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Abstract

In adaptive query processing, query plans are improvedwitne by means of feedback. In the very
flexible approach based on so-called eddies, query exadsticeated as a process of routing tuples to
the query operators that combine to compute a query. Thigmidlpossible to alter query plans at the
granularity of tuples. Further, the complex task of searglthe query plan space for a suitable plan now
resides in the routing policies used. These policies musptai the changing execution environment
and must converge at a near-optimal plan when the envirotstegrilizes.

This paper advances adaptive query processing in two rsspeicst, it proposes a general frame-
work for the routing problem that may serve the same role @aptive query processing as does the
framework of search in query plan space for conventionahygpeocessing. It thus offers an improved
foundation for research in adaptive query processing. Tdradwork leverages reinforcement learning
theory and formalizes a tuple routing policy as a mappingfecstate space to an action space, capturing
guery semantics as well as routing constraints. In effaetftamework transforms query optimization
from a search problem in query plan space to an unsupenasedihg problem with quantitative re-
wards that is tightly coupled with the query execution. Ttarfework covers selection queries as well
as joins that use all proposed join execution mechanismd{SkteMs, STAIRs). Second, in addition
to showing how existing routing policies can fit into the franork, the paper demonstrates new routing
policies that build on advances in reinforcement learniBg.means of empirical studies, it is shown
that the proposed policies embody the desired adaptivitycanvergence characteristics, and that they
are capable of clearly outperforming existing policies.

1 Introduction

In conventional database management systems, a queryizgitigenerates appropriate query execution
plans during a separate query optimization phase; haviag generated, a plan is considered static. Query
optimizers rely on cost models and statistical informafmrtheir functioning. This arrangement falls short
in two respects.

First, the available statistics are often unreliable arsb@nt only a coarse approximation of the under-
lying database. This applies especially to data integragieeries [27]. In some applications, it is effec-
tively impossible to gather appropriate statistics, emgdata collection from autonomous data streams [5].
Further, traditional uniformity assumptions may be inappiate even in standard applications faced with
highly correlated data [29]. Statistical model errors pwgie exponentially while estimating the cost of
a join plan [25, 26]. Finally, although statistics relatittgalphanumeric data are well understood, data of
complex types raise the complexity of the problem [30].

Second, existing, simple cost models are unsuitable fdryidynamic environments, such as federated
databases and settings in which data travels through a rietvith unknown topology. Such environments
often exhibit unpredictable and bursty behavior. More clexpost models can also deteriorate when used
in highly dynamic environments [5].

In adaptive query processing (AQP) [9, 12], the query preaereceives run-time feedback that enables
guery plans to be changed while the query is being executegernhaps the most flexible approach, the
so-called eddy operator acts as a tuple router, intergggtihincoming and outgoing tuples among the
operators in the dataflow and making routing decisions atimsge on the fly [1]. To achieve per-tuple
adaptivity, operators must be fully or near-fully pipelihelwo basic approaches exist for join processing
that essentially reflect the execution time versus storpgeestradeoff.

Using a flavor of the Symmetric Hash Join (SHJ) algorithm, jias can be fully pipelined with
the drawback of increased memory consumption, as everyniettiate result has to be stored (history-
dependent execution). Using an n-way SHJ, all intermedgsgslts are recomputed (history-independent
execution). The former join algorithms also have their yr@perator counterparts. The SteM [18] module
allows an eddy to execute fully pipelined, history-indegemt join plans and control not only the query



plan, but also the join algorithms themselves. A differgmpraach is adopted in the STAIRs model [8],
where a history-dependent join execution is controlled Inyigration operation that eliminates the impact
of history on future routing decisions.

The most critical component in the eddy-based approacteisatliting policy. With little or no knowl-
edge about the environment, a policy should be able to adagiianges in the environment and also con-
verge to a near-optimal solution if the environment stabgi This paper addresses the routing problem by
modeling query execution with eddies as a reinforcementileg (RL) process [22] and then by leveraging
several techniques from this field for proposing new roupoticies.

The paper’s contributions are threefold. First, it offemmathematical framework for query processing
with eddies based on reinforcement learning, that is capabtapturing the complexity of selection and
join processing. Conjunctive selection queries (the seleordering problem) and natural join queries (the
join order problem) are addressed. For the latter, we erthbléramework to accommodate the different
join operators as well as routing constraints that have pegposed [1, 7, 8, 18]. We also discuss a solution
to the “burden of routing history” problem [8].

Second, we break down the execution into two orthogonal gshasamely the update phase that ex-
presses the kind of information about the environment bsiaged, and the improvement phase that consti-
tutes an approach to the exploration-exploitation trafda®€ introduce the so-called Q values as the only
meta-data to be stored, and we show that these can captunestiwy-dependent execution of joins using
various update policies. We also show how existing routiolici@s can be incorporated into the framework
as special cases of improvement policies.

Third, we propose a number of routing policies that levenag#-known RL algorithms and that span
a wide spectrum of approaches in the exploration-expioitatradeoff space. All these algorithms have
asymptotic convergence proofs if the problem environmtatiikzes and adapt well to environmental fluc-
tuations. The overall goal is to make it possible to move tdwalobally optimal or near-optimal query
plans with only local decisions, so that the per-tuple adytis not sacrificed. We experimentally evalu-
ate our techniques in terms of learning speed, adaptivity, erformance, and compare them to previous
solutions. The results show that our algorithms can cleautperform proposed solutions in a variety of
settings.

The rest of the paper is organized as follows. Section 2 wevieddy-based query processing and
formalizes the semantics of operators and various setautihgpconstraints. Section 3 covers background
material from the reinforcement learning theory. Sectignesents our query execution framework based on
reinforcement learning in different settings and provipesudocode that shows how learning and execution
can be interleaved. Then, Section 5 presents our impleti@mt&nd experimental results. Section 6 covers
related work, and we conclude and present directions faréutesearch in Section 7.

2 Query Execution with Eddies

We briefly describe the operators that take part in the ei@tof selection and natural join queries, and we
describe the different sets of routing constraints thatxaapplied to join processing and reflect a spectrum
of join plan spaces.

2.1 TheEddy Operator

The eddy [1] takes an arbitary number of inputs, connectddealata sources associated with a query to be
executed. Its single output returns data tuples. It is atlsmected with the operators required to perform
the query. The eddy maintains an internal tuple buffer withtuples already seen, but not yet sent to the
output or discarded. At each time step, it examines a tuplledarbuffer and chooses an operator to route it



to, or, if appropriate, sends the tuple to the output. If ti@e buffer is empty, the eddy chooses a source to
pull tuples from.

To route tuples so that the query is computed correctly (tlintroducing duplicates), the eddy must
enforce routing constraints and must maintain additiornslaatlata about the tuples, the tuple descriptor.

2.2 Operatorslinvolved in Query Processing

In our query processing setting, we focus on conjuctivectieles queries over one relation, and natural
join queries over many relations. The operators that takeipauery processing and their semantics are
summarized in Table 1. Lete R denote that tuple belongs to the relatio®, and letr € G O R denote
that tupler contains at least the attributes of relatiBnWe also let € STAIR(R.a) denote that tupléis
stored iINSTAIR(R.a).

The scan operator fetches new tuples from a data source.n@lbg operator returns all tuples from a
data source that match its input tuple in terms of the indexipate.

The unary selection operator returns its input tuple if tesoaiated predicate evaluates to true and
otherwise discards the tuple. The eddy must route tupldsetdrious selection operators so that no tuple
is routed to the same operator more than once. Furthermotepte can be routed to a selection operator
with a predicate over a relation other than the tuple’s i@mtat To achieve that, the eddy has to associate
a tuple descriptor with each tuple that consists of two hihys: the ready bits and the done bits. They
are of size equal to the number of operators involved in theryquA ready bit is set if the tuple is eligible
to be routed to the corresponding operator and a done bit i aduple has already been passed from
the corresponding operator. The eddy must keep track ofdtsdction and set the ready and done bits
accordingly.

Contrary to selections, a binary join is a stateful oper#tat can block the execution for a long period
of time before returning the control to the eddy. In ordertfoe eddy to be able to adapt more effectively,
fully pipelined join algorithms like the Symmetric HashddgHJ) are preferable. An SHJ maintains a hash
table on each of its inputs. When it obtains a new tuple, @titssit into the corresponding hash table, probes
it into the other hash table, and returns the matches. Fanajery executed using SHJs, the eddy has to
keep track of the schema of the tuple, which serves as the tlgscriptor, in order to ensure semantically
correct routing.

The STAIR [8] operator addresses the problem of the “burddmistory,” which occurs because past
routing decisions result in intermediate results storettlmthe binary SHJ operators, affecting the future
ability of the eddy to adapt. It does so by splitting an SHYafme into its two hash tables. A STAIR operator
on relationR is a dictionary of tuples containing at least the attribuide# with a probe and an insertion
operation. Each STAIR has its dual STAIR, together with wthitdorms a join. In the dual routing policy,
every tuple, before being probed to a STAIR, is inserted it#aual, resulting to an execution identical
to that of using binary SHJ operators [8]. However, STAIRsvie state migration primitives that move
already stored tuples from one join to another, alteringattimulated state [8].

The SteM [18] operator similarly splits a join into its uniyémg physical operators, but differs from
the STAIR in two ways. It adopts a history-independent joingessing scheme by recomputing all the
intermediate results, similarly to anway SHJ operator. Moreover, a more general set of routingtcaints
than the dual routing policy have been developed [18] thabudle the probes and the insertions, thus
allowing the eddy to change not only the join plan, but alsjtin algorithms as well as the spanning tree
on the fly.



Table 1: Query Execution Operators

Operator

Action

Input

Output

Description

Scan(R)

get(R)

nothing

nullor {r1,...,rnjn > 1}

Returns null if all the relation’s
tuples are over, otherwise th
relation’s tuples

Index(R.a)

probe(r, Index(R.a))

reT,RaeT

nullor {r1, ..., mn|n > 1}

Returns null if no matches ar
found, otherwise the matcheg
found

Op(R.a)(R)

Op(R.a)(T)

reGDOR

null orr

If r passes predicate(R.a)
outputsr, else outputs a specid
“null” tuple.

RS

route(r,R x S)

route(s, R x S)

reGDOR

seGDS

nullor {rsi,...,rsnn > 1}

null or {r1s,...,rnsln > 1}

Inserts r into the appropriate
hash table and probes it to th
other. Outputs the matches
any or a “null” tuple.

Inserts s into the appropriate
hash table and probes it to th
other. Outputs the matches
any or a “null” tuple.

wn D

D

if

@

if

STAIR(R.q)

insert(r, R.a)

probe(s, R.a)

demotion(R.a,t,t")

promotion(R.a,t, S.b)

reGDOR

seGDS

te GDOR,

t € STAIR(R.a),
ted@ caG

te GDS,T,

t € STAIR(R.a)

r

null or {ris,...,rnsjn > 1}

Insertsr into the hash table an
returns it to the caller.

Finds matches fors in the
STAIR and outputs concate
nated results if any, or a “null’
tuple.

Replaceg by t'.

Removeg from STAIR(R.a).
Insertst into STAIR(S.b).
ProbesSTAIR(T.b) usingt.
Inserts matches
STAIR(R.a).

intg

)

SteM (R.a)

insert(r, R.a)

probe(s, R.a)

reR

seGDS

null or r

null or {r1s, ..., rnsln > 1}

Insertsr into the hash table an
returns it to the caller, if that is
demanded by the routing cor
staints.

Finds matches fors in the
STAIR and outputs concate
nated results if any, or a “null’
tuple. Returns alsx if de-

manded by the routing con

)

straints.




Table 2: Routing Constraint Sets
Set name Constraint Description
DRC BuildFirst Every singleton tuple must be first be inserted into the SETAIR of its rela-
tion. In the STAIRS case, every intermediate tuple must seifiserted into the
appropriate STAIR.

BounceBack Only insertion tuples are returned to the eddy.
Atomicity Insertions and probes are atomically coupled.
BoundedRepetition No tuple can be routed to the same SteM/STAIR more than once.
DeRC BuildFirst Same as above.
BounceBack Same as above.
TimeStamp After r has probed a SteM and found a matglthe result(r, s) is returned to

the eddy iffT’S(r) > T'S(s) > LastMatchTS(s).
BoundedRepetition Same as above.

GeRC BuildFirst A singleton tuple must first be built into its SteM iff its réilan has multiple
access methods or it has an index access method.
BounceBack A SteM returns an insertion tuple, unless a duplicate isadyestored. A SteM

returns a probe tuple, unless it already contains all matfirét, or the SteM'’s
relation has a scan access method, and all base-tuple centpasf the probe
tuple are already stored in other SteMs.

TimeStamp Same as above.

BoundedRepetition No tuple can be routed to a SteM more than a finite amount ofstime
ProbeCompletion | A prior prober must not be routed to any SteM other than itspletion table. A
prior prober can be removed only after it has probed one pfidbe completion
access methods.

2.3 Routing Constraints

In order to achieve correct query results without duplisatiee routing possibilities of the eddy are subject
to certain constraints. In selection-only queries, thgprananagement of the ready and done bitmaps for
each tuple is the only necessary constraint, which resultisa full space of possible selection orderings.
In the case of join processing, several different sets oftraimts can be enforced. We focus on three
alternatives; a more complete coverage is found elsewh8je [

In the simplest set of routing constaints, the Dual Routioggraints (DRC), inserions and probes are
atomically coupled. In the SteM’s case, every new tuple feobase relation should be first inserted in the
SteM of its relation, and then immediately probe anotheMSt&ithout forming a Cartesian product. In
the STAIR’s case, every new tuple (base or intermediate)ldhime inserted first in the appropriate STAIR
and then probed to its dual. Using the DRC constraints, e ghace does not contain Cartesian products,
there is a fixed spanning tree, and the only join algorithrhés3HJ. We also do not allow index structures
in this case.

The Decoupled Routing Constraints (DeRC) break the atéyn@fiinsertions and probes, and allow
indexes and multiple access methods (which are modeleca®perators in our formulation) that compete
with each other. We discuss them only for the SteM’s caset,Fire eddy should insert a tuple into a SteM
only once in its lifetime. Additional constraints are ertied in the SteMs implementation as described
in [18], but we are interested only in the constraints for thating policy. We now allow the eddy to
explicitly fetch new tuples from scans even if the tuple bufs not empty, thus changing the current tuple.
The plan space expands and also includes several pipeliedaa-pipelined join algorithms.

The General Routing Constraints (GeRC) are the least cigtriones proposed. They expand the
plan space by allowing cyclic queries without an a priori dix@anning tree, and allowing the eddy to
not build a SteM for a relation. Several constraints havedaiforced on the SteM and routing policy
implementations [18]. We are interested only in the roufodicy constraints, as we treat operators as
black boxes. In order to avoid duplicates, the eddy must mmert a new tuple in the appropriate SteM



only if there are several access methods (AMs) or an index tnetuple’s relation. In order for cyclic
gueries to be allowed, the eddy has to keep track whetherla (oglled a prior prober) has in the past
probed into a SteM (called its probe completion table’s SteMprior prober cannot in the future probe
into any other SteM other than than its probe completioretabMoreover, it should not be sent to output
until it has probed into an access method over the relatidis pfobe completion table (one of the so-called
probe completion AMs) [18].

3 Reinforcement Learning

We base our proposal in Section 4 for a formal framework fapéigle query processing on reinforcement
learning (RL). Here, we cover briefly key RL concepts and algms. A complete survey is available in
the literature [22].

3.1 TheReinforcement L earning Concepts

The setting of reinforcement learning is that of an autongsnagent that communicates with its environ-
ment in a well-defined manner. For each staite a state spaces, we define the eligibles action$(s). The
action spaced = J g A(s) is the union of these actions. At each time stethe agent receivessiate
signals; € S. Based on the environment’s state, the agent selects andtegaractiona; € A(s;), based
on somepolicy 7 : S x A — [0, 1]. The agent’s actions generally change the environment, tima step

t + 1, the agent receives the next environment’s state and a numericalewardsignalr;, € R.

The learning process is essentially a way to continuousngé the policy in order to maximize a
cummulative metric of the reward signals, called the exgxbceturni?,. The simplest metrics that can be
used are the finite-horizon undiscounted retizgn= ZZT:O re1ia1, that includes the next future rewards,
and the infinite-horizon discounted retufty = > y'rii41|y € [0,1), that includes all the future
rewards, discounting a reward seen aftéime steps with a weight”.

The expected return is of theoretical value only as it ineslfuture rewards. Yet, it highlights the fact
that the agent tries to maximize a delayed reward rather th@immediate one, so it is possible that the
consequences of an action can be seen only far into the fuliuiethe objective of a learning algorithm
to approximate this process. This is achieved by two fundaahéechniquessamplingandbootstrapping
Sampling uses a statistical mean to approximate the expeetiegrn, whereas bootstrapping uses the next-
state information to find out more about the current statgieeted return.

Generally, theMarkov propertyis assumed to hold. This means that the state signal caltidsea
information needed by the agent to be able to make a deciBmmally, the probability of a particular next
state and reward can be predicted using only the curret stat action:

PI‘{St+1 = S/,'f't+1 = T|8t,at,’f't, s ,SO,CLO} =
Pr{s;1 = 3/,7°t+1 =r|s,at}

Given the Markov property, a so-callddarkov modethat consists of the transition probabilities and the
expected values of the returns can defined as follows:

P%, = Pr{sy1 = §|st = s,a; = a},

a

e = E{rgalsi=s,ap=a,s.01 =5}

RL algorithms try to learn an optimal policy by learning artiogal value function@ : S x A — R.
The value of a state-action paip” (s, a), estimates how good it is to make a certain action when thetage
observes a certain state, while following a policy

Q" (s,a) T E{R/s; =s,a,=a}

6



The optimal policyn* is defined as the one with the maximum value function. For thteal value
function, Q*(s, a), the Bellman optimality equations hold:

Q*(Sv (I) = Z P;s’ [Rgs’ +7 max ) Q*(S/> a/)] (31)

’ /
e a'€A(s

Solving 3.1 for all(s,a) € S x A is equivalent to finding the solution of the RL problem. Thisf minor
practical importance since the Markov model is not knowrd #re learning is not interleaved with the
actual acting, which is a prerequisite for adaptation. loti®a 3.2, we present a collection of algorithms
that require no knowledge of the Markov model and update #hgevfunctions after each action taken by
the agent.

3.2 Learning Algorithms

Most RL algorithms satisfy the generic pattern of GeneediPolicy Iteration (GPI). The learning process
thus encompasses two phases.

In theupdatephase (also known as the evaluation phase), the agentthes its stored value function
closer to the policy actually followed.

In the improvemenphase, the agent tries to tune the policy it follows accardmnits best knowledge
about the environment, which is expressed by the storecvahctions. The method used in this phase
reflects the so-called “exploration-exploitation tradéof

The GPI scheme is presented in pseudocode fashion in Algoft We assume that the algorithm uses
the Q values and that the learning process repeats fordveudate phase is captured in theoseAction
function, whereas the improvement phase is captured inghete function. ThetakeAction function is
responsible for the execution.

Algorithm 1 Generalized Policy Iteration
1: Initialize s
2: loop
3. a = chooseAction(Q, A(s))
4. (s',r) = takeAction(a)
5 Q(s,a) = update(Q,s,a,r,s")
6
7

s« s
end loop

While numerous possibilities for the improvement phasstexre consider the following solutions for
the chooseAction function. However, our framework follows the most generédlGcheme, so most RL
algorithms can be applied in our setting:
greedy  The greedy policy chooses the action with the largest Q valtienly exploitsthe current
knowledge without exploring the state-action space. e Action function in this case is:

a = greedy(Q, A(s)) =argmaz Q(s,b)
beA(s)

random  The random policyexploresthe solution space without taking into account the accutadla
knowledge. It simply picks an action at random:

a = random(Q, A(s)) < Pr{a = b} = |A(s)]



uniform  The uniform policy select an action with a probability préipaal to its Q value:

Q(s,b)
D aca(s) @(s;a)

e-greedy  Thee-greedy approach behaves as the greedy one with probability and as the random
one with probabilitys:

a = uniform(Q, A(s)) < Pr{a = b} =

a=¢e— greedy(Q, A(s)) &

Pria = b} — 1—¢ if b= greedy(Q, A(s)),
e otherwise

simulated annealing  This policy picks an action with a probability following tHgoltzmann/Gibbs
distribution. Furthermore, it utilizest@mperaturevariable that is gradually reduced as learning advances.
The idea is to favor exploration in the beginning of the psscand gradually move towards exploiting the
gained knowledge:

a = annealing(Q, A(s)) <
Pr{a =b} =

exp Q(]Sﬂ’b)

ZaGA(s) ©Xp %

In the update phase, the agent can utilize its experiereeaistatistical mean of rewards based on the
past, and it can also bootstrap, using known values of oth&ssin order to update the current state. We
consider the following kinds of updates.

Monte Carlo update  The Monte Carlo policy updateg3(s, a) in order to estimate the statistical mean
of the rewards seen so far by the agent:

1

MCupdate(Q, s,a,r) = Q(s,a) + m

[7“ — Q(s, a)]

Here,n(s, a) denotes the occurences of tf¥a) pairs throughout the learning process.
constant-o Monte Carloupdate  The constantx Monte Carlo policy uses a constant update parameter
«, favoring recent updates over past ones:

MCupdate(Q, s,a,r) = Q(s,a) + a[r - Q(s, a)}

Q learning update  The Q learning policy is the most popular and well-studiethis RL literature. It
approximates the optimal Q values directly by bootstragpising the optimal value of the next state:

Qupdate(Q,s,a,r,s') =
Qs.a) + afr + ymaxQ(s'.a') — Q(s,0)

4 Query Execution asa Learning Problem

In this section, we model query execution with eddies asrdaggiement learning problem (RLP). The eddy
is the agent of the setting, the state is a transformatiohefuple descriptor of the current tuple, and the
actions are the operators involved in the query.

Consider the example in Figure 1. An eddy is initiated to et@the query;(o2(R)) x S x T. At
each discrete time stepthe eddy sees the current tuple and determines a state Bmnat. The current
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Figure 1: Query execution as a reinforcement learning prabl

state signak; = (01, RS) means that the current tuple belongs to the relatiBrend S (it is a match
previously returned by? x S), and has passed the second selection, but not the first. dilyeneakes a
decision about an operator to route that tuple to (an actidrLi terms) based on the improvement policy
followed, and the stored(s, a) values. The eligible operators afds;) = {01, S x T'}. In our example,
the eddy chooses to route the tuple to the second jgis; S x T. The eddy then executes the selected
action and waits for the operator to respond. The tuplemetliby the operator is used to determine the next
state. In this case, the join returned a match, so the ndrtista,; = (01, RST'). The eddy also calculates
the reward of the action, monitoring the actual time elageethe operator to respond back and the number
of matches it produced, and updates the stg}éd a) values based on the update policy used. Note that no
selectivity or cost estimation is performed. Rather, thaygdst treats operators as black boxes, measuring
the time elapsed for them to respond. This simple model asstine existence of a special “null” tuple that
is returned by the operators when there are no matches, atetaor interface between the eddy and the
operators. If the latter is not the case, a similar settingbmachieved as described in Section 4.5.
Following the norm in query optimization literature, we frecon two types of queries: conjuctive
selection queries over one relation and natural join gqaerer many relations. We describe the first case
in Section 4.1 and the second case in Section 4.2. We didoasburden of routing history” problem [8]
in Section 4.3 and an extension to more general routing nt over SteMs in Sections 4.4 and 4.5.
In each section, we define the state and action spaces, we defimeward function, and incorporate the
semantic and routing constraints into the model using tigéoéd actions setsl(s). We present pseudocode
that shows how the actual execution and learning are iatezth following the GPI scheme of Algorithm 1.
All the update and improvement policies presented in Se@ioan be used in all the settings presented in
this section. The state and action spaces presented foettomstructed problems can be straightforwardly
combined to model more complex queries.

4.1 Selection Ordering

The selection ordering problem regards conjuctive seastqueries of the form

UplAPZA---Ap7L (R)

The objective is to find a permutatidy, iz, . . . , i, for which the plans;, (oy,, (... 0, (R)...)) is the
one with the minimum cost. Although selections are gengcdikap operators and the overhead of learning
an optimal policy could be high compared to the cost of thaaatxecution, many classes of join queries
can be reduced to the selection ordering problem [2]. Inrorolexecute a selection query, an eddy is
connected with one access method on relafioendn selection operators.

The state space is formed by a combination of the ready anelluitsof the current tuple. For selections
over one relation one of the two suffices, so we use the dosarbibur formulation. The extension to



selections over many relations is straightforward. Theéacspace consists of the selections involved in
the query as well as the:t( R) action that fetches a new tuple from the relation andoti¥@ut action that
returns a result tuple:

S = {s;|(donebits)y = i} U {null},

A=A{oili=1,...,n} U{get(R)} U {output}.

The semantic constraints of the query can be easily capusied the setsi(s). The eddy should fetch
a new tuple if the current tuple is null, output the tuple ihés passed all relations, or choose an eligible
selection otherwise:

A(san—1) = {output},

A(null) = {get(R)},
A(s;) = {oj|j-th done bit ofs; = 0}, s; # null, son_1.

The reward function takes into consideration both the selgcand the processing time of operators.
Throughout this paper, we denote &yt the time elapsed until the operator reports back to the edidy.
use negative rewards, as the notion of penalty is more btfaigvard than the one of the reward in this
context. A selection gets a low reward, propotional to theetelapsed for the processing of the tuple, if the
tuple passed the predicate, and a large reward otherwiseh@dse not to reward a selection with a zero
when it does not return a match. Instead, we use a reward ppi@pad to the cost but smaller by a factor
than the reward in the case of a returned match. In this wagrabgrs with equal selectivities but different
processing times can be more easily compared:

—c- t if = null,
(s, o) = 4 0 €08t TSI TG g (4.1)
—cost otherwise.

In the case of a multi-threaded execution environment irclvlain operator can receive a tuple only if it
is not busy, the back-pressure phenomenon [1] keeps trattleaperator costs so it is sufficient for the
reward function to monitor only the operator selectivity:

0 if sg11 = null,
r(s¢, 05) = . 4.2
(50, :) {—1 otherwise. (4.2)

Rewards for theutput andget(R) actions are 0. Reward function 4.2 approaches the negdtitie oper-
ator’s selectivity when averaged, whereas 4.1 approatieesdgative product of the operator’s selectivity
and cost. The size of the state spadeéis= 2" + 1, whereas the size of the action spacelis= n+2. The
state space grows exponentially with the number of opesatdnich may seem as a problem if an algorithm
needs to store th@(s, a) function in a tabular form. However, selections are inhtlyestateless operators,
so only one value per actiof(a) should be stored. The notion of the state is used only to caphe
semantic constrains of the query in tHés) sets and to determine the reward by keeping track of the next
state (state aggregation [21]). In this sense, selectidering is an equivalent problem to the well studied
k-armed bandit problem [3]. Algorithm 2 shows how the leagnprocess can be interleaved with the ex-
ecution of a selection query using an iterator interfacee ddiState function returns the state of a tuple,
and thecalcReward function calculates the reward. ThRooseAction andupdate functions can be any of
those mentioned in section 3.2. If rewards 4.2 are used)th@ues approximate the negative of the “tick-
ets” in the lottery scheduling algorithm. Therefore, a camabon of the uniform improvement policy and
Monte Carlo updates forms the lottery scheduling algorit#rcombination of the random improvement
policy and Monte Carlo updates is equivalent to the naivéimgupolicy [1].
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Algorithm 2 EddySelections.getNext()
1 s «— null
a «— chooseAction(Q, A(s))
t «— a.getNext()
r <« calcReward()
Q(a) — update(Q(a), r)
if t = null then
return null
end if
s «— t.getState()
repeat
a « chooseAction(Q, A(s))
t — a.getNext()
r < calcReward()
if £ = null then
return null
end if
s’ « t.getState()
Q(a) < update(Q(a). r)
s
cuntils=n—1
s return ¢

NNRE RPRRPRRRRRERERR
PO O XN ®®NREO

4.2 Join Order

Finding a good order for the join operators of a query invadvmany relations is the most essential and
difficult part of the query optimization process. We assumagyclic query of natural joins overrelations
that can be executed without Cartesian products:

Rl X R2 M- X Rn—l X Rn
al as an—2 an—1

Other join types such asfjoin can be modeled as a selection over a natural join. Thisoseassumes
that the DRC routing constraints hold. In order for a joingyue be executed, an eddy is connected with
source modules on therelations, participating to the query, and the modules tzedecute the joins. We
introduce the notion of the join action, which, dependingtlom operators used (SHJs, STAIRs or SteMs)
may mean any of the following, assuming thas the current tuple seen by the eddy.

¢ Inthe binary SHJ operators case, a join action on a tuplenplgirouting this tuple to the appropriate
SHJ operator:
X, = ’r’O’LLtE(t,RZ' X Ri+1),t ER;Vte Rjy1.
a;
¢ In the STAIRs case, a join action is a combination of insgrartuple to a STAIR and then probing
its dual:
X, = probe(insert(t, Ri.ai), RZ'_H.CLZ‘), teGD R;,

x;= probe(insert(t, Ri+1.a;), R;.a;),t € G D Riy1.
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e The SteMs case is the same as the STAIRs, with the differeziog kthat non-singleton tuples do not
get inserted into the SteMs:

X, = probe(insert(t, Ri.ai), RZ‘_H.CLZ‘), t e R;,
X ;= probe(insert(t, RZ'_H.CLZ‘), Ri.ai),t € Riy1.

With the above interpretation in mind, the join order problan the eddy context becomes a problem of
learning the optimal policy in the following RL problem foutation. The schema of the tuple can uniquely
determine its execution history, so it can serve as the staiable together with the special null tuple.
The action space is formed by the join actions, and the spgeiaR;) andoutput actions as they were
introduced in Section 4.1. The semantic constraints caxpessed by the set(s) as follows:

S = {tuple schema} U {null},
A = {x;li=1,....,n—1} U
{get(R;)|i=1,...,n}U
{output},
A(null) = {get(R)|li=1,...,n},
A(RiRy---R,) = {output},
A(s) = {xi|]s€GCR;VseGC Ry}

Since we do not allow Cartesian products and use a fixed gpgineie, the size of the state space does
not grow exponentially on the number of relations involvedhe query but rather quadratically, whereas
the size of the action space is linear on the number of relgtio

The reward function is defined in a similar way to the selecticder problem, with the difference being
that now a join can return severah] matches. In order to keep track of the selectivity as wethascost
of the operator, the reward function 4.3 should be used, edseif only selectivities have to be monitored,
definition 4.4 is suitable. Rewards for thetput andget(R) actions are 0.

(51, 54;) —e-cost if sp41 = null, 4.3)
r{8t, Wy = . .
! —m - cost otherwise.
0 if sp1 = null,
(S, M) = . 4.4
(51, i) {—m otherwise. (44)

Algorithm 3 combines query execution and policy learninmgsan iterator interface and a stack [¥].

Unlike selection ordering, in the join order problem thetesteariable plays a vital role in the learning
process. Th&)(s,a) value does not take into account only the cost and selgcti¥ipin «. If the Q update
policy is used, it approximates the cost of the full join plariil a tuple is ready for output, since the update
takes into account the best next state-action pair. Puwrdiftly, the join order problem is more difficult
than a bandit problem, because local decisions affectlgreegt future. The RL model with Q updates is
a model strong enough to capture this complexity. The Q iegralgorithm has asymptotic convergence
guarantees if the problem characterisits stabilize. Thezethrough local rewards and decisions, an optimal
or near-optimal join plan can be learned.

n this implementation style, the rewards do not take intmoaat the number of matches, as one reward is calculated for
each match in line 5 of Algorithm 3. They arecost or —¢ - cost, depending on whether the join returned a match or not.
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Algorithm 3 Eddy.Joins.getNext ()
1 s« null
2: if stack # Empty then
3 a <« top(stack)

4. t«— a.getNext()

5. 1« calcReward()

6: s « t.getState()

7. Q(a) < update(Q, A(s),s',r)
8  ift = null then

o: pop(top(stack))

10: goto 2

11:  end if

12: else

13: s« ¢

14:  a < chooseAction(Q, A(s))
15.  t « a.getNext()

16: 1 « calcReward()

17:  if t = null then

18: return null

19:  end if

20: &' « t.getState()

21:  Q(a) < update(Q, A(s),s',r)
22: end if

23: 5 — &

24: a < chooseAction(Q, A(s))
25: if a = output then

26: return t

27: else

28:  push(a)

29: goto?2

30: end if

4.3 TheMigration Problem

The STAIR operator provides thizmotion(R.a,t,t") and
promotion(R.a,t,S.b) primitives to handle the inner state accumulated in its Hables during query
execution. The state can be changed if it does not anymoee agth the best plan to be followed. These
primitives combined result in a complete state migratimnfrone join to another, through thigrate
action.
Migrate(M;—X;11) =
for all t € R;R; 11 stored inR;.1.a; do
demotion(R;y1.a;41,t,t)
promotion(R;11.a;+1,t, Rit1.a;)
end for
Mz’gmte(miﬂl—»mi) =
for all t € R;R;1 stored inR;1.a,41 do
demotion(R;y1.a;,t,t")
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promotion(R;y1.a;,t', Rit1.ai11)
end for
State migration can be a very costly operator. When it is kvanile to migrate is a difficult problem,
and only a greedy solution has been proposed up to now [8]. HiMe that state migration can be treated
as a stateless RLP, orthogonal to the one of join order. legp#lir(R;, ;) denote that up to now the eddy
knows that relationR; is stored in operatox ;. We define the state of the problem as the list of current
knowledge about tuple storage:

S = { [(Rb Ni1)7 (R27 Niz)v SRR (Rna Nzn)] |Zk: € {k: - 17 k}>
ke {l,2,,....n—1}i1=Liy=n— 1}.
The state has to be initiated according to the first tuplerfises during query execution. The migration
action Migrate(x;—x ;) alters the appropriate pair in the state variable. The asimce is thus defined
as:
A(s) = {Migrate(x;11—x;) V Migrate(x;— ;1)
1=1,...,n— 2} U {nothz’ng}.

The “nothing” action prevents any state migration when d@stds unjustifiably high. Our definition of the

reward function augments the latter action with a fairlg&areward. The reward of a migration from a join
to another is proportional to the migration cost, and thiedéhce of the Q values of the two joins:

Py (Riga, )4), .- ] Migrate(M—Xiq1)) =
—cost - [Q(Rit1, Miy1) — Q(Rit1, ¥3)],

r([oos (Rit1, Xig1), .. ], Migrate(X ;) =
]

—cost - [Q(Ri+1> Xi) — Q(Rig1, Mit1)],
r([..., (Rit1, Xy),...], nothing) = 0,
)

r([-. ., (Rit1, Xit1), - - .|, nothing

The latter rewards definition has the interesting propédwy anc — greedy evaluation policy will perform

a state migration with probability. The join order and state migration problems are orthogioriale sense
that they can be solved in different timescales (e.g. someould seek for a possible migration after seeing
1000 tuples and a join order every tuple), but tightly cotegsince the migration reward is a function of
the join actions’ Q values.

4.4 Join Algorithm Learning

In this section, we investigate join processing using Staekid the DeRC routing constraints. The eddy
should now keep track of whether a base tuple has alreadyihsened into the appropriate SteM and not
insert a tuple twice. A new bit of information, namédvVew has to be introduced in the state. This should
be true until the tuple gets inserted into the appropriaeM$Sivhen it is set to false. For non-singleton
tuples, it should always be false. The new state space is

S = ({tuple schema} x {true, false}) U {null}.
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The action space consists of the SteM probe and insertioratipes, that are now distinct actions, and the
scan and index probe operations as follows, assumirgations . scans, andn indexes:

A= insert(SteM;)li =1,...,n}U
{probe(SteM;)|i =1,...,n}U
{probe(Index;)|i =1,...,m} U

{get(Ri)li = 1,. k}

For a given state, the competition of the possible SteM Eaoeresponds to the join order problem.
The competition between SteM and index probes correspantige tcompetition between SHJs and index
joins. Further, in order for non-pipelined join algorithnssich as a Hybrid Hash Join, to be permitted the
eddy should be able to explicitly request a new tuple fromaan sastead of routing the current tuple to an
operator. Therefore, the competition of SteM probes, iqekes and scans results to the learning process
of the best join algorithms. The following setss) allow such a competition:

A(null) = {get(R;)|i =1,...,n A R; not finished},
A((R;, true)) = {insert(SteM;)},

A((Ry, false)) = {probe(SteM;)|join eligible} U
{probe(Index;)|index eligible} U

{get(R;)|i =1,...,n A R; not finished},

A((Ri Ri, - -~ Ry, false)) = {probe(SteM;)|join eligible} U
{probe(Index;)|index eligible} U

{get(R;)|j =1,...,n A R; not finished},

A((R1R3 - -+ Ry, false)) = {output} U

{get(R;)|j =1,...,n A R;j not finished}.

Ajoin is eligible if it is not a cartesian product, and an irde eligible if the probe tuple contains the index
attribute.

As non semantically related actions (e.g. probes and seaesjompeting with each other, the reward
function takes into account the cost of each operator aswWsl|

r(st, insert(SteM)) = —e- cost,
—e-cost if s = null,

r(s¢, probe(SteM)) = {_m-cost otherwise

—e-cost if sy = null,

r(st, probe(Index)) = {—m-cost otherwise

r(st,get(R)) = —e- cost,
r(RiRy - Ry, output) = 0.

45 TheSteMs General Case

We now move to the GeRC set of constraints. The eddy has totkeepwhether a tuple is a prior probe.
If it is, it cannot be probed into any SteM other than its probepletion table’s, and even if it is an output
tuple it should remain in the dataflow until it has probed oh#soprobe completion AMs. Moreover, the
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eddy has to keep track of whether a tuple belongs to a reltisirhas an index of multiple access methods,
so it should be first be inserted into the appropriate SteNk atids some extra variables to the state space:

S = {(tuple schema, isNew, hasMultiple AMs,
hasIndexAM , isPriorProber, probe CompletionTable,
probe CompletionAMs)|

isNew = —isPriorProber N\

—isPriorProber = (probeCompletionTable = null) A
—isPriorProber = (probeCompletionAMs = null)}.

The action space and the reward function are identical withohes in Section 4.4. The only difference is
that the eddy has to enforce the GeRC constraints. This igegithiia theA(s) sets as follows:

A(null) = {get(R;)|i = 1,...,n A R; not finished},
A((R;, true, true, _, false,null, null)) = {insert(SteM;)},
A((R;, true, _, true, false,null, null)) = {insert(SteM;)},

A((R;, true, false, false, false,null, null)) =
{insert(SteM;)} U {probe(SteM;)|join eligible} U
{probe(Index;)|index eligible}, U
{get(R;)|7 =1,...,n A R; not finished},
A((Ry, false, _, _, false, _, ) =
A((Ri Ri, - -~ R;,, false, _, _, false, _, ) =
{probe(SteM;)|join eligible} U
{probe(Indezx;)|index eligible} U
{get(R;)|7 =1,...,n A R; not finished},
A((R1R2 - Ry, false, _, _, false, _,_)) = {output } U
{get(R;)|7 =1,...,n A R; not finished},
A((R;, false, _, _,true, PCT,_)) =
A((Ri, Riy - -+ Ry, , false, _, _,true, PCT,_)) =
{probe(SteMpcr)} U
{probe(Index;)|index eligible} U
{get(R;)|7j =1,...,n A R; not finished},
A((R1Ry - Ry, false, _, _,true, ,CAMs)) =
{probe(Index;)|Index; € CAMs} U
{get(R;)|7 =1,...,n A R; not finished},
A((R1R2 -+ Ry, false, _, _,true, _,null)) =
{output} U
{get(R;)|7 =1,...,n A R; not finished}.
We denote by ” any possible value and we assume that as soon as a tupledizdpmne of its probe
completion AMs, the corresponding field in its state is sehtith. An asynchronous execution environ-

ment [18] makes the integration of execution and learningesshat more difficult. The correctness of the
result is guaranteed by the routing constraints formaleleove, as well as special End-Of-Transmission
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(EOT) tuples that inform the eddy that a certain SteM hadhallnhatches of a previous input. These special
tuples have to be incorporated into the reinforcement legrmodel as a seperate state= FOT, with
the following eligible actions:

A(EOT) = {insert(SteM;)|SteM eligible}.

Moreover, since the eddy does not wait for the result of amaipeto respond, the reward and the next
state of an action might be known only long after an action.oltson to the latter is to pass around in
the dataflow not only the data tuples, but signals in the foiriit,6 ., apres, ) Carrying the tuple with its
descriptor as well as the state, action and reward that peatthis tuple as a result. A simple algorithm
that shows the execution and learning coupled in this fasisishown in Algorithm 4.

Algorithm 4 EddySteMs asynchronous execution
1: s = initState()
2: repeat
3:  receive currentt, sprev; Gprev, )
4: s« t.getState()
5. Q(Sprev, Gprev) < update(Q, A(s),r,s)
6: a « chooseAction(Q, A(s))
7
8:

routet to operatora
until end of execution

5 Implementation Details and Experimental Results

5.1 Implementation Details

The eddy has been implemented in an iterator-based envimainim the context of PostgreSQL [7, 8] as
well as in the context of TelegraphCQ that uses the fjordfate [16] and an asynchronous, multi-threaded
execution environment. In this paper, we have generallyrasd a single-threaded iterator-based execution
environment that makes analysis easier, and is also thedbase implementation with the exception of
section 4.5 that gives implementation guidelines for thaelsronous case [18].

We have implemented our algorithms both in a simulationitasland in the context of the publicly
available TelegraphCQ system. For the latter, we used toalted “single-query” eddy execution mode,
which is an iterator-based implementation of eddies, Staik STAIRS that uses a stack to execute join
gueries [7]. There have been two approaches in literaturénfplementing the tuple state, namely the
ready and done bit arrays [1], and a routing policy data sirec[7]. We chose to leverage the latter,
although an implementation of the state variable using fétya is straightforward. We implemented all
the improvement and update policies mentioned in Sectiam thé selection order and join order problems
as they are described in Sections 4.1 and 4.2. For the firdeingmtation, selections are modeled as
artificial cost units with a randomized decision accordio@tuser-defined selectivity. Joins are modeled
as a selectivity-cost pair but they actually store the wiiddlowing the SHJ algorithm in order to maintain
their state. We use a stack to process join queries as degénilAlgorithm 3.

5.2 Adaptingto Selection Characterisitics

This section investigates how well various routing pokci@n adapt to changes of the cost and selectivity
of selections. First of all, we use only simple MC updatedfierselection ordering problem. They perform
better than the constant-MC updates as they favor all the past rewards equally. Thisiaral in the
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selection ordering problem, as there is no notion of hist@uyr simulation also confirms this. We exper-
iment with four of the improvement policies mentioned in &&t 3.2, namely the random, a 0.2-greedy,
the uniform and the annealing policy. Since we use simple Mdates, the lottery scheduling algorithm
is fairly represented by the uniform improvement policy. W& two selection operators on a relation of
10000 tuples for our experiment. We reduce the temperaturéné annealing policy by a factor of 0.94 at
each tuple seen.

For our first experiment, we fix both selectivities at 0.5, fie tcost of the first operator at 5 units
and allow the cost of the second vary from 1 to 10. Figure 2aws the execution cost for the four
improvement policies. The 0.2-greedy, the uniform and tieealing policies perform near-optimally with
simulated annealing performing slightly better than theead. They all switch their routing preference as
soon as the first selection becomes a better choice.

For our second experiment, we fix the cost of the operatorgrendelectivity of the first selection, and
allow the selectivity of the second selection to vary frono @t Selectivities prove harder to be monitored
than costs. Figure 2(b) shows that the 0.2-greedy and theating policies outperform the uniform policy.
Figure 2(c) shows the cummulative ratio of tuples sent tostmond selection first, and sheds some more
light in the execution of the query. The annealing policy thessteepest transition curve as the first selection
becomes a better choice for routing. The 0.2-greedy pol®y switches its preference fast, but always
leaves a 0.2 probability for exploration, so it cannot rautare than 80% of the tuples to the best operator.
The uniform policy learns selectivities much slower, hgvinsmoother transition curve.

Testing the effect of dimensionality on the various improeat policies, we generated selections with
random selectivities and costs. We varied the number otetes in the query from 2 to 10000 and
measured the execution cost of the proposed improvemeiotgml The number of tuples of each relation
was fixed at 10000. As the number of operators becomes hitpedearning capability deteriorates, as there
is not enough data to learn from. This represents the curdaransionality in our setting. Figures 2(d)
and 2(e) show the normalized execution cost, which is theuian cost divided by the execution cost of
the optimal plan, in terms of the number of selections. Th#oum policy performs much worse in settings
with a small number of operators, raising to at least twieedbst of the optimal plan. A 0.2-greedy and
the simulated annealing policy perform much better, in l@o#etting with a low number of operators and
in one with a high number of operators. All policies end uphwitorse performance than a random policy
when the number of selections in the query rises above 40@Wyisg the effect of dimensionality on the
learning capabilities.
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5.3 Joins

In this section, we investigate how the update and improwemelicies behave in join processing in the
spirit of Section 4.2. We have implemented the simple MC stamt« MC and Q update policies, and
the e-greedy, random, uniform and annealing improvement pesgic\We have also implemented a lottery
scheduling algorithm that uses the “tickets” data struectuut is not multi-threaded, so it cannot monitor
costs. We use it for comparison only for selectivity monigrbut again, the uniform policy with simple
MC updates is a good representative of lottery schedulirgsimgle-threaded setting.

We issue a 2-join quenk x S x T over three relations?, S, T with 500, 1000, and 500 tuples
respectively with controlled costs and selectivities. &or first experiment, we set the selectivities of the
joins to 0.3 and 0.6 and their costs to 5, trying to inveséighe transient response of our policies. We
reduce the temperature for the annealing policy by a fadt@.®at each tuple. We use = v = 0.7.
These are the parameter settings we use throughout thierseahless otherwise stated. The tuple flow
is depicted in Figure 3(a). We can see that the annealingyrifierm and a 0.2-greedy policy learn very
fast the best join, with the annealing policy being the béhe lottery scheduling algorithm stabilized
somewhere around 70%. For brevity, we only show some of tipedwement-update policy combinations.
The results for the rest are similar. As we discuss laterufhdate policy makes a difference mostly for
monitoring selectivities.

In our second experiment, we investigate the adaptivityusfpmlicies to environmental fluctuations.
We issue the same query, fixing the cost and selectivity of 1" to 5 and 0.3 respectively, and gradually
increasing the cost and selectivity Bf x S from 1 to 10 and from 0.1 to 1.0 respectively while the query
is being executed. We use the same parameter settings fayutieg policies. Figure 3(b) shows that the
annealing and 0.2-greedy perform well, gradually switghimeir preference shortly aftét x 7" becomes
a better choice. The lottery scheduling and the uniformggaidapt slower. Again, the effect of the update
policy is not so prevalent, so we omit some combinations @rovement and update policies that produced
similar results.

We also conducted some more controlled experiments chgnigencost and the selectivity of a join
across runs. We issue the same query, fixing the selectivifi¢he joins at 0.5 and the cost &f x S at
5.0, while changing the cost 6f x 1" across runs. Figure 4(a) shows that the annealing and thgréectly
policy clearly outperform the uniform policy and monitorste in a near-optimal way. We do not show the
lottery scheduling algorithm, as in our implementationaed not monitor costs, but we expect it to perform
similar to the uniform policy with Monte Carlo updates. Therfermance using other kinds of updates is
similar and omitted from the graph. All the update policies able to monitor the operators’ costs.

For our next experiment, we vary the selectivity Bf x S across runs. The results are shown in
Figure 4(b). Selectivities prove much harder to learn thesi The simple MC and the constantviC
update policies yield poor adaptivity results, regardigisthe improvement policy. Figure 4(b) shows the
simple MC case for the annealing and a 0.2-greedy policy,pgedorm similarly to the lottery scheduling
scheme. On the other hand, the Q update policy acts as a ttiaggscheme”, and coupled with the
annealing or the-greedy improvement policy manages to perform near-opfmdhis result confirms
our observation of Section 4.2 that the state variable angd@tes can efficiently capture the complexity
of the join order problem, unlike simple MC updates.
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Figure 3: Transient response of join queries
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Figure 4: Join order experiments
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Another observation is that the speed of convergence caartisotied via they parameter. We show in
Figure 4(b) the performence of the annealing policy with @atps fory = 0.3 and~y = 0.7. Increasing the
~ parameter slows down the learning process. This may beatissifor highly dynamic settings, in which
the annealing policy can “overlearn” the environmentalrabgeristics. To investigate this effect further,
we issue a quenRk x S x T that is “difficult” to learn. The costs of the joins are equal3, R x S
has selectivity 0.55 anf x T has selectivity 0.45. We use Q updates and the 0.2-greedgaling and
uniform policies. Figure 5, shows that the uniform policytes to the joins with almost equal probability
and the 0.2-greedy policy learns that the j6in< 7' is the best and routes 90% of the tuples to it. Using
the annealing policy on the other hand, we can control theeggiyeness of learning using th@arameter.
The ratio ofS tuples routed t& x T first can vary from 95% to 60%.

To understand the overheads associated with the propodietepowe conducted experiments with a
data set modeled after the TPC-C benchmark. The learnindnead that is reported consists of the time
needed to maintain and update the Q values and the time it selection for each tuple seen. We ran
two 5-table joins,Q; and Q. We present the results for the greedy, 0.2-greedy, unjfamd annealing
policies with constant MC and Q updates. As shown in Figure 6(b), the learning owaEthieamount
to 5% to 10% of the query execution time. The greedy policyraly has the smallest overhead, but
performs much worse in terms of running time, as shown intf€i@ga). The annealing and uniform policies
exhibit the highest overheads, but yield the best perfoomam all cases. The Q updates do not introduce
substantially more overhead, as the search for the bestu@ ehleach update yields a better query plan.
Large intermediate join results caused by low-overheatlpbar routing decisions incur high costs, as the
tuples of such results need to be processed further. Forggam(); with MC updates, the greedy policy’s
overhead is nearly half that of the annealing policy, bueitfgrms 5 times worse. These experiments thus
suggest that it is worthwhile to expend resources on makowdgouting decisions, rather than simply
using a low-overhead policy.
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Figure 6: 5 table joins on TPC-C data

As a conclusion, the annealing and thgreedy improvement policies can learn the environmental
characteristics faster than the uniform policy or the hgttecheduling algorithm. They use a less fair
competition scheme, and favor the best operator with a higtabability. In the selection order problem,
simple MC updates behave well since the Q values estimajardlleict of the cost and the selectivity of the
operators. On the other hand, in the join order problem, leifviC and constant MC updates are able
to monitor the operators’ costs but fail to monitor seldtitg. The Q update policy succeeds to the latter,
effectively capturing the complexity of the join plan space
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6 Reated Work

This paper builds on several works in adaptive query prangssThe eddy was proposed by Avnur and
Hellerstein [1] as a means of achieving a highly adaptiver@gugh to query processing. The SteM [18]
and STAIR [8] operators expose the internals of a join siathé eddy and represent history-independent
and history-dependent approaches to join processing. dte kas been implemented as a traditional
DBMS operator [7] and has also been extended to handle camtinqueries over streaming data [5, 6,
17]. This paper’s contributions are orthogonal to thesecardbe applied in all the proposed settings. A
comprehensive survey of adaptive query processing isadlailn the literature [9].

Reinforcement learning is a brand of unsupervised learininghich the learner tries to map situations
to actions in order to maximize a numerical reward signahgis trial-and-error search. As a research
field, it derives from early research in artificial intelligge and optimal control and has attracted substantial
interest in recent years, resulting in relative maturitg,[22]. We are not aware of other works that apply
reinforcement learning to adaptive query processing.

A handful of proposals exist for eddy routing policies. Tlaéve eddy policy [1] randomly routes tuples
to operators. When used in a multi-threaded environmeis,piblicy is, however, capable of monitoring
the costs of the operators. The lottery scheduling poligy2f] awards tickets to operators that do not
return matches to keep track of their selectivities, anélgcs an operator with a probability propotional
to its tickets. Several policies exist that emulate stakimg and then pause execution periodically for a
new plan search using more up-to-date statistics. Thigoatencludes the A-Greedy policy [2], a policy
that maximizes partial results [19] and the rank orderinticpg15]. We depart from previous work by (1)
introducing a framework that is capable of accommodatingpadbspectrum of existing routing policies and
(2) introducing novel routing policies, all of which can @tlén a per-tuple fashion or in a batch-processing
mode. Finally, a number of routing policies have been exanhin a distributed context, in which the eddy
does not exert central control; instead, every operatoosd®an operator to send its output to [23].

7 Conclusions and Future Work

The paper proposes a formal framework for adaptive querggssing that builds on concepts from the
reinforcement learning theory. Query optimization in tlomtext of eddies is framed as an unsupervised
learning problem with quantitative rewards. The framewenkompasses conjunctive selection queries as
well as join queries using all of the approaches proposeiteirature (binary SHJs, STAIRs, SteMs); and it
covers a variety of routing constraint sets that corresgoradspectrum of join plan spaces.

Using the Generalized Policy lteration scheme, query di@tus broken down into an update and
an improvement phase. We show that the framework is capdlarpoessing existing routing policies as
special cases of improvement and update policies. The fwankeintroduces so-called Q values as the
only metadata stored about the operators. Experimentaltsese reported that show that these are able to
capture the complexity of the join order problem using thee@ing algorithm, a task at which simpler
alternatives fail.

Novel eddy routing policies can be derived naturally witthie framework, by leveraging well-known
reinforcement learning algorithms. Our empirical studibew that the-greedy and the simulated anneal-
ing improvement policies outperform more uniform appracle.g., the lottery scheduling algorithm) in
a variety of settings. These policies are capable of legrtiie best query plan faster and adapting with
a steeper transition curve to environmental changes. &teuilannealing has previously been found to be
good for static query optimization [10, 11]; this paper'suits suggest that simulated annealing may serve
the same role for adaptive query processing.

We can identify several promising directions for futurest@sh. Incorporation of more advanced tech-
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niques from the reinforcement learning field [14] can resultnore powerful routing policies. Study of
these techniques may also shed light on the underlying é¢kieal properties of adaptive query process-
ing. Next, it would be of interest to expand the state spacerdier to include correlated selectivities or
content-based routing techniques [4].

Finally, we believe that the eddy-based approach to adagtiery processing, if backed by routing poli-
cies with good convergence and adaptation characterigtiag perhaps be able to serve as a general query
optimizer and processor, thus eliminating much of the cexipt involved in today’s query optimizers.
Additional studies aimed at demonstrating this are thusdeo
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