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Abstract

In adaptive query processing, query plans are improved at runtime by means of feedback. In the very
flexible approach based on so-called eddies, query execution is treated as a process of routing tuples to
the query operators that combine to compute a query. This makes it possible to alter query plans at the
granularity of tuples. Further, the complex task of searching the query plan space for a suitable plan now
resides in the routing policies used. These policies must adapt to the changing execution environment
and must converge at a near-optimal plan when the environment stabilizes.

This paper advances adaptive query processing in two respects. First, it proposes a general frame-
work for the routing problem that may serve the same role for adaptive query processing as does the
framework of search in query plan space for conventional query processing. It thus offers an improved
foundation for research in adaptive query processing. The framework leverages reinforcement learning
theory and formalizes a tuple routing policy as a mapping from a state space to an action space, capturing
query semantics as well as routing constraints. In effect, the framework transforms query optimization
from a search problem in query plan space to an unsupervised learning problem with quantitative re-
wards that is tightly coupled with the query execution. The framework covers selection queries as well
as joins that use all proposed join execution mechanisms (SHJs, SteMs, STAIRs). Second, in addition
to showing how existing routing policies can fit into the framework, the paper demonstrates new routing
policies that build on advances in reinforcement learning.By means of empirical studies, it is shown
that the proposed policies embody the desired adaptivity and convergence characteristics, and that they
are capable of clearly outperforming existing policies.

1 Introduction

In conventional database management systems, a query optimizer generates appropriate query execution
plans during a separate query optimization phase; having been generated, a plan is considered static. Query
optimizers rely on cost models and statistical informationfor their functioning. This arrangement falls short
in two respects.

First, the available statistics are often unreliable and present only a coarse approximation of the under-
lying database. This applies especially to data integration queries [27]. In some applications, it is effec-
tively impossible to gather appropriate statistics, e.g.,in data collection from autonomous data streams [5].
Further, traditional uniformity assumptions may be inappropriate even in standard applications faced with
highly correlated data [29]. Statistical model errors propagate exponentially while estimating the cost of
a join plan [25, 26]. Finally, although statistics relatingto alphanumeric data are well understood, data of
complex types raise the complexity of the problem [30].

Second, existing, simple cost models are unsuitable for highly dynamic environments, such as federated
databases and settings in which data travels through a network with unknown topology. Such environments
often exhibit unpredictable and bursty behavior. More complex cost models can also deteriorate when used
in highly dynamic environments [5].

In adaptive query processing (AQP) [9, 12], the query processor receives run-time feedback that enables
query plans to be changed while the query is being executed. In perhaps the most flexible approach, the
so-called eddy operator acts as a tuple router, intercepting all incoming and outgoing tuples among the
operators in the dataflow and making routing decisions aboutthese on the fly [1]. To achieve per-tuple
adaptivity, operators must be fully or near-fully pipelined. Two basic approaches exist for join processing
that essentially reflect the execution time versus storage space tradeoff.

Using a flavor of the Symmetric Hash Join (SHJ) algorithm, thejoins can be fully pipelined with
the drawback of increased memory consumption, as every intermediate result has to be stored (history-
dependent execution). Using an n-way SHJ, all intermediateresults are recomputed (history-independent
execution). The former join algorithms also have their unary-operator counterparts. The SteM [18] module
allows an eddy to execute fully pipelined, history-independent join plans and control not only the query
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plan, but also the join algorithms themselves. A different approach is adopted in the STAIRs model [8],
where a history-dependent join execution is controlled by amigration operation that eliminates the impact
of history on future routing decisions.

The most critical component in the eddy-based approach is the routing policy. With little or no knowl-
edge about the environment, a policy should be able to adapt to changes in the environment and also con-
verge to a near-optimal solution if the environment stabilizes. This paper addresses the routing problem by
modeling query execution with eddies as a reinforcement learning (RL) process [22] and then by leveraging
several techniques from this field for proposing new routingpolicies.

The paper’s contributions are threefold. First, it offers amathematical framework for query processing
with eddies based on reinforcement learning, that is capable of capturing the complexity of selection and
join processing. Conjunctive selection queries (the selection ordering problem) and natural join queries (the
join order problem) are addressed. For the latter, we enablethe framework to accommodate the different
join operators as well as routing constraints that have beenproposed [1, 7, 8, 18]. We also discuss a solution
to the “burden of routing history” problem [8].

Second, we break down the execution into two orthogonal phases, namely the update phase that ex-
presses the kind of information about the environment beingstored, and the improvement phase that consti-
tutes an approach to the exploration-exploitation tradeoff. We introduce the so-called Q values as the only
meta-data to be stored, and we show that these can capture thehistory-dependent execution of joins using
various update policies. We also show how existing routing policies can be incorporated into the framework
as special cases of improvement policies.

Third, we propose a number of routing policies that leveragewell-known RL algorithms and that span
a wide spectrum of approaches in the exploration-exploitation tradeoff space. All these algorithms have
asymptotic convergence proofs if the problem environment stabilizes and adapt well to environmental fluc-
tuations. The overall goal is to make it possible to move towards globally optimal or near-optimal query
plans with only local decisions, so that the per-tuple adaptivity is not sacrificed. We experimentally evalu-
ate our techniques in terms of learning speed, adaptivity, and performance, and compare them to previous
solutions. The results show that our algorithms can clearlyoutperform proposed solutions in a variety of
settings.

The rest of the paper is organized as follows. Section 2 reviews eddy-based query processing and
formalizes the semantics of operators and various sets of routing constraints. Section 3 covers background
material from the reinforcement learning theory. Section 4presents our query execution framework based on
reinforcement learning in different settings and providespseudocode that shows how learning and execution
can be interleaved. Then, Section 5 presents our implementation and experimental results. Section 6 covers
related work, and we conclude and present directions for future research in Section 7.

2 Query Execution with Eddies

We briefly describe the operators that take part in the execution of selection and natural join queries, and we
describe the different sets of routing constraints that canbe applied to join processing and reflect a spectrum
of join plan spaces.

2.1 The Eddy Operator

The eddy [1] takes an arbitary number of inputs, connected tothe data sources associated with a query to be
executed. Its single output returns data tuples. It is also connected with the operators required to perform
the query. The eddy maintains an internal tuple buffer with the tuples already seen, but not yet sent to the
output or discarded. At each time step, it examines a tuple inthe buffer and chooses an operator to route it
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to, or, if appropriate, sends the tuple to the output. If the tuple buffer is empty, the eddy chooses a source to
pull tuples from.

To route tuples so that the query is computed correctly (without introducing duplicates), the eddy must
enforce routing constraints and must maintain additional meta-data about the tuples, the tuple descriptor.

2.2 Operators Involved in Query Processing

In our query processing setting, we focus on conjuctive selections queries over one relation, and natural
join queries over many relations. The operators that take part in query processing and their semantics are
summarized in Table 1. Letr ∈ R denote that tupler belongs to the relationR, and letr ∈ G ⊃ R denote
that tupler contains at least the attributes of relationR. We also lett ∈ STAIR(R.a) denote that tuplet is
stored inSTAIR(R.a).

The scan operator fetches new tuples from a data source. The index operator returns all tuples from a
data source that match its input tuple in terms of the index predicate.

The unary selection operator returns its input tuple if the associated predicate evaluates to true and
otherwise discards the tuple. The eddy must route tuples to the various selection operators so that no tuple
is routed to the same operator more than once. Furthermore, no tuple can be routed to a selection operator
with a predicate over a relation other than the tuple’s relation. To achieve that, the eddy has to associate
a tuple descriptor with each tuple that consists of two bit arrays: the ready bits and the done bits. They
are of size equal to the number of operators involved in the query. A ready bit is set if the tuple is eligible
to be routed to the corresponding operator and a done bit is set if a tuple has already been passed from
the corresponding operator. The eddy must keep track of its last action and set the ready and done bits
accordingly.

Contrary to selections, a binary join is a stateful operatorthat can block the execution for a long period
of time before returning the control to the eddy. In order forthe eddy to be able to adapt more effectively,
fully pipelined join algorithms like the Symmetric Hash Join (SHJ) are preferable. An SHJ maintains a hash
table on each of its inputs. When it obtains a new tuple, it inserts it into the corresponding hash table, probes
it into the other hash table, and returns the matches. For a join query executed using SHJs, the eddy has to
keep track of the schema of the tuple, which serves as the tuple descriptor, in order to ensure semantically
correct routing.

The STAIR [8] operator addresses the problem of the “burden of history,” which occurs because past
routing decisions result in intermediate results stored inside the binary SHJ operators, affecting the future
ability of the eddy to adapt. It does so by splitting an SHJ operator into its two hash tables. A STAIR operator
on relationR is a dictionary of tuples containing at least the attributesof R with a probe and an insertion
operation. Each STAIR has its dual STAIR, together with which it forms a join. In the dual routing policy,
every tuple, before being probed to a STAIR, is inserted intoits dual, resulting to an execution identical
to that of using binary SHJ operators [8]. However, STAIRs provide state migration primitives that move
already stored tuples from one join to another, altering theaccumulated state [8].

The SteM [18] operator similarly splits a join into its underlying physical operators, but differs from
the STAIR in two ways. It adopts a history-independent join processing scheme by recomputing all the
intermediate results, similarly to ann-way SHJ operator. Moreover, a more general set of routing constraints
than the dual routing policy have been developed [18] that decouple the probes and the insertions, thus
allowing the eddy to change not only the join plan, but also the join algorithms as well as the spanning tree
on the fly.
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Table 1: Query Execution Operators
Operator Action Input Output Description
Scan(R) get(R) nothing null or {r1, ..., rn|n ≥ 1} Returns null if all the relation’s

tuples are over, otherwise the
relation’s tuples

Index(R.a) probe(r, Index(R.a)) r ∈ T, R.a ∈ T null or {r1, ..., rn|n ≥ 1} Returns null if no matches are
found, otherwise the matches
found

σp(R.a)(R) σp(R.a)(r) r ∈ G ⊃ R null or r If r passes predicatep(R.a)
outputsr, else outputs a special
“null” tuple.

R ⋊⋉ S route(r,R ⋊⋉ S) r ∈ G ⊃ R null or {rs1, ..., rsn|n ≥ 1} Inserts r into the appropriate
hash table and probes it to the
other. Outputs the matches if
any or a “null” tuple.

route(s, R ⋊⋉ S) s ∈ G ⊃ S null or {r1s, ..., rns|n ≥ 1} Inserts s into the appropriate
hash table and probes it to the
other. Outputs the matches if
any or a “null” tuple.

STAIR(R.a) insert(r,R.a) r ∈ G ⊃ R r Insertsr into the hash table and
returns it to the caller.

probe(s,R.a) s ∈ G ⊃ S null or {r1s, ..., rns|n ≥ 1} Finds matches fors in the
STAIR and outputs concate-
nated results if any, or a “null”
tuple.

demotion(R.a, t, t′) t ∈ G ⊃ R, Replacest by t′.
t ∈ STAIR(R.a),
t′ ∈ G′ ⊂ G

promotion(R.a, t, S.b) t ∈ G ⊃ S, T , Removest from STAIR(R.a).
Insertst into STAIR(S.b).

t ∈ STAIR(R.a) ProbesSTAIR(T.b) usingt.
Inserts matches into
STAIR(R.a).

SteM (R.a) insert(r,R.a) r ∈ R null or r Insertsr into the hash table and
returns it to the caller, if that is
demanded by the routing con-
staints.

probe(s,R.a) s ∈ G ⊃ S null or {r1s, ..., rns|n ≥ 1} Finds matches fors in the
STAIR and outputs concate-
nated results if any, or a “null”
tuple. Returns alsos if de-
manded by the routing con-
straints.
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Table 2: Routing Constraint Sets
Set name Constraint Description
DRC BuildFirst Every singleton tuple must be first be inserted into the SteM/STAIR of its rela-

tion. In the STAIRs case, every intermediate tuple must be first inserted into the
appropriate STAIR.

BounceBack Only insertion tuples are returned to the eddy.
Atomicity Insertions and probes are atomically coupled.
BoundedRepetition No tuple can be routed to the same SteM/STAIR more than once.

DeRC BuildFirst Same as above.
BounceBack Same as above.
TimeStamp After r has probed a SteM and found a matchs, the result〈r, s〉 is returned to

the eddy iffTS(r) > TS(s) > LastMatchTS (s).
BoundedRepetition Same as above.

GeRC BuildFirst A singleton tuple must first be built into its SteM iff its relation has multiple
access methods or it has an index access method.

BounceBack A SteM returns an insertion tuple, unless a duplicate is already stored. A SteM
returns a probe tuple, unless it already contains all matches for it, or the SteM’s
relation has a scan access method, and all base-tuple components of the probe
tuple are already stored in other SteMs.

TimeStamp Same as above.
BoundedRepetition No tuple can be routed to a SteM more than a finite amount of times.
ProbeCompletion A prior prober must not be routed to any SteM other than its completion table. A

prior prober can be removed only after it has probed one of itsprobe completion
access methods.

2.3 Routing Constraints

In order to achieve correct query results without duplicates, the routing possibilities of the eddy are subject
to certain constraints. In selection-only queries, the proper management of the ready and done bitmaps for
each tuple is the only necessary constraint, which results in the full space of possible selection orderings.
In the case of join processing, several different sets of constraints can be enforced. We focus on three
alternatives; a more complete coverage is found elsewhere [18].

In the simplest set of routing constaints, the Dual Routing Constraints (DRC), inserions and probes are
atomically coupled. In the SteM’s case, every new tuple froma base relation should be first inserted in the
SteM of its relation, and then immediately probe another SteM, without forming a Cartesian product. In
the STAIR’s case, every new tuple (base or intermediate) should be inserted first in the appropriate STAIR
and then probed to its dual. Using the DRC constraints, the plan space does not contain Cartesian products,
there is a fixed spanning tree, and the only join algorithm is the SHJ. We also do not allow index structures
in this case.

The Decoupled Routing Constraints (DeRC) break the atomicity of insertions and probes, and allow
indexes and multiple access methods (which are modeled as scan operators in our formulation) that compete
with each other. We discuss them only for the SteM’s case. First, the eddy should insert a tuple into a SteM
only once in its lifetime. Additional constraints are enforced in the SteMs implementation as described
in [18], but we are interested only in the constraints for therouting policy. We now allow the eddy to
explicitly fetch new tuples from scans even if the tuple buffer is not empty, thus changing the current tuple.
The plan space expands and also includes several pipelined and non-pipelined join algorithms.

The General Routing Constraints (GeRC) are the least restrictive ones proposed. They expand the
plan space by allowing cyclic queries without an a priori fixed spanning tree, and allowing the eddy to
not build a SteM for a relation. Several constraints have to be enforced on the SteM and routing policy
implementations [18]. We are interested only in the routingpolicy constraints, as we treat operators as
black boxes. In order to avoid duplicates, the eddy must now insert a new tuple in the appropriate SteM

5



only if there are several access methods (AMs) or an index over the tuple’s relation. In order for cyclic
queries to be allowed, the eddy has to keep track whether a tuple (called a prior prober) has in the past
probed into a SteM (called its probe completion table’s SteM). A prior prober cannot in the future probe
into any other SteM other than than its probe completion table’s. Moreover, it should not be sent to output
until it has probed into an access method over the relation ofits probe completion table (one of the so-called
probe completion AMs) [18].

3 Reinforcement Learning

We base our proposal in Section 4 for a formal framework for adaptive query processing on reinforcement
learning (RL). Here, we cover briefly key RL concepts and algorithms. A complete survey is available in
the literature [22].

3.1 The Reinforcement Learning Concepts

The setting of reinforcement learning is that of an autonomous agent that communicates with its environ-
ment in a well-defined manner. For each states in astate spaceS, we define the eligibles actionsA(s). The
action spaceA =

⋃

s∈S A(s) is the union of these actions. At each time stept, the agent receives astate
signalst ∈ S. Based on the environment’s state, the agent selects and executes anactionat ∈ A(st), based
on somepolicy π : S × A → [0, 1]. The agent’s actions generally change the environment, so at time step
t + 1, the agent receives the next environment’s statest+1 and a numericalrewardsignalrt+1 ∈ ℜ.

The learning process is essentially a way to continuously change the policy in order to maximize a
cummulative metric of the reward signals, called the expected returnRt. The simplest metrics that can be
used are the finite-horizon undiscounted returnRt =

∑T
i=0 rt+i+1, that includes the nextT future rewards,

and the infinite-horizon discounted returnRt =
∑

∞

i=0 γirt+i+1|γ ∈ [0, 1), that includes all the future
rewards, discounting a reward seen afterk time steps with a weightγk.

The expected return is of theoretical value only as it involves future rewards. Yet, it highlights the fact
that the agent tries to maximize a delayed reward rather thanthe immediate one, so it is possible that the
consequences of an action can be seen only far into the future. It is the objective of a learning algorithm
to approximate this process. This is achieved by two fundamental techniques:samplingandbootstrapping.
Sampling uses a statistical mean to approximate the expected return, whereas bootstrapping uses the next-
state information to find out more about the current state’s expected return.

Generally, theMarkov propertyis assumed to hold. This means that the state signal carries all the
information needed by the agent to be able to make a decision.Formally, the probability of a particular next
state and reward can be predicted using only the current state and action:

Pr{st+1 = s′, rt+1 = r|st, at, rt, . . . , s0, a0} =

Pr{st+1 = s′, rt+1 = r|st, at}

Given the Markov property, a so-calledMarkov modelthat consists of the transition probabilities and the
expected values of the returns can defined as follows:

P a
ss′ = Pr{st+1 = s′|st = s, at = a},

Ra
ss′ = E{rt+1|st = s, at = a, st+1 = s′}

RL algorithms try to learn an optimal policy by learning an optimal value functionQ : S × A → ℜ.
The value of a state-action pair,Qπ(s, a), estimates how good it is to make a certain action when the agent
observes a certain state, while following a policyπ:

Qπ(s, a) def
= Eπ{Rt|st = s, at = a}
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The optimal policyπ∗ is defined as the one with the maximum value function. For the optimal value
function,Q∗(s, a), the Bellman optimality equations hold:

Q∗(s, a) =
∑

s′∈S

P a
ss′

[

Ra
ss′ + γ max

a′∈A(s′)
Q∗(s′, a′)

]

(3.1)

Solving 3.1 for all(s, a) ∈ S ×A is equivalent to finding the solution of the RL problem. This is of minor
practical importance since the Markov model is not known, and the learning is not interleaved with the
actual acting, which is a prerequisite for adaptation. In Section 3.2, we present a collection of algorithms
that require no knowledge of the Markov model and update the value functions after each action taken by
the agent.

3.2 Learning Algorithms

Most RL algorithms satisfy the generic pattern of Generalized Policy Iteration (GPI). The learning process
thus encompasses two phases.

In theupdatephase (also known as the evaluation phase), the agent tries to bring its stored value function
closer to the policy actually followed.

In the improvementphase, the agent tries to tune the policy it follows according to its best knowledge
about the environment, which is expressed by the stored value functions. The method used in this phase
reflects the so-called “exploration-exploitation tradeoff.”

The GPI scheme is presented in pseudocode fashion in Algorithm 1. We assume that the algorithm uses
the Q values and that the learning process repeats forever. The update phase is captured in thechooseAction

function, whereas the improvement phase is captured in theupdate function. ThetakeAction function is
responsible for the execution.

Algorithm 1 Generalized Policy Iteration
1: Initialize s

2: loop
3: a = chooseAction(Q,A(s))
4: 〈s′, r〉 = takeAction(a)
5: Q(s, a) = update(Q, s, a, r, s′)
6: s← s′

7: end loop

While numerous possibilities for the improvement phase exist, we consider the following solutions for
the chooseAction function. However, our framework follows the most general GPI scheme, so most RL
algorithms can be applied in our setting:
greedy The greedy policy chooses the action with the largest Q value. It only exploits the current
knowledge without exploring the state-action space. ThetakeAction function in this case is:

a = greedy(Q,A(s)) =argmax
b∈A(s)

Q(s, b)

random The random policyexploresthe solution space without taking into account the accumulated
knowledge. It simply picks an action at random:

a = random(Q,A(s))⇔ Pr{a = b} =
1

|A(s)|
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uniform The uniform policy select an action with a probability propotional to its Q value:

a = uniform(Q,A(s))⇔ Pr{a = b} =
Q(s, b)

∑

a∈A(s) Q(s, a)

ε-greedy Theε-greedy approach behaves as the greedy one with probability1 − ε and as the random
one with probabilityε:

a = ε− greedy(Q,A(s))⇔

Pr{a = b} =

{

1− ε if b = greedy(Q,A(s)),

ε otherwise

simulated annealing This policy picks an action with a probability following theBoltzmann/Gibbs
distribution. Furthermore, it utilizes atemperaturevariable that is gradually reduced as learning advances.
The idea is to favor exploration in the beginning of the process and gradually move towards exploiting the
gained knowledge:

a = annealing(Q,A(s))⇔

Pr{a = b} =
exp Q(s,b)

T
P

a∈A(s) exp
Q(s,a)

T

In the update phase, the agent can utilize its experience, i.e., a statistical mean of rewards based on the
past, and it can also bootstrap, using known values of other states in order to update the current state. We
consider the following kinds of updates.
Monte Carlo update The Monte Carlo policy updatesQ(s, a) in order to estimate the statistical mean
of the rewards seen so far by the agent:

MCupdate(Q, s, a, r) = Q(s, a) +
1

n(s, a) + 1

[

r −Q(s, a)
]

Here,n(s, a) denotes the occurences of the(s, a) pairs throughout the learning process.
constant-α Monte Carlo update The constant-α Monte Carlo policy uses a constant update parameter
α, favoring recent updates over past ones:

MCupdate(Q, s, a, r) = Q(s, a) + α
[

r −Q(s, a)
]

Q learning update The Q learning policy is the most popular and well-studied inthe RL literature. It
approximates the optimal Q values directly by bootstrapping using the optimal value of the next state:

Qupdate(Q, s, a, r, s′) =

Q(s, a) + α
[

r + γ max
a′

Q(s′, a′)−Q(s, a)
]

4 Query Execution as a Learning Problem

In this section, we model query execution with eddies as a reinforcement learning problem (RLP). The eddy
is the agent of the setting, the state is a transformation of the tuple descriptor of the current tuple, and the
actions are the operators involved in the query.

Consider the example in Figure 1. An eddy is initiated to execute the queryσ1(σ2(R)) ⋊⋉ S ⋊⋉ T . At
each discrete time stept, the eddy sees the current tuple and determines a state signal from it. The current
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S = {R,RS,RST} x {00,01,10,11} U {ST,null}

A = {  1(R),  2(R) ,R !" S, S !" T }

Figure 1: Query execution as a reinforcement learning problem.

state signalst = (01, RS) means that the current tuple belongs to the relationsR andS (it is a match
previously returned byR ⋊⋉ S), and has passed the second selection, but not the first. The eddy makes a
decision about an operator to route that tuple to (an action in RL terms) based on the improvement policy
followed, and the storedQ(s, a) values. The eligible operators areA(st) = {σ1, S ⋊⋉ T}. In our example,
the eddy chooses to route the tuple to the second join,at = S ⋊⋉ T . The eddy then executes the selected
action and waits for the operator to respond. The tuple returned by the operator is used to determine the next
state. In this case, the join returned a match, so the next state isst+1 = (01, RST ). The eddy also calculates
the reward of the action, monitoring the actual time elapsedfor the operator to respond back and the number
of matches it produced, and updates the storedQ(s, a) values based on the update policy used. Note that no
selectivity or cost estimation is performed. Rather, the eddy just treats operators as black boxes, measuring
the time elapsed for them to respond. This simple model assumes the existence of a special “null” tuple that
is returned by the operators when there are no matches, and aniterator interface between the eddy and the
operators. If the latter is not the case, a similar setting can be achieved as described in Section 4.5.

Following the norm in query optimization literature, we focus on two types of queries: conjuctive
selection queries over one relation and natural join queries over many relations. We describe the first case
in Section 4.1 and the second case in Section 4.2. We discuss the “burden of routing history” problem [8]
in Section 4.3 and an extension to more general routing constraints over SteMs in Sections 4.4 and 4.5.
In each section, we define the state and action spaces, we define the reward function, and incorporate the
semantic and routing constraints into the model using the eligible actions setsA(s). We present pseudocode
that shows how the actual execution and learning are interleaved, following the GPI scheme of Algorithm 1.
All the update and improvement policies presented in Section 3 can be used in all the settings presented in
this section. The state and action spaces presented for the deconstructed problems can be straightforwardly
combined to model more complex queries.

4.1 Selection Ordering

The selection ordering problem regards conjuctive selections queries of the form

σp1∧p2∧...∧pn(R).

The objective is to find a permutation[i1, i2, . . . , in] for which the planσpi1
(σpi2

(. . . σpin
(R) . . .)) is the

one with the minimum cost. Although selections are generally cheap operators and the overhead of learning
an optimal policy could be high compared to the cost of the actual execution, many classes of join queries
can be reduced to the selection ordering problem [2]. In order to execute a selection query, an eddy is
connected with one access method on relationR andn selection operators.

The state space is formed by a combination of the ready and done bits of the current tuple. For selections
over one relation one of the two suffices, so we use the done bits in our formulation. The extension to
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selections over many relations is straightforward. The action space consists of the selections involved in
the query as well as theget(R) action that fetches a new tuple from the relation and theoutput action that
returns a result tuple:

S = {si|〈donebits〉2 = i} ∪ {null},

A = {σi|i = 1, . . . , n} ∪ {get(R)} ∪ {output}.

The semantic constraints of the query can be easily capturedusing the setsA(s). The eddy should fetch
a new tuple if the current tuple is null, output the tuple if ithas passed all relations, or choose an eligible
selection otherwise:

A(s2n−1) = {output},

A(null) = {get(R)},

A(si) = {σj |j-th done bit ofsi = 0}, si 6= null, s2n−1.

The reward function takes into consideration both the selectivity and the processing time of operators.
Throughout this paper, we denote bycost the time elapsed until the operator reports back to the eddy.We
use negative rewards, as the notion of penalty is more straightforward than the one of the reward in this
context. A selection gets a low reward, propotional to the time elapsed for the processing of the tuple, if the
tuple passed the predicate, and a large reward otherwise. Wechoose not to reward a selection with a zero
when it does not return a match. Instead, we use a reward proportional to the cost but smaller by a factorε

than the reward in the case of a returned match. In this way, operators with equal selectivities but different
processing times can be more easily compared:

r(st, σi) =

{

−ε · cost if st+1 = null,

−cost otherwise.
, ε≪ 1 (4.1)

In the case of a multi-threaded execution environment in which an operator can receive a tuple only if it
is not busy, the back-pressure phenomenon [1] keeps track ofthe operator costs so it is sufficient for the
reward function to monitor only the operator selectivity:

r(st, σi) =

{

0 if st+1 = null,

−1 otherwise.
(4.2)

Rewards for theoutput andget(R) actions are 0. Reward function 4.2 approaches the negative of the oper-
ator’s selectivity when averaged, whereas 4.1 approaches the negative product of the operator’s selectivity
and cost. The size of the state space is|S| = 2n +1, whereas the size of the action space is|A| = n+2. The
state space grows exponentially with the number of operators, which may seem as a problem if an algorithm
needs to store theQ(s, a) function in a tabular form. However, selections are inherently stateless operators,
so only one value per actionQ(a) should be stored. The notion of the state is used only to capture the
semantic constrains of the query in theA(s) sets and to determine the reward by keeping track of the next
state (state aggregation [21]). In this sense, selection ordering is an equivalent problem to the well studied
k-armed bandit problem [3]. Algorithm 2 shows how the learning process can be interleaved with the ex-
ecution of a selection query using an iterator interface. The getState function returns the state of a tuple,
and thecalcReward function calculates the reward. ThechooseAction andupdate functions can be any of
those mentioned in section 3.2. If rewards 4.2 are used, theQ values approximate the negative of the “tick-
ets” in the lottery scheduling algorithm. Therefore, a combination of the uniform improvement policy and
Monte Carlo updates forms the lottery scheduling algorithm. A combination of the random improvement
policy and Monte Carlo updates is equivalent to the naive routing policy [1].

10



Algorithm 2 EddySelections.getNext()

1: s← null

2: a← chooseAction(Q,A(s))
3: t← a.getNext()
4: r← calcReward()
5: Q(a)← update(Q(a), r)
6: if t = null then
7: return null

8: end if
9: s← t.getState()

10: repeat
11: a← chooseAction(Q,A(s))
12: t← a.getNext()
13: r ← calcReward()
14: if t = null then
15: return null

16: end if
17: s′ ← t.getState()
18: Q(a)← update(Q(a), r)
19: s← s′

20: until s = n− 1
21: return t

4.2 Join Order

Finding a good order for the join operators of a query involving many relations is the most essential and
difficult part of the query optimization process. We assume an acyclic query of natural joins overn relations
that can be executed without Cartesian products:

R1 ⋊⋉

a1

R2 ⋊⋉

a2

· · · ⋊⋉

an−2

Rn−1 ⋊⋉

an−1

Rn.

Other join types such as aθ join can be modeled as a selection over a natural join. This section assumes
that the DRC routing constraints hold. In order for a join query to be executed, an eddy is connected withn

source modules on then relations, participating to the query, and the modules usedto execute the joins. We
introduce the notion of the join action, which, depending onthe operators used (SHJs, STAIRs or SteMs)
may mean any of the following, assuming thatt is the current tuple seen by the eddy.

• In the binary SHJ operators case, a join action on a tuple is simply routing this tuple to the appropriate
SHJ operator:

⋊⋉i= route(t, Ri ⋊⋉

ai

Ri+1), t ∈ Ri ∨ t ∈ Ri+1.

• In the STAIRs case, a join action is a combination of inserting a tuple to a STAIR and then probing
its dual:

⋊⋉i= probe(insert(t, Ri.ai), Ri+1.ai), t ∈ G ⊃ Ri,

⋊⋉i= probe(insert(t, Ri+1.ai), Ri.ai), t ∈ G ⊃ Ri+1.
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• The SteMs case is the same as the STAIRs, with the difference being that non-singleton tuples do not
get inserted into the SteMs:

⋊⋉i= probe(insert(t, Ri.ai), Ri+1.ai), t ∈ Ri,

⋊⋉i= probe(insert(t, Ri+1.ai), Ri.ai), t ∈ Ri+1.

With the above interpretation in mind, the join order problem in the eddy context becomes a problem of
learning the optimal policy in the following RL problem formulation. The schema of the tuple can uniquely
determine its execution history, so it can serve as the statevariable together with the special null tuple.
The action space is formed by the join actions, and the special get(Ri) andoutput actions as they were
introduced in Section 4.1. The semantic constraints can be expressed by the setsA(s) as follows:

S = {tuple schema} ∪ {null},

A = {⋊⋉i |i = 1, . . . , n− 1} ∪

{get(Ri)|i = 1, . . . , n} ∪

{output},

A(null) = {get(Ri)|i = 1, . . . , n},

A(R1R2 · · ·Rn) = {output},

A(s) = {⋊⋉i |s ∈ G ⊆ Ri ∨ s ∈ G ⊆ Ri+1}.

Since we do not allow Cartesian products and use a fixed spanning tree, the size of the state space does
not grow exponentially on the number of relations involved in the query but rather quadratically, whereas
the size of the action space is linear on the number of relations.

The reward function is defined in a similar way to the selection order problem, with the difference being
that now a join can return several (m) matches. In order to keep track of the selectivity as well asthe cost
of the operator, the reward function 4.3 should be used, whereas if only selectivities have to be monitored,
definition 4.4 is suitable. Rewards for theoutput andget(R) actions are 0.

r(st, ⋊⋉i) =

{

−ε · cost if st+1 = null,

−m · cost otherwise.
(4.3)

r(st, ⋊⋉i) =

{

0 if st+1 = null,

−m otherwise.
(4.4)

Algorithm 3 combines query execution and policy learning using an iterator interface and a stack [7].1

Unlike selection ordering, in the join order problem the state variable plays a vital role in the learning
process. TheQ(s, a) value does not take into account only the cost and selectivity of join a. If the Q update
policy is used, it approximates the cost of the full join planuntil a tuple is ready for output, since the update
takes into account the best next state-action pair. Put differently, the join order problem is more difficult
than a bandit problem, because local decisions affect greatly the future. The RL model with Q updates is
a model strong enough to capture this complexity. The Q learning algorithm has asymptotic convergence
guarantees if the problem characterisits stabilize. Therefore, through local rewards and decisions, an optimal
or near-optimal join plan can be learned.

1In this implementation style, the rewards do not take into account the number of matchesm, as one reward is calculated for
each match in line 5 of Algorithm 3. They are−cost or −ε · cost, depending on whether the join returned a match or not.
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Algorithm 3 EddyJoins.getNext()

1: s← null

2: if stack 6= Empty then
3: a← top(stack)
4: t← a.getNext()
5: r ← calcReward()
6: s′ ← t.getState()
7: Q(a)← update(Q,A(s), s′, r)
8: if t = null then
9: pop(top(stack))

10: goto 2
11: end if
12: else
13: s← s′

14: a← chooseAction(Q,A(s))
15: t← a.getNext()
16: r ← calcReward()
17: if t = null then
18: return null
19: end if
20: s′ ← t.getState()
21: Q(a)← update(Q,A(s), s′, r)
22: end if
23: s← s′

24: a← chooseAction(Q,A(s))
25: if a = output then
26: return t

27: else
28: push(a)
29: goto 2
30: end if

4.3 The Migration Problem

The STAIR operator provides thedemotion(R.a, t, t′) and
promotion(R.a, t, S.b) primitives to handle the inner state accumulated in its hashtables during query
execution. The state can be changed if it does not anymore agree with the best plan to be followed. These
primitives combined result in a complete state migration from one join to another, through theMigrate

action.

Migrate(⋊⋉i 7−→⋊⋉i+1) =
for all t ∈ RiRi+1 stored inRi+1.ai do

demotion(Ri+1.ai+1, t, t
′)

promotion(Ri+1.ai+1, t
′, Ri+1.ai)

end for
Migrate(⋊⋉i+1 7−→⋊⋉i) =
for all t ∈ RiRi+1 stored inRi+1.ai+1 do

demotion(Ri+1.ai, t, t
′)
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promotion(Ri+1.ai, t
′, Ri+1.ai+1)

end for
State migration can be a very costly operator. When it is worthwhile to migrate is a difficult problem,

and only a greedy solution has been proposed up to now [8]. We show that state migration can be treated
as a stateless RLP, orthogonal to the one of join order. Let the pair(Ri, ⋊⋉j) denote that up to now the eddy
knows that relationRi is stored in operator⋊⋉j. We define the state of the problem as the list of current
knowledge about tuple storage:

S =
{

[

(R1, ⋊⋉i1), (R2, ⋊⋉i2), . . . , (Rn, ⋊⋉in)
]

|ik ∈ {k − 1, k},

k ∈ {1, 2, , . . . , n− 1}, i1 = 1, in = n− 1
}

.

The state has to be initiated according to the first tuple insertions during query execution. The migration
actionMigrate(⋊⋉i 7−→⋊⋉j) alters the appropriate pair in the state variable. The action space is thus defined
as:

A(s) =
{

Migrate(⋊⋉i+1 7−→⋊⋉i) ∨Migrate(⋊⋉i 7−→⋊⋉i+1)|

i = 1, . . . , n− 2
}

∪
{

nothing
}

.

The “nothing” action prevents any state migration when its cost is unjustifiably high. Our definition of the
reward function augments the latter action with a fairly large reward. The reward of a migration from a join
to another is proportional to the migration cost, and the difference of the Q values of the two joins:

r([. . . , (Ri+1, ⋊⋉i), . . .],Migrate(⋊⋉i 7−→⋊⋉i+1)) =

−cost ·
[

Q(Ri+1, ⋊⋉i+1)−Q(Ri+1, ⋊⋉i)
]

,

r([. . . , (Ri+1, ⋊⋉i+1), . . .],Migrate(⋊⋉i+1 7−→⋊⋉i)) =

−cost ·
[

Q(Ri+1, ⋊⋉i)−Q(Ri+1, ⋊⋉i+1)
]

,

r([. . . , (Ri+1, ⋊⋉i), . . .],nothing) = 0,

r([. . . , (Ri+1, ⋊⋉i+1), . . .],nothing) = 0.

The latter rewards definition has the interesting property that anε− greedy evaluation policy will perform
a state migration with probabilityε. The join order and state migration problems are orthogonalin the sense
that they can be solved in different timescales (e.g. someone could seek for a possible migration after seeing
1000 tuples and a join order every tuple), but tightly connected since the migration reward is a function of
the join actions’ Q values.

4.4 Join Algorithm Learning

In this section, we investigate join processing using SteMsand the DeRC routing constraints. The eddy
should now keep track of whether a base tuple has already beeninserted into the appropriate SteM and not
insert a tuple twice. A new bit of information, namedisNew has to be introduced in the state. This should
be true until the tuple gets inserted into the appropriate SteM, when it is set to false. For non-singleton
tuples, it should always be false. The new state space is

S =
(

{tuple schema} × {true, false}
)

∪ {null}.
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The action space consists of the SteM probe and insertion operations, that are now distinct actions, and the
scan and index probe operations as follows, assumingn relations,k scans, andm indexes:

A = {insert(SteMi)|i = 1, . . . , n} ∪

{probe(SteMi)|i = 1, . . . , n} ∪

{probe(Indexi)|i = 1, . . . ,m} ∪

{get(Ri)|i = 1, . . . , k}

For a given state, the competition of the possible SteM probes corresponds to the join order problem.
The competition between SteM and index probes corresponds to the competition between SHJs and index
joins. Further, in order for non-pipelined join algorithms, such as a Hybrid Hash Join, to be permitted the
eddy should be able to explicitly request a new tuple from a scan instead of routing the current tuple to an
operator. Therefore, the competition of SteM probes, indexprobes and scans results to the learning process
of the best join algorithms. The following setsA(s) allow such a competition:

A(null) = {get(Ri)|i = 1, . . . , n ∧Ri not finished},

A((Ri, true)) = {insert(SteMi)},

A((Ri, false)) = {probe(SteMj)|join eligible} ∪

{probe(Indexj)|index eligible} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((Ri1Ri2 · · ·Rik , false)) = {probe(SteMj)|join eligible} ∪

{probe(Indexj)|index eligible} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((R1R2 · · ·Rn, false)) = {output} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished}.

A join is eligible if it is not a cartesian product, and an index is eligible if the probe tuple contains the index
attribute.

As non semantically related actions (e.g. probes and scans)are competing with each other, the reward
function takes into account the cost of each operator as follows:

r(st, insert(SteM)) = −ε · cost,

r(st, probe(SteM)) =

{

−ε · cost if st+1 = null,

−m · cost otherwise,

r(st, probe(Index)) =

{

−ε · cost if st+1 = null,

−m · cost otherwise,

r(st, get(R)) = −ε · cost,

r(R1R2 · · ·Rn, output) = 0.

4.5 The SteMs General Case

We now move to the GeRC set of constraints. The eddy has to keeptrack whether a tuple is a prior probe.
If it is, it cannot be probed into any SteM other than its probecompletion table’s, and even if it is an output
tuple it should remain in the dataflow until it has probed one of its probe completion AMs. Moreover, the
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eddy has to keep track of whether a tuple belongs to a relationthat has an index of multiple access methods,
so it should be first be inserted into the appropriate SteM. This adds some extra variables to the state space:

S =
{

(tuple schema, isNew , hasMultipleAMs,

hasIndexAM , isPriorProber , probeCompletionTable,

probeCompletionAMs)|

isNew ⇒ ¬isPriorProber ∧

¬isPriorProber ⇒ (probeCompletionTable = null) ∧

¬isPriorProber ⇒ (probeCompletionAMs = null)
}

.

The action space and the reward function are identical with the ones in Section 4.4. The only difference is
that the eddy has to enforce the GeRC constraints. This is achived via theA(s) sets as follows:

A(null) = {get(Ri)|i = 1, . . . , n ∧Ri not finished},

A((Ri, true, true, , false, null, null)) = {insert(SteMi)},

A((Ri, true, , true, false, null, null)) = {insert(SteMi)},

A((Ri, true, false, false, false, null, null)) =

{insert(SteMi)} ∪ {probe(SteMj)|join eligible} ∪

{probe(Indexj)|index eligible},∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((Ri, false, , , false, , )) =

A((Ri1Ri2 · · ·Rik , false, , , false, , )) =

{probe(SteMj)|join eligible} ∪

{probe(Indexj)|index eligible} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((R1R2 · · ·Rn, false, , , false, , )) = {output} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((Ri, false, , , true, PCT, )) =

A((Ri1Ri2 · · ·Rik , false, , , true, PCT, )) =

{probe(SteMPCT )} ∪

{probe(Indexj)|index eligible} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((R1R2 · · ·Rn, false, , , true, , CAMs)) =

{probe(Indexj)|Indexj ∈ CAMs} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished},

A((R1R2 · · ·Rn, false, , , true, , null)) =

{output} ∪

{get(Rj)|j = 1, . . . , n ∧Rj not finished}.

We denote by “” any possible value and we assume that as soon as a tuple has probed one of its probe
completion AMs, the corresponding field in its state is set tonull. An asynchronous execution environ-
ment [18] makes the integration of execution and learning somewhat more difficult. The correctness of the
result is guaranteed by the routing constraints formalizedabove, as well as special End-Of-Transmission

16



(EOT) tuples that inform the eddy that a certain SteM has all the matches of a previous input. These special
tuples have to be incorporated into the reinforcement learning model as a seperate state,s = EOT , with
the following eligible actions:

A(EOT ) = {insert(SteMi)|SteM eligible}.

Moreover, since the eddy does not wait for the result of an operator to respond, the reward and the next
state of an action might be known only long after an action. A solution to the latter is to pass around in
the dataflow not only the data tuples, but signals in the form of (t, sprev, aprev, r) carrying the tuple with its
descriptor as well as the state, action and reward that produced this tuple as a result. A simple algorithm
that shows the execution and learning coupled in this fashion is shown in Algorithm 4.

Algorithm 4 EddySteMs asynchronous execution
1: s = initState()
2: repeat
3: receive current(t, sprev, aprev, r)
4: s← t.getState()
5: Q(sprev, aprev)← update(Q,A(s), r, s)
6: a← chooseAction(Q,A(s))
7: routet to operatora
8: until end of execution

5 Implementation Details and Experimental Results

5.1 Implementation Details

The eddy has been implemented in an iterator-based environment in the context of PostgreSQL [7, 8] as
well as in the context of TelegraphCQ that uses the fjord interface [16] and an asynchronous, multi-threaded
execution environment. In this paper, we have generally assumed a single-threaded iterator-based execution
environment that makes analysis easier, and is also the baseof our implementation with the exception of
section 4.5 that gives implementation guidelines for the asynchronous case [18].

We have implemented our algorithms both in a simulation fashion and in the context of the publicly
available TelegraphCQ system. For the latter, we used the so-called “single-query” eddy execution mode,
which is an iterator-based implementation of eddies, SteMsand STAIRs that uses a stack to execute join
queries [7]. There have been two approaches in literature for implementing the tuple state, namely the
ready and done bit arrays [1], and a routing policy data structure [7]. We chose to leverage the latter,
although an implementation of the state variable using bit arrays is straightforward. We implemented all
the improvement and update policies mentioned in Section 3 for the selection order and join order problems
as they are described in Sections 4.1 and 4.2. For the first implementation, selections are modeled as
artificial cost units with a randomized decision according to a user-defined selectivity. Joins are modeled
as a selectivity-cost pair but they actually store the tuples following the SHJ algorithm in order to maintain
their state. We use a stack to process join queries as described in Algorithm 3.

5.2 Adapting to Selection Characterisitics

This section investigates how well various routing policies can adapt to changes of the cost and selectivity
of selections. First of all, we use only simple MC updates forthe selection ordering problem. They perform
better than the constant-α MC updates as they favor all the past rewards equally. This isnatural in the
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selection ordering problem, as there is no notion of history. Our simulation also confirms this. We exper-
iment with four of the improvement policies mentioned in Section 3.2, namely the random, a 0.2-greedy,
the uniform and the annealing policy. Since we use simple MC updates, the lottery scheduling algorithm
is fairly represented by the uniform improvement policy. Weuse two selection operators on a relation of
10000 tuples for our experiment. We reduce the temperature for the annealing policy by a factor of 0.94 at
each tuple seen.

For our first experiment, we fix both selectivities at 0.5, fix the cost of the first operator at 5 units
and allow the cost of the second vary from 1 to 10. Figure 2(a) shows the execution cost for the four
improvement policies. The 0.2-greedy, the uniform and the annealing policies perform near-optimally with
simulated annealing performing slightly better than the others. They all switch their routing preference as
soon as the first selection becomes a better choice.

For our second experiment, we fix the cost of the operators andthe selectivity of the first selection, and
allow the selectivity of the second selection to vary from 0 to 1. Selectivities prove harder to be monitored
than costs. Figure 2(b) shows that the 0.2-greedy and the annealing policies outperform the uniform policy.
Figure 2(c) shows the cummulative ratio of tuples sent to thesecond selection first, and sheds some more
light in the execution of the query. The annealing policy hasthe steepest transition curve as the first selection
becomes a better choice for routing. The 0.2-greedy policy also switches its preference fast, but always
leaves a 0.2 probability for exploration, so it cannot routemore than 80% of the tuples to the best operator.
The uniform policy learns selectivities much slower, having a smoother transition curve.

Testing the effect of dimensionality on the various improvement policies, we generated selections with
random selectivities and costs. We varied the number of selections in the query from 2 to 10000 and
measured the execution cost of the proposed improvement policies. The number of tuples of each relation
was fixed at 10000. As the number of operators becomes higher,the learning capability deteriorates, as there
is not enough data to learn from. This represents the curse ofdimensionality in our setting. Figures 2(d)
and 2(e) show the normalized execution cost, which is the execution cost divided by the execution cost of
the optimal plan, in terms of the number of selections. The uniform policy performs much worse in settings
with a small number of operators, raising to at least twice the cost of the optimal plan. A 0.2-greedy and
the simulated annealing policy perform much better, in botha setting with a low number of operators and
in one with a high number of operators. All policies end up with worse performance than a random policy
when the number of selections in the query rises above 4000, showing the effect of dimensionality on the
learning capabilities.
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5.3 Joins

In this section, we investigate how the update and improvement policies behave in join processing in the
spirit of Section 4.2. We have implemented the simple MC, constant-α MC and Q update policies, and
the ε-greedy, random, uniform and annealing improvement policies. We have also implemented a lottery
scheduling algorithm that uses the “tickets” data structure but is not multi-threaded, so it cannot monitor
costs. We use it for comparison only for selectivity monitoring but again, the uniform policy with simple
MC updates is a good representative of lottery scheduling ina single-threaded setting.

We issue a 2-join queryR ⋊⋉ S ⋊⋉ T over three relationsR,S, T with 500, 1000, and 500 tuples
respectively with controlled costs and selectivities. Forour first experiment, we set the selectivities of the
joins to 0.3 and 0.6 and their costs to 5, trying to investigate the transient response of our policies. We
reduce the temperature for the annealing policy by a factor of 0.9 at each tuple. We useα = γ = 0.7.
These are the parameter settings we use throughout this section, unless otherwise stated. The tuple flow
is depicted in Figure 3(a). We can see that the annealing, theuniform and a 0.2-greedy policy learn very
fast the best join, with the annealing policy being the best.The lottery scheduling algorithm stabilized
somewhere around 70%. For brevity, we only show some of the improvement-update policy combinations.
The results for the rest are similar. As we discuss later, theupdate policy makes a difference mostly for
monitoring selectivities.

In our second experiment, we investigate the adaptivity of our policies to environmental fluctuations.
We issue the same query, fixing the cost and selectivity ofS ⋊⋉ T to 5 and 0.3 respectively, and gradually
increasing the cost and selectivity ofR ⋊⋉ S from 1 to 10 and from 0.1 to 1.0 respectively while the query
is being executed. We use the same parameter settings for therouting policies. Figure 3(b) shows that the
annealing and 0.2-greedy perform well, gradually switching their preference shortly afterS ⋊⋉ T becomes
a better choice. The lottery scheduling and the uniform policy adapt slower. Again, the effect of the update
policy is not so prevalent, so we omit some combinations of improvement and update policies that produced
similar results.

We also conducted some more controlled experiments changing the cost and the selectivity of a join
across runs. We issue the same query, fixing the selectivities of the joins at 0.5 and the cost ofR ⋊⋉ S at
5.0, while changing the cost ofS ⋊⋉ T across runs. Figure 4(a) shows that the annealing and the 0.2-greedy
policy clearly outperform the uniform policy and monitor costs in a near-optimal way. We do not show the
lottery scheduling algorithm, as in our implementation it does not monitor costs, but we expect it to perform
similar to the uniform policy with Monte Carlo updates. The performance using other kinds of updates is
similar and omitted from the graph. All the update policies are able to monitor the operators’ costs.

For our next experiment, we vary the selectivity ofR ⋊⋉ S across runs. The results are shown in
Figure 4(b). Selectivities prove much harder to learn than costs. The simple MC and the constant-α MC
update policies yield poor adaptivity results, regardlessof the improvement policy. Figure 4(b) shows the
simple MC case for the annealing and a 0.2-greedy policy, that perform similarly to the lottery scheduling
scheme. On the other hand, the Q update policy acts as a “forgetting scheme”, and coupled with the
annealing or theε-greedy improvement policy manages to perform near-optimally. This result confirms
our observation of Section 4.2 that the state variable and Q updates can efficiently capture the complexity
of the join order problem, unlike simple MC updates.

20



 0

 0.2

 0.4

 0.6

 0.8

 1

 100  200  300  400  500  600  700  800  900  1000

R
at

io
 o

f S
 tu

pl
es

 r
ou

te
d 

to
 R

S
 jo

in
 fi

rs
t

Number of S tuples seen

random
lottery

0.2-greedy, Q updates
uniform, Q updates

annealing, Q updates
annealing, MC updates

0.2-greedy, aMC updates

(a) Tuple flow of a two join query.R ⋊⋉ S has selectivity 0.3
and cost 5,S ⋊⋉ T has selectivity 0.6 and cost 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100  200  300  400  500  600  700  800  900  1000

R
at

io
 o

f S
 tu

pl
es

 r
ou

te
d 

to
 R

S
 jo

in
 fi

rs
t

Number of S tuples seen

random
uniform, Q updates

lottery
0.2-greedy, Q updates
annealing, Q updates

annealing, MC updates
annealing, aMC updates
0.2-greedy, MC updates

(b) Tuple flow of a two join query.S ⋊⋉ T has selectivity 0.3
and cost 5,R ⋊⋉ S has selectivity and cost increasing gradu-
ally over time from 0.1 to 1.0 and 1.0 to 10.0 respectively.
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Another observation is that the speed of convergence can be controlled via theγ parameter. We show in
Figure 4(b) the performence of the annealing policy with Q updates forγ = 0.3 andγ = 0.7. Increasing the
γ parameter slows down the learning process. This may be desirable for highly dynamic settings, in which
the annealing policy can “overlearn” the environmental characteristics. To investigate this effect further,
we issue a queryR ⋊⋉ S ⋊⋉ T that is “difficult” to learn. The costs of the joins are equal to 5, R ⋊⋉ S

has selectivity 0.55 andS ⋊⋉ T has selectivity 0.45. We use Q updates and the 0.2-greedy, annealing and
uniform policies. Figure 5, shows that the uniform policy routes to the joins with almost equal probability
and the 0.2-greedy policy learns that the joinS ⋊⋉ T is the best and routes 90% of the tuples to it. Using
the annealing policy on the other hand, we can control the aggressiveness of learning using theγ parameter.
The ratio ofS tuples routed toS ⋊⋉ T first can vary from 95% to 60%.

To understand the overheads associated with the proposed policies, we conducted experiments with a
data set modeled after the TPC-C benchmark. The learning overhead that is reported consists of the time
needed to maintain and update the Q values and the time to select an action for each tuple seen. We ran
two 5-table joins,Q1 andQ2. We present the results for the greedy, 0.2-greedy, uniform, and annealing
policies with constant-α MC and Q updates. As shown in Figure 6(b), the learning overheads amount
to 5% to 10% of the query execution time. The greedy policy naturally has the smallest overhead, but
performs much worse in terms of running time, as shown in Figure 6(a). The annealing and uniform policies
exhibit the highest overheads, but yield the best performance in all cases. The Q updates do not introduce
substantially more overhead, as the search for the best Q value at each update yields a better query plan.
Large intermediate join results caused by low-overhead, but poor routing decisions incur high costs, as the
tuples of such results need to be processed further. For example, inQ1 with MC updates, the greedy policy’s
overhead is nearly half that of the annealing policy, but it performs 5 times worse. These experiments thus
suggest that it is worthwhile to expend resources on making good routing decisions, rather than simply
using a low-overhead policy.
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Figure 6: 5 table joins on TPC-C data

As a conclusion, the annealing and theε-greedy improvement policies can learn the environmental
characteristics faster than the uniform policy or the lottery scheduling algorithm. They use a less fair
competition scheme, and favor the best operator with a higher probability. In the selection order problem,
simple MC updates behave well since the Q values estimate theproduct of the cost and the selectivity of the
operators. On the other hand, in the join order problem, simple MC and constant-α MC updates are able
to monitor the operators’ costs but fail to monitor selectivities. The Q update policy succeeds to the latter,
effectively capturing the complexity of the join plan space.
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6 Related Work

This paper builds on several works in adaptive query processing. The eddy was proposed by Avnur and
Hellerstein [1] as a means of achieving a highly adaptive approach to query processing. The SteM [18]
and STAIR [8] operators expose the internals of a join state to the eddy and represent history-independent
and history-dependent approaches to join processing. The eddy has been implemented as a traditional
DBMS operator [7] and has also been extended to handle continuous queries over streaming data [5, 6,
17]. This paper’s contributions are orthogonal to these andcan be applied in all the proposed settings. A
comprehensive survey of adaptive query processing is available in the literature [9].

Reinforcement learning is a brand of unsupervised learningin which the learner tries to map situations
to actions in order to maximize a numerical reward signal using a trial-and-error search. As a research
field, it derives from early research in artificial intelligence and optimal control and has attracted substantial
interest in recent years, resulting in relative maturity [13, 22]. We are not aware of other works that apply
reinforcement learning to adaptive query processing.

A handful of proposals exist for eddy routing policies. The naive eddy policy [1] randomly routes tuples
to operators. When used in a multi-threaded environment, this policy is, however, capable of monitoring
the costs of the operators. The lottery scheduling policy [1, 24] awards tickets to operators that do not
return matches to keep track of their selectivities, and it selects an operator with a probability propotional
to its tickets. Several policies exist that emulate static plans and then pause execution periodically for a
new plan search using more up-to-date statistics. This category includes the A-Greedy policy [2], a policy
that maximizes partial results [19] and the rank ordering policy [15]. We depart from previous work by (1)
introducing a framework that is capable of accommodating a broad spectrum of existing routing policies and
(2) introducing novel routing policies, all of which can adapt in a per-tuple fashion or in a batch-processing
mode. Finally, a number of routing policies have been examined in a distributed context, in which the eddy
does not exert central control; instead, every operator chooses an operator to send its output to [23].

7 Conclusions and Future Work

The paper proposes a formal framework for adaptive query processing that builds on concepts from the
reinforcement learning theory. Query optimization in the context of eddies is framed as an unsupervised
learning problem with quantitative rewards. The frameworkencompasses conjunctive selection queries as
well as join queries using all of the approaches proposed in literature (binary SHJs, STAIRs, SteMs); and it
covers a variety of routing constraint sets that correspondto a spectrum of join plan spaces.

Using the Generalized Policy Iteration scheme, query execution is broken down into an update and
an improvement phase. We show that the framework is capable of expressing existing routing policies as
special cases of improvement and update policies. The framework introduces so-called Q values as the
only metadata stored about the operators. Experimental results are reported that show that these are able to
capture the complexity of the join order problem using the Q learning algorithm, a task at which simpler
alternatives fail.

Novel eddy routing policies can be derived naturally withinthe framework, by leveraging well-known
reinforcement learning algorithms. Our empirical studiesshow that theε-greedy and the simulated anneal-
ing improvement policies outperform more uniform approaches (e.g., the lottery scheduling algorithm) in
a variety of settings. These policies are capable of learning the best query plan faster and adapting with
a steeper transition curve to environmental changes. Simulated annealing has previously been found to be
good for static query optimization [10, 11]; this paper’s results suggest that simulated annealing may serve
the same role for adaptive query processing.

We can identify several promising directions for future research. Incorporation of more advanced tech-
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niques from the reinforcement learning field [14] can resultin more powerful routing policies. Study of
these techniques may also shed light on the underlying theoretical properties of adaptive query process-
ing. Next, it would be of interest to expand the state space inorder to include correlated selectivities or
content-based routing techniques [4].

Finally, we believe that the eddy-based approach to adaptive query processing, if backed by routing poli-
cies with good convergence and adaptation characteristics, may perhaps be able to serve as a general query
optimizer and processor, thus eliminating much of the complexity involved in today’s query optimizers.
Additional studies aimed at demonstrating this are thus in order.
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