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Abstract. A typical location-based service returns nearby points of in-
terest in response to a user location. As such services are becoming
increasingly available and popular, location privacy emerges as an im-
portant issue. In a system that does not offer location privacy, users
must disclose their exact locations in order to receive the desired ser-
vices. We view location privacy as an enabling technology that may lead
to increased use of location-based services.

In this chapter, we consider location privacy techniques that work in
traditional client-server architectures without any trusted components
other than the client’s mobile device. Such techniques have important
advantages. First, they are relatively easy to implement because they
do not rely on any trusted third-party components. Second, they have
potential for wide application, as the client-server architecture remains
dominant for web services. Third, their effectiveness is independent of
the distribution of other users, unlike the k-anonymity approach.

The chapter characterizes the privacy models assumed by existing
techniques and categorizes these according to their approach. The tech-
niques are then covered in turn according to their category. The first
category of techniques enlarge the client’s position into a region before it
is sent to the server. Next, dummy-based techniques hide the user’s true
location among fake locations, called dummies. In progressive retrieval,
candidate results are retrieved iteratively from the server, without dis-
closing the exact user location. Finally, transformation-based techniques
employ cryptographic transformations so that the service provider is un-
able to decipher the exact user locations. We end by pointing out promis-
ing directions and open problems.

1 Introduction

The Internet is rapidly becoming mobile. An infrastructure is emerging that en-
compasses large numbers of users equipped with mobile terminals that posses
geo-positioning capabilities (e.g., built-in GPS receivers) and data communica-
tion capabilities. Thus, location-based services (LBS) are increasingly becoming
available. These return results relative to the users’ locations. An example ser-
vice returns the gas station nearest to the location of a user. Another example
is a service that returns all restaurants within 2 km of the user’s location.

C. Bettini et al. (Eds.): Privacy in Location-Based Applications, LNCS 5599, pp. 31–58, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

AAU
Text Box
LNCS 5231, pp 31-58, 2009.(URL: http://www.springerlink.com/content/w4355k0585k1r349/)Copyright © Springer-Verlag



32 C.S. Jensen, H. Lu, and M.L. Yiu

To receive such services, the users must disclose their locations to the ser-
vice provider. Users may be uncomfortable disclosing their exact locations to
an untrusted service provider that may misuse the knowledge of the users’ loca-
tions [1]. We view location privacy as an enabling technology for the diffusion
of the mobile Internet and the proliferation of location-based services. By of-
fering users the ability to choose different levels of location privacy, users are
encouraged to use mobile services more often.

Some existing location privacy solutions assume the presence of a centralized
third-party anonymizer that is aware of all users’ locations.This trustedanonymizer
serves as an intermediary in-between the users and the service provider. However,
such an anonymizer may not always be practical, and it may itself present secu-
rity, performance, and privacy problems. For example, the anonymizer represents
a single-point-of-attack for hackers. Also, the anonymizer is prone to becoming a
performance bottleneck because it may need to serve a large number of users.

In contrast, the techniques covered in this chapter assume a client-server archi-
tecture without any third-party anonymizer. We therefore call these decentralized
solutions. The decentralized solutions are motivated by several considerations.
First, the client-server architecture is widely used by today’s location-based ser-
vices. This popularity affords decentralized solutions wide applicability.

Second, a mobile terminal in a decentralized solution does not need to keep
an anonymizer up to date with its location at all times; the terminal only issues
queries to the server on demand. The anonymizer of a centralized solution needs
to maintain up-to-date locations of all mobile terminals in order to perform
cloaking for the small fraction of users that are issuing queries at any point
in time.

Third, the setting of this chapter is based on the seemingly realistic assump-
tions that an adversary knows what the service provider knows, i.e., the identity
of the user who issues a query and the parameters and result of the query.
Specifically, we assume that users must register with the service provider to re-
ceive services; and we assume that users are not required to report their latest
locations continuously.

In the next section, we provide an overview of decentralized solutions found
in the literature.

2 Overview of Client-Server Solutions

The privacy models of existing solutions can be broadly classified into two types:
identity privacy and location privacy.

The identity privacy model [2] assumes that (i) an untrusted party has access
to a location database that records the exact location of each user in the popula-
tion of users and (ii) that service users are anonymous. If a service user discloses
her exact location to the untrusted party, that party may be able to retrieve the
user’s identity from the location database. In this setting, which this chapter
does not consider, the location of a user is obfuscated in order to preserve the
anonymity of the user.
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Fig. 1. Client-Server Architecture

This chapter is devoted to the location privacy model, which assumes that
untrusted parties know the user’s identity, but not the user’s location. This
model fits well with services where a user must log in before using the services.
Examples include location-based services available in Google’s Android Market1.
Also, FireEagle2 by Yahoo! enables users to share their locations with their
friends, allowing them to specify the preciseness of the shared locations (e.g.,
exact location, city of the location, or undisclosed location).

Under the above model, we study privacy solutions that simply assume a
client-server architecture and that apply to snapshot queries based on the user’s
location. In other words, we consider neither the privacy of continuous queries
nor of a user’s trajectory. Figure 1 illustrates the client-server architecture, in
which the client is trusted, but the server (including its services) is not trusted.
It does not rely on peer-to-peer communication among the clients, and nor does
it employ a trusted third-party anonymizer.

Existing solutions for the location privacy model can be classified into four
categories.

– Query enlargement techniques [3, 4, 5, 6, 7] (Section 3) enlarge the client’s
exact position into a region before sending it to the server.

– Dummy-based techniques [8, 9] (Section 4) generate dummies (i.e., fake loca-
tions) at the client and then send them together with the exact user location
to the service provider, thus hiding the user location among the dummies.

– Progressive retrieval techniques [10, 11, 12] (Section 5) iteratively retrieve
candidate results from the server, without disclosing the exact user location.

– Transformation-based techniques [13, 14] (Section 6) employ cryptographic
transformation so that the service provider is unable to decipher the exact
user locations, while providing the clients with decryption functionality so
that they can derive the actual results.

Table 1 offers a summary of specific location privacy solutions that belong
to the above categories. Six features are covered: (i) the nature of the domain
space, (ii) the privacy measure, (iii) the types of queries supported, (iv) whether

1 http://www.android.com
2 http://fireeagle.yahoo.net
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Table 1. Features of Various Location Privacy Techniques

Method Domain Privacy Supported Exact Accuracy Impl.
Space Measure Queries Result Guarantee Difficulty

[3] Euclidean Area-based Range Yes Yes Medium
[4] Euclidean Area-based Range, kNN Yes Yes Medium

[5, 6] Euclidean Area-based Range, kNN Yes Yes Medium
[7] Euclidean Area-based Proximity No No Medium
[8] Euclidean Size-based Range, kNN Yes Yes Low
[9] Euclidean Size and Area Range, kNN Yes Yes Low

[10, 11] Network Size-based 1NN Yes/No Yes/No Medium
[12] Euclidean Distance-based kNN Yes Yes Low
[12]g Euclidean Distance-based kNN No Yes Low
[13] Euclidean Full-domain kNN No No Medium
[14] Euclidean Full-domain 1NN Yes Yes High

exact results can be retrieved, (v) whether result accuracy guarantees are given
(for approximate results), and (vi) the difficulty of implementing the solution.

The domain space used by Duckham and Kulik [10, 11] is modeled by a graph
that represents a road network. All the other work focus on the Euclidean space.
No existing solution is applicable to both Euclidean space and network space
simultaneously.

The privacy measure, i.e., the means of quantifying the privacy afforded a
user, of the solutions can be classified into four categories. First, in the area-
based measures [3, 4, 5, 6, 7], the privacy of the user is measured by the area
(or a derivative of it) of the region that contains the user’s location. Second, the
size-based measures [8, 10, 11] simply express the privacy as the cardinality of a
discrete set of locations that contains the user’s location. The work of Lu et al. [9]
employs a hybrid that builds on the size-based and area-based measures. Third,
the distance-based privacy measures [12] capture the expected distance of the
user’s location from the adversary’s estimate. Fourth, the full-domain privacy
measures [13, 14] ensure that the adversary cannot learn any information on the
user’s location, as it is transformed into another space.

An interesting issue is to examine whether a particular privacy model is appli-
cable to other solutions. Among the solutions covered, the full-domain measure
is applicable only to the solutions in references [13, 14]. The distance-based mea-
sure is applicable to the solutions in references [3, 4, 5, 6, 8, 9, 10, 11]. It can
also be noted that the area-based measures cannot be applied to the solutions
in references [8, 10, 11] that use a discrete set of points, whereas the size-based
measure is inapplicable to the solutions in references [3, 4, 5, 6] that use a single
continuous region for cloaking.

The typical queries that underlie location-based services are the range query
and the k-nearest neighbor query. Given a dataset P (of points of interest, or
data points) and a query region W , the range query retrieves each object o ∈ P
such that o intersects with W . Given a set P and a query point q, the k-nearest
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neighbor query retrieves k objects from P such that their distances from q are
minimized. it follows from Table 1 that some solutions support range queries only,
some support k-nearest neighbor queries only, and some support both. It is worth
noticing that the methods in references [10, 11, 14] support only the nearest
neighbor query (i.e., the special case with k = 1). In addition, proximity based
queries (e.g., finding those of my friends that are close to me) are supported [7].

We cover two aspects that relate to the quality of a query result: whether it
either is or contains the exact result, and, if not, whether an accuracy guarantee
is provided. We observe that most of the existing solutions guarantee that their
results are supersets of the actual results, thus allowing the client to obtain
the exact result. The solutions of Duckham and Kulik [10, 11] ensure that the
exact result is returned only if the user agrees to reveal a sufficiently accurate
obfuscation of her location. The table uses “Yes/No” to capture this conditional
property. Otherwise, the solution does not guarantee the accuracy of the returned
result (thus the corresponding “Yes/No”). Yiu et al. [12] propose a solution that
offers exact results and thus accuracy guarantees. In addition, an extension that
utilizes so-called granular search for improving performance returns approximate
results with user-controlled accuracy guarantees. In the table, this extension is
called [12]g. The work of Khoshgozaran and Shahabi [13] does not provide result
accuracy guarantees, and it cannot support exact result retrieval.

The aspect concerns the difficulty of implementing and deploying the pro-
posed solutions. The solutions in references [8, 9, 12] are easy to implement as
they reuse existing location-based operations that can be assumed to be available
in location based servers. The solutions in references [3, 4, 5, 6, 7, 10, 11] have
medium implementation difficulty as they apply specialized geometric search
algorithms. The method of Khoshgozaran and Shahabi [13] also has medium
implementation difficulty because a Hilbert curve transformation function needs
to be used by the client. The solution of Ghinita et al. [14] has high implementa-
tion difficulty as both the client and the server have to run a protocol for private
information retrieval.

3 Query Enlargement Techniques

A straightforward way of protecting an exact user location in a service request
is to replace the user location by a region that contains the location. We call the
solutions that adopt this tack Query Enlargement Techniques. Unlike centralized
cloaking solutions, the query enlargement techniques considered here do not
require any trusted third-party component.

3.1 Cloaking Agent-Based Technique

Cheng et al. [3] assume a setting in which the data points are not the typical,
static points of interest such as restaurants, but are the locations of other users.
thus, user requests are intended to retrieve private data rather than public data,
as do all other techniques covered in this chapter.
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In this setting, the service quality may degrade when the spatial and temporal
information sent to the service provider is at a coarse granularity. Motivated by
this, Cheng et al. [3] proposed a framework for balancing the user location privacy
and quality of service requested.

Architecture
The proposed architecture is illustrated in Figure 2. It encompasses of a crucial
component, the cloaking agent. The cloaking agent is not necessarily a third-
party component—it can also be implemented directly on the client side, i.e., on
the user’s device. For this reason, we cover this technique.

User 
Locations
Database

Cloaking Agent Service ProviderUser

Precise Locations

Privacy Preferences

Precise Service Request

Service Content, Quality

Cloaked Locations

Imprecise Service Request

Imprecise Service Result

Quality Score

Fig. 2. Cloaking Agent-Based Architecture for Privacy and Service Quality Tradeoff

In particular, the cloaking agent receives precise locations and privacy prefer-
ences from a user, introduces uncertainty into the user’s locations according to
the privacy preferences, and reports the uncertain locations to the database at
the service provider side.

When the user issues a service request with an exact location, the request is
passed to the cloaking agent where it is translated into an imprecise service re-
quest with a cloaked location obtained according to the user’s privacy preferences
as known by the agent.

The imprecise service request is then sent to the service provider where it
is processed using the uncertain user locations stored in its database, yielding
an imprecise service result. The imprecise result, together with a score quanti-
fying the service quality, is then sent back to the cloaking agent. The cloaking
agent delivers the service result and the quality measurement to the user, who
is allowed to adjust the privacy preferences based on the service and quality
received.

Privacy Model
Cheng et al. [3] base the specification of location privacy preferences on a prob-
abilistic location cloaking model. Assume that n users, namely S1, S2, . . . , Sn,
are registered in the system. Let Li(t) be the exact location of user Si at time t.
Instead of reporting Li(t), the user Si reports a closed uncertainty region Ui(t)
to the service provider, such that Li(t) has a uniform probability distribution
in Ui(t).
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A user is allowed to control the degree of location privacy in two ways. First,
a user can specify the desired area of the uncertainty region, i.e., Area(Ui(t)). In
general, the larger the value of Area(Ui(t)), the higher the location privacy. The
idea is that it is more difficult for the adversary to determine the user’s exact
location Li(t) the larger the uncertainty region Ui(t) becomes.

Second, a user can specify the desired coverage of sensitive regions. When
the user is in a sensitive region, e.g., at a psychology clinic, she does not want
to release the location information. However, if the user’s uncertainty region
happens to overlap with the clinic by a high percentage (e.g., 90%), it becomes
easy for the adversary to guess that the user is at the clinic. To overcome this
problem, a user may specify a coverage value based on the equation below that
is not to be exceeded.

Coverage =
Area(sensitive regions ∩ Ui(t))

Area(Ui(t))

Query Processing
Cheng et al. focus on the processing of range queries. Based on their probabilistic
location cloaking model, a range query from user Si is translated by the cloaking
agent into an imprecise location-based range query (ILRQ). An ILRQ issued at
time t returns the set {(Sj, pj) | j �= i∧j ∈ [1, n]}, where pj > 0 is the probability
that Sj is located within Ui(t) at time t. As mentioned, such a query concerns
other users’ locations, not public points of interest such as restaurants.

An ILRQ is processed by the service provider in three phases: (i) The prun-
ing phase eliminates objects whose uncertainty regions do not overlap with the
ILRQ. (ii) The transformation phase transforms an ILRQ into subqueries. For
each possible location (u, v) ∈ Ui(t) of Si, a subquery is generated to find those
unpruned objects whose uncertainty regions overlap with the circle centered at
(u, v) and with radius r (specified in the original query), denoted as C((u, v), r).
(iii) The evaluation phase evaluates each subquery, by computing the actual
probability that each remaining object satisfies the ILRQ. The probability of
object Sj satisfying a subquery located at (u, v) is given as:

pj(u, v) =
Area(Uj(t) ∩ C((u, v), r))

Area(Uj(t))

The results of all subqueries are combined as the answer to the original ILRQ.
From the location privacy preference specification above, it is easy to see

that better user location privacy results from using a larger uncertainty region.
However, simply increasing the uncertainty region inevitably hurts the service
quality. Specifically, the use of larges uncertainty regions tends to retrieve more
objects with lower probabilities. To enable trade-offs between privacy and service
quality, a service quality metric is proposed.

Result Quality
Assume that an ILRQ from user S is partitioned into B subqueries that cor-
respond to B locations among A1 to AB. Let the probability that S is located



38 C.S. Jensen, H. Lu, and M.L. Yiu

at Ak (1 ≤ k ≤ B) be pk(S). The result of the subquery at Ak is Rk, while
R =

⋃B
k=1 Rk. The quality score of the ILRQ is defined as follows:

Query score =
B∑

k=1

pk(S) · |Rk|
|R|

The score varies between 0, the lowest quality, and 1, the highest quality. When a
user S receives a query result and its corresponding score, she can adjust privacy
preferences stored in the cloaking agent according to her expectation and the
score value.

Benefits and Limitations
The proposed solution has two advantages. First, it allows flexibility on the
architecture, as the cloaking agent can be part of the client or can be a separate
third party. Second, it offers quantifies location privacy and service quality, which
allows users to make trade-off according to their needs.

Nevertheless, the cloaking agent based solution also suffer from some disadvan-
tages. First, it is assumed that the service provider knows all possible locations
where a user can be. This is exploited in the query transformation and query
quality score calculation. If there are many such locations, the query transfor-
mation, the query evaluation, and the quality score calculation can all be very
expensive. And if there are few such locations, the location privacy is not well
protected. Second, it may be difficult for a user to understand well the exact
meaning of service quality scores, which therefore may reduce the utility of such
scores.

3.2 Spatial Obfuscation Techniques

Ardagna et al. [4] propose a straightforward and intuitive way to express user
location privacy preferences using obfuscated circles. Due to assumed measure-
ment accuracy limitations, a user location is represented as a circular region
C((xc, yc), rmeas) (i.e., centered at (xc, yc) and with radius rmeas). The possible
user locations are assumed to be uniformly distributed within that region.

Measurement of Privacy and Accuracy
To support multiple location obfuscation techniques, an attribute λ is first in-
troduced to represent a relative privacy preference, which is derived according
to the following formula:

λ =
max(rmeas, rmin)2

r2
meas

− 1

Here, rmeas represents measurement accuracy, i.e., the radius of a measured circu-
lar region modeling the user location; rmin is the minimum distance specified by
a user to express her privacy preference [11]. For example, “1 mile” indicates that
the user requires her location to be represented by a circular region with a radius
of at least 1 mile. The term max(rmeas, rmin) is used because it is possible that
rmin < rmeas because the measurement accuracy may be unknown to the user.
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When rmeas ≥ rmin, λ = 0, indicating that the user privacy preference is
already satisfied as the measured radius exceeds the preferred minimum distance.
In this case, no location obfuscation is needed. When rmeas < rmin, λ > 0,
reflecting the degree to which the location accuracy is to be degraded to protect
the user according to the user’s privacy preference. In this case, obfuscation is
needed.

To measure the accuracy of an obfuscated region, a technology-independent
metric, called relevance, is defined as a value R ∈ (0, 1]. The relevance is 1 when
the user location has the best accuracy, and its value is close to 0 when the
user location is considered too inaccurate to be used by the service provider.
The value 1 − R is accordingly the location privacy offered by an obfuscated
location.

The privacy management solution of Ardagna et al. embodies two crucial rel-
evance values. The initial relevance (RInit) is the measure of the accuracy of
a user location as obtained using some positioning technology. The final rele-
vance (RFinal) is the measure of the accuracy of the final obfuscated region
that satisfies a relative privacy preference λ. let ropt be the measurement radius
corresponding to the best accuracy of a positioning technology. The initial and
final relevance are calculated as follows:

RInit =
r2
opt

r2
meas

RFinal =
RInit

λ + 1

Obfuscation Operators
To derive RFinal from RInit, three basic obfuscation operators are defined on
circular regions. First, the Enlarge operator (E ) enlarges the radius of a region.
Second, the Shift operator (S ) shifts the center of a region. Third, the Reduce
operator (R) reduces the radius of a region.

An example of E obfuscation operator is illustrated in Figure 3(a). Here the
initial radius r is increased to r′ > r. Let R and R′ be the relevances before and
after the operator, respectively. Then R′ is derived from R as follows:

R′ =
fr′(x, y)
fr(x, y)

· R =
r2

r′2
· R

In the formula, fr(x, y) (fr′(x, y)) is the joint probability density function (pdf)
of an exact user location to be in the circular region indicated by r (r′). Note
that R′ < R as r′ > r. Therefore, 1−R′ > 1−R, which means that the location
privacy is increased by the Enlarge operator.

An example of the S obfuscation operator is illustrated in Figure 3(b). Here
the initial center is shifted by a vector (Δx, Δy) of length d. The relevance of
the result of applying the operator is derived as follows:

R′ = P ((xu, yu) ∈ CInit ∩ CFinal) · P ((x, y) ∈ CInit ∩ CFinal)

=
Area(CInit ∩ CFinal)2

Area((xc, yc), r)2
· R
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Fig. 3. Basic Obfuscation Operators
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Fig. 4. Composite Obfuscation Operation: S followed by E

Here, P ((xu, yu) ∈ CInit ∩CFinal) is the probability that the exact user location
belongs to the intersection of the two circular regions; P ((x, y) ∈ CInit∩CFinal is
the probability that a random location selected from the whole obfuscated region
is within the intersection. In addition, (xc, yc) represents the original center and
r is the original radius.

Finally, an example of the R obfuscation operator is shown in Figure 3(c). Here
the initial radius r is reduced to r′ < r. The analysis of this case is symmetric
to that of the E operator, and we obtain the following relationship between the
relevance of the argument and the result:

R′ =
r′2

r2
· R

Composite obfuscation is achieved by combining two operators. As operators
E and R are inverse to each other, there are four kinds of composite operators:
E followed by S, S followed by E, R followed by S, and S followed by R. An
example of S followed by E is shown in Figure 4.
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3.3 The iPDA Solution

Xu et al. [5] propose a client-based solution that enables privacy-preserving
location-based data access, called iPDA. The basic idea behind iPDA is to trans-
form a location-based query to a region-based query using an optimal location
cloaking technique that is fully implemented on the client side. When a point-
based query is transformed to a region-based query, the query result of the latter
is a superset of that of the former. Xu et al. show that compared to any other
shape with the same area, a circular enlarged region minimizes the size of the
superset query result.

Mobility Analysis Attack
iPDA is designed to address the mobility analysis attack. Referring to Figure 5(a),
a user first issues a query at location q, whose cloaking region is Cq . After a period

q
Cq

q'
Cq’

vm·t
O
1
2
3
4

Δ
Δ
Δ
Δ

(a) Mobility Analysis Attack (b) Rings for Locations

Fig. 5. iPDA Example

of time t, the user issues another query at location q′ with a cloaking region Cq′ . An
adversary who knows the user’s maximum speed vm can infer that the user cannot
be located within the white subregion of Cq′ when query q′ is issued. Rather, the
user must be within the intersection of Cq′ and the gray circular region expanded
from Cq by the distance vm · t.
Privacy Model
iPDA is intended to generate cloaking regions for clients issuing queries repeat-
edly such that at any time a query is issued, the client’s exact location uniformly
distributed within the cloaking region. A general movement pattern is assumed
to be known to both the client and the server. To carry out a numerical analysis,
the plane of movement is divided into a set of rings with a common center O,
as shown in Figure 5(b). Each ring, except the innermost one, which is actually
a circular region, is of a sufficiently small width Δ.

Assume that at the time of the previous query, the cloaking region was cen-
tered at O and had radius r = K · Δ, and R = L · Δ denotes the longest
distance a user can travel between two queries. Both K and L are integers.
Two probabilities can be defined based on the set of rings indicated by r and R.
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The probability that the user’s new location is in the i’th ring is captured by
U(i) =

∫ i·Δ
(i−1)·Δ u(x)dx, where u(x) is the density function for the probability that

the distance between the new user location and O is x. The conditional probabil-
ity that the user’s new location is in the i’th ring given that the center of the new
cloaking region is in the j’th ring is denoted by Q(i|j). Two expressions of Q(i|j)
are derived for the two cases j < K and j ≥ K [5]. As a result, the location privacy
against a mobility analysis attack is indicated by the value of Q(i|j).

To enable a trade-off between query result accuracy and the cost of commu-
nication between client and server, queries are allowed to be blocked. A blocked
query is not sent to the server; the result of the previous query is instead reused
to derive the new result. If a blocked query comes from a ring i ≤ K, the old
result is a superset of the new result. This means that the query accuracy is not
reduced while the communication cost is avoided. If a blocked query comes from
a ring i > K, the old result is no longer a superset of the new result. This means
that the communication cost is saved at the expense of the query accuracy. This
also leads to a set of linear equations:

min{L−K+1,i+K−1}∑

j=max{1,i−K+1}
(
Q(i|j)
U(i)

· vj) ≤ 1 i = 1, 2, . . . , L

vj =
∑

m

(P (j|m) · U(m)) ≥ 0 j = 1, 2, . . . , L − K + 1

With these constraints, two linear programming techniques are developed to ei-
ther maximize the query accuracy or minimize the query communication cost [5].

Query Processing
iPDA transforms a traditional kNN query to a query that requires the k nearest
neighbors of a circle’s perimeter Ω and the interior of Ω. Thus, a proposal for
the server-side processing of k circular range nearest neighbor queries is also
part of iPDA. A general heuristic is to access objects (or index nodes when the
objects are indexed) in ascending order of their minimum distances to Ω. For
disk-resident data, two pruning heuristics are proposed based on the distance
and topology between Ω and index nodes.

Benefits and Limitations
Although the cloaking technique in iPDA is claimed to be optimal, discretization
is needed before iPAD can be implemented using some numerical method. This
reduces the attractiveness of iPAD. Nevertheless, iPDA addresses the mobility
analysis attack and allows a user to issue consecutive queries while enjoying
location privacy. Further, iPAD offers users the flexibility of either maximizing
query accuracy or minimizing query communication cost when the original query
is cloaked. As a last remark, a demonstration system is available that implements
iPDA in a practical setting of a GPS-enabled Pocket PC and spatial database
supported servers [6].
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3.4 Server-Side Processing of Enlarged Queries

As range queries and k nearest neighbor queries are fundamental, they may be
expected to be supported by location-based service servers. After applying query
enlargement, an original location-based query is converted into a region-based
query.

Region-Based Range Query
The starting point is a range query applied to an uncloaked user location. This
query retrieves all data points within the range, which might be a circle or rect-
angle centered at the user location. The region-based range query occurs when
the user location is cloaked by a region, again perhaps a circle or a rectangle.
The region-based range query then returns all data points within the original
range, but with any point in the cloaking region being the query point.

The resulting query can still be viewed as a range query, so the query is
relatively straightforward to compute. For example, if the cloaking region is a
(axis-aligned) rectangle and the query range is a (axis-aligned) rectangle, the
region-based range query becomes rectangular (axis-aligned) range query.

Region-Based kNN Queries
The ensuing discussion assumes the nearest neighbor query (i.e., the special case
with k = 1), but it is easily generalized to the k nearest neighbor query for any
positive integer k.

An original point nearest neighbor query is transformed to a range nearest
neighbor query (RNN ) [15]. Given a range W , the RNN query returns the union
of the nearest neighbors for each point in W , i.e., RNN (W ) = {NN (p) | p ∈ W}.
This definition implies that any object within W belongs to RNN (W ), as it is
its own nearest neighbor. For any object o outside W , it holds [15] that:

o ∈ RNN (W ) ⇔ ∃p ∈ Border(W)(o = NN (p))

Therefore, it suffices to compute RNN (W ) in two steps: (i) performing a range
query with the region W , and (ii) computing the nearest neighbor of any point
p located at the border of W .

In case the range W is a rectangle, the second operation can be further reduced
into four line segment based nearest neighbor (LNN) queries [15] that can be eval-
uated by a continuous nearest neighbor (CNN) algorithm [16] that retrieves the
nearest static points for any point on a given line segment. Hu and Lee [15] propose
solutions for LNN queries on both memory-resident and disk-resident data.

An alternative server-side algorithm for processing the range nearest neighbor
query is also available [17].

3.5 Location Privacy in Proximity-Based Services

Proximity-based services differ from services that rely on range and kNN queries.
For example, a “friend finder” is a typical proximity-based service in which a user



44 C.S. Jensen, H. Lu, and M.L. Yiu

A is alerted if a friend is within a specified distance δA of the user’s current lo-
cation. In this section, we introduce a privacy technique that employs location
enlargement.

Setting
Mascetti et al. [7] propose techniques that offer location privacy in proximity
based services. A service provideris assumed that receives (enlarged) user loca-
tion updates, maintains (enlarged) user locations, and processes service requests
from users by finding their nearby friends. The spatial domain of interest is ab-
stracted as a granularity that consists of a number of non-overlapping granules.
The granules are heterogenous in size and shape, and each is identified by an
index.

For a given user, both the service provider and buddies (other users in the
system) can be adversaries. Therefore, each user A needs to specify two granu-
larities: GSP

A defines the minimum location privacy requirement for the service
provider, and GU

A defines the requirement for the buddies. In either granularity,
each granule is a minimum uncertain region.

SP-Filtering Protocol
Within the setting described above, the authors propose three privacy-aware
communication protocols. We consider the SP-Filtering protocol, which is the
only one that does not require peer-to-peer communication.

With this protocol, user A sends to a generalized location to the service
provider when she updates her current location. Let A be located in the granule
GSP

A (i), which is known by the service provider. The user’s generalized location
LA(i) is defined as follows:

LA(i) =
⋃

i′∈N|GU
A(i′)∩GSP

A (i) �=∅
GU

A(i′),

which is the union of those GU
A granules that intersects with GSP

A (i). Any other
user B updates her location LB(j) similarly, where j is the index of the GSP

B

granule in which B is located.
Given two users A and B with generalized locations LA(i) and LB(j), the

service provider determines the minimum distance (dA,B) and maximum distance
(DA,B) between them. Based on dA,B and DA,B, the service provider determines
whether B is in the proximity of A. The three cases illustrated in Figure 6 occur.
Here, where the actual locations are represented as dots while the generalized
locations are rectangles.

If DA,B < δA, as shown in Figure 6(a), B must be in the proximity of A
regardless of the exact locations of A and B are within their generalized loca-
tion rectangles. In this case, the service provider informs A that “B is within
proximity.” If dA,B > δA, as shown in Figure 6(b), B has no chance to be within
the proximity of A. In the last case, dA,B ≤ δA ≤ DA,B, as shown in Figure 6(c).
Here, it is uncertain whether B is within proximity of B. Thus, the service
provider informs A that “B is possibly within proximity.”
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Fig. 6. Example for SP-Filtering Protocol

Limitations and Extensions
The simple SP-Filtering protocol faces a dilemma. On the one hand, the gran-
ularity GSP

A should be coarse for the purpose of location privacy. On the other
hand, a coarse GSP

A lowers the service accuracy, as the service provider is unable
to determine whether buddy B is within proximity of A. Consequently, Mascetti
et al. [7] propose two additional protocols, which, however, rely on peer-to-peer
communication to derive a better result when an uncertain answer is returned.

4 Dummy-Based Techniques

We can regard the query enlargement techniques as continuous, in the sense
that a user’s location is enlarged into a closed region. In contrast, dummy-based
techniques are discrete because the user’s location is covered by multiple dummy
locations, or dummies for short. All dummies, together with the user’s location,
are sent to the service provider, which is then unable to identify the user’s real
location. If a total of k locations are sent in a request, the service provider is
then unable to identify the user’s real location with a probability higher than
1/k. This way, dummy-based techniques protect a user’s location privacy.

We review two dummy-based location privacy protection techniques: a basic
dummy-based technique [8] that offers limited control of the generation of dum-
mies; and an enhanced dummy-based technique [9] that offers such controls and
also takes into account the notion of privacy area to offer location privacy.

4.1 Basic Dummy-Based Technique

Format of a Message
In the basic dummy-based approach [8], a service request has the following
format:

S = 〈u, L1, L2, . . . , Lk〉
Here, u is a user identifier and 〈L1, L2, . . . , Lk〉 is a set of locations consisting of
the real user location and generated dummies. When the service provider receives
a service request S, it processes the request for each location Li (1 ≤ i ≤ k)
according to the service type required, and then returns an answer R as follows:



46 C.S. Jensen, H. Lu, and M.L. Yiu

R = 〈(L1, D1), (L2, D2), . . . , (Lk, Dk)〉

Here, Di is the services content for location Li. When the user receives R, the
service content Dr for the real query location Lr (1 ≤ r ≤ k) is selected as the
result. Note that the real value of r is known only to the user.

Dummy Generation Algorithms
Given a region P , the service provider knows the (dummy) location cardinality
in P as users send in requests. The location cardinality in P can vary from one
time t to the next t + 1. If the cardinality difference for consecutive time points
is too large, it is possible that the dummies move irregularly when compared
with the user’s actual movement. This, according to [8], causes the risk that
adversaries may be able to identify user’s real locations.

Thus, two dummy generation algorithms are proposed for users that issue
service requests at each time step as they move [8]. In both algorithms, the
first batch of dummy locations for a user are generated at random. The two
algorithms then differ in how they generate subsequent dummy locations.

The Moving in a Neighborhood (MN) algorithm generates the next location
of a dummy solely based on the current location of the dummy. Figure 7(a)
illustrates the MN algorithm. It contains 11 dummies whose locations are repre-
sented by circles. The real user location Lr is drawn as a small dot. The arrow
between each pair of locations indicates the movement during a time step. The
new location of a dummy only depends on its previous location.

The Moving in a Limited Neighborhood (MLN) differs from the MN algorithm
in that it takes into account the density of the region in which a newly generated
dummy resides. Assuming that a user device is capable of obtaining the positions
of other users, MLN regenerates a dummy if it finds that the dummy’s generated
location is in a region with too many users. Figure 7(b) gives an example of the
MLN algorithm. During a time step, dummy Li basically gets its new location

Lr

(a) MN Algorithm

Lr
Li

(b) MLN Algorithm

Fig. 7. The MN and MLN Algorithms for Dummy Generation
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according to the MN algorithm. However, the new location falls in a small range
(a grid cell here) where there are four real locations of other users. Let the desired
threshold of the region density be set at four. The MLN algorithm regenerates
the new location for Li at random until it is not in a dense region.

A drawback of the MLN algorithm is its reliance on the assumption that a user
can obtain the real locations of nearby users. We remark that such a capability
can itself cause location privacy issues.

Communication Cost Savings
In addition to dummy generation, communication cost reduction is also ad-
dressed [8]. As described, an original request is represented as 〈u, (x1, y1), (x2, y2),
. . . , (xk, yk)〉, where (xr , yr) (1 ≤ r ≤ k) is the exact user location. Such a re-
quest ensures that the service provider is unable to identify the real user location
with a probability higher than 1/k. The request contains 8k bytes of location
data if a single coordinate value takes 4 bytes (e.g., a float type value).

If all the x coordinates are put together followed by all the y coordinates in
the request message, i.e., 〈u, (x1, x2, . . . , xk), (y1, y2, . . . , yk)〉, the message can be
viewed as representing k2 locations, namely the locations (xi, yj) (1 ≤ i, j ≤ k).
Thus, to ensure a probability of 1/k, a request needs only use 2

√
k coordinates,

or 8
√

k bytes of location data.

4.2 Enhanced Dummy-Based Technique

Although the MN and MLN algorithms are able to generate dummies that ensure
that the service provider is unable to identify the real user location with a prob-
ability higher than 1/k, they do not take into account the notion of the distances
between the (dummy) locations. In particular, the region covered by all (dummy)
locations, called the privacy region, is of importance because the area of that re-
gion indicates the difficulty for an adversary of tracking down the user. Neither
MN nor MLN are capable of controlling the area of the privacy region.

Privacy Requirement
Motivated by this, Lu et al. [9] propose a privacy-area aware, dummy-based
technique (PAD) for location privacy protection. PAD allows a user to specify
privacy preference as 〈k, s〉, where k is the total number of locations in a request
sent to the service provider and s is the area of the privacy region containing
these k locations. Such a preference states that the service provider must be
unable to identify the real user location with a probability higher than 1/k and
must be unable to position the user in a region with area smaller than s.

Simply increasing the number of dummies in a request does not necessarily
produce a larger privacy region. Therefore, new algorithms are needed to satisfy
the privacy preference 〈k, s〉. Thus, two privacy-area aware dummy generation
algorithms are proposed [9].

Circle-Based Dummy Generation
The circle-based dummy generation constrains all (dummy) locations, includ-
ing the real user location, to a circle centered at position pos′ with radius r.
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Figure 8(a) shows an example where k = 9 and pos is the real user location.
Each pair of clock-wise consecutive positions and pos′ determines an angle θ. All
positions are distributed in such a way that all θ values are equivalent.

The area s̃of the hull of all positions is the sum of the areas of k triangles:

s̃ =
k∑

i=1

1
2
· ri · ri+1 · sinθ =

1
2
·

k∑

i=1

ri · ri+1 · sin2π

k
,

where ri is dist(posi, pos′). As there are only k locations in addition to pos′,
posk+1 = pos1 and rk+1 = r1. Note that the hull is not necessarily convex and
that s̃ ≤ ŝ, where ŝ is the area of the corresponding convex hull. Assuming that
all positions have identical distance to pos′, the hull determined by them must be
convex. Thus, taking into account the privacy area requirement s, the following
holds:

s̃ = ŝ =
1
2
· k · r2

i · sin2π

k
= s

Solving this produces an upper bound r =
√

(2 · s)/(k · sin 2π
k ). Let rmin = ρ · r,

where 0 < ρ ≤ 1. The following holds:

ŝ ≥ s̃ ≥ 1
2
· k · r2

min · sin2π

k
=

1
2
· k · (ρ · r)2 · sin2π

k
= ρ2 · s

This indicates a lower bound of the privacy area of the k positions, i.e., ŝ ≥ ρ2 ·s.
Thus, the virtual center pos′ is determined at random such that dist(pos, pos′) ∈
[ρ · r, r]. As a result, by carefully choosing ρ, a guarantee can be gained on the
privacy area of the location privacy query generated based on a virtual circle.
For example, if we choose ρ =

√
3/2, we can ensure that the resulting privacy

area is not smaller than three quarters of s.

p o s 

p o s ' 

ri

p o s i

r
ri + 1 

p o s i + 1 

(a) Circle Based
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(b) Grid Based

Fig. 8. Privacy-Area Aware Dummy Generation Examples
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Grid-Based Dummy Generation
The circle-based algorithm aims to approximate the privacy area requirement s.
In contrast, the grid-based algorithm always generates dummies whose privacy
area is no smaller than the required s. The grid-based dummy generation works
as follows. A (virtual) uniform, square grid is created, such that (i) it has k
vertices, (ii) its area is equal to s, and (iii) the user position pos is one of the k
vertices. The k − 1 other vertices are dummy locations, to be sent to the server
together with the user position pos.

Figure 8(b) shows an example of the grid-based dummy generation, where
k = 25 and 24 dummies are generated. All locations, including the real user
location, are indexed in row-major order, and vertex 6 is the real user location.
The side length of a grid cell is g =

√
s/(

√
k−1). The coordinates of all dummies

are determined by their indexes relative to the real user location.
When dummies are generated based on the virtual grid, the upstream com-

munication cost can be further reduced compared to [8]. Instead of sending all
coordinate values, it is possible to send the grid configuration only in the re-
quest. The configuration of a uniform grid is given by 3 parts: the top-left corner
location (8 bytes), the side length of each square grid cell (4 bytes), and the
number of grid cells in the horizontal/vertical direction (1 byte). Therefore, the
location information in a request with the grid configuration consumes 13 bytes.

5 Progressive Retrieval Techniques

The solutions in this section are called as progressive retrieval techniques because
they progressively retrieve potential result objects from the server until it is
guaranteed that the exact result can be found or the user chooses to terminate
the search with an approximate result.

5.1 Graph-Based Obfuscation

Duckham and Kulik [10, 11] study location privacy in the context of a graph,
which is employed to model a road network. We first introduce their graph model
and then elaborate on the procedure for processing a query.

Graph Model and Equivalence Class
In the graph model, each (possible) location li refers to a graph vertex. An edge
between two locations li and lj has an associated weight w(li, lj). The network
distance distN(li, lj) between any two locations li and lj is defined as the length
of the shortest path between the two, i.e., the sum of the weights along the
shortest path.

It is assumed that the data points (and the query object) are located at ver-
tices. Figure 9a depicts a graph with seven locations (l1, l2, · · · , l7). The numbers
next to the edges indicate their weights. The dataset P contains two data points
p1 and p2, which are located at l7 and l1, respectively. The network distance
distN (l2, l4), for example, is computed as 1 + 4 = 5.
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Fig. 9. Obfuscation in a Graph Setting

By using the set P , the sets of locations can be partitioned into disjoint sets
of equivalence classes such that each location in the same equivalence class has
the same data point as its nearest neighbor. In Figure 9a, the locations l3, l5,
l6, and l7 belong the same equivalence class (i.e., class C1) because each of them
takes p1 as its nearest neighbor. The other locations belong to class C2.

Obfuscation Set
Observe that the server maintains both the graph and the dataset P , whereas
the user only knows the graph and her exact location q. Instead of submitting
q to the server, the user needs to specify an obfuscation set Q, which is a set
of graph vertices. The set Q is said to be accurate if it contains q, and it is
said to be imprecise if it has more than one vertex [10]. The default setting is
to choose a set Q that is both accurate and imprecise. Nevertheless, the user is
allowed to choose a set Q that is inaccurate or precise. The consequence of using
an inaccurate Q is that the actual query result is not guaranteed to be found.
Intuitively, the user enjoys a high level of privacy when Q has a high cardinality
or the user’s exact location q is far from all the members of Q. However, it
remains an open question how to combine both the accuracy and preciseness
aspects into a unified, quantitative notion of privacy.

Negotiation Protocol for Query Processing
The user issues a nearest neighbor query by sending the obfuscation set Q to
the server and following a negotiation protocol. If all vertices of Q belong to the
same equivalence class (say, the class Ci), the server returns the data point of Ci

as the result. Otherwise, the server negotiates with the user for a more precise
obfuscation set Q′ that is a proper subset of Q. If the user agrees to provide such
a set Q′, then thee protocol is applied recursively. If not, the server determines
the largest equivalence class (say, the class Cj) that overlaps Q and returns the
data points of Cj as the result.

We proceed to consider the query example in Figure 9b, with the obfuscation
set Q = {q1, q2, q3}. Since Q intersects with more than one equivalence class
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(i.e., classes C1 and C2), the server asks whether the user can provide a more
precise obfuscation set Q′.

If the user prefers not to provide Q′, the server checks whether the majority of
the vertices of Q belong to the class C1 or C2. Since the majority of vertices of Q
(i.e., q1 and q2) belong to class C1, the server returns the point p1 as the result.

In case the user accepts to provide a more precise set Q′, say, Q′ = {q1, q2}, the
negotiation protocol is executed on Q′ recursively. In this example, all vertices
of Q′ belong to the class C1, so the server returns p1 as the result.

Negotiation Strategies
Duckham and Kulik [10] also suggest strategies for the client to automate the
negotiation process on the user’s behalf. For example, their O-strategy reveals
the equivalence class that covers the user upon the first negotiation; their C-
strategy iteratively discards border locations from the obfuscation set; and their
L-strategy provides the server with an inaccurate but precise location as the
obfuscation set. In addition to these basic strategies, some advanced negotia-
tion strategies are also discussed. Experimental results demonstrate that the
O-strategy is able to achieve the best privacy protection [10].

Benefits and Limitations
As a remark, the above work is the first to study location privacy in the setting
of a graph model. The negotiation protocol is a novel approach that enables the
user to interactively control the trade-off between location privacy and query
efficiency. From the viewpoint of user-friendliness, a user wishes to specify her
desired privacy value without understanding the negotiation protocol and partic-
ipating in negotiations. An open issue is to design a fully automatic negotiation
policy for choosing the initial obfuscation set and the negotiation strategy.

The negotiation protocol has medium difficulty of implementation as it re-
quires the server to compute the equivalence classes (of the dataset P ) that
intersect the user’s obfuscation set Q (see Figure 9).

5.2 SpaceTwist

Yiu et al. [12] propose a client-based algorithm, called SpaceTwist, for retrieving
the user’s k nearest neighbors from the server without revealing the user’s exact
location q. In the following, we first describe the running steps of SpaceTwist,
then examine its privacy model. At the end, we study the trade-offs among the
privacy, performance, and result accuracy of SpaceTwist.

Query Execution of SpaceTwist
The server takes as input a “fake” location q′ that differs from q. The location q′

can be generated at the client side if the user specifies her exact location q and
the distance dist(q′, q) between q′ and q. For instance, the user sets dist(q′, q) =
500 m if she wants to obtain privacy at the level of a city block. In fact, the
ability to vary dist(q′, q) enables a trade-off between location privacy and query
efficiency. A location q′ being far from q offers high privacy, but also leads to
high query cost.
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Fig. 10. Query Processing in SpaceTwist

The algorithm then requests the server to retrieve data points in the ascending
order of their distances from q′. This operation is known as incremental nearest
neighbor retrieval [18], and it has been studied extensively in the literature. In
order to reduce the number of communication packets, multiple points retrieved
consecutively on the server are shipped to the client in a single packet. Let β be
the number of points that can fit into a packet.

During execution, the algorithm maintains a result set W and two variables
τ and γ. The variable τ represents the largest distance between any retrieved
point and q′ so far. The variable γ denotes the distance between q and its k
k nearest neighbor, with respect to the set of points retrieved so far. Initially,
W is the empty set, τ = 0, and γ = ∞. Whenever a point pi is retrieved, τ
is updated to dist(q′, pi). In case q is closer to pi than some point in W , the
algorithm updates both the set W and γ to reflect the best k nearest neighbors
found so far. The algorithm guarantees that the actual k nearest neighbors are
available to the user when the condition γ + dist(q′, q) ≤ τ is satisfied. When
this condition is met, the algorithm terminates.

We proceed to illustrate the running steps of the SpaceTwist algorithm using
the example in Figure 10. Assume that we have k = 1 and β = 1. After retrieving
point p1 (see Figure 10a), the best result is set to p1. Both τ (dark gray circle)
and γ (light gray circle) are updated. When point p2 is retrieved (see Figure 10b),
τ is updated. As q is closer to p2 than the previous result (i.e., p1), the best result
becomes p2 and γ is updated. Next, point p3 is retrieved (see Figure 10c) and τ
increases. Since γ + dist(q′, q) ≤ τ (i.e., the dark gray circle contains the light
gray circle), the algorithm terminates the search on the server and returns p2 as
the nearest neighbor of q.

Privacy Model
The privacy study of the SpaceTwist algorithm [12] assumes that the adversary
knows: (i) the point q′ and the value k, (ii) the set of retrieved points from
the server, and (iii) the termination condition of SpaceTwist. The goal of the
adversary is to utilize the above information for determining whether a location
qc can be a possible user location. Note that qc is not necessarily the same as
the actual user location q.
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Let m be the number of packets received by the client, and let their points (in
their retrieval order) be p1, p2, · · · , pmβ. It is shown that a possible user location
qc must satisfy both of the following inequalities [12]:

dist(qc, q
′) +

k
min

1≤i≤(m−1)β
dist(qc, pi) > dist(q′, p(m−1)β)

dist(qc, q
′) +

k
min

1≤i≤mβ
dist(qc, pi) ≤ dist(q′, pmβ),

where the term mink
1≤i≤mβ dist(qc, pi) represents the distance between qc and

the kth nearest neighbor, with respect to the first m · β points retrieved.
The inferred privacy region Ψ is then defined as the set of all such possible

locations qc. Assume that both the point q′ and the value k are fixed. It is worth
noticing that the use of any location qc in Ψ causes the SpaceTwist algorithm to
retrieve the exact same sequence of points (p1, p2, · · · , pmβ) as does the actual
user location q. Thus, the adversary cannot observe the difference of q from the
other points of Ψ based on the behavior of SpaceTwist.

The privacy value that quantifies the privacy obtained is then defined as the
average distance between q and any point in Ψ :

Υ (q, Ψ) =

∫
z∈Ψ

dist(z, q) dz
∫

z∈Ψ
dz

Although the region Ψ can be inferred by both the user and the adversary, only
the user can derive the privacy value Υ (q, Ψ) (which requires the knowledge of
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q). Figure 11 shows an example where the algorithm terminates after retrieving
6 data points from the server. The retrieved points p1, p2, · · · , p6 are labeled by
their retrieval order. The nearest neighbor of q is the point p4. The inferred
privacy region corresponds to the gray region, which is an irregular ring that
contains q.

Trade-offs among Location Privacy, Query Performance, and Query
Accuracy
Yiu et al. [12] study a relaxed notion of the k nearest neighbors query. Given a
query point q, a distance threshold ε, and a dataset P , the ε-relaxed k nearest
neighbors query accepts a k-sized set W as the result if the maximum distance
between q and W is upper-bounded by the sum of ε and the distance between
q and the actual k nearest neighbor in P . The motivation of this approximate
query is that a user (e.g., due to limited communication bandwidth) may be
willing to accept a result that is not too far from her location q, if the cost can
be reduced significantly.

A technique is then presented that computes the ε-relaxed k nearest neighbors
query [12]. It employs a virtual grid structure to prune unnecessary points by
utilizing the flexibility of the ε-relaxed k nearest neighbors query. It is shown
that, the above technique guarantees the accuracies of the query results (within
the ε bound), while saving communication cost (m) and improving the privacy
value (Υ ).

6 Transformation-Based Techniques

This section introduces transformation-based techniques that transform the origi-
nal location-based query problem (e.g., range search, k nearest neighbors queries)
into a search problem in another space.

6.1 Hilbert Curve Transformation

Transformation
Khoshgozaran ans Shahabi [13] propose to evaluate the k nearest neighbor query
at an untrusted server by transforming all data points and the query point into
one-dimensional numbers. This approach achieves complete privacy and constant
query communication cost. However, it does not guarantee the accuracy of a
query result.

The transformation function is implemented by a Hilbert curve function. The
instance of the function being used is defined by an encryption key EK that
consists of 5 values: a translation offset (Xt, Yt), a rotation angle θ, a curve
order O, and a scaling factor F . Let H(EK, pi) denote the Hilbert value of the
data point pi. An analysis suggests that there exists an exponential number of
possible encryption keys and that it is infeasible for an adversary to infer the
exact encryption key being used [13]. Without knowing the encryption key EK,
it is infeasible for the adversary to recover a data point pi from its Hilbert value
H(EK, pi).
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Figure 12 depicts three data points p1, p2, and p3 in the plane. The Hilbert
curve is shown as a dashed curve, and each (square) cell is labeled with its
Hilbert value. For example, the point p1 is mapped to the value H(EK, p1) = 5.
Similarly, the values H(EK, p2) = 13 and H(EK, p3) = 14 are computed. These
Hilbert values are then uploaded to the server. Observe that the server stores
only three values (5, 13, 14), not the original data points.

Query Processing
At query time, the user applies the same encryption key to transform her location
q into its Hilbert value H(EK, q). Then the user requests the server to return k
Hilbert values that are closest to the query Hilbert value. Next, the user applies
the inverse transformation to obtain the result points from the retrieved Hilbert
values.

We proceed to demonstrate an example of processing the (k = 1) nearest
neighbor query in Figure 12. At the client side, the query point q is mapped to
the Hilbert value H(EK, q) = 2. Then the client asks the server to return the
Hilbert value closest to 2. The server returns the value 5, the client decodes this
back to the data point p1, and it returns p1 as the query result.

It is worth noticing that the retrieved point (say, p1) is not necessarily the
actual nearest neighbor of q (i.e., p3). In fact, the solution does not provide any
guarantee on the retrieved point.

6.2 Private Information Retrieval

Ghinita et al. [14] propose a solution for private nearest neighbor search by
applying a computationally private information retrieval protocol. The core idea
is that the client can efficiently test whether a large number is quadratic residue
(QR) or quadratic non-residue (QNR); however, the adversary (e.g., the service
provider) cannot efficiently do so. Under modulo arithmetic, QR and QNR are
analogous to a bit value 0 and 1, respectively.
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In the pre-processing phase, the Voronoi cell V (pi) of each data point pi is
computed. Then the domain space is partitioned into a regular grid of G × G
cells, and each grid cell cj stores an m-bitmap to represent the data points whose
Voronoi cells intersect the spatial region of cj .

At query time, the client first locates the cell cq that contains the user loca-
tion q. It then computes a sequence of G large numbers such that the number
corresponding the column of cq is a QNR and the others are QR. The server
then performs modulo arithmetic on the above sequence of numbers by using
the bit values in the grid. Essentially, the server obtains a sequence of G num-
bers, corresponding to the content of cells at the same column as cq. The client
then picks the number in the retrieved sequence that is in the same row as cq.
If that number is QNR, the original bit value in that cell is 0; otherwise, it is 1.
This procedure is repeated for each of the m bit positions in order to obtain the
complete content (of data points) stored in cq.

This solution always returns the actual query results, and it is proven to
be computationally secure (i.e., achieving perfect privacy) [14]. The solution is
specially designed for the nearest neighbor query; its extension to the k near-
est neighbors query has not been studied. A drawback of the solution is that
it incurs high execution time on the server-side, limiting the server from be-
ing concurrently used by massive amount users. Empirical studies show that it
takes 20 seconds to process the exact nearest neighbor query using a single-CPU
server [14].

7 Promising Directions and Open Problems

Location privacy solutions for the client-server architecture are of high interest
in the sense that this architecture is simple and widely deployed. While good
advances have been made, several general directions for future research exist.

First, it is possible to extend techniques covered in this chapter to 2-dimensional
space with obstacles, which are regionswhere service users cannot be located. Such
obstacles usually are known to the server or adversaries, who can make use of this
information to increase their success of guessing the real user location. For exam-
ple, the dummy generation algorithms should not use any locations within those
obstacles as dummies. For query enlargement techniques, the intersection between
an enlarged query and the obstacles should be minimized, or taken into account,
to ensure location privacy. One possibility would be to build on the formal model
of bettini et al. [2] for obfuscation-based techniques.

Second, it is relevant to extend the techniques covered in this chapter to si-
multaneously support Euclidean space (with obstacles) and road network space.
For instance, it is relevant to consider the extension of some works [10, 11] to
also apply to Euclidean space, and the extensions of other works [3, 4, 5, 6, 8,
9, 12, 13, 14] to also apply to road network space.

Third, while most techniques covered in this chapter consider only snapshot
queries, it is of interest to offer more proposals to support also continuous queries
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that can be issued by mobile users. For query enlargement techniques, it is of in-
terest to find more efficient server-side query processing approaches for enlarged
queries.

Fourth, transformation-based techniques covered [13, 14] are promising in
terms of the privacy they offer. However, they are not readily deployable in ex-
isting settings. A recent approach [19], though not designed for location privacy
applications, devises a keyed transformation function such that its output do-
main remains to be the 2-dimensional space. This way, existing spatial indexes
and query processing techniques are leveraged for the query processing. Unfor-
tunately, this approach is applicable to range queries only, and it assumes that
all the clients share the same key value. It remains an open problem to extend
this approach to become a solution to the query location privacy problem.

Last but not least, there is a need for a location privacy solution that can be
accepted by both the clients and the service provider. In practice, the service
provider may be interested in certain aggregate statistics over the whole pop-
ulation of users (e.g., “finding the region with the highest density of users at
5 p.m.”), rather than tracking the clients’ exact locations. It is challenging to
develop a solution that support the above aggregate query and yet satisfies the
users’ privacy requirements.
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