
Routing Questions to the Right Users in Online
Communities

Yanhong Zhou1, Gao Cong2, Bin Cui1, Christian S. Jensen2, Junjie Yao1

1School of EECS & Key Laboratory of High Confidence Software Technologies, Peking University, China
{yhzhou,bin.cui,junjie.yao}@pku.edu.cn

2Department of Computer Science, Aalborg University, Denmark
{gaocong,csj}@cs.aau.dk

Abstract— Online forums contain huge amounts of valuable
user-generated content. In current forum systems, users have to
passively wait for other users to visit the forum systems and
read/answer their questions. The user experience for question
answering suffers from this arrangement. In this paper, we
address the problem of “pushing” the right questions to the right
persons, the objective being to obtain quick, high-quality answers,
thus improving user satisfaction. We propose a framework for
the efficient and effective routing of a given question to the
top-k potential experts (users) in a forum, by utilizing both the
content and structures of the forum system. First, we compute the
expertise of users according to the content of the forum system—
this is to estimate the probability of a user being an expert for a
given question based on the previous question answering of the
user. Specifically, we design three models for this task, including
a profile-based model, a thread-based model, and a cluster-
based model. Second, we re-rank the user expertise measured
in probability by utilizing the structural relations among users
in a forum system. The results of the two steps can be integrated
naturally in a probabilistic model that computes a final ranking
score for each user. Experimental results show that the proposals
are very promising.

I. INTRODUCTION

A forum system is an online web application that enables a
forum for discussions among users and for the posting of user-
generated content. In particular, many forums serve as question
answering portals where users in online communities ask and
answer questions. A large number of such forums exist, and
many forums can easily have thousands of users and thousands
of questions posted per day. In addition, Community-based
Question-Answering (CQA) portals, e.g., Yahoo! Answers
(http://answers.yahoo.com/), Live QnA (http://qna.live.com/),
and Baidu Zhidao (http://zhidao.baidu.com), can be regarded
as variations of online forums. Since their inception, they have
rapidly gained popularity. For example, Yahoo! Answers has
attracted millions of users and hosts a huge number of ques-
tions. The question answering content in online communities
provides an alternative for users to obtain information in the
form of answers authored by other users, rather than as lists
of results or documents from search engines.

With existing forum systems, users must passively wait
for other users to visit the forums, read their questions, and
provide answers. It may take hours or days from asking

The work was partially supported by NSF China under Grant No.60603045.
Contact author: bin.cui@pku.edu.cn

a question in a forum before a user can expect to receive
answers. A user who knows well the answer to a particular
question may not answer the question because the user may
not visit the forum frequently or the user may be faced
with many open questions. On the other hand, a user who
answers a question may just happen to see the question, but
is not an expert on the question’s subject. To improve on this
arrangement, we propose to push questions to the right persons
in a forum system to obtain quick, high-quality answers. The
reduced waiting times and improvements in the quality of
answers are expected to improve user satisfaction.

Conventional forum system can be extended easily to sup-
port mobile communities, where the users ask and answer
questions via mobile phones. The push mechanism is essential
in a mobile CQA system. Consider a scenario where a user
who is driving with his family from Hamburg to Copenhagen
asks a question on a mobile CQA forum by sending a text
message “Can you recommend a place where my kids, ages 4
and 7, can have good food and can play near the Copenhagen
railway station?” Here the user definitely hopes to receive
answers as soon as possible, and a quick reply is essential for
such a service. If the CQA system does not have any answer
that matches the user’s question well, it can send the question
to the right experts, who can provide the user with answers.

To enhance forum systems with the proposed push mech-
anism, we address the problem of effectively and efficiently
finding the right users for a given new question in a forum.
We believe that the resulting solution can significantly improve
user satisfaction.

Previous work on ranking experts in forum systems [7], [20]
focuses on computing a global ranking of users in a system by
adapting graph-based ranking algorithms, such as the PageR-
ank and HITS algorithms. They make use of the question-reply
structural information of forums, but not the content of the
posts. Furthermore, it will not be appropriate to route questions
on different topics to the top users in a global ranking of
the expertise of users in a forum system. Another line of
related work, on expert search in enterprise documents [3], [4],
assumes a setting where a set of documents, a list of candidate
experts, and a set of topics are given and then finds experts for
each of the given topics. This differs from our setting where
we are to find the right experts for any new question without
being given a predefined topic. In the above solutions, experts

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.44

700

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.44

700

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

AAU
Text Box
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale orredistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying thisinformation are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

are found using plain documents, while forum data have a
question-reply structure—such structural information between
users can be useful in discriminating their relative areas of
expertise. We also note that work on expert search tends to
focus on effectiveness rather than efficiency.

To address the aforementioned problems, we propose a
framework to effectively and efficiently find the top-k potential
experts (users) for a given question in a forum. A forum
contains a number of threads, each of which usually has a
question post and a number of reply posts. To facilitate this
task, we utilize both the content and structures of a forum.
Specifically, we split the task into two. First, we compute the
expertise of users according to the content of the forum, i.e.,
we estimate the probability of a candidate user being an expert
for a given question based on the previous question answering
activities of the user. Second, we re-rank the user expertise
measured in probability by utilizing the structural relations
among users in the forum. Specifically, we adopt graph-based
ranking algorithms [20] to promote users with high authority.
The results of the two sub-tasks are then integrated naturally
into a probabilistic model capable of computing a final ranking
score for each user.

We propose three different approaches to compute the user
expertise (the first sub-task), namely a profile-based, a thread-
based, and a cluster-based model.

1) Profile-based model: To compute the probability of a
user being an expert for a given question, we create a
profile for each user that represents the user’s knowledge
based on the answers authored by the user and also the
corresponding questions he/she answered.

2) Thread-based model: In this approach, each thread
serves as a latent topic. We thus compute the probability
of a user being an expert for a new question based on
each thread and the association between the thread and
relevant users. Intuitively, we obtain a user profile for
each thread, and each thread-based profile contributes to
the ranking score of a user on the basis of the association
of the thread with users.

3) Cluster-based model: We group threads with similar
content into clusters and build a cluster-based thread
for each user. Each cluster represents a coherent topic
and is associated with users that indicates the relevance
between the cluster and users. Given a new question, we
compute the ranking score for each user by aggregating
all clusters.

It is computationally expensive to calculate the ranking
values with the three models, especially since multiple users
may pose questions to a forum system simultaneously. To
achieve better performance, we build inverted indexes for user
profiles in the profile-based model, thread-user profiles in the
thread-based model, and cluster-user profiles for the cluster-
based model. For query processing, we adapt the well-known
Threshold Algorithm [5] to efficiently access the inverted lists.

Re-ranking is accomplished using the structural relations
between users in a forum. Such relations are formed naturally
if a user replies to a question from another user. The question-

reply network suggests a relative expertise levels between
users. In contrast to the PageRank algorithm [12] that gives
the same weight to all links, we assign a weight to each edge
based on the the frequency of one user replying to another.
For both the profile-based and thread-based approaches, we
use all the threads in a forum to build a user network, and we
adapt the PageRank algorithm to compute an authority value
for each user. In contrast, in the cluster-based approach, the
clusters serve as the unit for building a weighted question-reply
network. The re-ranking scores computed from the threads in
a cluster reflect the authority of the users in the cluster.

In summary, the paper makes the following contributions.

• We propose a push mechanism for online forums (in-
cluding Community-based QA systems). To support this
mechanism, we propose novel approaches to find experts
for new questions in forums. To the best of our knowl-
edge, this is the first work to address this problem.

• We extend the threshold algorithm for the query process-
ing of our models to achieve higher efficiency.

• We conduct a detailed experimental study using a real-life
forum data set. We evaluate the performance of our pro-
posals and also compare with two baseline approaches.
The experimental results show that our approaches yield
satisfactory performance and significantly outperform the
baseline approaches.

The rest of this paper is organized as follows. Section II
reviews related work. Section III details the proposed frame-
work including models and algorithms. Section IV reports on
the performance study, and finally we conclude this paper in
Section V.

II. RELATED WORK

Online communities, e.g., forums, are often organized into
sub-forums, each of which contains a number of threads; each
thread usually contains a question post and a number of reply
posts. Every person in a forum can pose a question and answer
a question, which means that non-expert users might give
incorrect answers. We note that no forum system or CQA
service automatically supports the push mechanism proposed
in this paper. The web service allexperts.com allows users to
manually choose among registered experts and to ask questions
of the selected experts by email.

Expert finding in social communities, such as forums, has
attracted some research attention recently [7], [20]. Zhang
et al. [20] use the network-based ranking algorithms HITS
and PageRank to rank users in a “Java Forum” based on
their authority scores. In other work [7], a similar approach
is applied to a small data set obtained from the community
based QA service Yahoo! Answers. The ranked list of users
generated in these proposals may be used by the push mecha-
nism proposed in this paper, although these proposals are not
designed for this purpose and do not consider the content of
online communities. As will be shown in our experimental
results, the performance of using the ranked list for the push
mechanism is poor. Although the ranked list alone is not

701701

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

sufficient for the push mechanism, the network-based approach
can be integrated into this paper’s framework.

Our work is also related to expert search [10] in scientific
and enterprise data. A topic model has been proposed for
capturing reviewer’s expertise based on the papers they have
written [11]. The interest in expert finding is prompted by the
launch of the Enterprise track of TREC [17], [6]. Language
models are the dominating techniques used in expert search for
enterprise data (e.g., [3], [13]). Language models have sound
foundations in statistical theory and have performed quite well
empirically in many information retrieval tasks [15], [19].

The language model-based approaches can be divided into
profile-based methods and document-based methods. The
profile-based methods (e.g., [3]) model the knowledge of
an expert from associated documents with profiles and rank
the candidate experts for a given topic based on the rel-
evance scores between their profiles and the given topic.
The document-based methods (e.g., [3], [14]) find related
documents for a given topic and rank the candidates based
on mentions of the candidates in the related documents.
A hierarchical language model proposed by Petkova and
Croft [13] uses a more fine-grained approach with a linear
combination of the language models built on subcollections of
documents. Our work differs from the existing work on expert
search in three key respects. First, the existing techniques are
mainly designed for plain documents, not for forum threads
containing the question-reply structure and involving multiple
users. Second, language models are established on top of term
frequencies, and it has been shown that expert search relying
only on word and document frequencies is limited [8] because
it does not discriminate the relative expertise levels of users
well; in forums, the network structure on the users can be
utilized. Third, existing work on expert search usually ignores
the efficiency aspect.

III. OUR APPROACH

In this section, we present our approach to address the
problem of routing questions to the right users in forum
systems. As discussed previously, the existing work on expert
search/ranking [3], [4], [7], [20] cannot be deployed effectively
in this scenario due to the characteristics of forums. Therefore,
we propose a new framework to find the top-k users for a
given question by utilizing the content and structure of forums,
which is illustrated in Figure 1. Our approach consists of
two components: The expertise model that ranks the users
according to their expertise captured by language models and
the re-ranking model that re-ranks the candidate users using
the question-reply graph.

A. The System Framework

Figure 1 shows the framework of our approach. The exper-
tise model in the framework serves to find promising experts
(users). Given the training thread data, we build an expertise
index that captures the relation between users and the contents
that they posted in the forum. Different models are designed
in this paper to present the expertise of users. Additionally, we

design a re-ranking model that uses the structure of forums to
compute the authority of users to improve the user ranking.
Given a new question, we compute the user expertise on the
question using the expertise models, get the authority score
of the users, rank the users based on their expertise and
authority score, and return a ranked list of users who have
high probabilities of being experts for the question.

Original
Thread
Data

Expertise
Model

Expertise
Index

Expertise Model Building Question Processing

Routing
Module

Re-ranking
model

Re-ranking
Module

Question:
w1 w2 … wm

Ranked user list

Fig. 1. Framework of routing question to users.

In this paper, the expertise of users and the authority of
users are unified by means of a probability model. Given a
new question q, the probability of a user u being an expert on
the question is estimated as follows:

p(u|q) =
p(q|u)p(u)

p(q)
, (1)

where p(u) is the prior probability of a candidate user and p(q)
is the probability of a question generated by a random user,
which is the same for all candidate users. In our approaches,
p(u) is estimated by the authority of user u, while p(q|u) is
used to capture the expertise of user u on question q. In this
study our task is therefore to compute the probability p(q|u)
and p(u).

This probability model was first introduced in [3]. However,
p(u) was assumed to be uniformly distributed and candidate
users were ranked only according to p(q|u).

B. Ranking Users with Language Model

In this subsection, we present three approaches to compute
the expertise of the users according to their previous activities
in forum systems. Given a new question q, users will be ranked
based on the expertise model, i.e., p(q|u).

According to the data characteristics of forums, we design
three different models based on a language model to represent
the users’ expertise, namely a profile-based model, a thread-
based model, and a cluster-based model.

B.1 Profile-based Model

In this model, a candidate user u is represented by a
multinomial probability distribution over the vocabulary of
words (i.e. p(w|θu)). A new question q is represented by a set
of words, and each question word is assumed to be generated
independently. Therefore, the probability of question q being
generated by the profile model can be obtained by taking the
product across all the words in the question:

702702

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

p(q|u) =
∏

w∈q

p(w|θu)n(w,q), (2)

where p(w|θu) is the probability of a word given the profile
model θu, and n(w, q) is the number of times word w occurs
in q. The core component of the above equation is to compute
p(w|θu). In our approach, we first compute a raw profile
p(w|u) for user u by marginalizing over all threads:

p(w|u) =
∑

td

p(w|tdu)con(td, u), (3)

where p(w|tdu) represents the probability of a word w
generated by the thread td with the user u and con(td, u)
is the contribution of user u on the thread td. It is nontrivial
to compute these two factors due to the structure of threads,
and we will discuss them later in this section.

To obtain an estimate of the profile-based model p(w|θu),
we need to do smoothing on the above p(w|u). The smoothing
is needed because many words in the vocabulary will not
appear in a given user profile. Taking smoothing as a standard
practice [19], we can avoid assigning zero probability p(w|θu)
to unseen words and also make the estimated model more
accurate. Specifically, we apply the Jelinek-Mercer method to
smooth p(w|u) and thus obtain the profile model p(w|θu) as
follows:

p(w|θu) = (1 − λ)p(w|u) + λ p(w) (4)

where p(w) denotes the background language model built on
the entire collection C (can be all threads in a forum) and λ ∈
[0, 1] is a coefficient to control the influence of the background
model. The background model p(w) is computed through a
maximum likelihood estimation:

p(w) =
n(w, C)
|C| , (5)

where n(w, C) denotes the frequency of word w occurring
in the collection C and |C| is the number of all words in
collection C.

B.1.1 Language Models Built on Thread Data

We give two language modeling methods to model the
content of one thread td with user u, p(w|tdu).

Single-doc thread model. We simply concatenate the ques-
tion post q and the reply ru from user u into a single doc-
ument. We then compute the maximum likelihood estimation
of each word w in the thread td.

p(w|tdu) =
n(w,q) + n(w, ru)

|q ∪ ru| (6)

Question-reply thread model. The single-doc thread model
does not distinguish the question and the reply. In contrast,
the question-reply thread model gives different weights to
the question post q and the reply ru. That is, we build
a hierarchical language model [13] for a thread using its

question-reply structure. If u has more than one reply in the
thread td, we combine all the replies into one reply.

p(w|tdu) = (1 − β)p(w|q) + β p(w|ru) (7)

where p(w|q) and p(w|ru) denote the maximum likelihood
estimation of word w in the question post q and the reply
ru, respectively, for the current thread td with user u. The
coefficient β ∈ [0, 1] is used to enable trade-off between the
question post q and the reply ru.

B.1.2 Modeling A User’s Contribution to A Thread

We need to estimate the association between a thread td
and a candidate user u. This association can be taken as the
contribution of the user u to thread td in solving the question
of this thread. We denote the contribution as con(td, u).

For the thread data, some replies in a thread may be better
than other replies in the same thread. Ideally, we should take
the quality into account when we evaluate the contribution of
a reply to a question post. However, it is difficult to determine
the quality of a reply. In this paper, we give a language model
based approach to estimating the contribution of a reply. This
is based on two observations: 1) it is shown that the question
and answer often share some common words, and 2) answers
from different users may often share similar words.

In this contribution model, we measure the contribution of
a reply in terms of the likelihood of the question post to the
reply, i.e., p(q|θru)1.

To obtain probabilities, we normalize by the sum of the
contributions of a specific user to all relevant threads. Given
a user u, a thread td with question post q and a reply ru

authored by user u, the contribution of u on thread td is
defined by:

con(td, u) =
p(q|θru)∑

td′ p(q′|θr′u
)

=

∏
w∈q p(w|θru)

∑
td′

∏
w∈q′ p(w|θr′u

)
,

(8)
where θru is a smoothed language model built on the reply
by candidate user u in thread td. Assume we take p(w|ru) as
the maximum likelihood estimation for word w in the reply
ru, i.e., n(w,ru)

|ru| , and p(w) as the background language model
estimated by Equation 5, then θru can be obtained as follows:

p(w|θru) = (1 − λ) p(w|ru) + λ p(w) (9)

Comments: The proposed profile-based model differs from that
of Balog et al. [3] for the method of estimating the language
model p(w|θu) in two aspects. First, Balog et al.’s language
model is estimated from a set of documents associated with
a user u. In our problem, this is different since each user is
associated with a set of replies, and each reply is associated
with a question post. We build a hierarchical language model
for each thread by utilizing the question-reply structure of
a thread. And each thread may be associated with different

1In experiments, we utilize the logarithm of likelihoods rather than
the likelihoods to avoid zero values.

703703

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

users who have different thread language models, denoted as
p(w|tdu). Second, to compute the contribution of a user u to
a thread td, we consider the content similarity between the
question post and the user’s reply, while Balog et al. connect
a user with a document if the user occurs in the document.

B.1.3 Algorithms

It would be computationally expensive to compute the
probability of a user being an expert for a question from
scratch using the framework based on the profile-based model.
To speed up expert search for a question, we pre-compute the
language model and build an index. More specifically, expert
search is done in two stages: index creation and question
processing. In the index creation stage, we create an inverted
list of (u, p(w|θu)) for each word w. Each inverted list is
sorted by the weight value of p(w|θu), which represents the
relation between the word and corresponding user. Thus, in
the question processing stage, we can apply the Threshold
Algorithm [5] to compute the top-k ranked users who have
the highest probability of being experts for the question.

Index Creation: Under our profile-based model, all the users
have a profile represented as p(w|θu), and the expert search
process is based on the users’ profiles. In this stage, we need
to compute p(w|θu) for all users.

In order to apply the threshold algorithm to speed up the
query processing, for each word w, we build an inverted list
of (u, p(w|θu)) and sort it by the weight of p(w|θu). Figure 2
shows an inverted list example for our profile model. Here the
inverted lists for words are sorted by the the value of p(w|θu).

word:
w u1 ,p(w| u1) ...

order by value of p(w| u)

u2 ,p(w| u2)

Fig. 2. Index structure for the profile-based model.

The inverted list creation process is shown in Algorithm 1.
During the indexing process, we compute p(w|θu) for all users
u and then sort the list of (u, p(w|θu)). Finally, each word w
has an inverted list, in which entries are sorted by the weight
of p(w|θu).

Question Processing: Based on the sorted inverted lists
built during index creation, we apply the threshold algorithm
to compute the top-k ranked results for a new question.
This algorithm achieves the least accesses to the inverted
list for the computation of the top-k ranked result. Given a
question query q containing l words, where each word wi

has the frequency n(wi, q) and corresponds to the sorted
list Li = {(u, p(wi|θu))}, the querying process using the
threshold algorithm is illustrated as follows:

1) Let Y = {(u, score(u))} keeps track of the current top
k results in descending order of score(u).

2) Conduct a sorted access to each of the l sorted lists
Li (i.e., access the top member of each of the lists
under sorted access, then access the second member of
each list, etc.). As an entry of (u, p(wi|θu)) is seen

Algorithm 1 Index creation of profile-based model
1: //Generation stage
2: for each user u do
3: For each word w, initialize p(w|u) to 0;
4: Find all threads {td} replied to by user u and compute

con(td, u);
5: for each td in {td} do
6: for each word w in td do
7: Consider the question and the reply of u in td to

compute p(w|tdu);
8: p(w|u) += p(w|tdu) con(td, u);
9: end for each word

10: end for each thread
11: Smooth all p(w|u) to p(w|θu);
12: For each word w, store the triplet of (w, u, p(w|θu))
13: end for each user
14: // Sorting stage
15: for each word w do
16: Find the list of (u, p(w|θu)) and sort it by p(w|θu);
17: Store the sorted list of (u, p(w|θu)) for w;
18: end for each word

under sorted access in some list, conduct a random
access to the other lists to find all other weights of
p(w−i|u), where w−i represents all other words in the
question except for word wi. Compute the score for u:
score(u) =

∏
w∈q p(w|θu)n(w,q). If Y is not full or

score(u) is larger than the minimal score in Y then
store the pair (u, Score(u)) in Y .

3) For each list Li, let (u∗
i , p(wi|θu∗

i
)) be the last entry seen

under the sorted access. Compute the threshold value t
as t =

∏
i p(wi|θu∗

i
)n(wi,q). If the scores of all the k

users in Y are no less than t then stop.
4) Output the top-k results in set Y .

In the above querying process, we do not need to compute
the scores for all users, which can speed up the computation
of the top-k expert users.

B.2 Thread-based Model

In this model, we assume that each thread is a latent topic.
Each thread td is assigned to a user u with the probability
con(td, u), which denotes the contribution of the user u to the
thread td. The model built on the threads, i.e., the p(w|θtd)
act as small-grain profiles for each user. Unlike the document
model of Balog et al. [3], we build a hierarchical language
model on each thread using its question-reply structure. Addi-
tionally, the contribution of a user to each thread is estimated
by the content similarity between the question and the reply
authored by the user.

We can also build two kinds of models for each thread, i.e.,
a single-doc thread model and a question-reply thread model
as in Section III-B.1.1. Different from the profile-based model,
we combine all the replies of a thread into one reply, but do
not distinguish the replies from different users. The reason for
doing this is that it will be too computationally expensive to
have a separate language model for each combination of a user
and a thread. Specifically, we estimate p(w|td) by applying
the Equation 6 or Equation 7, and we obtain the smoothed

704704

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

model p(w|θtd) after smoothing with the background model
p(w).

p(w|θtd) = (1 − λ)p(w|td) + λ p(w) (10)

Under this model, the probability of generating a new
question q can be viewed as the following generative process.
For each user, we choose a latent topic, i.e., thread, at the
probability estimated by the contribution of the user to the
thread con(td, u); from the latent topic, we generate the given
new question with probability p(q|θtd). Another way to view
the generative process is to build a profile-based model for
each thread. By summing over all threads, we obtain the
probability of question q being generated by the thread-based
model as formally computed below.

p(q|u) =
∑

td

p(q|θtd)con(td, u), (11)

where con(td, u) is computed using Equation 8 and θtd is the
smoothed language model built on thread td.

To compute the probability p(q|θtd) of a question q given
a thread td, we take the product of generating a word by td
across all the words in the question q.

p(q|θtd) =
∏

w∈q

p(w|θtd u)n(w,q) (12)

B.2.1 Algorithms

The algorithm for the thread-based model is implemented
in two stages.

Index Creation: We need two kinds of inverted lists for this
model: thread list and thread user contribution list. Thread list
is used to store the user’s profile specific to a certain thread,
i.e., p(w|θtd), and thread user contribution list is used to store
the contribution of user to the thread, i.e., con(td, u).

Figure 3 shows the index structure example used for this
model. Actually, QA systems providing question or answer
search (or a search engine) usually has an index such as the
thread list, and we could reuse the existing index structure,
avoiding to build thread list. In other words, the thread-
based model only needs to build an additional thread user
contribution list for routing questions to the right users. This
is also an advantage of the thread-based model.

a) thread list

b) thread user contribution list

word:
w

thread:
td u1 ,con(td,u1) u2 ,con(td,u2) ...

td1 ,p(w|θtd) td2 ,p(w|θtd) ...

order by value of p(w|θtd)

order by value of con(td, u)

Fig. 3. Index structure for the thread-based model

In order to apply the threshold algorithm for query process-
ing, we build for each word an inverted list of (w, p(w|θtd))

and sort it by the value of (p(w|θtd)). Furthermore, we also
build a sorted list of (u, con(td, u)) for each thread td. The
index building process is given in Algorithm 2.

Algorithm 2 Index creation for the thread-based model
1: // Generation stage
2: for each thread td do
3: Combine the replies in td into one reply r;
4: for each word w do
5: Consider the question q and reply r in td to compute

p(w|td);
6: Smooth p(w|td) to p(w|θtd);
7: Store the triplet (w, td, p(w|θtd));
8: end for each word
9: end for each thread

10: for each user u do
11: Find all threads {td} replied to by u and compute

con(td, u);
12: For each td in {td}, store the triplet of (td, u, con(td, u));
13: end for each user
14: // Sorting stage
15: for each word w do
16: Find the list (td, p(w|θtd) and sort it by p(w|θtd);
17: Store the sorted list of (td, p(w|θtd) for w;
18: end for each word
19: for each thread td do
20: Find the list (u, con(td, u)) and sort it by con(td, u);
21: Store the sorted list of (u, con(td, u)) for td;
22: end for each thread

Question Processing: Given a question query, we can make
use of the index structure in Figure 3 to compute expertise
score for all users. However, this remains computationally
expensive since we need access a large number of inverted
lists. We next extend the threshold algorithm to approximately
compute the top-k ranked results under this model.

We separate the query processing into two stages. For a
given question query q, the relevant threads td with the score
of p(q|θtd) are found in the first stage. Existing QA systems
provide this service. In our work, we apply the threshold
algorithm to the thread list shown in Figure 3 to find the
rel threads that are the most similar to a given question
query q, where rel is a parameter. This process is similar
to the one where we use the threshold algorithm to compute
the top-k results in the profile-based model. The difference
is, that we now need to compute the most relevant threads
with a score of p(q|θtd). In the second stage, we apply these
most relevant threads, e.g., rel threads, and access the thread
user contribution list to compute the top-k users according to
Equation 11. We apply the threshold algorithm in this stage
to compute the top-k ranked users for the question q.

Specifically, let a new question query q containing l words
w1, w2, ..., wl together with the frequency n(wi, q) of each
word wi be given together with a sorted thread list L′

i =
{(td, p(wi|θtd))} of each word wi. Then, the process for
approximately computing the top-k ranked users under this
model proceeds as follows:

1) First stage: for question q, find the rel threads {td}
with the highest relevant score p(q|θtd), where rel is a
parameter to be set empirically.

705705

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

a) Let Y ′ = {(td, score(td))} keeps track of the top
rel threads in descending order of score(td).

b) Conduct sorted access to the l sorted thread lists
L′

i in parallel. As an entry of (td, p(wi|θtd)) is
seen under sorted access in some list, do random
access to all other thread lists and find all the
weights of p(w−i|θtd) for the current thread td.
Here w−i represents all other words in question q
except word wi. Compute the score of thread td
as follows: score(td) =

∏
w∈q p(w|θtd)n(w,q). If

Y ′ is not full or the score of td is larger than
the minimal score in Y ′ then store the record of
(td, score(td)) in Y ′.

c) For each thread list L′
i, let (td∗

i , p(wi|θtd∗
i
)) be

the last entry seen under sorted access in the list
of L′

i. Compute the threshold value t′ as t′ =∏
i p(wi|θtd∗

i
)n(wi,q). As soon as the scores of all

rel threads in Y ′ are no less than t′, stop.

2) Second stage: based on those rel threads in Y ′ =
{td1, td2, ..., tdrel}, compute the top-k ranked users
for a given question. Each thread tdi in Y ′ corre-
sponds to a sorted thread user contribution list Li =
{(u, con(tdi, u))}.

a) Let Y = {(u, score(u))} keeps track of the top k
users in descending order of score(u).

b) Conduct sorted access to the rel sorted contribution
lists Li in parallel. As an entry of (u, con(tdi, u))
is seen under sorted access in some list, do random
access to all other lists and find the weights of
con(td−i, u) for the current user u. Here td−i

denotes all other thread in Y ′ except thread tdi.
Compute the score of user u as follows:

score(u) =
∑

td∈Y ′ score(td)con(td, u).
If Y is not full or the score of u is larger than
the minimal score in Y then store the record of
(u, score(u)) in Y .

c) For each contribution list Li for thread tdi,
let (u∗

i , con(tdi, u
∗
i)) be the last entry seen un-

der sorted access in the contribution list of
Li. Compute the threshold value t as t =∑

i score(tdi)con(tdi, u
∗
i). As soon as the scores

of all k users in Y are no less than t, stop.

Note that we apply the threshold algorithm in both stages,
one for finding relevant threads and one for finding the relevant
users. Thus, we do not need to scan all threads and users.
Additionally, for efficiency, we only consider the top rel
number of threads to compute the scores of users.

B.3 Cluster-based Model

In this model, thread clustering is used to group posts
according to similar content (topic). Each cluster is assumed
to represent a topic, and to contain only threads related to
that topic. Language models are estimated for the clusters,
and we build a smoothed language model on each cluster, i.e.,
p(w|θCluster).

Then, for a given new question q, the probability of q for a
user u can be viewed as the following generative process. For
each user, we choose the cluster with the probability estimated
by the contribution of the user to the cluster; according to the
cluster information, we generate the given new question q with
probability p(q|θCluster). Another way to view the generative
process is to build a profile-based model for each cluster.
By summing over all clusters, we will obtain the probability
given below of question q being generated by the cluster-based
model.

p(q|u) =
∑

Cluster

∏

w∈q

p(w|θCluster)n(w,q)con(Cluster, u),

(13)
where p(w|θCluster) represents the smoothed language model
built on a cluster. To compute this model, we first combine the
questions of threads in the cluster into a new question Q and
the replies in the cluster into one reply R to question Q. That
is, we view each cluster as a big “thread” Td with a question
Q and a reply R. As in the case of the methods with which
we build the thread language model in Section III-B.1.1, we
estimate the cluster model p(w|Cluster) as p(w|Td) using
either the single-doc model in Equation 6 or the question-
reply model in Equation 7. Then we smooth this model by the
background language model p(w) to avoid the zero probability
for unseen words as follows:

p(w|θCluster) = (1 − λ)p(w|Cluster) + λ p(w) (14)

With this model, the probability that a latent topic, i.e., a
cluster, is assigned to a user is estimated as the contribution
of the user to the cluster, con(Cluster, u). This quantity is
the computed as the sum over the contributions of the user to
all relevant threads within the cluster:

con(Cluster, u) =
∑

td

con(td, u), (15)

where the contribution of user to a thread, con(td, u), is
computed according to Equation 8 in Section III-B.1.2.

Generating Clusters: We need to cluster threads into groups
so that, ideally, all threads in a group are on a similar topic.
We observe that forums are often organized into sub-forums,
and we can use the sub-forums for generating clusters. We can
also employ clustering to thread data to generate the clusters.
Our proposal is equally applicable. The number of clusters is
usually fixed and not very large.

Index Creation: As for the cluster-based method, we have
two inverted lists for this method: the cluster list and the
cluster user contribution list. Figure 4 illustrates the index
structure for this method. The cluster user contribution list
captures the association between users and clusters, while the
cluster list is mainly for recording the contents of clusters.
The index creation process is detailed by Algorithm 3.

706706

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

a) cluster list

b) cluster user contribution list

word:
w

Cluster u1 ,con(Cluster,u1) ...

...

order by value of con(Cluster,u)

Cluster1 ,p(w|θCluster1) Cluster2 ,p(w|θCluster2)

u2 ,con(Cluster,u2)

Fig. 4. Index structure for the cluster-based model

Algorithm 3 Index creation for the cluster-based model
1: // Generation stage
2: for each cluster do
3: Combine all questions in the cluster into one question Q,

combine all replies in the cluster into one reply R and consider
current cluster as a pseudo thread Td;

4: for each word w do
5: Use Q and R to compute p(w|Td) and estimate

p(w|Cluster) as p(w|Td);
6: Smooth p(w|Cluster) to obtain p(w|θCluster);
7: Store (Cluster , p(w|θCluster)) in the cluster list of w;
8: end for each word
9: end for each cluster

10: for each user u do
11: Find all the threads replied to by u and compute con(td, u);
12: for each cluster do
13: In the current cluster, find the threads {td} replied to by

u;
14: Initiate con(Cluster , u) as 0;
15: for each td in {td} do
16: con(Cluster , u)+ = con(td, u);
17: end for each thread
18: Store the triplet of (Cluster , u, con(Cluster , u));
19: end for each cluster
20: end for each user
21: // Sorting stage
22: for each cluster do
23: Find the list of (u, con(Cluster , u)) and sort it by

con(Cluster , u);
24: Store the sorted list of (u, con(Cluster , u));
25: end for each cluster

Question Processing: Based on the index structure in
Figure 4, we compute the expertise score of all users for a
given question query. Similar with the thread-based model,
we separate the question processing into two stages. However,
we only apply the threshold algorithm to the cluster user
contribution lists in the second stage to compute the top-k
ranked users for a given question query q.

For a given question query q, the first stage finds the relevant
clusters with the score of p(q|θCluster) using the cluster lists.
Then in the second stage, the threshold algorithm is applied to
the cluster user contribution lists to compute the top-k users
according to Equation 13.

Specifically, given a new question query q containing l
words w1, w2, ..., wl and the frequency n(wi, q) of each word
wi, we compute the top-k ranked users as follows:

1) First stage: access the cluster lists and compute the score
for each cluster as follows:

score(Cluster) =
∏

w∈q p(w|θCluster)n(w,q).
2) Second stage: based on the scores of the clusters, access

the cluster user contribution lists to compute the top-k
ranked users; each cluster corresponds to a sorted cluster
user contribution list Li = {(u, con(Cluster i, u))}.

a) Let Y = {(u, score(u))} records the top k users
in descending order of score(u).

b) Conduct sorted access to the lists Li in parallel.
As an entry (u, con(Cluster i, u)) is seen under
the sorted access in some list, do random ac-
cess to all other lists and find the weights of
con(Cluster−i, u) for the current user u. Here
Cluster−i denotes all other clusters except cluster
Cluster i. Compute the score of user u as follows:
score(u) =

∑
i score(Cluster i)con(Cluster i, u).

If Y is not full or the score of u is larger than the
minimal score in Y then store (u, score(u)) in Y .

c) For each contribution list Li of Cluster , let
(u∗

i , con(Cluster i, u
∗
i)) be the last entry seen

under sorted access in the contribution list of
Li. Compute the threshold value t as t =∑

i score(Cluster i)con(Cluster i, u
∗
i). When the

scores of all k users in Y are no less than t, stop.

C. Cost Analysis

We proceed to analyze the time complexity of index cre-
ation, then the index size, and finally the time complexity
of query processing for our three approaches. We use the
following notation: l represents the number of distinct words in
the new question query q; d represents the number of threads
in our data set; c represents the number of clusters in our data
set; m represents the number of users in our data set; and n
represents the number of distinct words in our data set.

Complexity of Index Creation: In all three approaches,
index creation includes two stages: inverted lists generation
and list sorting. For the list generation, the models all need
approximately O(ndm) time. In fact, most of time is used
for computing the contributions of users to threads. Next, the
time complexity of sorting lists is O(nm log m) for the profile-
based model, which has n inverted lists of length m. Similarly,
the list sorting time for the thread-based model and the cluster-
based model is O(nd log d)+O(dm log m) and O(cm log m),
respectively.

Index Size: The index size is related to the number of lists
and the sizes of the lists. The index space cost for the profile-
based model is O(nm). For the other models, we need two
kinds of lists as explained before. The thread-based model
needs O(nd) space for the thread list and O(dm) for the
thread user contribution list. However, if an index on the
thread data already exists in a QA system, the thread-based
model can reuse this index and then only needs O(dm) space
for storing the thread user contribution list. The index size of
cluster-based model is O(nc) + O(cm).

Complexity of Query Processing: We consider the top-
k retrieval time using the threshold algorithm. For the profile
model, the worst case time complexity for computing the top-k
users is O(lm). The thread-based model first finds the relevant
threads and then applies these to produce the final top-k users.

707707

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

Assuming that we compute rel threads in the first stage, this
model takes O(ld) for this and takes O(rel m), which is less
than O(dm), for top-k users. Similarly, for the cluster-based
model, the top-k retrieval time is less than O(lc) + O(cm).

D. Re-ranking Using the Question-Reply Structure

The thread data in a typical forum generally consists of
question and reply posts, and each post is associated with
a user. The question-reply structure can be used to assign
authority to users.

1) Graph Building: In forum threads, the initial post usu-
ally contains a question, and reply posts are assumed to
contain answers to the question in the initial post. Using the
question-reply structure of posts, we can build a question-reply
network (graph) for users by following an approach detailed
in the literature [20]. Each user corresponds to a vertex in
the graph, and a directed edge from u to v is generated if
user v answers at least one question from user u. The weight
of the edge is estimated by the frequency of user v replied
a question from user u. The generated question-reply graph
is not simply a social network reflecting connections among
users. Importantly, one user replying to another user’s question
usually indicates that the former user is more knowledgable
on the subject of the question, so if a user has many incoming
edges, the user is perhaps an authority in the forum.

2) Expert Re-ranking: We adapt the PageRank algo-
rithm [12] to our question-reply graph, and the rank values
obtained are taken as the authority of users. Here we denote
the authority of users by p(u) and take this as the prior
probability for user u to be an expert on a new question q. In
Section III-B, we present three language model based methods
of computing the probability of users being experts on a new
question p(q|u). In our re-ranking process, we take the product
of p(q|u) and p(u) to rank the users for a specific new question
q.

Specifically, we have two different re-ranking mechanisms
for the different models. For the profile-based model and
the thread-based model, we get the authority of users us-
ing all threads in our data set, i.e., p(u) for each user,
and then we re-rank the users according to p(q|u)p(u). For
the cluster-based model, we get the authority of users for
each cluster. That is, for each user u, we have the au-
thority score p(u,Cluster) with respect to a specific clus-
ter, and then we combine it with the cluster-based model
as

∑
Cluster p(q|Cluster)con(Cluster , u)p(u,Cluster). This

score is used to re-rank the users for the cluster-based model.

IV. EMPIRICAL STUDY

In this section, we evaluate the question routing proposals
in terms of both effectiveness and the efficiency.

We collected thread data from Tripadvisor forums
(http://www.tripadvisor.com) and generated 6 data sets for
evaluation. Statistics on these data sets is shown in Table I.
The BaseSet is used for both effectiveness and efficiency
evaluation, and the other 5 sets are used only for scalability
evaluation. In the table, #posts denotes the number of question

and reply posts in a data set, #users denotes the number of
users having at least one reply post in a data set, #words
denotes the number of distinct words in a data set, and
#clusters denotes the number of sub-forums in a data set. All
experiments were conducted on a computer with a 1.80GHz
CPU, 1GB main memory and using Windows Server 2003.

TABLE I

THREAD DATA SETS

data set #threads #posts #users #words #clusters
BaseSet 121,704 971,905 40,248 324,055 17
Set60K 60,000 337,656 37,088 228,639 17

Set120K 120,000 754,632 56,110 292,502 19
Set180K 180,000 1,092,288 88,522 447,139 19
Set240K 240,000 1,612,309 94,733 489,359 19
Set300K 300,000 1,949,965 125,015 629,229 19

In our experiments, we use the Lucene [1] to pre-process
our thread data, including tokenization, stop words filtering,
and stemming. After preprocessing, both the question post
and replies of each thread are taken as bags of words. In
addition, we employ Lucene to store the inverted lists that
are the indexes for our approaches.

A. Effectiveness

We take the BasesSet dataset as our training set for evalu-
ating the effectiveness of our 3 approaches.

1) Test Collection: It is difficult to evaluate the quality of
the answers to a new question due to the scarcity of the evalu-
ation data. Since no explicit question/user expertise relevance
is available in Tripadvisor that can be used evaluation, we
manually annotate the relevance between a new question and
the users (candidate experts).

We selected 10 questions (not in BasesSet) as our new
questions and randomly sampled 102 users, omitting users
with fewer than 10 replies. For each sampled users, we
collected the user’s activity history in Tripadvisor as evidence
of the user’s expertise, including the questions and the user’s
replies to the questions. For the expertise relevance between
a new question q and a user u, we define a 2-level relevance
assessment scheme as follows:

- (1): User u has high expertise on the topic of question q.
That is, user u has a number of high-quality replies on
this topic.

- (0): User u has low expertise on the topic of question q.
Based on the above relevance assessment format, annotators

were asked to judge all question/user pairs that we had
selected. That is, we got 10 × 102 relevance assessments per
annotator. We take these relevance assessments as the ground
truth for the effectiveness evaluation.

2) Effectiveness Metrics: We apply the metrics used for
the expert finding task in the TREC Enterprise Track [2]
to evaluate the effectiveness of our approaches. The metrics
include Mean Average Precision (MAP), Mean Reciprocal
Rank (MRR) [18], [16], Precision@N, and R-Precision [9].

• MAP: MAP is the mean of the average of precisions over
a set of query questions. The average of precisions for a

708708

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

query is the average of precision at each correct retrieved
answer (expert), i.e. the precision after truncating the list
after each of the correct answer (expert).

• MRR: MRR is the mean of the reciprocal ranks of the
first correct answers over a set of query questions. While
MAP considers all correct answers, this measure gives us
an idea of how far down we must look in a ranked list
in order to find a correct answer.

• Precision@N: Precision@N is the percentage of the top-
N candidate answers retrieved that are correct.

• R-precision: It requires having a set of known relevant
answers Rel, from which we calculate the precision of
the top Rel answers returned.

3) Performance Tuning: As mentioned in Section III-B, we
build different language models on thread data. Additionally,
we have two parameters for all of our models: λ, which is
used to smooth the language model, and β, which is used to
specify the reply portion for the hierarchical question-reply
thread model presented in Section III-B.1.1.

According to [19], using λ ≈ 0.7 can produce optimal
values for long queries. Consistent with this finding, our
models can also obtain acceptable performance when λ ≈ 0.7.
The detailed results are omitted here.

Another factor that may affect the performance is how
the language models are built on threads. Section III-B.1.1
presents two methods for building language models on thread
data, i.e., the single-doc thread model and the question-reply
thread model. Results for these are given in Table II. We can
see that the question-reply model outperforms the single-doc
model. The question-reply thread model, which builds a hier-
archical language models on threads, can differentiate between
questions and replies in contributions, which is appropriate in
our scenario.

TABLE II

SINGLE-DOC V.S QUESTION-REPLY

Thread LM MAP MRR R-Precision P@5 P@10
Single-doc 0.567 0.761 0.391 0.54 0.54

Question-reply 0.584 0.8 0.391 0.58 0.54

Since the question-reply model obtains the better perfor-
mance for our task, we proceed to tune parameter β, the
coefficient determining the proportion of replies when building
the model on a thread. The three models show similar behavior
when varying β, and we only show the results for the thread-
based model—see Table III. The experiments suggest that our
models perform the best when β = 0.5.

TABLE III

EFFECTIVENESS OF DIFFERENT β FOR THREAD-BASED MODEL

Beta MAP MRR R-Precision P@5 P@10
0.3 0.566 0.766 0.382 0.56 0.53
0.5 0.584 0.8 0.391 0.58 0.54
0.7 0.576 0.747 0.394 0.58 0.53

The parameter rel might also influence the performance
of the thread-based model. As discussed in the question

processing part for the thread-based model, the computation of
the top-k users proceeds in two stages, and we only use the
top rel threads obtained from the first stage for calculating
the top-k users. Using a lower rel would reduce the query
processing time, but might also affect the correctness, since
we miss some threads when computing the scores of users.
So we are faced with a trade off between effectiveness and
efficiency.

Table IV shows the effects of different rel on the perfor-
mance of the thread-based model. We omit the results for
MRR and Precision@10 because these do not vary when rel
is varied. And “all” means we obtain all relevant threads in the
first sub-stage and then apply all relevant threads to get the top-
10 users for a given new question. We can see from the table
that when rel = 800, the thread-based model obtains almost
as good results as when all relevant threads are used, while
needing significantly less time. Hence in our experiments, we
use rel = 800 for the thread-based model.

TABLE IV

EFFECTIVENESS OF DIFFERENT rel FOR THE THREAD-BASED MODEL

rel MAP R-Precision P@5 Top-10 search(second)
200 0.550 0.201 0.56 4.05
400 0.569 0.265 0.58 4.32
600 0.576 0.346 0.58 4.66
800 0.582 0.391 0.58 4.82
All 0.584 0.391 0.58 11.87

The following experiments consider the question-reply
thread model and use the following values as default setting:
λ = 0.7, β = 0.5, and rel = 800.

4) Effectiveness of Different Approaches: No previous work
exists on routing new question to the right experts in forums.
We thus compare our approaches with two baseline methods.

• Reply Count: This method uses the number of threads
replied to by the user as the user’s score.

• Global Rank: This method estimates the authority score
of a user by the user’s PageRank value in the question-
reply graph [20].

Table V shows the results for our approaches and the two
baseline models for the routing task. As shown in the table, our

TABLE V

EFFECTIVENESS OF THE DIFFERENT APPROACHES

Method MAP MRR R-Precision P@5 P@10
Replies Count 0.130 0.131 0.121 0.08 0.1
Global Rank 0.134 0.152 0.118 0.08 0.1

Profile 0.563 0.87 0.369 0.56 0.52
Thread 0.582 0.8 0.391 0.58 0.54
Cluster 0.532 0.736 0.452 0.46 0.49

approaches all significantly outperform the baseline models.
Thus simple statistical information and a global ranking score
by structure information in a forum are insufficient for routing
new questions to the right users. Neither consider the content.

Although the three proposed approaches exhibit different
performance, the differences are not pronounced and there is

709709

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

no a clear overall winner. The profile-based model yields the
best performance for MRR. That is to say, the profile-based
model ranks the first correct expert higher in the ranking list.
This is understandable, since when we build the profile for all
users, we consider the users’ specific thread language models
to build the users’ expertise. This makes it is easier for the
profile-based model to find an expert for a new question.

The thread-based model and the cluster-based model group
the users according to latent topics, and users are connected
either by the threads they have participated in or by clusters.
When we route a new question to users, the ranking results by
these two models are capable of yielding more experts. This
may be because users are connected by latent topics, and if
one user is returned, users who are experts on the same topic
may also be returned. As shown in Table V, the thread-based
model has the best performance for MAP, Precision@5, and
Precision@10, and cluster-based model performs best for R-
Precision.

For the comparison between the thread-based model and the
cluster-based model, we can see that the thread-based model
slightly outperforms the cluster-based model. The reason is
that the thread-based model builds fine grained profiles for
the users, i.e., the thread-based model builds profiles for the
users on every thread, while the cluster model builds profiles
for the users on every cluster (of which there are much fewer).

5) Effectiveness of Re-ranking: In our proposal, we ap-
ply the re-ranking module, which is based on the network
analysis on the question-reply graph of our thread data. From
Table VI, we can see that the re-ranking mechanism has only
a marginal effect on some metrics; however, it does improve
the performance in terms for MRR. The reason may be that
the re-ranking algorithm is capable of promoting the active
users with higher expertise to the top. Note that the MRR is
important, as it measures how far down we must look in the
ranked list in order to find a correct expert. In our application
setting, the QA system should ideally send a question to only
a few users who are experts on the question. In this sense, a
high MRR is important.

TABLE VI

EFFECTIVENESS OF RE-RANKING FOR THE THREAD-BASED MODEL

Method MAP MRR R-Precision P@5 P@10
Profile 0.563 0.87 0.369 0.56 0.52

Profile+Rerank 0.569 0.911 0.344 0.62 0.47
Thread 0.582 0.8 0.391 0.58 0.54

Thread+Rerank 0.581 0.911 0.344 0.54 0.51
Cluster 0.532 0.736 0.452 0.46 0.49

Cluster+Rerank 0.560 0.811 0.413 0.56 0.5

B. Efficiency

We consider the following aspects of efficiency: the cost of
index creation, the cost of query processing, and scalability.
We focus on the three approaches to computing expertise since
computing authority using the re-ranking method is much
faster and takes much less space.

1) On Index Creation: Index creation has two major com-
ponents: inverted list generation and list sorting. We also
consider the index size, which indicates the space cost to store
the index for the different methods. Table VII shows the time
and space costs for the index creation for our approaches.

TABLE VII

TIME AND SPACE COST FOR INDEXING

Method List Generation Time List Sorting Time Index Size
Profile 153 min 145 min 490 MB
Thread 148 min 435 min 502 + 40.2 MB
Cluster 142 min 0.4 min 48.8 + 0.9 MB

As mentioned previously, the list generation time is the same
for the three approaches. The results in the table show clearly
that the time differences for list generation are insignificant.
However in practice, the list generation for the profile-based
model is slightly more complicated, since it needs to combine
the language models built on threads to create the users’
profiles. So, the time for generating the inverted lists for the
profile-based model would be slightly higher than those of the
other two approaches.

For list sorting, the time complexity for each approach is
O(nm log m), O(nd log d)+O(dm log m), and O(cm log m),
respectively, where m is the number of users, d is the number
of threads, and c is the number of clusters. In our BaseSet,
n > d > m > c. Hence the thread-based model performs
the worst for sorting the inverted lists, while the cluster-based
model is the most efficient.

As for the index size, the thread-based model and the
cluster-based model both have two kinds of lists. For example,
the thread-based model on BaseSet needs 502MB to store
its thread lists and 40.2MB for the thread user contribution
lists. In terms of the total space cost, the cluster-based model
needs the least space, followed by the profile-based model, and
ending with the thread-based model. It appears that the thread-
based model uses the most space for indexing. However, for
an existing QA system that already has an inverted index on
threads, we only need to compute and store the thread user
contribution list for our task. In such circumstance, the thread-
based model will take the least space.

2) On Query Processing: In this experiment, we evaluate
the query efficiency by comparing the average search time
needed to retrieve the top-10 results. Additionally, for all three
approaches, we also compare the models with and without use
of the threshold algorithm. We want to show that the ones with
the threshold algorithm can speed up the query processing. For
the thread-based model, we only present the results of applying
the threshold algorithm on the first stage.

Table VIII shows the response time for the top-10 search
results. We can see that the threshold algorithm is capable of
significantly speeding up the querying processing. Among the
three models, the cluster-based model is the most efficient, and
the thread-based model performs the worst. These results can
be explained by the index sizes for different approaches, which
affect the number of lists accessed and thus the computational

710710

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

cost. Although the thread-based model seems to perform the
worst, it finds both the experts for a new question and a
list of relevant threads (containing similar questions to the
new question). It is reasonable for a CQA system to search
for similar question threads before finding experts, and a
CQA system usually has index to support the search for
relevant threads. Hence, the thread-based model may be easily
integrated with question search by leveraging the threads
obtained by question search to find relevant experts without
incurring extra cost. Put differently, the thread-based model
fits well with the infrastructure available in CQA systems.

TABLE VIII

TOP-10 SEARCH TIME OF DIFFERENT APPROACHES

Method Top-10 search (second)
Profile 5.80

Profile+Threshold 1.68
Thread 11.87

Thread+Threshold 4.82
Cluster 0.71

Cluster+Threshold 0.34

3) On Scalability: We report experimental results for the
five thread sets in Table I to describe the scalability of our
approaches, i.e., Set60K, Set120K, Set180K, Set240K, and
Set300K. Since there is no annotated test data for these data
sets, we only show the efficiency by varying the data size.
Figure 5 shows the results for the Top-10 Search Time when
the number of threads is increased.

60K 120K 180K 240K 300K
0

2

4

6

8

10

12

14

16

18

Thread Dataset Size

T
op

−
10

 S
ea

rc
h

T
im

e(
se

co
nd

)

profile model
profile with threshold
thread model
thread with threshold
cluster model
cluster with threshold

>18

Fig. 5. Scalability of three approaches on Top-10 search time.

The figure shows that the performance of all approaches
degrades when the data size increases, as they need to access
more inverted lists to calculate the expertise of users. We can
see that the models using the threshold algorithm are more
stable than their counterparts without the threshold algorithm.
Among them, the cluster-based model always performs the
best. The figure shows that the cluster-based model without
using the threshold algorithm also performs well. The reason
might be that we have relatively few users in our data sets.
We believe that the advantage of using the threshold algorithm
might be more significant when we have a large number of
users.

V. CONCLUSIONS

This paper describes a new approach to routing questions to
the right users in online forums, or question answering portals.
We present three approaches based on language models to rep-
resent the expertise of users based on their previous question
answering activities. Experimental results on real data show
that the proposed approaches can effectively find promising
experts for new questions.

Several promising directions for future work exist. First,
new threads are posted everyday in forums, creating a need
to update the inverted indexes with new forum threads. It is
easy to incrementally update the indexes of the thread-based
model, while it appears to be nontrivial to update the indexes
for the profile-based and cluster-based models. Second, it may
be attractive to apply clustering techniques to generate fine
grained clusters instead of using the clusters generated by
sub-forums. Third, it would be interesting to investigate the
usefulness of more complicated probabilistic models (e.g.,
[11]) for this task.

REFERENCES

[1] Lucene Information Retrieval Library. http://lucene.apache.org/.
[2] TREC Enterprise Track. http://trec.nist.gov/data/enterprise.html.
[3] K. Balog, L. Azzopardi, and M. de Rijke. Formal models for expert

finding in enterprise corpora. In Proc. of ACM SIGIR, 43–50, 2006.
[4] K. Balog, T. Bogers, L. Azzopardi, M. de Rijke, and A. van den Bosch.

Broad expertise retrieval in sparse data environments. In Proc. of ACM
SIGIR, 551–558, 2007.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4).614–656,
2003.

[6] H. Fang and C. Zhai. Probabilistic models for expert finding. In Proc.
of ECIR, 418–430, 2007.

[7] P. Jurczyk and E. Agichtein. Discovering authorities in question answer
communities by using link analysis. In Proc. of ACM CIKM, 919–922,
2007.

[8] G. E. Littlepage and A. L. Mueller. Recognition and utilization of
expertise in problem-solving groups: Expert characteristics and behavior.
In Group Dynamics: Theory, Research, and Practice, 1.324–328, 1997.

[9] C. D. Manning, P. Raghavan, and Hinrich Schtze. Introduction to
information retrieval. Cambridge University Press, 2008.

[10] D.W. McDonald and M. S. Ackerman. Expertise recommender: a
flexible recommendation system and architecture. In Proc. of ACM
CSCW, 231–240, 2000.

[11] D. Mimno and A. McCallum. Expertise modeling for matching papers
with reviewers. In Proc. of ACM SIGKDD, 500–509, 2007.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[13] D. Petkova and W. B. Croft. Hierarchical language models for expert
finding in enterprise corpora. In Proc. of ICTAI, 599–608, 2006.

[14] D. Petkova and W. B. Croft. Umass notebook 2006: Enterprise track.
Proc. of TREC-06, 2007.

[15] J. M. Ponte and W. B. Croft. A language modeling approach to
information retrieval. In Proc. of ACM SIGIR, 275–281, 1998.

[16] C. Shah and W. B. Croft. Evaluating high accuracy retrieval techniques.
In Proc. of ACM SIGIR, 2–9, 2004.

[17] I. Soboroff, A. P. de Vries, and N. Craswell. Overview of the TREC
2006 Enterprise Track. TREC 2006 Working Notes, 2006.

[18] E. Voorhees and D. Tice. The TREC-8 question answering track
evaluation. In Proc. of TREC, 83–105, 1999.

[19] C. Zhai and J. Lafferty. A study of smoothing methods for lan-
guage models applied to information retrieval. Journal of ACM TOIS,
22(2).179–214, 2004.

[20] J. Zhang, M. S. Ackerman and L. Adamic. Expertise networks in online
communities: structure and algorithms. In Proc. of WWW, 221–230,
2007.

711711

Authorized licensed use limited to: AALBORG UNIV-Stats. Downloaded on January 18, 2010 at 09:56 from IEEE Xplore. Restrictions apply.

