/|. Here pR’ is the projection of p

on the subspace R/, and function PR is the projection
of all points in P onto R’. Intuitively, fssr(p) counts the
number of subspaces on which p locates on the skyline
of the data set P.

However, this method requires a traversal of all sub-
spaces of R?, computing the skyline of P’s projection
on each subspace, and counting subspace frequency for
each point in P. An approximate counting algorithm
exists [7] that has an upper bound time complexity of
O(2d?1n(2/68)/€?), when the approximate result is within
an error of € with a confidence level > 1 —§.

3.2 Set-Wide Maximization

Set-wide maximization is also an alternative for evaluat-
ing size constrained skyline queries. Instead of consider-
ing each single point separately, this method considers
a set of points collectively to maximize a target value.

3.2.1 Count Based Maximization

The top-k representative skyline points problem [21] is
limited to the case where k < |Sp|. This definition can be
extended by modifying the outcome for the case where
k> |Sp|. A direct extension is given as follows.
Definition 3.1: (Extended Top-k Representative Skyline
Points Query) The extended top-k representative skyline
points query Q" (P) retrieves a subset S of k points from
a d-dimensional point set P that maximizes |[Dp3(S5)],

where D3(S) is the set of points from P\ S dominated
by some point in S.

For the extended definition above, we have the follow-
ing lemma that explicitly states the relationship between
the usual skyline and the result of query Q" (P).

Lemma 3.1: Given the skyline Sp of a d-dimensional
point set P, and the result Se,s, of an extended top-k
representative skyline points query Q" (P), the follow-
ing properties hold:

1) Sp C Se'r‘sp/ if £ > |Sp|;

2) Sersp C SP, if k < |SP|
Proof. 1. As |Sersp| = k > |Sp|, there must exist at
least one non-skyline point p s.t. p € S5, but p ¢ Sp.
Suppose there exists a skyline point s s.t. s € Sp but
s & Sersp. If s dominates p, (Sersp \ {p}) U {s} is a
better result than S,,s,, in terms of the number of points
dominated. If s does not dominate p, there must exist
another skyline point s’ that dominates p. If s’ ¢ Seysp,
(Sersp \ {p})U{s'} is a better result than Se,,; otherwise,
(Serep\ {p})U{s} is better since [DF ((Serep\ {P))U{s})] =
|IDp(Sersp)| + 1 > |DE(Sersp)|- Each case leads to a
contradiction, which proves that Sp C Se,sp if k > |Sp|.
2. Suppose there is a p € Sepsp but p ¢ Sp. There
must be an s € Sp that dominates p. If s ¢ Sersp,
(Sersp \ {P}) U {s} is a better result than Se,s,, since
D7 (Serep \APH) ULH)] > [DF(Serap)| +1 > [DF(Sersp)-
If s € Sersp, for any skyline point s’ ¢ Se,sp (such a
s’ must exist as |Sersp| < |Sp|), (Sersp \ {p}) U{s'} is a
better result than S, since | D3 ((Sersp \ {p}) U{s'})| >
|ID3(Sersp)| + 1 > |Dp(Sersp)|- Both cases lead to a
contradiction, which proves that Se,s, C Sp if k£ < |Sp|.
|

Lemma 3.1 indicates how to answer an extended top-
k representative skyline points query: its result is con-
tained in the skyline if less points are expected, or it con-
tains the skyline if more points are expected. However,
the lemma also indicates that the direct extension given
in Definition 3.1 is problematic when k is larger than the
original skyline size s. For that case, D5 (S) actually can
never exceed D7 (Sp) because every point in P\ S,
must be dominated by some skyline point in Sp. It is
shown by Lemma 3.1 that Sp is always contained in the
query result Sy, but it makes no difference which non-
skyline points are included into Se,,,, as none of them
increases |D7(Sersp)|- Thus, it is attractive to modify
Definition 3.1 so that it becomes more meaningful for
an arbitrary k. This will be discussed in Section 4.

3.2.2 Estimation Based Maximization

It is expensive to count exactly how many points are
dominated by a point or a set of points [21]. In this
section, we propose another result criterion based on
dominating capability estimation. Such estimations take
into account the dominating region [14] of each point
and can be used for queries with k < s.

The dominating region of a point p is a hyper-
rectangle, whose main diagonal is the line segment

from p to the maximum corner of P. As any point in
this dominating region is definitely dominated by p,
its volume, termed as VDR(p), is used to estimate p’s
capability of dominating other points.

To illustrate, consider hotel D in Figure 1. Its dom-
inating region is a rectangle as there are only two di-
mensions. For all hotels, $250 is the maximum price and
35 miles is the longest distance to the beach. These two
maximum values together correspond to the (virtual)
maximum corner that together with D defines the main
diagonal of D’s dominating region. Hotels G and I are
within that region and are thus dominated by hotel D.

For a set of points, we consider their overall dominat-
ing capability which is indicated by the union of all their
dominating regions. By applying the Inclusion-Exclusion
principle, we can compute the volume of such a union of
all points in a set S = {s1, s2,..., sx}, with U; denoting
the maximum value on dimension [, as follows.

k k
VDR(S) =Y VDR(s;) + » ((-1)""*

d
Z H(Ul —max(si,.ar, . .., 8;,.a1))) (1)

1<iy <..<i;<k I=1

Formula 1 only refers to k points in the set .S, with-
out any other global information like the number of
dominated points and the subspace skyline frequency.
However, an optimization based on Formula 1, ie.,
selection of a subset S from P with maximum VDR(S),
is still not cheap when k is very large, whose time
complexity is O((%)k) [11]. Specific heuristics can be
used to approximately compute the VDR(S).

One straightforward option is to select k£ points with
the maximum sum of all VDR values. A greedy op-
tion maximizes the sum of point distances at each step
when a new point is included. As the straightforward
method usually obtains approximations with better pre-
cision [11], it is used in the experimental studies.

3.3 Discussion

The existing approaches exhibit limitations when at-
tempting to use them for resolving arbitrary size con-
straints on skyline queries.

The use of pointwise ranking approaches causes three
difficulties. First, a total ranking tends to deconstruct the
essence of multi-criteria optimization when it converts
a complex problem into a simple one. As pointed out
in Section 3.1, if we count dominating points only, non-
skyline points may be preferred over skyline points. This
also happens in subspace skyline frequency based rank-
ing, where a non-skyline point can have an advantage
in more subspaces than has a skyline point.

Second, a total ranking can incur too many ties, which
invalidates the ranking. For example in Figure 1, we
cannot differentiate D and F (or E and G) by counting
dominating points. For an arbitrary data set, such ties
are very likely to exist. Ties also occur in the subspace

skyline frequency based ranking, especially when the
dimensionality is not large enough.

Third, a total ranking is time-consuming especially
when the data set is large. Hence, complex index struc-
tures [29] or approximate algorithms [7] are employed.

Next, the count based set-wide maximization ap-
proach is not applicable to arbitrary size constraints
on skyline queries because it is unable to handle the
case where more points than the skyline cardinality are
expected. Moreover, the count based set-wide maximiza-
tion approach is computationally very expensive due to
its counting and set-wide optimization characteristics.

It makes sense to apply pointwise ranking approaches
and set-wide maximization approaches in combination.
The former is focused on judging whether any individ-
ual point is good enough to be included in the result. The
latter is concerned with maximizing the collective advan-
tage of a number of result points. The two approaches
thus tackle the same problem from opposite directions:
bottom-up and top-down. An interesting question thus
arises: Can we find some novel way in-between the two
to overcome the aforementioned obstacles in supporting
arbitrary size constrained skyline queries? Our answer
is positive. In the next two sections, we cover our
framework based on the concept of skyline order which
ranks points partially and in batches, rather than fully,
one point by one point.

4 SKYLINE ORDER
4.1 Definitions and Properties

Definition 4.1: (Skyline Order) The skyline order of a
set of d-dimensional points P is a sequence S =
(S1,89,...,5,) defined as follows:

1) S; is the skyline of P, i.e., Sp; '

2) Vi,1<i<n,S; is the skyline of P\ J;_} S;.

3) U Si=P
We call each S; a skyline subset in the skyline order or
a skyline order subset, and we call n the skyline order
length, i.e., the number of subsets in S. The definitions
iteratively removes the current skyline starting with P
until all points in P belong to a skyline subset, resulting
in n skyline subsets are obtained. By construction, the
points in S; are incomparable and S; N S; = @ for i # j.

For convenience, we define skyline order index for any
point p in P as follows.

Definition 4.2: (Skyline Order Index) Given the skyline
order S1,953,...,5, of a d-dimensional point set P, the
skyline order index of a point p € P is i if p € S;.

The skyline order has some interesting properties that
can be inferred directly from the definition.

Lemma 4.1: Given the skyline order 51, S2,..., 5, of a
d-dimensional point set P, the following properties hold:

1) Vi >1 Vpl S SZ 3}?2 S S¢71 (p2 =< pl).

2) Vi>1Vpy €5 Vj <iIps €S (p2=<p1)

3) Vp1 € S;Vj>iPp2 € Sj (p2 < p1)

An example of skyline order is shown in Figure 2.
Here, S; = {A, B, C, D} is also the skyline of all hotels.

Next, S; = {E, F, G}, the skyline of subset {E, F, G, H,
I}, and S3 = {H, I}. Further, the skyline order index is
1 for any point in {A, B, C, D}, 2 for any point in {E,
E G}, and 3 for any point in {H, I}, as indicated by the
corresponding numeric subscripts in the figure.

Skyline order has practical applications. Referring to
Figure 2, assume that many attendees are to be accom-
modated by a conference. A skyline query returns the
best hotels A, B, C, and D. They together, however, may
provide fewer vacancies than needed. To provide enough
rooms, hotels E, F and G can be easily included in the
result. The skyline order is thus a systematic approach
to provide results with enough vacancies.

A Distance to the beach (miles)
0 | |
Al ___ | I
5 | ETTTHTTTT
301= } ! I"_Si
| ;
B"“I FL___
20— I I
G,
C-I— ______] -5,
101 l
DI"_———ASI
1 1 1 1

1 [
50 100 150 200 250 Price($)

Fig. 2. Skyline Order

A notion of ranking through iterated preference is
proposed in [9], which is focused on preference modeling
without specific skyline order definitions or algorithms.
In-place algorithms for computing layers of maxima
in [4] are focused on 2-dimensional data sets only. This
paper’s setting poses no in-place requirement, and our
algorithms are not limited to two dimensions. The idea
of layered skyline has also been used in the literature
as part of an indexing method for top-k queries [15]. In
this paper, we focus on computing the skyline layers effi-
ciently and on applying them in size-constrained skyline
queries, which has not been studied in the literature.

Skyline order differs from the Onion technique [8].
First, we partition a data set based on the skyline con-
cept, whereas the Onion technique is based on the con-
vex hull definition. Second, the skyline order supports
size constrained skyline queries well, as we will see
in the rest of this paper, whereas the Onion technique
is focused on indexing for linear optimization queries.
Third, the skyline order supports local queries, size con-
strained skyline queries in our setting, without any
specific hierarchical structures as in the Onion technique.

We proceed to discuss how to compute skyline order
efficiently. The maintenance of skyline order in the face
of point updates is addressed elsewhere [22].

4.2 Skyline Order Computation

We proceed to introduce skyline order algorithms that
do not rely on indexes. In Section 6.1.3, we adapt an
existing index based skyline algorithm for skyline order.

4.2.1 Basic Algorithm

The basic algorithm scans the input data set P, as de-
scribed in Algorithm 1. For each point p in P, it checks p
against each subset in the current skyline order and puts
it into a specific subset or creates a new subset for it. The
algorithm maintains all subsets of the current skyline
order. While determining the membership for p, some
points in the skyline subset being checked currently may
also change their membership, thus producing a new
subset in the skyline order.

Specifically, the skyline order S is initialized to be
empty (line 1). Each point p in P is compared to each
point ¢ in each S; sequentially from .S; to the current S,
(lines 2-16). If p is dominated by ¢, the algorithm breaks
from the loop on the current S; and skips to the next
subset in the skyline order (lines 6-7). If p dominates ¢,
g will be moved into a temporary list Sy, that contains
all those points that come from the current S; and are
dominated by p (lines 9-10). If p is found to qualify as
a skyline point for the current S; (line 11), the necessary
actions are to be taken to ensure the skyline order is
updated correctly, followed by breaking from the loop
on S (line 18). If S; is empty, which indicates that p
dominates all points previously in .S;, {p} will be used as
the new S, and S;,,,;, will be inserted into S after the new
S; (lines 12-13). Otherwise, the procedure AdjustSkyOrd
will be called to adjust the subsets after S; in S (lines 15—
16) in case Sy is not empty, and p will be added into
S; (line 17). If p does not belong to any S, in S, {p} will
be appended to S (lines 19-20).

Algorithm 1 SkylineOrderScan (data set P)

1. S=)
2: for each point p in P do

3: for each S; from S; to S, in S do

4 1sSky=TRUE; Simp = &

5: for each point ¢ in S; do

6: if ¢ < p then

7: 1sSky=FALSE; break

8: else

9: if p < g then

10: move ¢ from S; to Simp

11: if isSky then

12: if S; = @ then

13: S; = {p}, insert Simp into S after S;
14: else

15: if Simp # @ then

16: AdjustSkyOrd(Simp, S, i+1)
17: add p to S;

18: break

19: if p does not belong to any S; then
20: append {p} to §
21: return S

The pseudo code of AdjustSkyOrd is given in Algo-
rithm 2. It takes three inputs: the temporary list Sy,
containing points excluded from the current skyline
subset in the scanning, the current Skyline order S,
and the next subset index in the scanning. It loops on
each subset S; in S starting from S,.,:. Each point p
in S; is moved to a temporary list temp if it is not

dominated by any point in S, (lines 3-5). If S; has
not been changed, indicated by an empty temporary list
temp, Simp is added to S immediately before S;, and
the algorithm returns (lines 6-7). A non-empty temp is
merged into Si,, (line 8). If S; becomes empty after
all its points have been checked, Si,, replaces it in S,
and the algorithm returns (lines 9-10). Otherwise, S; and
Simp are swapped, and the loop continues to the next
subset in S (line 11). If Sy, is not empty when the loop
is over, it is appended to S (lines 12-13).

Taking Figure 2 as an example, let the processing order
of all hotelsbe I, E, F, A, D, H, G, C, B. Table 3 lists the
resulting skyline order after each hotel is processed. The
* symbol indicates that the current p triggers a call of the
AdjustSkyOrd algorithm.

Algorithm 2 AdjustSkyOrd(Temporary list Sip,p, Cur-
rent Skyline order S, Next subset index next)

1: for each subset S; from Syeqt to S, in S do
2: temp = &
for each point p in S; do

if 3g € Simp s.t. ¢ < p then

move p from S; to temp

if temp == & then

add Simp to S immediately before S;; return
merge temp to Simp
9: if S, == & then
10: replace S; in S with S¢pp; return
11: swap S; and Simp
12: if Sipmp # @ then
13: append Simp to S

When E is processed, it is merged with I to form the
only skyline order subset because they are incomparable
to each other. As F dominates I, this causes S, = {I}
that becomes the new tail in the skyline order after the
AdjustSkyOrd algorithm is called. When G is processed,
I is again moved out to the new tail.

Finally, when C is processed, the situation is more
complex. The S, = {E,F} is the input to the Ad-
justSkyOrd algorithm, in which Sy, is compared with
the skyline order subsets S; = {G,H} and S3 = {I} in
turn. In the first iteration of the for-loop, G is merged
with {E,F}, as G is dominated by neither E nor F. Then
Stmp = {E,F, G} is swapped with the reduced S, = {H}.
In the second iteration, Si,, = {H} is expanded to
become {H,I} and replaces S = {} as the new Ss.

4.2.2 Improvements

The basic algorithm calls the procedure AdjustSkyOrd
when a new point p is found to dominate some old
points that form the temporary list Sy, passed to
AdjustSkyOrd. We can eliminate the cost of this by pre-
sorting the data set P. Assuming that smaller values
are preferred in the skyline computation, we pre-sort
P in the non-descending order of the sum of a point’s
dimension values. As a result, a point p is not able to
dominate any point ¢ that has been processed before
it [10]. The relevant improved pseudo code is described

TABLE 3
Example Steps of Algorithm 1

Current p | Resulting Skyline Order
g oKy

E3

| | —

E3

|]] |~]

U:JQQ

in Algorithm 3. Here, we have no list Sy, and neither
do we call the procedure AdjustSkyOrd.

A further improvement is to carry out a binary search
for the loop on all existing subsets in the skyline order,
instead of the sequential scan in line 3 in Algorithm 3.
Essentially, the loop on all skyline order subsets finds
the subset S, that satisfies: (a) all points in S, are
incomparable to p; (b) x is the minimum index among
all such subsets satisfying (a). A binary search starts
with low = 1 and high = n, the skyline order length.
At each loop step, we check the dominance relationship
between the current point p and the subset S,,;q where
mid = |low + high|/2.

Algorithm 3 SkylineOrderPreSort (sorted data set P)

1: §=)
2: for each point p in P do

3: for each S; from S; to S, in S do
4: 1sSky=TRUE

5: for each point ¢ in S; do

6: if ¢ < p then

7: 1sSky=FALSE; break

8: if isSky then

9: add p to S;; break
10: if p does not belong to any S; then
11: append {p} to §
12: return S

Due to P being sorted, only two possibilities exist: p is
dominated by some point(s) in Sy,iq or p is incomparable
to all points in \S;,;4. For the former, we set low = mid+1
and continue the binary search. For the latter, we look
one subset backwards, checking the relationship between
p and the subset Sy,;q—1. If p is dominated by some
point(s) in Syiq—1, Smia is exactly what we need and
the binary search ends. Otherwise, i.e., points in Sy,;4—1
are also incomparable to p, we set high = mid — 1 and
continue the binary search. When the binary search ter-
minates, either the expected subset S, is found and p is
inserted into S, or the tail of the skyline order is reached
and p will constitute a new singleton tail. Note that p
cannot be a new singleton head as it cannot dominate
any point before it when P is sorted as described above.

We note that the backward check above is necessary
to ensure the correctness of the binary search based
algorithm. The binary search here is different from an

exact match binary search, which returns as soon as the
expected value is found. The incomparable relationship
here is not equivalent to an exact match. Rather, we need
to find the minimum (instead of any) index = such that
any point in the subset S, is incomparable to p.

Referring to Figure 2, let the current skyline order be
({C},{F},{I}) and B be the p being processed. For sim-
plicity, we ignore the other points. Note that B should be
inserted into {C} to maintain a correct skyline order, as
{C} is the first skyline order subset and C is comparable
with B. However, if we do not employ a backward check,
B will be inserted into {F} instead, since we have low = 1
and high = 3, which yields mid = 2.

The binary search idea can also be used in Algo-
rithm 1. However, it does not lower the possibility that a
new point p dominates an old one as the input data set
is not sorted. Hence, the frequent and time-consuming
call of AdjustSkyOrd is not avoided at all.

4.2.3 Analyses

We briefly analyze the proposed skyline order compu-
tation algorithms, by regarding the dominance compar-
isons between two points as the characteristic operation.
For the sake of presentation simplicity, we do not count
the presorting time cost when analyzing the SkyOrdPre-
Sort algorithm and its variant with binary search.

For the SkylineOrderScan algorithm, the best case is
that each point p from P forms a new first skyline order
subset in S, without invoking the procedure AdjustSky-
Ord. In this case, only one dominance comparison is
needed, involving p and the single point in the current
S in S. As a result, the total number of dominance
comparisons, processing the whole data set P, is N — 1.

The worst case, however, involves cascading adjust-
ments caused by a call of AdjustSkyOrd. Suppose we are
processing the j’th point p from P, and the cardinalities
of Simp and S;41 to S, are co, ¢it1, ..., Cp, respectively,
before AdjustSkyOrd is called in line 16 of Algorithm 1.
Note that ¢o + >, ¢x < j — 2 as we are processing
the j'th point p from P and S; cannot be empty if
AdjustSkyOrd is called (lines 12-16 in Algorithm 1).

A total cascading adjustment chain in AdjustSkyOrd
(Algorithm 2) maintains all but one point in every cur-
rent skyline subset S;. This is because if temp is empty,
there will be no more cascading adjustment (lines 6-7
in Algorithm 2). Those points are swapped into Sy,
(line 11 in Algorithm 2) and then compared with all
points in S;41. This happens until S,, is reached. Con-
sidering that all points in the input S, are compared
with the initial S,,..:, the total number of dominance
comparisons is ¢g - ¢i+1 + (Cix1 — 1) - ciyo + ... + (Cn1 —
1) “Cp = C0 - Cig1 T Zz;i—i-l Ck * Ck4+1 — ZZ:H_Q cp <
(co+ Yhim1k)?/2 = (j — 2)?/2. In the worst case,
processing each j'th (j > 2) point p from P incurs this
cost. As a result, the number of dominance comparisons
contributed by AdjustSkyOrd is bounded by Z;VZQ(Jj—

2)2/2 = (Y0 2k?)/2 = (N —2)- (N —1)- (2N - 3)/12,

yielding a worst case complexity of O(N?). This is also
the upper bound of the worst case cost of the Skyline-
OrderScan algorithm, as it cannot incur more dominance
comparisons without calling AdjustSkyOrd.

For the SkyOrdPreSort algorithm without binary
search, the best case is the same as that of SkylineOrder-
Scan, i.e., N — 1 dominance comparisons. Its worst case
happens if each point p from P is compared with every
point in every skyline subset from the first to the last
in §. The worst case leads to a total of N(N — 1)/2
dominance comparisons.

For the SkyOrdPreSort variant with binary search, the
best case is that every point from P forms a singleton
skyline order subset, and all points already in S are
compared with the newly encountered i'th point p from
P in a binary search fashion. This requires a total of
Zf;l logy i = logy(N!) = O(Nlog N) dominance com-
parisons. The worst case is that all points from P form
only one skyline order subset, which causes each point
p from P to be compared with all points encountered
before it. As a result, the total number of dominance
comparisons in the worst case is N(N —1)/2.

A summary of the cost analyses is given in Table 4.

TABLE 4
Summary on Algorithm Complexity

[Algorithm | Best Case [Worst Case |
SkylineOrderScan O(N) O(N?)
AdjustSkyOrd O(N) O(N?)
SkylineOrderPreSort | O(N log N) O(N?)

5 PROCESSING Si1ZzE CONSTRAINED SKYLINE
QUERIES WITH SKYLINE ORDER

We next show how skyline order can be used to process
size constrained skyline queries. We first give a query
definition, and then present algorithms for the query.

5.1 Definition

Based on skyline order, we are able to define a new
size constrained skyline query that combines pointwise
ranking and set-wide maximization to return interesting
points according to both approaches.

Definition 5.1: (Skyline Order Based Size Constrained
Skyline Queries) Let a set P of d-dimensional points
with skyline order § = (51, S52,...,S5,) be given. The
skyline order based size constrained skyline query (QQ;°*°*(P)
retrieves the set S,,s.s defined as follows:

l
Ssoscs = (U Sz) U Sl/_t,_l

i=1

! I+1
where [is defined such that Z |Si| <k < Z |S:],
i=1 i=1

and 5], C Sj11 such that [Ssscs| = k.

Here, S, is selected from S;;; using some set-wide
maximization approach presented in Section 3.2. The
query returns consecutive skyline order subsets from the
original skyline until £ points have been returned.

5.2 Algorithms

We present two algorithms that process a size con-
strained skyline query using the concept of skyline order.
One takes advantage of a pre-computed skyline order,
whereas the other does not.

5.2.1 Algorithm With Pre-Computed Skyline Order

If the skyline order S of the data set P has been com-
puted before a size constrained skyline query Q7°*(P) is
issued, S can be used to facilitate the query processing.
Following Definition 5.1, our algorithm uses a simple
loop on all pre-computed skyline order subsets while
maintaining a count of the points seen. The relevant
pseudo code is described in Algorithm 4. First, the result
set S is initialized to be empty, and a count variable cnt
is set to k (line 1). Then each subset S; in S is checked
sequentially. If the cardinality of S; equals the current
count in cnt, S; is merged into S, and the loop stops
(lines 3—4). If the cardinality of S; is smaller than cnt, S;
is merged into .S and the loop continues with an updated
ent (lines 5-6). Otherwise, rSKY is called to select the last
ent points from S;, and the loop stops (line 8).

Algorithm 4 SCSQuerySkyOrdPre (Skyline order S,
number of points to retrieve k)

1. S=g;,ent=k

2: for each subset S; from S; to S, in S do

3: if |S;| == cnt then

4 S = SUS;; break

5. else if |S;| < cnt then

6: S =SUS;; ent = ent — |Si]
7 else

8 S =S U rSKY(S;, ent); break
9: return S

The set-wide maximization approaches discussed in
Section 3.2 can be used for implementing rSKY. Such ap-
proaches will be experimentally compared in Section 6.2.

As a remark, skyline orders are pre-computed (and
maintained) with the same reasoning as are materialized
views [20]. They can help efficiently solve arbitrary size
constraints posed by future skyline queries.

5.2.2 Algorithm Without Pre-Computed Skyline Order

If no precomputed skyline order S of the data set P is
available, query Q7 (P) can be processed as described
in Algorithm 5, which accepts a sorted data set P as
described in Section 4.2.2 and accomplishes the query
processing in two phases.

In the first phase, it follows the same logic as the
improved skyline order computation in Algorithm 3. But
only a partial skyline order S is now maintained. As
soon as there are enough points in S, the extra subsets

Algorithm 5 SCSQuerySkyOrd (sorted data set P, num-
ber of points to retrieve k)

1: §=)
2: for each point p in P do

3: for each S; from S; to S, in S do

4: 18Sky=TRUE

5: for each point ¢ in S; do

6: if ¢ < p then

7: 18Sky=FALSE; break

8: if isSky then

9: add p to S;; break

10: else

11: if >3, |S;| > k then

12: remove all subsets after S; in S; break

13: if (lisSky AND Zsies |Si| < k) then
14: append {p} to S
15: return SCSQuerySkyOrdPre(S, k)

on the tail are removed from S, any point p belonging
to those subsets are also ignored (lines 10-12). A new
singleton tail is created only when S still has less than %
points in total (lines 13-14). By keeping a partial skyline
order only, considerable computation cost is saved. In
the second phase, SCSQuerySkyOrdPre (Algorithm 4) is
called to pick up k points from the partial skyline order
S (line 15).

Following the same line of reasoning as covered in
Section 4.2.2, the sequential scan on all skyline order
subsets (line 3 in Algorithm 5) can also be replaced
by a binary search. We will experimentally study this
improvement in Section 6.

6 EXPERIMENTAL STUDIES

In this section, we evaluate skyline order algorithms and
size constrained skyline query algorithms.

We generate both independent and anti-correlated
synthetic data sets. Anti-correlated data sets are gen-
erated according to a method introduced in previous
work [5]. The value domain for each dimension is [0, 1].
All parameters and their settings are listed in Table 5,
with 1K = 1024. All code is written in Java and run on
a Windows XP PC with a 2.8GHz Intel Pentium D CPU
and 1GB RAM.

TABLE 5
Parameters Used in Experiments

[Parameter

Data set distribution
Data set cardinality

| Setting]
Indep. (IN), Anti-Correl. (AC)
100K, 200K, ..., 1000K

10

6.1.1 Skyline Order Distribution

We first fix the data set dimensionality to 2 and 5, and
vary the cardinality from 100K to 1,000K. The resulting
skyline order lengths, i.e., the number of subsets in a
skyline order, are listed in Table 6. The sizes of the
first two skyline order subsets are given in parenthe-
ses. We can see that for both data distributions, larger
cardinality leads to longer skyline order. However, an
anti-correlated data set has shorter skyline order than
its independent counterpart. This is because an anti-
correlated data set has more skyline points than an
independent one, when they are of the same cardinality.

TABLE 6
Skyline Order Length vs. Cardinality
[Card. | Anti-Corre. [Indep.]
100K, 2D | 210 (52, 82) 617 (8, 18)
5D 18 (15493, 29209) 23 (1003, 2684)
200K, 2D 297 (46, 80) 886 (9, 17)

5D | 19 (21143, 45826)
300K, 2D | 363 (48, 107)

5D | 21 (26037, 59842)
400K, 2D | 418 (47, 88)

5D | 23 (29200, 70356)
500K, 2D | 467 (53, 81)

5D | 23 (31589, 79498)
600K, 2D | 518 (51, 73)

5D | 24 (34680, 89413)
700K, 2D | 556 (45, 79)

5D | 26 (36377, 94982)
800K, 2D | 593 (64, 110)

5D | 26 (38394, 102850)
900K, 2D | 633 (61, 88)

5D | 27 (39767, 108147)
T000K, 2D | 671 (67, 98)

5D | 27 (41991, 114960)

27 (1108, 3308)
1096 (15, 19)
28 (1413, 4347)
1257 (14, 16)
30 (1561, 4691)
T412 (10, 14)
32 (1512, 4649)
1546 (9, 15)

32 (1646, 5164)
1668 (14, 22)
34 (1886, 5853)
1778 (15, 22)
35 (1876, 6300)
1909 (9, 15)

37 (1727, 5888)
2008 (13, 24)
38 (1956, 6010)

Next we fix the data set cardinality to 100K and vary
the dimensionality from 3 to 5, 10, 15, and 20. The result-
ing skyline order length are listed in Table 7. For both
data distributions, the dimensionality has an apparent
impact on the skyline order length: as the dimensionality
increases, the skyline order get significantly lower. This
is attributed to the “curse of dimensionality” that also
affects skyline queries: the more dimensions a data set
has, the higher the percentage of its points enter its
skyline. Further, the difference between anti-correlated
data sets and independent data sets is also apparent here.

TABLE 7
Skyline Order Length vs. Dimensionality

Data set dimensionality | 2, 3, 4, 5, 10, 15, 20 [Dim. \ Distrib. | Anti-Corre. | Indep. |
k 50, 100, 150, ..., 500 2D 210 (52, 82) 617 (8, 18)
3D 66 (653, 1420) 105 (85, 155)
4D 29 (4432, 10414) 41 (338, 868)
5D 18 (15493, 29209) | 23 (1003, 2684)
. . 10D 5 (84393, 14531) 6 (26207, 46478)
6.1 Experiments on Skyline Order 15D 396972, 5417) 3 (77920, 24095)
A more comprehensive experimental study on skyline 20D 2 (101438, 962) 2 (98826, 3574)

order can be found elsewhere [22].

6.1.2 Skyline Order Computation Cost

We compare three skyline order computation ap-
proaches: the basic scan approach (Algorithm 1), the
improved approach with pre-sorting (Algorithm 3), and
the one with binary search in addition to pre-sorting.
We measure the total computation time cost. As we are
focused on the efficiency of these approaches themselves,
the time for pre-sorting is excluded from the results.

The effects of data set cardinality are reported in Fig-
ure 3. For both distributions, we fix the dimensionality
at 2. It is seen that as cardinality increases, the basic scan
approach deteriorates dramatically, the binary search
approach only slowly incurs higher cost, and the pre-
sorting approach remains in-between. The pre-sorting
approach performs better than the basic scan approach
because the pre-sorting avoids the expensive cascading
adjustment (the calling of AdjustSkyOrd in Algorithm 2),
which happens when a current point p dominates some
points scanned before it.

5000

AC-Scan —+— IN-Scan —+—
7000 AC-PreSort - IN-PreSort —X—
AC-Binary ~-ft- 4000 IN-Binary {3 ;
Z 6000 D
g so00 Val g X
= £ 3000
é 4000 X é o X
2 3000 X 2 2000
5 o s X
2000
© X s © 1000 X
1000 | el g-g-8E 1 X IR
B0 B pepeB

200K 400K 600K 800K
Cardinality

(a) AC Data Sets

1000K 200K 400K 600K 800K
Cardinality

(b) IN Data Sets

1000K

Fig. 3. Computation Cost vs. Cardinality

The binary search approach improves the performance
further, as it does not sequentially scan all skyline or-
der subsets. In addition, the performance improvement
between the basic scan approach and the pre-sorting
approach is much more significant than the one between
the latter and the binary search approach. This difference
shows that AdjustSkyOrd is the most time-consuming
part of the basic scan approach. This also indicates that
applying the binary search idea directly to the basic
scan approach is not attractive, as it has no chance to
outperform the pre-sorting approach.

The effects of data dimensionality are reported in Fig-
ure 4. Here the cardinality is fixed at 100K. We have two
important observations. First, the binary search approach
is no longer the best when the dimensionality exceeds 2;
rather, it becomes the worst when the dimensionality is
higher than 10. This is because the skyline order length
of a given data set shrinks as the dimensionality in-
creases (refer to Table 7). Shorter skyline orders disfavor
binary search, which consequently performs poorly with
considerable extra costs for worst-case inputs.

Second, as the dimensionality increases (higher than
10 for anti-correlated data sets and 15 for independent
data sets), the basic scan approach becomes comparable
to the pre-sort approach. For dimensionality 10 to 20,
the very short skyline order lengthes (seen from Table 7)

11

provide very limited room for optimizations that would
otherwise benefit the pre-sort approach.

8000 8000
AC-Scan —+— o

7000 | AC-PreSort - 1000
AC-Binary £}

IN-Scan —F—
IN-PreSort g
IN-Binary -3
6000
5000
4000

3000

Computation time
Computation time ()

2000
1000

2345 10 15 20
Dimensionality

(a) AC Data Sets

Dimensionality

(b) IN Data Sets

Fig. 4. Computation Cost vs. Dimensionality

6.1.3 Adapting to Disk-Resident Data

So far we have assumed that both input data and skyline
order subsets are kept in the main memory. If the data
is too large to fit in memory, skyline order computa-
tion algorithms require appropriate adaptations to work
properly. We adapt the binary search approach since it
is the most efficient in most cases.

In particular, all data points are loaded into memory
in different batches. For each batch, a binary search is
executed. A skyline order subset is initially created in
memory, and it may be output to the disk later to get free
memory blocks. When a subset needed for comparison
is not in memory, it is loaded from disk. Small skyline
order subsets are allowed to share a memory block,
whereas a large one may use multiple blocks with the
last one accepting insertions of points. A very large sub-
set that requires more memory than available is loaded
in batches for each point batch. When a dirty memory
block is to be eliminated, modified data will be output to
disk to the corresponding skyline order subset(s). When
all points are processed, all dirty memory blocks are
output.

We also adapt the I0-optimal BBS algorithm [23] to
compute skyline orders as follows. In addition to the
main min-heap for all R-tree entries containing skyline
points, we use an extra min-heap to contain all the
entries that are pruned. When the skyline (also the first
subset of the skyline order) is computed for the input
data set, the extra heap is upgraded to be the main heap,
and the BBS algorithm is executed to obtain the second
skyline order subset, with the old main heap being
the extra heap for pruned entries. This upgrading and
processing is repeated until all data points are processed,
indicated by an empty extra min-heap.

We use an LRU buffer whose size is 1% of that of the
input data set. For the adapted binary search approach,
one buffer block is used for loading the input data, and
the others are used for skyline order subsets. For the
adapted BBS algorithm, half of the buffer blocks are used
for the R-tree and half are used for the skyline order
subsets. The R-tree page size is set to 4K. The IO costs
are reported in Figure 5. The inferiority of the adapted

BBS approach, especially when the data set is large, is
attributed to the fact that all pruned R-tree entries in
the extra heap are accessed again subsequently, which
results in ineffective pruning.

AC-BBS —&— AC-BBS —&—
101t AC-Binary —&-— 10" | AC-Binary &

10° ¢ hd L)

10
2345 10 15 20
Dimensionality

200K 400K 600K 800K 1000K
Cardinality

(a) Effect of Cardinality (b) Effect of Dimensionality

Fig. 5. 10 Costs of Skyline Order Computation

6.2 Experiments on Queries

We proceed to compare different approaches that can
be used for answering size constrained skyline queries.
From the ranking based approaches, we choose the
subspace skyline frequency approach [7] (SSF) as a rep-
resentative. The algorithm parameters in SSF are set as:
e = 0.2 and 6 = 0.05. Readers are referred to [7] for
detailed explanations on these parameters.

We also compare different skyline orders based
query processing approaches: the algorithm with pre-
computed skyline order (Algorithm 4 in Section 5.2.1),
the algorithm without pre-computed skyline order (Al-
gorithm 5 in Section 5.2.2), and the binary search algo-
rithm (an improvement of Algorithm 5 in Section 5.2.2).

We combine each of the algorithms with different
skyline reduction algorithms to return exact number
of result points. We compare our volume of domi-
nating region (VDR) estimation based approach (Sec-
tion 3.2.2) with the top-k representative skyline points
approach [21]. For the former, we use the heuristic that
maximizes the sum of VDR values of candidate points.
For the latter, we implement a bitmap based greedy
algorithm, where each candidate point has a long bitmap
indicating all points dominated by it. Note that the
greedy algorithm does not return the optimal result for
the top-k representative problem, which actually is NP-
hard for data sets with dimensionality 3 or higher [21].

All approaches, apart from SSE, and their abbrevia-
tions to be used in the performance result graphs are
listed in Table 8. We proceed to compare the response
times of these approaches.

6.2.1 Effect of Cardinality

In this batch of experiments, we fix the data set dimen-
sionality at 2 and & at 100, and we study the effects
of the cardinality on the different approaches. We vary
the cardinality from 100K to 1,000K; the resulting query
computation times are reported in Figure 6. For clarity,
we only plot a portion of the results here. The omitted
results exhibit similar trends.

12

TABLE 8
Description of Approaches

Set-Wide Maximization

SCS query algorithm | Count (C [21]) | Estimation (E)

Pre-computation based (P) PCM PEM
No pre-computation (O) OoCM OEM
Binary search (B) BCM BEM

E: Estimation of VDR (Sec. 3.2.2)

P: Algorithm SCSQuerySkyOrdPre (Sec. 5.2.1)
O: Algorithm SCSQuerySkyOrd (Sec. 5.2.2)

B: Improvement on O (Sec. 5.2.2)

Several observations are noteworthy for both data dis-
tributions. First, pre-computation based approaches usu-
ally outperform their corresponding counterparts with-
out pre-computation: PCM is better than OCM/BCM,;
PEM is better than OEM/BEM. This shows that pre-
computed skyline orders save query processing time.

OCM &= BCM ==& PCM =S SSF
5 OEM 1 BEM === PEM mm o

OCM =@ BCM mmm PCM &SI SSF
OEM —J BEM == PEM mmm

N
\

Computation time (ms)
Computation time (ms)

N
N K

oo

\
N
N
N
N
N
N
\
\
N

[rrrrrrrrrrsrrsrsre

0K 1000K

3

K
Cardinality

(a) AC Data Sets

Cardinality

(b) IN Data Sets

Fig. 6. Query Cost vs. Cardinality

Second, when reducing skyline size, the VDR estima-
tion based approach is better than the count of domi-
nated points based approach: OEM is better than OCM,
BEM is better than BCM, and PEM is better than PCM.
The estimation based approach is much faster because
it does not explore the global dominance relationship
to count, but makes estimates based on the given can-
didate point only. Because of the dual merits of pre-
computation and estimation, the PEM approach has a
significant advantage over its competitors.

Third, the total ranking approach SSF is the worst
among all approaches, and it degrades noticeably as
the cardinality increases. The total pointwise ranking
of SSF is very time-consuming, and larger cardinalities
inevitably worsen the situation.

Fourth, PEM performs better on anti-correlated data
sets than on independent ones. For an anti-correlated
data set, its starting skyline order subsets contain more
points than those of an independent data set. This dif-
ference makes PEM explore fewer skyline order subsets
than the former. However, PCM does not have this
advantage. The benefit of pre-computation of PCM is
counteracted by its time-consuming count based skyline
reduction approach.

6.2.2 Effect of Dimensionality

Next, we fix the data cardinality at 100K and & at 100,
and then vary the dimensionality from 2 to 5. The results
are reported in Figure 7.

OCM &xx BCM =@ PCM =N SSF
OEM 1 BEM == PEM mmm

OCM &xx BCM EEm@ PCM SN SSF
OEM 1 BEM == PEM mm

P = =
S =) o,
ES % >

H
5
2
Computation time (ms)

Computation time (ms)

Dimensionality

(a) AC Data Sets

Dimensionality

(b) IN Data Sets

Fig. 7. Query Cost vs. Dimensionality

As the dimensionality grows, most approaches dete-
riorate markedly, especially OCM, BCM, and PCM. The
count based reduction incorporated by these approaches
requires more time to check for dominance when di-
mensionality increases. In contrast, the estimation based
approaches OEM and BEM are more steady. The cost of
PEM even decreases in some cases: from 2D to 3D on
anti-correlated data sets; from 2D to 4D on independent
data sets. These surprising improvements are attributed
to skyline order subset size variations. Referring to Ta-
ble 7, PEM needs to explore 2 subsets for 2D data set,
but only one for other data sets. This helps reduce query
processing time on one hand. On the other hand, 4D and
5D data sets contain much more points than & in their
first skyline order subsets, meaning that considerable
time is needed to reduce points. As a result, the overall
costs on 4D and 5D data sets increase. Similar reasoning
applies to independent data sets.

6.2.3 Effect of k

In the next experiment, we fix the data cardinality at
1,000K and the dimensionality at 2, and we then vary k
from 50 to 500. Figure 8 reports the relevant results.

OCM —%~ BCM O~ PCM -@- SSF -4A
-m

OCM —%- BCM G- PCM -@- SSF -4
OEM —+- BEM -f3- PEM -

OEM -+- BEM -E}- PEM -

120

-
N
S

100

=
1)
3
B

80 x

Computation time (s)
Computation time (s)

200 300

(a) AC Data Sets

(b) IN Data Sets

Fig. 8. Query Cost vs. k

It is again seen that pre-computation is beneficial
and that VDR estimation is better than the count based
approach. For the approaches incorporating count based
reduction (the *CM approaches), the costs usually in-
crease for larger k. As k increases, more skyline order

13

subsets are explored. For those subsets, the numbers of
candidate points increase as the subset indexes increase.
Hence, the *CM approaches slow down because their
greedy heuristic reduction gets larger inputs. In contrast,
the approaches with estimation based reduction (the
*EM approaches) are considerably more steady because
VDR estimation is computationally quite fast even for
larger numbers of candidate points.

It is seen that the *CM approaches exhibit “drops”: at
k = 450 for the anti-correlated data set, and at k& = 300
for the independent data set. The independent data set
of 1,000K points has exactly 300 points in its first eight
skyline order subsets. As a result, for the case k¥ = 300 no
skyline reduction occurs for any of the *CM and the *EM
approaches. Therefore, the cost of any *CM approach
is exactly the same as that of its *EM counterpart. The
anti-correlated data set of 1,000K points has a total of
448 points in its first four skyline order subsets. As a
result, for k£ = 450 any of the *CM approaches need to
choose only 2 additional points from the fifth skyline
order subset with 169 points, which is quite easy for the
greedy heuristic employed by the *CM approaches.

6.2.4 Performance on Disk-Resident Data

To investigate the query performance on disk-resident
data, we adapt the algorithms in a similar way as in
Section 6.1.3.

We also adapt the I0-optimal BBS algorithm [23] to
process queries. In particular, skyline order subsets are
computed on-the-fly one by one using the adapted BBS
version with two min-heaps, as detailed in Section 6.1.3.
After a skyline order subset is computed, the BBS pro-
cessing stops if all current subsets contain k£ or more
points in total. For the latter, the VDR estimation covered
in 3.2.2 is used to reduce the result to exactly & points.
The R-tree page size is set to 4K for the BBS algorithm.

We use an LRU buffer with a size of 1% of the data
size. For all algorithms, one buffer block is used to
contain the query result; others are used for holding
skyline order subsets or R-tree nodes. The IO costs are
reported in Figures 9 to 11. The settings are given in the
captions. Our PEM approach always incurs the lowest
IO cost, followed by the PCM approach in most cases.

OCM =@ BCM mmm PCM &SI SSF
OEM —— BEM === PEM mmm BBS

OCM g3 BCM m@ PCM B3 SSF
OEM 1 BEM =0 PEM mm BBS &I 7

Cardinality

(a) AC Data Sets

Cardinality

(b) IN Data Sets

Fig. 9. 10 Cost vs. Cardinality (d = 5, k = 100)

OCM ==X BCM mm@ PCM =Y SSF
OEM —J BEM == PEM mmm BBS —

OCM & BCM mmm PCM =S SSF
OEM — BEM == PEM mmm BBS

Dimensionality

(a) AC Data Sets

Dimensionality

(b) IN Data Sets

Fig. 10. 10 Cost vs. Dimensionality (| P| = 100K, & = 100)

OCM —<- BCM ~C- PCM @~ SSF -4 OCM —%- BCM ~©- PCM @ SSF -&

100 OEM -+~ BEM -5 PEM -M- BBS -&- b ([OEM Tt BEM 5 PEM @ BBS 4
A
10"
/NSNS
N NS

A A
o 10° & — {1
2 FOATRTETATRURTRTATTR

(a) AC Data Sets (b) IN Data Sets

Fig. 11. 10 Cost vs. k& (|P| = 1000K, d = 5)

6.2.5 Interpretation of Query Results

Note that all the *EM approaches produce the same
set of points given the same input; so do all the *CM
approaches. Therefore, we compare the results of PEM
and PCM with those alternatives.

As mentioned in Section 3.3, pointwise ranking is
prone to ties and thus to selecting points with similar
features, while results with diverse points are usually
more desirable to users issuing skyline queries. There-
fore, we evaluate the diversity of the query results com-
puted by the different approaches based on the variance
among the points returned from synthetic data sets. Let
R be the set of points returned as the query result.
Its variance V(R) is defined as the average Euclidean
distance between points in R and the mean of R, ie.,
V(R) = 1> crllp — R|?, where k is |R|.

We fix the synthetic data cardinality at 1,000K and the
dimensionality at 5. The results obtained are shown in
Figure 12. For the anti-correlated data set, all approaches
are quite close to each other in terms of result variance.
However, for the independent data set, our skyline order
concept achieves better result variance due to its com-
bined advantages; SSF fails to do so due to its pointwise
ranking nature.

We proceed to compare the query results obtained
from the NBA data set 2 that has 19,112 17-attribute
records and generally follows a correlated data distri-
bution. Following Yiu and Mamoulis [29], we query
on the four most important attributes: games played,
points, rebounds, and assists. All records are normalized
to the unit space [0,1]%. The query results for k=5 are

2. NBA Statistics v2.0: http://databasebasketball.com.

14

listed in Table 9. PEM returns impressive result by
identifying the peak seasons of the legend player Wilt
Chamberlain; PCM returns players with larger variance.
SSF fails to identify star players due to too many ties
in its ranking. The pointwise ranking based top-k may
prefer non-skyline points over skyline points. E.g., Kevin
Garnett (2002) in its result is actually dominated by Wilt
Chamberlain (1967) [29]. In contrast, PEM and PCM do
not exhibit such anomalies.

PCM
PEM -

e

o
o
N5

Result variance
Result variance

0.06 0
100 200 300 400 500 100 200 300 400 500

(a) AC Data Sets (b) IN Data Sets

Fig. 12. Result Variance vs. k

7 CONCLUSION

Skyline queries are able to find interesting data points
in multi-dimensional data sets. However, most previ-
ous work has been focused on how to reduce skyline
result cardinalities. In this paper, we aim to resolve
arbitrary size constraints on skyline queries, without any
a priori assumptions about the relationship between the
expected number of points and the skyline cardinality.

The paper describes how typical existing techniques
are not well equipped to contend with arbitrary size
constraints. Then the concept of skyline order is pro-
posed where a data set is partitioned using the skyline
dominance relationship. The skyline ordering provides
an order among different partitions, but still reserves
room for different local optimizations within each par-
tition. Efficient algorithms are developed for computing
skyline orders and resolving arbitrary size constraints
using skyline order. Extensive empirical studies show
that skyline order presents a flexible framework for effi-
cient and scalable resolution of arbitrary size constraints
on skyline queries.

ACKNOWLEDGMENTS

Christian S. Jensen is an Adjunct Professor at University
of Agder, Norway.

REFERENCES

[1] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear
expected-time algorithms for computing maxima and convex
hulls. In Proc. SODA, pp. 179-187, 1990.

[2] I Bartolini, P. Ciaccia, and M. Patella. Efficient sort-based skyline
evaluation. TODS, 33(4):1-49, 2008.

[3] J. L. Bentley, H. T. Kung, M. Schkolnick, and C. D. Thompson.
On the average number of maxima in a set of vectors and
applications. JACM, 25(4):536-543, 1978.

(4]
(5]
6]

(71
(8]

(9]
[10]

[11

[—

(12]

[13

[

[14]

[15]
[16]
[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28

[t

[29]

15

TABLE 9
Comparison of Query Results
[kK [PCM [PEM | Top-k | SSF]
1 | Wilt Chamberlain (1967) | Wilt Chamberlain (1965) | Wilt Chamberlain (1967) John Abramovic (1946)
2 | Julius Erving (1974) Wilt Chamberlain (1963) | Billy Cunningham (1972) Chet Aubuchon (1946)
3 | Julius Erving (1971) Oscar Robertson (1961) Kevin Garnett (2002) Norm Baker (1946)
4 | Oscar Robertson (1961) Wilt Chamberlain (1966) | Julius Erving (1974) Herschel Baltimore (1946)
5 | Isiah Thomas (1983) Wilt Chamberlain (1967) | Kareem Abdul-Jabbar (1975) | John Barr (1946)

H. Blunck and J. Vahrenhold. In-place algorithms for computing
(layers of) maxima. In Proc. SWAT, pp. 363-374, 2006.

S. Borzonyi, D. Kossmann, and K. Stocker. The skyline operator.
In Proc. ICDE, pp. 421-430, 2001.

C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang.
Finding k-dominant skylines in high dimensional space. In Proc.
SIGMOD, pp. 503-514, 2006.

C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. Tung, and Z. Zhang. On
high dimensional skylines. In Proc. EDBT, pp. 478-495, 2006.
Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, and J. R.
Smith. The onion technique: Indexing for linear optimizatoin
queries. In Proc. SIGMOD, pp. 391-402, 2000.

J. Chomicki. Preference formulas in relational queries. TODS,
28(4):427-466, 2003.

J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with
presorting. In Proc. ICDE, pp. 717-719, 2003.

B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel Dis-
tributed Processing of Constrained Skyline Queries by Filtering.
In Proc. ICDE, pp. 546-555, 2008.

P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation
in large data sets. In Proc. VLDB, pp. 229-240, 2005.

G. Hjaltason and H. Samet. Distance browsing in spatial database.
ACM TODS, 24(2):265-318, 1999.

Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries
against mobile lightweight devices in MANETSs. In Proc. ICDE,
page 66, 2006.

W. Jin, M. Ester, and J. Han. Efficient processing of ranked queries
with sweeping selection. In Proc. PKDD, pp. 527-535, 2005.

W. Jin, J. Han, and M. Ester. Mining thick skylines over large
databases. In Proc. PKDD, pp. 255-266, 2004.

V. Koltun and C. H. Papadimitriou. Approximately dominating
representatives. In Proc. ICDT, pp. 204-214, 2005.

D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky:
An online algorithm for skyline queries. In Proc. VLDB, pp. 275—
286, 2002.

H. T. Kung, E. Luccio, and F. P. Preparata. On finding the maxima
of a set of vectors. JACM, 22(4):469-476, 1975.

P. Larson, H. Z. Yang. Computing Queries from Derived Rela-
tions. In Proc. VLDB, pp. 259-269, 1985.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The k
most representative skyline operator. In Proc. ICDE, pp. 86-95,
2007.

H. Lu, C. S. Jensen, and Z. Zhang. Skyline ordering: A flexible
framework for efficient resolution of size constraints on skyline
queries. DB Technical Report TR-27, Department of Computer
Science, Aalborg University, 28 pages, 2010.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and
progressive algorithm for skyline queries. In Proc. SIGMOD, pp.
467-478, 2003.

D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline
computation in database systems. ACM TODS, 30(1):41-82, 2005.
Y. Tao, L. Ding, X. Lin and]. Pei. Distance-based representative
skyline. In Proc. ICDE, pp. 892-903, 2009.

K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In Proc. VLDB, pp. 301-310, 2001.

A. Vlachou, C. Doulkeridis, K. Nervag, and M. Vazirgiannis.
Skyline-based Peer-to-Peer Top-k Query Processing. In ICDE, pp.
1421-1423, 2008.

T. Xia, D. Zhang, and Y. Tao. On skylining with flexible dominance
relation. In Proc. ICDE, pp. 1397-1399, 2008.

M. L. Yiu and N. Mamoulis. Efficient processing of top-k
dominating queries on multi-dimensional data. In Proc. VLDB,
pp. 483-494, 2007.

[30] Z. Zhang, X. Guo, H. Lu, A. K. Tung, and N. Wang. Discovering
strong skyline points in high dimensional spaces. In Proc. CIKM,
pp. 247-248, 2005.

[31] Shiming Zhang, N. Mamoulis, and D. W. Cheung Scalable
skyline computation using object-based space partitioning. In
Proc. SIGMOD, pp. 483-494, 2009.

Hua Lu received the BSc and MSc degrees
from Peking University, China, in 1998 and 2001,
respectively and the PhD degree in computer
science from National University of Singapore
in 2007. He is currently an assistant profes-
sor in the Department of Computer Science,
Aalborg University, Denmark. His research in-
terests include skyline queries, spatio-temporal
databases, geographic information systems, and
mobile computing. He is a member of the IEEE.

Christian S. Jensen, Ph.D., Dr.Techn., is a
Professor of Computer Science at Aalborg Uni-
versity, Denmark, where he directs Center for
Data-Intensive Systems. From September 2008
to August 2009, he was on sabbatical at Google
Inc., Mountain View. He has previously been on
several sabbaticals at University of Arizona. His
research concerns data management and spans
semantics, modeling, indexing, and query and
update processing. During the past decade, his
focus has been on spatio-temporal data man-
agement. He is an |IEEE Fellow, a member of the Danish Academy of
Technical Sciences and the EDBT Endowment, and a trustee emeritus
of the VLDB Endowment. In 2001 and 2002, he received Ib Henriksen’s
Research Award for his research in mainly temporal data management
and Telenor’s Nordic Research Award for his research in mobile services
and data management. He is vice president of ACM SIGMOD. He is
an editor-in-chief of The VLDB Journal and has served on the editorial
boards of ACM TODS, IEEE TKDE, and the IEEE Data Engineering
Bulletin. He was PC chair or co-chair for STDM 1999, SSTD 2001, EDBT
2002, VLDB 2005, MobiDE 2006, MDM 2007, TIME 2008, and DMSN
2008. He will be PC chair of ACM SIGSPATIAL GIS 2011.

Zhenjie Zhang received his B.S. from Depart-
ment of Computer Science and Engineering,
Fudan University in 2004. He is currently a Ph.D.
student and Research Assistant in the School
of Computing, National University of Singapore.
He was visiting student of Hong Kong University
of Science and Technology in 2008 and visiting
scholar of AT&T Shannon Lab in 2009. His re-
search interests cover a variety of different topics
including clustering analysis, skyline query, non-
metric indexing and game theory. He has served
as Program Committee members in VLDB 2010 and KDD 2010.

