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ABSTRACT

The increased deployment of sensors and data communication net-
works yields data management workloads with update loads that
are intense, skewed, and highly bursty. Query loads resulting from
location-based services are expected to exhibit similar character-
istics. In such environments, index structures can easily become
performance bottlenecks. We address the need for indexing that is
adaptive to the workload characteristics, called workload-aware, in
order to cover the space in between maintaining an accurate index,
and having no index at all. Our proposal, QU-Trade, extends R-
tree type indexing and achieves workload-awareness by controlling
the underlying index’s filtering quality. QU-Trade safely drops in-
dex updates, increasing the overlap in the index when the workload
is update-intensive, and it restores the filtering capabilities of the
index when the workload becomes query-intensive. This is done
in a non-uniform way in space so that the quality of the index re-
mains high in frequently queried regions, while it deteriorates in
frequently updated regions. The adaptation occurs online, without
the need for a learning phase. We apply QU-Trade to the R-tree
and the TPR-tree, and we offer analytical and empirical studies. In
the presence of substantial workload skew, QU-Trade can achieve
index update costs close to zero and can also achieve virtually the
same query cost as the underlying index.

1. INTRODUCTION

Advances in geographical positioning and wireless communica-
tion technologies combine to enable the tracking of the continu-
ously changing positions of mobile objects. These capabilities en-
able the delivery of novel, location-based services to users with mo-
bile devices, such as mobile phones and online navigation systems.
The needs for the scalable delivery of such services to large pop-
ulations of users yield new data management challenges that call
for new technologies that enable the efficient storage, update, and
querying of the locations of large populations of moving objects.

The positional update workloads that result from the tracking
of moving objects are highly skewed in three dimensions. First,
there exists a spatial skew. Figure 1(a) shows the probability of re-
ceiving an update at the central server as a function of latitude and
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Figure 1: Skew of the AKTA data

longitude for the AKTA data set, from a road pricing experiment
in Copenhagen [21]. It is obvious that the update workload is far
from uniformly distributed across space. Second, there is temporal
skew. Figure 1(b) shows the update rate, ri7, per day (in updates per
hour), as received by the central server, for a total of five months
for the AKTA data set, and Figure 1(c) shows the evolution of the
update rate (in updates per minute) within a single day'. The up-
date rate can vary by two orders of magnitude and can be highly
bursty, both in short and long term observations. Finally, there is a
spatio-temporal skew. A recent empirical study shows that human
mobility patterns follow a truncated power law, thus offering evi-
dence of substantial skew as a fundamental characteristic of human
motion [13]. The query workloads produced by location-based ser-
vices are expected to exhibit skew in the same dimensions.

The maintenance of index structures in such dynamic environ-
ments may become a system bottleneck. Any self-tuning mecha-
nism [3] would not recommend the use of an index on continuously
changing locations, due to the high update load at peak update
rate points. As a result, several works have proposed index struc-
tures with a lower update-footprint, often at the expense of higher
query cost. These structures may be suitable in time periods when
the incoming workload (a mixed stream of updates and queries) is
update-intensive (e.g., at the peak points of Figure 1(b)). In con-
trast, index structures with good query performance would be more
suitable during the remaining time periods. However, for the appli-
cations we are considering, it is impossible to make such assump-
tions for the incoming workload, as it is fundamentally skewed and
changes in a bursty manner. Rather, an adaptation mechanism has
to be provided that automatically changes the behavior of the index
according to the workload. We present QU-Trade (“Query-Update
Trade”), a layer that can be built on top of any R-tree or TPR-tree
based index to achieve this adaptation.

Figure 2 illustrates the notion of workload-awareness. The axes
capture index update and query performance. An index has specific
update and query operators with specific costs. Thus, an index is
represented as a point in the figure, and an index represents a fixed

!The numbers reported are based on data from 20 randomly chosen cars.



tradeoff between update and query performance. While the figure
is intended to be conceptual, the points that represent indexes are
consistent with our experimental results. Typically, index struc-
tures in the native space such as the R-tree and the TPR-tree excel
at query performance, but suffer from poor update performance.
We thus depict them in the upper-left corner in. These indexes are
ideal for query-intensive workloads. In contrast, grid-based indexes
and indexes based on the B-tree typically exhibit much better up-
date performance, at the expense of the query performance. These
indexes offer better support for update-intensive workloads. The
extreme case of not having an index yields the best index update
performance, but also the worst query performance. Because any
particular index represents a point in the figure, a specific query-
update mix exists for which it is optimal.
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Figure 2: The query-update tradeoff space

QU-Trade aims to overcome this limitation. In particular, QU-
Trade defines a curve (the dotted line in the figure) in the query-
update tradeoff space. The query and update costs are not fixed,
but adapt to the incoming workload. When the workload is update-
intensive, the update performance is high, at the expense of query
performance. The inverse is true for query-intensive workloads.

Further, QU-Trade approaches optimal performance when the
workload skew increases (the solid line in the figure). This is achieved
via non-uniform query and update costs with respect to the indexed
population. If an object is updated often, the update cost associated
with that particular object is low. Conversely, for objects that are
queried frequently, the query cost associated with them is low.

Workload-awareness is achieved by controlling the filtering ca-
pability of the underlying index. QU-Trade is implemented as a
layer above the query and update interface of a traditional R-tree
or TPR-tree. It adapts to the workload by changing the amount
of overlap in the index structure. Objects are not represented as
multi-dimensional points, but as rectangles with extent (termed ob-
ject windows). These windows are time-parameterized in the case
of the TPR-tree. An object’s entry in the index is updated only
when it moves outside its window. Further, an index update causes
the object’s window to grow, in order to reduce subsequent updates
from the same object. This causes the overlap in the index to in-
crease, yielding higher query cost. When a query comes, the index
is used to retrieve a set of candidate objects. This set, depending on
the index’s quality, may contain a number of false positives. The
windows of these false positives are shrunk in order to reduce the
overlap in the index, with the goal of reducing the cost of subse-
quent queries. The competition of window growing and shrinking
leads to good average performance and fast online adaptation when
the workload changes. Further, the use of local decisions leads to
good index quality in frequently queried regions. Quality deterio-
rates only in regions of space that are not queried often. This is how
skew in a workload is exploited. In summary, the salient features
of QU-Trade are the following.

1. Workload-awareness. QU-Trade is the first proposal to achieve
workload-awareness in the setting of spatial and spatio-temporal
indexing.

2. Exploitation of skew. QU-Trade thrives on skewed workloads.
Frequently updated objects are associated with a low update cost,
and frequently queried regions are associated with a low query cost.
3. Simplicity. QU-Trade lies on top of an R-tree or TPR-tree, so no
new index structure has to be implemented. This greatly reduces
implementation costs and makes it easy to integrate QU-Trade in
an existing DBMS. In fact, a proposed method to index moving ob-
jects in Oracle can be seen as a special case of QU-Trade [7].

4. Generality. Since the index insertion, deletion, and query algo-
rithms are used as black boxes, any proposal for their implemen-
tation can be used [19, 20, 24]. In addition, sophisticated main
memory usage techniques [2] can be used with no modifications to
the QU-Trade algorithms.

5. Online adaptation. There is no initial learning phase, and no
assumptions about the update or query workload are made.

The rest of the paper is organized as follows. Section 2 covers
related work. Section 3 covers QU-Trade, including the assumed
architecture, the handling of modifications and queries, and policies
for adjusting the sizes of the spatial extents. Section 4 presents an
analytical study of the effect of window size, and Section 5 covers
time-parameterization. Finally, Section 6 presents the empirical
study, and Section 7 concludes and offers research directions.

2. RELATED WORK

Several works have developed spatial and spatio-temporal in-
dexes with low update cost. These indexes specify different points
in the query-update space (Figure 2), and are thus suitable for a
specific query-update mix. Some of them employ gridding and
linearization with space-filling curves and use a B-tree [18, 29],
possibly with periodic re-organization of the structure [5]. On the
other hand, proposals based on the R-tree, notably the TPR-tree
family [23, 24] have better query performance and are thus suitable
for a different query-update mix [4]. We depart from this line of
work by developing a mechanism that adapts to the workload using
feedback from the updates as well as the queries. Not only is QU-
Trade suitable for both low and high update-per-query rations, but
it also adapts its performance to the incoming workload dynami-
cally. Its update and query costs are not fixed at certain values as in
traditional indexes, but vary according to the incoming workload.
Combined, they minimize the average cost per operation. To the
best of our knowledge, this problem has not been addressed before.

Some proposals revisit the R-tree insertion and deletion algo-
rithms [19, 20] or employ smart use of main-memory caching [2]
in order to speed up updates. These techniques are orthogonal to
QU-Trade and can be used as the underlying index instead of a
standard R*-tree.

Other proposals try to learn the mobility patterns of individual
objects in order to reduce updates [6, 28]. These works can be
seen as “update-aware” as the update cost is different for different
objects, but are not workload-aware because the query and update
costs are fixed, regardless of the incoming workload. Furthermore,
they require an initial phase of learning from historical data, which
QU-Trade does not.

When processing continuous spatio-temporal queries [11, 12,
16], prior knowledge about the registered queries can help in deter-
mining “safe regions” for objects. We address the complementary
problem of answering snapshot queries, where no prior knowledge
about queries is assumed.

Workload-awareness has appeared in three different settings. In
approximate replication [22], queries are used to control the pre-
cision of remote sources. In model-driven data acquisition [9], a
model is used to collect only the necessary data from remote sen-
sors. Our approach is inspired by these works at an abstract level,
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Figure 3: Object representation, update, and range search
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albeit considering a very different problem. AGILE [10] proposes
a workload-aware interval skip list, by moving objects to higher or
lower levels of the list. The authors suggest that the same could be
done for R-trees, but do not provide details. Due to the small height
and high fanout of these indexes, this methodology is not attractive.
In contrast, we achieve workload-awareness by controlling the fil-
tering quality of the index. Our approach has the additional advan-
tage that the implementation of the underlying index structure is
not modified.

Online physical design tuning [3] also addresses the query-update
tradeoff. However, the approach is to adaptively build and destroy
an entire index as the workload changes. We consider the inter-
mediate situation, in which an index always exists, but its filtering
quality and hence its update and query performance are configured
dynamically to adapt to the workload.

Finally, database cracking [17] addresses essentially the same
problem in the context of a column store, albeit at the level of the
database kernel. Spatio-temporal data sets are not considered.

3. QU-TRADE

Section 3.1 covers the underlying system architecture and Sec-
tion 3.2 covers modifications. Then Sections 3.3 and Section 3.4
cover range, and incremental nearest-neighbor querying. Finally,
Section 3.5 describes the window growing and shrinking mecha-
nisms.

3.1 Representation and architecture

We assume a client-server architecture. The server keeps track
of a population of moving objects, each of which has a unique ob-
ject identifier oid. The objects continuously report their positions
to the server, issuing an update update(oid, r'), where 7’ is a multi-
dimensional point, denoting the new position of the object identi-
fied by oid. New objects can enter the system by issuing an inser-
tion insert(oid, r), and objects can leave the system by issuing a
delete delete(oid).

Users of the system issue range queries range(qi, q.,) and nearest
neighbor queries nn(q). We focus on snapshot queries, which are
relevant to the applications that we are considering. Monitoring
of continuous queries is a different problem where one can take
advantage of prior knowledge of the registered queries [16]; we do
not assume such knowledge in our setting. Rather, queries are ad-
hoc and can occur anywhere at any time. Insertions, deletions, and
updates, as well as range and NN queries make up the interface
provided by the server.

The server-side representation of an object o = (oid,r,c, W)
consists of the object’s identifier 0.0id, its last reported position
o.r = (0.rz,0.1y), and a spatial window (c, W). The spatial win-
dow itself is represented by its center o.c = (0.¢z,0.¢,) and its
semi-width 0.W = (0.W4, 0.Wy), as shown in Figure 3(a).

The server uses two data structures to support updates and que-
ries. First, an index HI from object identifiers to records supports
insertion, deletion, and retrieval of an object’s record based on the
object’s identifier. We denote these operations as Hl.insert(oid, o),
Hl.delete(oid), and Hlretrieve(oid). This index can be imple-
mented as a hash index or a B-tree.

Second, a spatial index SI from the representations of object lo-

cations to object identifiers is assumed. We let this index be an
R-tree. This index is built on the spatial windows of the objects,
rather than their positions. The intuition is that if an object moves
inside its window, its entry in the index does not necessarily have to
be updated. Index SI supports insertion SLinsert(oid, (¢, W)) and
deletion SI.delete(oid, (¢, W)), in addition to an intersection query
SLintersect(qi, q.,) that returns the identifiers of the objects with
windows that intersect with the query rectangle. This interface is
quite general. Every spatial indexing method that supports index-
ing of rectangles and intersection queries can be used to answer
range queries with QU-Trade. In order to support nearest neighbor
search, we will later assume a hierarchical index akin to the R-tree.

3.2 Insertions, deletions, and updates

When an object enters the system and issues an insertion, it pro-
vides a new unique identifier oid. The server chooses an initial
window semi-width W,;i for the object, inserts its record into the
database, inserts oid into HI, and inserts its window into SI.

When an object leaves the system and issues a deletion, the server
deletes the object’s record and issues deletions to each of the in-
dexes HI and SI.
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Figure 4: Shrinking and growing windows

When an object issues a positional update, the server retrieves
the object’s record using index HI and updates the object’s position.
The server then decides whether the update is to be propagated to
spatial index SI. If so, the object’s window is grown, yielding an
enlarged window with a new window center (Figure 4(b)). Let P,
denote the probability of growing the window, and updating the
spatial index. Pseudo-code for the update is given in Algorithm 1.

Algorithm 1 update(oid, 1)

o «— Hl.retrieve(oid)

o.r — o.r’

with probability P, do
SLdelete(oid, (0.c,0.W))
(0.c,0.W) «— grow(o.c,0.W,r")
SLinsert(oid, (0.c,0.W))

QnhRN

Many alternative policies can be used to propagate the updates
to the spatial index. In order to ensure that queries are answered
correctly, we need to ensure that the object’s last reported position
always lies within the object’s window. Thus, we demand that an
update is always propagated if the newly reported position lies out-
side the object window:

Py=1ifr' ¢ c—W,c+W]. (1)

In the general case, the probability P, with which the update occurs
is a function of the window’s width and center as well as the current
and new positions of the object, Py = Py(c, W, r,r"). The simplest
method propagates the update to the spatial index only when the
new position lies outside the object window (as in Figure 3(b)).

1 ifr' glc—W,c+ W],
0 otherwise.

Pg(C, Verv 1"/) = { (2)



We use this method in our implementation. However, alternative
formulas for P, (for example, a sigmoid function of the distance
between the window center and the new position) can be used with-
out modifying other parts of QU-Trade, as long as invariant 1 is
satisfied.

3.3 Range queries

When a user issues a range query range(qi, qu ) the server issues
an intersection query to the spatial index SI. This returns a candi-
date set S of the identifiers of all the objects that can satisfy the
query. All of these objects have windows that intersect the query
window, and some of these objects may be false positives because
although their windows intersect the query window, their positions
may lie outside (see Figure 3(c)). These will be filtered out in an
ensuing refinement phase. The constraint of equation 1 guarantees
that there are no false dismissals. If an object lies within the query,
its window will definitely intersect the query. This guarantees the
correctness of the reported results. After the initial filtering step by
the spatial index, the server invokes an internal within(oid, qi, qu.)
refinement operation for all the object identifiers in the candidate
set. If this operation returns false, the identifier is dismissed from
the candidate set.

Algorithm 2 range(qi, qu)

1: S « SLintersect(q, qu)

: for all oid € S do

if ~within(oid, q;, g..) then
4: S — S —{oid}

5

: return S

w1

The within operator (Algorithm 3) retrieves an object’s record
using the index HI, and decides whether the object’s position lies
within the query window, returning true or false accordingly. In ad-
dition, with probability Ps, the object’s window is shrunk resulting
in a smaller window width and a new window center (Figure 4(a)).
Then, an update with the new window is invoked on the spatial
index SI.

Algorithm 3 wirhin(oid, qi, q.)

1: o « Hlretrieve(oid)

2: with probability Ps do

3 SLdelete(oid, (0.c,0.W))

4 (0.¢,0.W) « shrink(o.c,0.W, 0.1, (q1,qn))
5:  SlLinsert(oid, (0.c,0.W))

6: return o.r € [q, qu]

QU-Trade offers flexibility with respect to which updates to ap-
ply to the spatial index. In general, we would prefer to shrink and
update the representations of the objects with very large windows
that have large intersection areas with queries and that produce false
positives.

Given a query, the probability of applying an update to an object
is thus a function of the object’s window and its relative position
with respect to the query, Ps = Ps(c, W,r,(qi,qn)). A simple
approach is to update the representation of all the false positives.
The intuition is that if an object is a false positive, its window is
probably too large and the object lies in a frequently queried area.

1 ifr € [qh‘bz},
0 otherwise.

PS (Ca W7 T, (ql7 qu)) = { (3)

We use this method in our implementation. More complex formu-
las for P (for example, an approach that takes into account the

amount of overlap between the query and the object’s window) can
be used without modifications to QU-Trade.

3.4 Nearest-neighbor queries

We present how the standard incremental nearest neighbor al-
gorithm [15] can be executed in the context of QU-Trade applied
to an R-tree. The INN(q) algorithm (see Algorithm 4) maintains
a priority queue, PQ, of entries and objects, and performs a best-
first search in the index. The modification to the standard algo-
rithm occurs because we now need to maintain a candidate set S
of objects that have been inserted into the priority queue, but are
not the nearest neighbor. This is analogous to the candidate set of
false positives and true positives for range search. After the nearest
neighbor has been found, some false positives are updated with a
shrunk window in order to improve the quality of the spatial index.

Algorithm 4 INN(q)

1: nn — null, S — 0, PQ —empty priority queue
2: foralle € SI.root do

3:  PQ.enqueue({e, mindist(q, e)))

4: repeat

5: (e, mindist(q,e)) « PQ.dequeue()
6:  if e is an object o then

7 nn < o

8: exit the repeat loop

9:  elseif e is a leaf entry then

10: o < HLretrieve(e.oid)

11: S — SuU{o}

12: PQ.enqueue({o, dist(q,0)))
13:  elseif e is a non-leaf entry then
14: n « child of e

15: for alle € n do

16: PQ.enqueue({e, mindist(q, e)))

17: until PQ # 0

18: S — S —{nn}

19: forallo € S do

20:  with probability Ps do

21: Sl.delete(o.0id, (0.c,0.W))
22: (0.¢,0.W) « shrink(o.c,0.W, q)
23: SLinsert(o.0id, (0.c,0.W))

Consider for example the situation depicted in Figure 5.
While object o2 is the nearest neighbor

onr of g, object 01 will be visited during

e search, yielding a false positive. Since
mindist; ~ the spatial index is built on the object

0. rofmindist7\0q windows, the search will have to re-
mindisty trieve the records of both objects in or-

der to guarantee a correct answer. The

° false positive 0; will be updated with a

shrunk window, as shown in lines 19—
23 of the INN algorithm. On the other
hand, the object o3 will be pruned dur-
ing the search, as in the original incre-
mental nearest neighbor algorithm.

Figure 5: Nearest
neighbor search

3.5 Growing and shrinking

QU-Trade provides both a mechanism for adaptation, and spe-
cific policies. The adaptation mechanism consists of growing and
shrinking object windows when updating or querying an object re-
spectively. This section describes our specific choices for the op-
erators shrink(c, W,r, q) and grow(c, W,r"). Both operators re-
turn a new window for the argument object. The grow operator is
called when an object update lies outside its current window. It
will enlarge the window, using as additional information the newly
reported position 7’. The shrink operator is called upon a false hit



to a range or nearest neighbor query ¢. It will compress the win-
dow size, using as additional arguments the object’s last reported
position r and the query q.

In order to ensure the correctness of the reported query results,
the operators have to satisfy the QU-Trade invariant; the last re-
ported position of an object must never lie outside its window:

v’ € grow(c, W,r") ()]
r € shrink(c, W,r,q). 3)

Further, the performance of QU-Trade depend on the specifics of
these operators.

An important baseline configuration of QU-Trade is the one that
never enlarges or compresses a window, and always keeps the win-
dows centered at the object positions:

Shrinkbase(cv VV7 T, q) = (T7 W) (6)
growbase(cv VV7 Tl) = (Tl? W) (7)

In this case, all objects are bounded by windows of the same size
Winitiar- Determining the size of this initial window is a non-trivial
optimization problem that depends on the mobility patterns of the
moving objects. The resulting baseline QU-Trade configuration is
equivalent to a proposal by Oracle to use the existing spatial in-
dexing infrastructure of the Oracle server in order to index moving
points [7]. Since the windows are always centered at the last re-
ported position, the invariants 4 and 5 are trivially satisfied.

We consider additional policies for growing and shrinking. The
simplest grow policy always keeps the window centered at an ob-
ject’s last reported position. In addition, it enlarges the window
semi-width by a system-wide threshold parameter thr,, while main-
taining a sensible maximum bound, W,q4:

grow (¢, W,r') = (v', min(W + thrg, Winaz)). (8)

Since the window is always centered at the last reported position,
invariant 4 is trivially satisfied.

Although policy 8 can result in very efficient query and update
processing, the threshold parameters it requires might be hard to
set as they depend on the specifics of the application. For example,
larger thresholds should be used for moving vehicles than pedes-
trians. Further, the thresholds are the same for all the objects, and
do not account for the specifics of each object’s motion. We have
therefore derived a policy that estimates the center and radius of
gyration [13] of an object’s movement and then sets the window
center and semi-width accordingly.

Let {r1,...,7;} be a sequence of reported positions of an ob-
ject. The mean position is defined as re¢,, = % Z;zl 4, and the

radius of gyration is defined as /Ry = \/% Z;:l(rj —Tem)?.
In real scenarios, objects move within a window centered at the
mean position with a semi-width equal to their radius of gyration,
which changes slowly over time when human movement is consid-
ered [13]. Thus, we incrementally estimate a discounted mean and
radius of gyration of the object movement. When a positional up-
date ' exceeds the current window (7cm, \/Rg), the mean and the
square of the radius of gyration are updated as follows:

Ry = Ry +7((r' —rem)” — Ry),7 € (0,1)

Tem = Tem + OC(T/ - Tc7n), [eAS (07 1)

The window is re-centered to the new mean, and its semi-width is
enlarged by the square root of R:

grow, (¢, W, ') = (Tem, W + +/Ryg) )

In order to initially satisfy invariant 4, the parameters « and y have
to satisfy the following inequality:

if @ > 0.5,

2

(6%
> 10
7—{u—af if o < 0.5. (10

Essentially, the radius of gyration should grow faster than the mean
in order to ensure that the window is large enough to accommo-
date the update. The proof, by simple algebraic manipulations, is
omitted.

The discounting parameters o and -~y control the impact of the
motion history on the calculation of 7., and R, respectively. The
last reported position has a weight equal to o (+y), and the past mo-
tion history a weight equal to 1 — « (1 — =) when calculating the
new mean (radius of gyration). This acts as a forgetting mech-
anism when the object’s movement characteristics change. This
policy adapts to the object motion characteristics instead of using
a fixed threshold for the window enlargement. It thus has a clear
advantage over the growing policy 8, since its parameters are eas-
ier to set. Note that a method somewhat similar to the proposed
mean-variance tree mechanism [28] can result as a special case of
QU-Trade if the growing policy 9 is used and windows are never
shrunk upon a false hit.

Two simple shrink policies always re-center the window to the
object’s last reported position. The first policy shrinks the win-
dow semi-width by a system-wide threshold parameter thrs, while
maintaining a sensible lower bound W,;,. The second policy re-
sets the window semi-width to the lower bound W, ir:

shrinks, (¢, W,r, q) = (r,max(W — thrs, Wiin)) (11)
shrinkese:(c, W, r,q) = (1, Winin). (12)

The final shrinking policy finds the minimum distance between the
query and the object’s last reported position. It re-centers the win-
dow to the object’s last reported position and then sets the window
semi-width to the minimum distance:

shrink;e(c, W, r,q) = (r, mindist(r, q)). (13)

Intuitively, this approach shrinks the window width “just enough,”
so that the object would not be a false positive for the same query.
The invariant 5 is trivially satisfied in all cases, as the new window
is always centered at the last reported position 7.

4. THE EFFECT OF WINDOW SIZE

QU-Trade grows windows in order to avoid performing subse-
quent updates, thus reducing the update cost. The larger the win-
dow used for an object is, the more likely index updates for the ob-
ject are to be shed. However, the cost of an individual update that
is not shed also increases due to the increased overlap in the index.
The challenge here is to study analytically whether the proposed
practice of increasing the sizes of the windows can be beneficial in
terms of leading to improved overall performance.

In order to address this challenge, we derive a simple probabilis-
tic model of the effect of window size on the index’s performance.
Our analytical model consists of formulas for the query and update
cost as a function of the average window size in the population.
To keep the formulas tractable, we introduce several uniformity as-
sumptions about the spatial and temporal distributions of updates
and queries. These assumptions represent the worst case for QU-
Trade, which is specifically designed to take advantage of skewed
workloads. As a result, our analytical model will show that in the
worst case, the cost benefits of shedding updates due to large win-
dows overrules the overhead due to the increased cost of perform-
ing individual updates. Thus, even in the worst case, QU-Trade is



able to deliver performance benefits. In this section, we assume
that an R-tree is used to index the object windows. We perform the
analysis in 2-dimensional space. However, our results are straight-
forwardly generalizable to d-dimensional space.

We assume a population of NV objects that move within the unit
square, [0,1]%. Queries of square shape and average width g in
both dimensions appear uniformly. All the MBRs in the R-tree are
square, and all the objects are bounded by square windows of av-
erage size W. Finally, we assume that the average fanout is the
same at all levels. The height of the R-treeis h = 1+ (log ¥ %] ~
log; N. Under the above assumptions, we can use the following
formula for the cost of an index traversal, C;r, in an R-tree [27]:
Crr(W,q) =1+ Z;”;ll fﬂj (0 +q)?. The parameter o is the av-
erage width of the squares at level j. For its computation, Theodor-
idis and Sellis [27] use the following argument. In N; nodes with
average size s? are grouped into N; 1 parent nodes with average
size sj2-+1 and each parent node groups f child nodes, the average
size of a parent node is given by s;+1 = (v/f — 1)t; + s;, where
t; is the average projected distance of two consecutive boxes. Its
average value is given by ¢; = 1/ \/VJ This yields 041 =

oj +\/ fI %1 where oo = W. The latter can be written in

closed form as o; = W + ‘/\%1 {21 fY/? = W 4 a;. This
means that the cost of an R-tree traversal Cyr (W, ¢) is a quadratic
function of the average window size W as well as of the average
query size q.

Let us disregard R-tree node splits and merges. The cost of an
R-tree insertion C’; is constant with respect to the window size, as
the insertion follows one path from the root to the leaf, choosing
the best child at every level according to a heuristic (e.g., minimum
area enlargement). Thus, Cr; = h. The cost of a deletion C;p of
an object of width W is the cost retrieving that object, Crp (W) =
Crr (W, W). The cost of an index update is thus Cy (W) = h +
Crr(W,W).

A QU-Trade update consists of two steps. First, the object’s
record is retrieved using the secondary index HI, upon which its
position is updated. By using a main-memory hash index, the cost
of this step is constant and equal to 2 I/O operations. Second,
with probability P,, the window is modified by the grow opera-
tor (this is done in the same time as Step 1, so it does not incur
extra I/0), and an index update with the new window is invoked.
The cost of the update is Cy (W) = 2 + Py(W)Cry(W) =
2+ P, (W) (h + Crr(W, W)).

The within operation also consists of two steps. First, the ob-
ject’s record is retrieved using the secondary index. The cost of
this step is again constant and equal to 2 I/O operations. Second,
with probability Ps, the window is modified by the shrink operator
(at no extra I/O cost), and an index update with the new window
is invoked. The cost of the within operation is thus Cw (W, q) =
2+ Ps(W,q)Cru(W) =24 Ps(W, q)(h + Crr (W, W)).

The range query consists of two steps. First, the tree is searched,
and a candidate set is obtained. Second, the within operation is
invoked for each item in the result. In order to derive the cost
formula for range query, we need an estimate of the query selec-
tivity. The probability that a window and a query intersect can
be estimated as (W 4 ¢)?, so the number of the candidate ob-
jects is N(W + ¢)? [27]. The cost of the range query is thus
Cq(W,q) = Crr(W,q) + N(W + q)*Cw (W, q).

Finally, the cost of a nearest neighbor search with argument ¢
can be estimated using the cost of a range query with width equal
to that of the so-called vicinity rectangle of ¢ [25].

Let us assume a workload consisting of g range queries per
time unit and ry updates per time unit. The average processing
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Figure 6: Cost model predictions

cost is then CPYT (W, q) = roCo (W, q) + ruCu (W).

Figure 6 depicts the expectations of the cost model using a pop-
ulation of N = 107 objects and a fanout f = 100, which leads to
an R-tree with 4 levels. The objects report their position whenever
they have traveled a distance of thr = 0.001 (recall that movement
occurs in the unit square).

Figure 6(a) depicts the average cost per operation while process-
ing a fixed-size workload of queries and updates, C' QUT(W, q),
as a function of the updates-per-query ratio, 7y /rq. Note that
the cost of QU-Trade is a function of ry/rq, while the cost of
the R-tree is nearly constant. This confirms that an R-tree de-
fines a point in the query-update tradeoff space (Figure 2), whereas
QU-Trade defines a curve in the same space. When the workload
is dominated by queries (e.g., rv/rq = 0.01), the cost of QU-
Trade is close to that of an R-tree for small window sizes, and sig-
nificantly larger for large window sizes (we depict the curves for
W = 2 x thr,20 x thr). When the workload is dominated by
updates (e.g., rv/rqg = 1000), the cost of QU-Trade approaches
zero. The situation here is the inverse, with large windows yielding
a smaller average cost. It is clear that the best window size depends
on the updates-per-query ratio of the workload. A growing and
shrinking mechanism should yield small windows when ry /7 is
small (e.g., W = 2 x thr), so that QU-Trade can be upper-bounded
by the R-tree. It should yield large windows when 7y /r¢ is large
(e.g., W = 20 x thr), so that QU-Trade can achieve near-zero
performance.

Figure 6(b) shows the effect of the window size W on the cost
for different values of 7y /rg. When updates dominate the work-
load (e.g., rv/rg = 1000), the cost is a monotonically decreas-
ing function of W. When queries dominate the workload (e.g.,
ru/ro = 0.001), the cost is a monotonically increasing function
of W. This means that a window of zero area is the optimal choice
for extremely query-heavy workloads and that a window of infinite
width is the optimal choice for extremely update-heavy workloads.
For workloads in-between these extremes (e.g., rv/rqo = 1), the
cost is a convex function of W, meaning that an optimal window
exists that minimizes the average cost. The query cost of QU-
Trade, Cq (W, q), is an increasing function of W, whereas the
update cost, Cy (W), is a decreasing function of W. Their sum
weighted by the query and update rates, which yields the average
cost, becomes in general a convex function of W. This means that
the increased cost of individual updates can be overruled by the
benefit of discarding a number of updates. A growing and shrink-
ing mechanism should enable convergence to the window size that
minimizes the cost function of Figure 6(b), and it should adapt it
as the workload’s 7y /rg ratio changes. The experimental study
in Section 6 presents three variants of QU-Trade that exhibit these
capabilities.

S. TIME PARAMETERIZED QU-TRADE

In order to support predictive queries, an underlying index that



incorporates time can be used with QU-Trade. This assumes some
form of prediction of the near-future movement. Essentially, any
time-parameterized index that supports indexing of moving regions
with extent is suitable for use with QU-Trade. In our implementa-
tion we use the TPR-tree [23].

The representation of an object o = (oid, r(t), W (t)) consists
of the object’s identifier, oid, its last reported position as a linear
function of time, r(t) = r1 + v(¢t — t1), and a time-parameterized
rectangle, W (t), termed the object’s window. The latter can be
represented by two time-parameterized points, W (t) = (I(t) =
lo + v'(t — to), h(t) = ho 4+ v"(t — to)). Figure 7(a) shows the
one-dimensional case. Note that the velocities of the lower and
upper bounds of a window, v; and vy, are in general different, and
may also differ from the last reported velocity v. The reference
time to of the window is the time of the last update of the object’s
entry in the index, which is in general different from the time of
the last update of the object’s entry in the database, ;. It holds that
to < t1 < tnow, Where tro denotes the current time. The object’s
actual movement (the dashed line in Figure 7(a)) remains within
the window W (t), until an index update occurs. As before, the
spatio-temporal index is built on the objects’ time-parameterized
windows, rather than their positions.

When an object issues an update, it reports its new position 72,
velocity v2, and reference time ¢2. The object’s record is updated
via the index on object identifiers HI. The update is forwarded to
the spatio-temporal index S77 only if the new position is not pre-
dicted by the object’s window: 72 & [I(t2), h(t2)]. In that case,
the object’s window is grown via a tp-grow operator, W'(t) =
ip-grow(W (t), t2, r2, v2). Growing a time parameterized window
consists of changing its reference time to t2, growing the spatial
extent of the window, and possibly widening the velocity bounding
box, by enlarging v" and lowering v’ (Algorithm 5).

Algorithm 5 tp-grow(W (t), 2,72, v2)

s Let W(t) = (I(t), h(t)) = (lo + v (t — to), ho + v (t — to))
t co < (lo + ho)/2; wo < [[ho —lo||/2

¢ (el wg) — grow(co, wo,2)

Il — ¢y — wj; h — ¢{ + w|,

: Update v*, vh
U(t) — 1 +ol(
: return (I'(t), h’

t—t2); W (t) «— hl) + " (t —t2)
)

Figure 7(b) shows the one-dimensional case. The object moved
out of its window W (t) = (I(t),h(t)) at time ¢ = to. This is
when the dashed line, representing the actual trajectory, crosses the
dotted window W (). Thus, an update was forwarded to the index.
The new object window W'(t) = (I'(t), h'(t)) has an enlarged
width and an updated velocity bounding rectangle. Algorithm 6
shows the update algorithm, where

1 ifre & [I(t2), h(t2)],

0 otherwise.

PL(U(8), h(t)), 2, ) = {

Algorithm 6 update(oid, t2, 72, v2)

0 < HLretrieve(oid)

0.70 < 0.12; 0.tg «+— 0.t2

with probability P, do
STlLdelete(oid, 0.W (t))
0. W (t) « tp-grow(o.W (t),t2,1r2,v2)
STlLinsert(oid, W (t))

QnbwN

Timeslice, window, and moving window queries are supported [23].
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Figure 7: TP-QU-Trade: Representation and index update.

In the general case, a window query is represented by a time para-
meterized rectangle Q(t) and a time interval [t2,t3]. A window
query is transformed to an “intersects” query and is issued to the
spatio-temporal index S7I. The index returns a candidate set of ob-
jects, whose windows intersect the query during the query inter-
val. Each object in the candidate set is then examined, and the
false positives are updated. An update to a false positive now in-
volves shrinking its time-parameterized rectangle via a tp-shrink
operator, W' (t) = tp-shrink(W (t),7(t), Q(t), [t2, t3]). Shrinking
a time-parameterized rectangle consists of changing its reference
time, shrinking its spatial extent, and possible updating the window
velocities vl7 ol (Algorithm 7).

Algorithm 7 tp-shrink(W (t), r(t), Q(t), [t2, ts])

:Letr(t) =r1+vi(t —t1)

s Let W(t) = (I(¢), h(t)) = (lo +vl(t —t9), ho + o™ g —t0))

D Let Q(t) = (qu(t), qn (1)) = (qu + vl (¢t — t2), ho + vl (t — t2))
o — l(t1)+h(11) Hh(il) L)l

(co,wo) — Sh”nk(%woﬂ“h (qz (t2), qn(t2)))

Iy — ) — wji h — ¢ + w|,

Update ol ol

DU — 1)+ ol — ) R (E) — b + v (t —t1)
: return (I'(¢), A/ (1))

VRN DU R W

X1

to ti=thow=t> ts3t
Figure 8: TP-QU-Trade: False positive.

Figure 8 shows a false positive result to a window query. Al-
though the object’s window (I(t), h(t)) intersects the query during
the query time interval [t2, 3], the object’s last reported position
z(t) = x1 + v(t — t1) (which is recorded in the database) does
not lie within the query. An update is propagated to the index with
the updated window W' (t) = (I'(t), h'(t)). We omit detailed al-
gorithms for the window queries, as their structure is similar to
Algorithms 2 and 3.

Nearest-neighbor and reverse nearest-neighbor queries can also
be supported, by extending the TPR-tree algorithms [1] in the same
way as Algorithm 4. A best-first search in the tree is performed,
and a candidate set is identified. Then, the false positives within
the candidate set are updated, as in the window query case.

In this work, we have chosen not to update the window veloci-
ties in the time parameterized case (i.e., step 5 of Algorithm 5 and
step 7 of Algorithm 7 are the identity functions). We leave dynamic



velocity bounds as future work. A cost analysis as in Section 4 can
be performed for the TPR-tree case using the cost model of Tao et
al. [24].

6. EXPERIMENTAL STUDY

We study three variants of QU-Trade. Section 6.1 details the
settings. Section 6.2 presents a sensitivity analysis of the involved
system parameters. Section 6.3 studies the query-update tradeoff,
Section 6.4 studies the effects of spatial skew, and Section 6.5 stud-
ies scalability and the effects of varying query size. Section 6.6
studies the transient behavior of QU-Trade and the effect of tempo-
ral skew. Finally, Section 6.7 summarizes the results.

6.1 Experimental setup

We use an implementation of QU-Trade on top of an R*-tree
and a variant of the TPR-tree that stores reference times in index
entries. The spatial index library Sail. [14] forms the basis of our
implementation.

All objects are initially assigned square windows of semi-width
Winitiae = thr. A positional update is propagated to the index only
if it lies outside the object window as in Equation 2, and all false
positives of a query are updated as in Equation 3.

We consider three variants of QU-Trade. The first, denoted ag-
gressive QU-Trade, aggressively enlarges the window sizes, using
the growing policy grow,,, of Equation 8 with parameters thr, =
20 x thr and Wy, = 200 X thr. It also compresses window
sizes aggressively, using the shrinking policy shrinkes: of Equa-
tion 12 with Wh,;, = 0.1 X thr. The second variant, denoted
conservative QU-Trade, enlarges windows slowly, using the grow-
ing policy grow,,, of Equation 8 with parameters thr, = 2 x thr
and Wi,qe = 20 X thr; it shrinks object windows slowly using the
policy shrinky,, of Equation 11 with parameters thrs = 2 X thr
and Wy, = thr. The third variant, denoted adaptive QU-Trade,
uses the growing policy grow,, of Equation 9 with parameters o =
~ = 0.9 and the shrink policy shrinkj. of Equation 13. These values
stem from the sensitivity analysis presented in Section 6.2.

We compare QU-Trade with a stand-alone R*-tree, a solution
with no index, and a grid-based approach. The R*-tree is a stan-
dard spatial index that is implemented in some database engines. It
offers good query performance and is expected to behave well for
query-intensive workloads. Grid-based approaches are common in
continuous query monitoring for moving objects [11, 16]. The grid
method is expected to perform well in update-intensive workloads.
The number of grid cells, which has to be decided a priori, is a dif-
ficult parameter to set. A small cell size favors query performance,
whereas a large cell size favors update performance. Since we in-
tend to use the grid as a method with good update performance, we
use a fairly sparse grid of 100 cells. For the time-parameterized
case, we compare QU-Trade to a no-index approach, the TPR-tree,
and the B?-tree [18]. The B”-tree has better update performance
than the TPR-tree, and is thus expected to behave at its best in
update-intensive workloads. In order to conduct a fair compari-
son, all the solutions use the same buffer, and the same index HI
on the object identifiers, which is implemented as a main-memory
hash table. Note that QU-Trade will also work with other imple-
mentations of HI.

We use synthetic workloads, as we want to experiment exten-
sively with workload skew and the updates-per-query ratio. We
have used a variation of the GSTD generator [26], as well as a
network-based generator [23]. The objects update according to the
point-based tracking policy, or the vector-based tracking policy in
the time-parameterized case [8]. For the latter, the objects report
their velocity along with their position. A threshold value thr is

used for these policies. The parameters of the data generation are
given in Table 1. The default values are shown in bold. Here u
denotes the uniform distribution and N denotes a Gaussian distri-
bution. We distinguish between directional movement, in which an
object retains its speed between updates, and non-directional move-
ment, in which an object changes its speed between updates.

Number of objects, N 10K, 100K, IM

Page size 4096K

Fanout 100

Buffer size 5% x N

Fill factor 70%

TPR-tree horizon 100

Workspace width, S 1000km

thr S/200

Initial position P ~u(0,8),~ N(S/4,5/40)
Velocity V/ ~ u(—200km/h, 200km/h)

45km/h, 90km/h, 180km/h (network)
~u(0,8),~ N(5/2,5/20),

~ N(S, S/40)

Query extent £ = S/80, ~ u(S/100, 5/80)

Interval I between queries | ~ u(S5/400, S/40)

Directional movement true, false

Nodes in road network 20

Query center C'

Table 1: Index and workload parameters
6.2 Sensitivity analysis of system parameters

First, we present a sensitivity analysis of the parameters involved
in the growing and shrinking policies introduced.

The growing policy grow,, of Equation 9 involves two param-
eters, o and ~y, that control the impact of the current movement
on the windows size. If a and ~y are large, the current movement
has higher weight than the past motion history. We vary « over
{0.1,0.3, 0.5, 0.7, 0.9}. The corresponding ~ values, due to the in-
equality of Equation 10, cannot be chosen freely. Their values were
fixed at {0.9, 0.3, 0.5, 0.7, 0.9}, respectively. The average I/O per
operation and the average I/O per update and query are shown in
Figures 9(a) and 9(b) for an update-intensive (with update-to-query
ratio ry/rg = 1000) and a query-intensive (with ry/rqg = 1)
workload, respectively’. We use the shrinking policy of Equa-
tion 12 with Wy,;» = thr in both cases. The extreme choices of
« and the corresponding v values minimize the update 1/O, at the
cost of extra query I/O. In contrast, the middle values maximize the
update I/O and minimize the query I/O. We use the extreme values
a = v = 0.9 for our subsequent experiments, as this minimizes the
average /O cost per operation in both cases. However, the 1/0 vari-
ation with respect to o and -y is very small, rendering the growing
policy grow,, of Equation 9 robust to parameter variations.

Next, we consider the growing policy grow,,, of Equation 8.
Figures 9(c) and 9(d) show the average I/O when varying the pa-
rameter thrg for an update intensive, and a query-intensive work-
load, respectively (both axes are in logarithmic scale). The param-
eter Winao is fixed at 10 x thrg, and the shrinking policy shrinkyege:
of Equation 12 with Wy, = thr is used. In the update-intensive
case, the value thry = 20 x thry minimizes the average 1/O
per operation. This value is chosen as the thry for the aggres-
sive QU-Trade flavor. In the query-intensive case, the best value is
thry = 10 X thr. The query I/O is an increasing function of thr,
whereas the update I/O is a convex function of thry. When win-
dows become too large, the cost to perform an individual update
increases due to the increased overlap. However, for small enough
values of thrg, the update cost is a decreasing function of thry.
This leads us to the choice of thry = 2 X thr for the conservative

“The experimental graphs do not have their axes labeled. All the measured
and varied quantities are listed in the figure captions.
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QU-Trade.
The parameters chosen for the shrinking policies stem from a
similar analysis. We omit the details due to lack of space.

6.3 The query-update tradeoff

The most important characteristic of QU-Trade is adaptivity with
respect to the updates-per-query ratio, ry/rq. Our first experi-
ments confirm that QU-Trade indeed is capable of achieving this
adaptivity. We use the network-based data generator for the update
workload and a uniform range query workload. We vary ry /rq
from 0.01 to 1000. Figure 10(a) shows the average I/O cost per
operation (update or query) for the spatial case, and Figure 11(a)
shows the same metric for the time-parameterized case. All axes
are in logarithmic scale.

First, note that using an R-tree or a TPR-tree is not beneficial
in an update-intensive environment in terms of average cost per
operation. The cost of maintaining these indexes in the presence
of updates exceeds the performance gains for the queries. In our
setting, when ry /rg exceeds 100, a solution that does not index
the object locations at all achieves better average cost per operation.
However, in query-intensive settings, using such an index results in
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Figure 11: Query-update tradeoff, time-parameterized

two orders of magnitude better performance. Thus, it is of interest
to achieve adaptivity with respect to ry /rq.

We start with the spatial case (Figure 10(a)). The average costs
per operation of the adaptive and aggressive QU-Trade are upper-
bounded by the average cost of the R-tree in query-intensive work-
loads (ry/rqg € [0.01,1]). When the workload becomes update-
intensive, their average costs drop to a value close to 1 I/O.

This behavior can be explained by examining the average 1/0
cost per query operation (Figure 10(b)) and the average I/O cost
per update operation (Figure 10(c)). The average query costrises as
the workload becomes update-heavy, ranging from the query cost
of the R-tree up to the query cost of the grid index. Conversely, the
update cost falls from the update cost of the R-tree down to zero
as the workload becomes update-intensive. The combination of the
query and update cost result in the desired adaptivity. The con-
servative QU-Trade achieves similar costs to the grid index in this
setting. Both methods perform well in update-intensive workloads,
but their costs are too high in the query-intensive case. This is ex-
plained by their high query costs (Figure 10(b)). In the next section,
we show that the presence of spatial skew enables the conservative
variant to achieve the desired adaptivity and to achieve similar per-
formance as the aggressive and the adaptive variants. Note that the
query cost of QU-Trade never exceeds that of the grid index.

In the time-parameterized case (Figures 11(a), 11(b), and 11(c)),
the situation is similar (only the aggressive policy is depicted). QU-
Trade’s update cost drops, and its query cost rises as the workload
becomes update-intensive. This enables its average cost per oper-
ation to be upper bounded by the TPR-tree’s cost and its overhead
to be minimal in update-intensive workloads. The query cost is
never higher than that of the B”-tree. In subsequent experiments,
we restrict ourselves to the non time-parameterized case of QU-
Trade operating on an R-tree. These experiments have shown that
QU-Trade effectively covers the space between maintaining an ac-
curate R-tree or TPR-tree, and having no index at all. Query latency
is not sacrificed, as it is never higher than that of an update-efficient
index (grid or B”-tree).

Figure 12(a) shows the average I/O for the same experimental
setup, but for nearest-neighbor queries (the legend of Figure 10
is assumed, both axes are in logarithmic scale, and the case with
no index is not depicted). Similar observations can be made for
this case. For our subsequent experiments, we restrict ourselves to
range queries.

Finally, we study the performance of QU-Trade when the index
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it controls resides in main memory rather than on disk. We per-
form the same experiment, changing the underlying storage man-
ager to a main memory one. We do not optimize the indexes for
main memory (e.g., changing the R-tree node size). Figure 12(b)
shows the average execution time per operation for all the meth-
ods in psecs (the legend of Figure 10 is assumed, both axes are in
logarithmic scale, and the case with no index is not depicted). The
R-tree cost rises as the workload becomes update-intensive. The
cost of the conservative QU-Trade drops as the workload becomes
update-intensive. In contrast, the average execution cost of the ag-
gressive, and especially the adaptive QU-Trade, is a concave curve.
The cost is minimized at the extremes, due to the good update be-
havior for update-intensive workloads and the good query behavior
for query-intensive workloads. We conclude that the query-update
tradeoff is inherent, both in buffered, disk-resident indexes and in
indexes that lie entirely in main memory. QU-Trade can address
this tradeoff in both settings.

6.4 The effect of spatial skew

QU-Trade benefits from spatial skew. Our next experiments show
that the QU-Trade curve in the query-update tradeoff space (Fig-
ure 2) moves towards optimal performance as the spatial skew in-
creases.

We consider the query-update tradeoff for four workloads with
increasing spatial skew. The first workload consists of uniform di-
rectional object updates and uniform queries. The second workload
introduces query skew, by using a Gaussian spatial query distribu-
tion with the mean at the center of the work space. The third work-
load changes the nature of the object movement. The objects now
move non-directionally, by choosing a random velocity vector at
every update. This results in a random walk, rather than a linear
movement. As before, the queries follow a Gaussian distribution.
The fourth workload, introduces a Gaussian initial spatial distri-
bution and a Gaussian query distribution concentrated at the top-
right corner of the working space. The average 1/0O performance for
the three latter workloads is shown in Figures 13(a), 13(b), 13(c),
and 13(d), respectively (the legend of Figure 10 is assumed and
both axes are in logarithmic scale).

A comparison between Figure 13(b) with the uniform workload
in Figure 13(a) indicates that especially the adaptive QU-Trade
benefits a lot from the concentrated nature of the query distribu-
tion. This allows updates to be dropped even when the workload is
query-intensive. Its performance is the best among all solutions, in-
cluding the R-tree, for query-intensive as well as update-intensive
workloads. Moving to increasing levels of skew in Figure 13(c)
and Figure 13(d), the conservative solution approaches the aggres-
sive and adaptive solutions. The spatial skew now renders the con-
servative variant workload-aware. The grid index suffers from the
skew and performs worse than even the R-tree for high update rates.
Using a structure that relies on uniformity assumptions, such as the
grid, fails when faced with substantial skew. In all cases, QU-Trade
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variants perform increasingly better as the spatial skew increases.
The aggressive and adaptive variants consistently exhibit the best
performance, followed by the conservative approach.

6.5 The effect of queried space and scalability

Since QU-Trade is built on an R-tree or a TPR-tree, it inherits the
behavior of these indexes with respect to query size. Figure 14(a)
depicts the effect of the query area on the average performance. The
workload is uniform as in Section 6.3. While the grid solution suf-
fers from large queried regions, the R-tree as well as QU-Trade are
not affected substantially, although they exhibit quadratic behavior.
The behavior is similar for all the QU-Trade variants.

Figure 14(b) shows that QU-Trade also inherits the scalability of
the R-tree, whereas the grid proves non-scalable when the number
of grid cells remains constant. The behavior is similar for all the
QU-Trade variants.

6.6 Transient behavior

We move to study the temporal evolution of performance as the
characteristics of a workload change over time. We are interested
in both stationary workloads that intermix queries with updates and
workloads that exhibit temporal skew. In the latter workloads, a
high number of updates with relatively few queries is followed by
a query burst. Due to lack of space, we present our results for the
non-stationary cases only.

In the subsequent experiments, we measure the average 1/O rate
as it evolves over time. The average 1/O rate measures how many
1/Os per operation and time unit occur in order for a given workload
to be processed. A low average I/O rate means that a workload can
be processed efficiently. Note that the performance differences be-
tween the various methods naturally seem smaller with this metric,
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as I/O operations are now averaged over a very small time period,
and not across the whole workload.

First, we consider a scenario where an update-only workload
from¢ = 0 to t = 8 dropping to zero updates at ¢ = 10 (Fig-
ure 15(b)) is combined with a query-only workload from ¢ = 8 to
t = 12 (Figure 15(a)). Figures 15(c) and 15(d) show the evolution
of the average I/O rate of the five compared methods for ¢ € (0, 6)
and t € (6,12), respectively. Figure 15(c) shows that the QU-
Trade solutions are roughly upper-bounded by the grid index in the
update-heavy part of the workload, with the R-tree having much
worse update performance. Conversely, in the query-heavy part
(Figure 15(d)), the QU-Trade solutions exhibit performance sim-
ilar to that of the R-tree, while the grid exhibits poor query per-
formance. The QU-Trade techniques can thus combine minimal
update performance during the update-intensive part, and quickly
move to a query performance close to that of the R-tree when the
queries arrive.

For our final experiment, we use a constant-rate update workload
(Figure 16(b)) intermixed with a very high rate query burst, roughly
in the time interval (3.5, 5), as shown in Figure 16(a). We want to
determine the overhead of updating the false positives found in the
queries after a series of updates have enlarged the object windows,
and how quickly the windows will be enlarged again after the query
burst. Figure 16(d) shows the average I/O rate before the query
burst (¢t € (0,3.5)). The aggressive and the adaptive QU-Trade
variants have near-zero overhead. The grid and the conservative
QU-Trade have an overhead of 3 I/Os per time unit on average, and
the R-tree an update overhead of 10 I/Os per time unit. When the
queries arrive (Figure 16(c), ¢t € (3.5, 6)), the grid index exhibits
the steepest increase in I/O rate and exceeds by far the R-tree in
terms of average I/0 rate. The R-tree exhibits the smoothest slope.
The QU-Trade techniques increase their I/O rate to about the same
level as the R-tree. This means all QU-Trade variations manage to
shrink the window sizes quickly. When the queries are over (Fig-
ure 16(e), t € (6,10)), the aggressive QU-Trade quickly returns
to its near-zero update overhead, since it enlarges the window sizes
quickly. The adaptive and conservative variations exhibit oscilla-
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tions before they return to their stable behavior.

6.7 Summary

We have studied the average and temporal behavior of three vari-
ants of QU-Trade in environments with disk-based and main-memory
indexes, uniform and skewed workloads, and spatial and spatio-
temporal indexes. Here, we briefly summarize the most important
findings.

First, our experiments indicate that workload-awareness is de-
sirable in a practical system. For query-intensive workloads with
few updates, the average performance of an update-efficient index
(grid or B?-tree) is less than an order of magnitude better than the
naive approach (no indexing). In contrast, a query-efficient index
(TPR-tree or R-tree) can achieve two or more orders of magnitude
better performance than the naive approach. However, in update-
intensive workloads with few queries, R- and TPR-trees incur large
update overheads, resulting in an order of magnitude worse perfor-
mance than the naive approach. The query and update frequencies
of real workloads fluctuate greatly over time. QU-Trade achieves
the best of both worlds by adapting its behavior to the incoming
workload. Its performance for query-intensive workloads is two or
more orders of magnitude better than the naive approach, and its
performance is nearly optimal in update-intensive workloads. It is
thus a very practical solution for real-world scenarios.

Second, spatial skew has been shown to be beneficial for QU-
Trade. Its performance (across any workload, query- or update-
intensive) becomes better by two orders of magnitude when we
introduced substantial skew in the workload. Thus, QU-Trade is
expected to deliver its best performance in real workloads.

Third, QU-Trade has been shown to have a smooth transient be-
havior. When the workload’s 7y /rg changes dynamically, QU-
Trade follows these changes fast, avoiding temporary performance
deterioration.

Finally, the aggressive QU-Trade variant exhibits the best perfor-
mance overall. Interestingly, it has the best transient behavior, os-
cillating less when the incoming workload changes rapidly. Thus, it
is desirable to be aggressive when growing and shrinking windows.



However, we recommend the adaptive variant as the most practical
because it is practically parameterless and its performance is very
close to that of the aggressive variant. The adaptive QU-Trade vari-
ant has only two parameters, o and y that control the impact of
past motion history. However, its performance is very robust with
respect to parameter variations, staying within the same order of
magnitude across the whole spectrum of values for a and .

7. CONCLUSIONS AND FUTURE WORK

QU-Trade is a framework equipped with specific techniques that
render R-trees and TPR-trees workload-aware, and as a result cov-
ers the space in-between maintaining an accurate index and having
no index at all. Moving object positions are represented by rect-
angles, the sizes of which are maintained dynamically in order to
balance query and index update performance. Objects that update
frequently, but move in areas with few queries, obtain large win-
dows that yield fewer index updates. When an object is a false pos-
itive in a query, its window is shrunk, as it has entered a frequently
queried region.

An analytical model and an extensive experimental study offer
insights into the worst case, the average, and the transient behavior
of three variants of QU-Trade. The studies show that QU-Trade is
capable of reducing the update overhead of the R-tree and the TPR-
tree to a near-zero cost while maintaining good query performance.
QU-Trade can outperform these indexes by up to two orders of
magnitude for update-heavy workloads, while achieving virtually
comparable performance for query-heavy workloads. Unlike grid-
based indexes, QU-Trade thrives on workloads with spatial skew.
Further, QU-Trade is capable of quickly adapting to workloads that
change over time. QU-Trade is a general and versatile solution. Itis
applicable to a variety of indexes in the R-tree family, and is easily
deployable in existing database engines. It makes no assumptions
about a workload’s spatial and temporal characteristics, but rather
adapts to those in a fully online manner. We therefore view QU-
Trade as a practical way to support moving object indexing in an
industrial-strength DBMS.

This research opens several lines of work that we plan to pur-
sue. First, we would like to experiment with changing the velocity
bounding boxes of the object windows when growing and shrink-
ing. Second, QU-Trade may be applied to other R-tree type indexes
for use with sensor network workloads. Finally, our current tech-
niques for growing and shrinking object windows are heuristic. We
would like to take a more principled approach and investigate what
an optimal solution to this problem means, and under what assump-
tions optimality can be meaningful.
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