
Efficient Cost-Based Tracking of Scheduled Vehicle Journeys

Dalia Tiešytė Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
Email: {dalia,csj}@cs.aau.dk

Abstract

Applications in areas such as logistics, cargo delivery, and
collective transport involve the management of fleets of ve-
hicles that are expected to travel along known routes ac-
cording to schedules. There is a fundamental need by the
infrastructure surrounding the vehicles to know the actual
status of the vehicles. Since the vehicles deviate from their
schedules due to road construction, accidents, and other
unexpected conditions, it is necessary for the vehicles to
communicate with the infrastructure. Frequent updates in-
troduce high communication costs, and server-side updates
easily become a bottleneck. This paper presents techniques
that enable the tracking of vehicle positions and arrival
times at scheduled stops with little communication, while
still offering the desired accuracy to the infrastructure of the
status of the vehicles. Experimental results with real GPS
data from buses show that the proposed techniques are ca-
pable of reducing the number of updates significantly com-
pared to a state-of-the art approach where vehicles issue
updates at pre-defined positions along their routes.

1. Introduction

Geographical positioning and wireless communication
technologies enable the tracking of the status of moving ve-
hicles by the surrounding infrastructure. Applications ex-
ist in areas such as logistics, transit services, cargo deliv-
ery, and collective transport that involve the management of
fleets of vehicles that are expected to travel along known
routes according to schedules. In general, real-time vehicle
status information is useful for the managers and the users
of the fleets. This paper focuses on the tracking of the cur-
rent locations of vehicles and their expected arrival times
at scheduled stops. For example, such information is very
helpful to the users of public buses.

Systems already exist that enable this type of monitor-
ing. For example, some existing public transportation sys-
tems [8, 11] employ PCs on-board the vehicles, GPRS and
WiFi for data communication, and GPS and tag readers for
positioning. The systems use variable displays at bus stops
for informing the users of expected bus arrival times. The

key challenge is to accomplish the monitoring accurately
and efficiently.

We consider scenarios where the vehicles follow their
routes and time schedules with the best effort. A route is
defined by a sequence of road segments in a digital road net-
work, and a schedule consists of stops along a route, where
each point has an associated (scheduled) arrival and depar-
ture time. These points are termed timing points.

When a vehicle travels along public roads, it is inher-
ently difficult to predict the progress of the vehicle, as its
progress is affected by external factors such as waiting times
at traffic lights, congestion, road construction, weather con-
ditions, and accidents. The infrastructure that surrounds a
vehicle must therefore be informed on a continual basis of
the status of the vehicle in order to ensure an appropriate
degree of consistency between the actual status of the ve-
hicle and the knowledge of this in the infrastructure. How-
ever, frequent updates introduce high communication costs,
and server-side updates easily become a bottleneck. Effi-
cient tracking techniques are then needed that reduce the
numbers of updates sent from the vehicles to the server that
represents the infrastructure, and from the server to the ve-
hicles, while maintaining sufficiently accurate information
in the infrastructure on the status of the vehicles.

In an existing approach to tracking, the server predicts
a vehicle’s near-future position and shares this prediction
with the vehicle [14, 15, 16, 17, 18]. The vehicle issues an
update to the server with its current position-related status
when its actual position deviates from the predicted position
by more than an agreed-upon threshold. A new prediction
is then formed, and the procedure repeats itself. Zhou et
al. [19] propose to optimize the accuracy threshold so that
it would reduce the total update and querying costs (the ob-
jects are inside the region of interest are queried to specify
their location). The paper assumes random walk movement
inside the region of the most recent updated location.

We extend this prediction sharing scheme. In particular,
we extend the scheme to allow for complex prediction func-
tions and cost-driven decisions. We enable position pre-
diction functions that are simple linear functions of time as
well as complex functions that utilize a number of influenc-

The 9th International Conference on Mobile Data Management

978-0-7695-3154-0/08 $25.00 © 2008 IEEE
DOI 10.1109/MDM.2008.22

9

The Ninth International Conference on Mobile Data Management

978-0-7695-3154-0/08 $25.00 © 2008 IEEE
DOI 10.1109/MDM.2008.22

9

AAU
Text Box
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

ing factors. The challenge is to keep the communication
costs low even with less accurate predictions. We allow the
server to update its prediction when new information, e.g.,
traffic reports, arrives, and to send this new prediction to the
vehicle either when required to offer accuracy guarantees
or when this is expected to reduce the later communication
costs.

The contributions of this paper are the following. The
paper offers a detailed design of a setting for the tracking
of the locations and arrivals at timing points of scheduled
vehicles such as public buses. Algorithms are proposed that
enable tracking with accuracy guarantees in this setting. An
advanced cost function is used as a means of controlling
when to issue updates. This function exploits the probabil-
ity distribution of the prediction error to evaluates the costs
of future updates. An experimental study based on GPS
data from public buses shows that the proposed techniques
are capable of reducing the amounts of required updates sig-
nificantly in comparison to the current state-of-the-art in lo-
gistics and public transportation.

The paper is outlined as follows. Section 2 presents
the tracking system architecture, including its approach to
communication-efficient vehicle tracking. Section 3 defines
a cost function that is expected to reduce the total commu-
nication costs. Section 4 reports on an experimental study,
and Section 5 concludes.

2. Tracking System Framework

An information system for transportation may be viewed
as a dynamic, distributed system. The key objective of a
tracking system is to maintain the information system in a
consistent state, meaning that some degree of consistency
must be maintained between the actual status of a fleet of
vehicles and the record of this status in the surrounding in-
frastructure.

Shared prediction-based tracking is an approach to track-
ing that aims at maintaining this consistency in a cost-
efficient manner, by enabling the vehicles to only issue up-
dates to the server representing the infrastructure when ac-
tually needed in order to maintain the consistency.

In the ideal case, when the movement of a vehicle
“matches” the prediction that represents the server’s belief,
no updates are needed. In reality, deviations do happen, and
the challenge is then to keep the communication and update
costs low.

2.1. Accuracy Guarantees

In this paper, we propose techniques for maintaining
consistency with respect to a vehicle’s current location and
its arrival time at the next scheduled stop (called a timing
point) along a journey, meaning that we consider position-
and time-based tracking. The current value (measured, in

the case of location; predicted, in the case of arrival time)
for these variables of a vehicle are not allowed to deviate
by more than a given threshold thr from the value that is
known by the server and to the outside world. The accuracy
threshold is chosen according to the requirements of the ap-
plication domain. An optimal trade-off between accuracy
and update costs can be achieved by tuning the system pa-
rameters.

We consider two scenarios. In the first, a vehicle and the
server share the same prediction function and arguments for
this function. The vehicle is also capable of measuring its
current position. Thus, the vehicle is also better at forming
predictions of its variables than is the server. The vehicle
issues an update to the server when needed so that its ac-
tual location or expected arrival time never deviate from the
server’s prediction by more than thr . For arrival times, it
is meaningful to only require updates for arrivals later than
thr . (For early arrivals, the vehicle synchronizes by waiting
at the timing point.)

In the second scenario, which generalizes the first, the
server has access to additional real-time data (e.g., traffic
information). Thus, the server may form better predictions
of a vehicle’s variables than the vehicle itself. Therefore,
the server is allowed to update a vehicle with a new predic-
tion. Threshold thr is then shared between the vehicle and
the server, and the vehicle and server use a threshold thrvt

and thr ct, respectively, so that thrvt + thr ct = thr . The
server now also has to update the vehicle when its predic-
tion deviates from the prediction assumed by the vehicle by
thr ct (which is know to the server). The thresholds can be
set so that overall system performance is optimized.

In this scenario, the server can update the vehicle “early,”
which is reasonable if this may reduce the number of subse-
quent updates from the vehicle, thereby reducing the overall
update cost. We employ a cost function for estimating the
expected costs of updates during the remaining part of a ve-
hicles journey. This function is discussed in Section 3.

We propose tracking algorithms that offer accuracy guar-
antees (assuming an error-free system, e.g., without loss of
communication). The algorithms permit any kind of pre-
diction function to be used. Functions exist that exploit
neural networks (e.g., [4, 7, 9, 10, 12]), Support Vector Ma-
chines [1], and Kalman filtering (e.g., [2, 3, 6, 13]). Domain
specific prediction functions such as deviations from sched-
ules are also possible.

2.2. System Architecture

Figure 1 describes the communication between the
server and a vehicle. The Vehicle Tracker (VT) module of
a vehicle tracks the current values of the vehicle’s location
and arrival time, as is known by the vehicle. It issues up-
dates to the server as needed to maintain consistency. Each
vehicle is equipped with a GPS receiver that passes position

1010

Server Vehicle

GPS
device

CT

 PR

 VT

Historical
data

pr
ed

ic
tio

n

External
data update

po
si

ti
on

State & prediction

update

Figure 1. The Communicating Entities

updates to the VT.
Next, the server’s Central Tracker (CT) module tracks

the value of a continuous variable, which can be either the
current position of the vehicle or the predicted arrival time
at the next timing point (e.g., bus stop) and controls the
communication between the vehicle and the server.

Finally, the Predictor (PR) module is responsible for
forming predictions of current positions and arrival times
for vehicles on the server side. It obtains current vehicle
positions from the CT, and it also has an access to a data-
base of external historical and real-time data (e.g., historical
trajectories and current traffic information).
The VT module For each of the two variables being
tracked, the VT shares a prediction function fsh with the
CT, and it has a function fvt that captures its own predic-
tion of the variables. using these, the VT implements the
function updateCT that decides when the CT has to be up-
dated. More specifically, the VT uses the following entities:

• Function fsh : T → VAR predicts variable var ∈
VAR at time t ∈ T and is shared with the CT. It can
differ by at most thr ct from the server’s own predic-
tion.

• Function fact : T → P captures the vehicle’s mea-
sured position p ∈ P at time t ∈ T . This function
represents the GPS receiver.

• Function fvt : T → VAR predicts variable var ∈
VAR at time t ∈ T using the current position fact(t).

• The vehicle-side tracking threshold thrvt.
• Additional data that may be used by the prediction al-

gorithms (e.g., historical data, the vehicle’s route and
schedule).

The general VT algorithm is given in Algorithm 1. It
waits for an update from either the server or the GPS re-
ceiver. In the first case (lines 3–5), the shared prediction is
set to the prediction received from the server (line 4). In
the second case (lines 6–12), the vehicle modifies its own
prediction fvt (line 7). If the threshold thrvt is reached
(lines 8–11,) the server is updated with the status of the ve-
hicle, and the shared prediction is modified according to this
status. The algorithm terminates at the end of the vehicle’s
journey.

Algorithm 1: General Algorithm for VT
1: repeat
2: wait for event E
3: if E is an update fpr from the server then
4: fsh ← fpr

5: end if
6: if E is a GPS update up then
7: fvt ← modifyVT (up)
8: if |fsh(t)− fvt(t)| ≥ thrvt then
9: CT.update(up)

10: fsh ← modifyCT (up)
11: end if
12: end if
13: until end of journey

The CT module The CT implements the tracking on the
server side. In doing so, it receives and exploits external-
data updates. The CT thus calls the PR module when it
receives a position update from a vehicle or when the pre-
diction may change due to external reasons. The CT mod-
ule implements the function updateVT that decides when
the vehicle needs to be updated in order to maintain consis-
tency. The module uses the following entities:

• Function fsh : T → VAR, shared with the VT, pre-
dicts the variable var ∈ VAR at time t ∈ T .

• Function fpr : T → VAR is the server’s own predic-
tion of variable var ∈ VAR at time t ∈ T .

• The server-side tracking threshold thr ct.

The general algorithm of the server-side CT module is
given in Algorithm 2. The algorithm is called for each ve-
hicle when the journey of the starts and the vehicle’s VT
is being initialized. During initialization, the PR calculates
the vehicle’s trajectory and the VT is updated with the pre-
diction (if needed) (line 1). The algorithm then loops until
the end of the vehicle’s journey (lines 3–16). The vehicle is
either updated when the threshold is reached (lines 13–15)
or when fpr changes and it is decided by a cost function that
an update is beneficial (lines 7–8). The shared prediction is
modified with every update from the vehicle (lines 9–11).
The PR module This module implements the function fpr :
T → VAR that predicts the variable var ∈ VAR at time
t ∈ T . It is called by the CT module when predictions need
to be updated.

2.3. Update Policies

We proceed to cover three update policies: timing point-
based tracking, position-based tracking, and time-based
tracking. The latter two are based on the prediction algo-
rithms descried above.
Timing Point-Based Tracking The tracking algorithms
currently employed in public transportation (e.g., [8]) and

1111

Algorithm 2: General Algorithm for CT
1: fpr ← PR.getPrediction()
2: fsh ← PR.fpr; VT.update(fpr)
3: repeat
4: wait for event E
5: if E is an update up from VT or an external source then
6: PR.update(up)
7: if update of VT is needed then
8: VT.update(fpr); fsh ← PR.getPrediction()
9: else if E is an update up from VT then

10: fsh ← modifyCT (up)
11: end if
12: end if
13: if E |fsh(t)− fpr(t)| ≥ thrct then
14: VT.update(fpr); fsh ← PR.getPrediction()
15: end if
16: until end of journey

logistics systems often rely on timing points. When a ve-
hicle arrives at a timing point, it updates the server with its
current status. The number of updates is fixed—it is equal
to the number of timing points.

Such tracking has several drawbacks. First, the server is
unaware of the deviations of the actual travel pattern from
the expected travel pattern when the vehicle is traveling in-
between two timing points. This renders it difficult to ac-
curately predict near-future travel times. Second, only poor
position accuracy guarantees may be given in-between the
timing points. Third, unnecessary costs are incurred when
the vehicle travels as expected.

This policy can be used if it is crucial to know exact ar-
rival and departure times at timing points, but is less im-
portant to reduce the tracking costs and to provide position
accuracy guarantees.
Position-Based Tracking The general framework de-
scribed in Section 2 is assumed. With position-based track-
ing, the variable that is being tracked is the current position
of a vehicle p ∈ P (i.e., VAR becomes P). The vehicle is
aware of the shared position prediction function fsh, and it
compares its current position (using fvt) with the server’s
assumed position. When the predicted position deviates
from the actual position by threshold value thrvt, the ve-
hicle issues an update to the server.

The server updates the vehicle if the difference between
its actual predicted position fpr(t) and the shared prediction
fsh(t) reaches thr ct, or if the server’s prediction function
changes sufficiently for the server’s cost function to trigger
an update.
Time-Based Tracking We again assume the general frame-
work from Section 2. The variable being tracked is the ar-
rival time t ∈ T (i.e., VAR now becomes T) at the next
timing point. Similarly to position-threshold based track-
ing, the vehicle is aware of the server’s (approximate) ar-

rival time prediction, and it compares its own current pre-
diction with the server’s prediction. The vehicle updates the
server as needed in order to stay within the time deviation
threshold thrvt. The server measures the deviation between
the arrival time predictions given by fsh and fpr, and it is-
sues an update to the vehicle when either threshold thr ct is
reached or the cost function triggers an update.

Using position tracking is not optimal when the objec-
tive is to predict arrival times. With position tracking, if
a vehicle stops within distance thrvt of a timing point, it
is possible for the server to believe that the vehicle is at
the timing point, which may yield incorrect information in
the infrastructure. This does not happen with time-based
tracking. Also, updates are not required where the vehicle’s
actual position deviates considerably from the server’s pre-
diction if this is expected to not delay the arrival.

It should also be noted that actual arrival time accuracy
guarantees cannot be provided, as the arrival time believed
by a vehicle is a prediction that may not hold; however, po-
sition accuracy guarantees may be derived given all predic-
tion functions.

3. Early-Update Cost Modeling

In cases where the prediction functions fpr employed by
the server are based on previous traversals of the route by
other vehicles or where the prediction functions are sensi-
tive to constantly changing traffic conditions, these func-
tions are subject to frequent change.

The server is required to update the shared prediction fsh

when needed to comply with threshold thr ct. This entails
the sending of an update to the vehicle. In addition, the
server is allowed to update fsh at other times, which may be
exploited to improve the tracking efficiency, as discussed in
Section 2.1. For this case, we use a cost function for de-
termining whether, when the server forms a new prediction
fpr, the server should update the vehicle with this new pre-
diction. This function estimates the cost of the tracking for
the remainder of the journey.

The actual communication cost throughout the journey is
a weighted sum of the number of updates from the vehicle
to the server upvt and from the server to the vehicle upct:
cost = upvtcvt + upctcct, where cvt is the cost of a single
update sent from the vehicle to the server and cct is the cost
of a single update sent from the server to the vehicle. The
numbers of updates depend on the update decisions made
by the server.

The above cost is known only after the journey is com-
pleted; therefore, estimates of the cost are needed for de-
termining whether or not to issue an update to the vehicle.
The following generic cost function estimates the total cost
of updates issued by the server and vehicle from the current
time and until the end of the ongoing journey, given the cur-
rent server state scur that captures the information currently

1212

available to the server:

cost(scur) = cvt

∑
j

P (upvt = j|scur)j +

cct

∑
j

P (upct = j|scur)j (1)

The function sums up the products of the costs of one up-
date, the probabilities that the vehicle and server issue j up-
dates, and j, where j varies from 1 to the maximum possi-
ble number of updates. Later, to specify the probabilities,
we will assume that:

• More recent predictions are better than earlier ones.
• Server-side predictions are at least as good as vehicle-

side predictions after the vehicle issues an update.
• The system is error-free: the GPS measurements are

accurate, and no server-vehicle communication delays
occur.

The cost until the end of the journey can be difficult to
estimate; it is more feasible to estimate the cost of a part of
the journey until some time tk, assuming that at that time,
the server is in a state sk that is independent of the current
decision as to whether or not to update the vehicle. Denote
the state of server s− if the decision d− to not update is
taken, and denote it s+ if the decision d+ to update is taken
and the update is issued. Then the server should issue an
update if cost(s−, tk) > cost(s+, tk) + cct.

The sums of probabilities are defined as in Equation 1,
except that the time interval extends only until the next
server update, and only the vehicle’s updates are consid-
ered:

cost(scur, tk) = cvt

∑
j

P (upvt = j|tk, scur)j (2)

Example Before we proceed, we consider a simple “toy”
example that clarifies the need for a cost function. Assume
that thr ct = thrvt = 100 m and that position-based update
is used. Initially, all functions are equal: fact(t) = fsh(t) =
fpr(t) = 20m/s × t. After a while, the vehicle enters con-
gestion, and its actual speed becomes 10 m/s. The server is
informed about the traffic situation, but its newly predicted
speed, 11 m/s, still exceeds the actual speed.

Before the difference |fsh(t)− fpr(t)| reaches thr ct, the
vehicle’s actual position deviates from the shared prediction
by 100 m, and the vehicle issues an update. Without the cost
function, the vehicle will keep on issuing an update every
10 s. In case the server updates the vehicle with its new
prediction, updates are issued only every 100 s.

3.1. Position-Based Tracking

We estimate the mean of the costs of updates sent from
the vehicle to the server during time interval [tcur, tk].

Therefore, the problem can be split into two parts: (1) Es-
timate the time tup of the next server-vehicle update. (2)
Estimate the number of vehicle updates until time tup.
Estimating the Number of Vehicle Updates The vehicle
updates the server when its position fact deviates from the
shared prediction fsh by thrvt. The probability that at least
one update is issued by time t is then equal to the prob-
ability of the vehicle’s position deviating from the shared
prediction by at least thrvt (assuming no server updates are
issued):

P (up ≥ 1) = P (thrvt ≤ |fact(t) − fsh(t)|) (3)

Further, assuming that |fact(t)−fsh(t)| is monotonically
increasing and that the vehicle’s update can only reduce the
difference |fact(t) − fsh(t)| at some future time t by thrvt,
the probability that i updates are issued until time t is equal
to the probability that the deviation of the actual position
from the predicted position is between thrvti and thrvt(i+
1):

P (upv = i) = P (thrvti ≤ |fact(t)−fsh(t)| < thrvt(i+1))
(4)

Substituting tup for t, we obtain the probability that
the number of vehicle updates until the next server update
equals i.

The probability of deviation depends on the reliability
of the predictions. We fix the time at which a prediction is
made to be current time tcur. At time tup = tcur + ∆t, the
prediction error e(∆t) equals |fact(t) − fpr(t)|. The error
variance, σe(∆t), can be evaluated statistically using his-
torical data and simulations. The error mean is assumed
to be 0, and its distribution is assumed to be Gaussian:
e(∆t) ∼ N(0, σ2

e(∆t)). These are standard assumptions
about the error of a prediction function. The probability
distribution function of the error e(∆t) is expressed as:

F (∆t, z) =
1

σe(∆t)

√
2π

∫ z

−∞
e−x2/2σ2

e(∆t)dx (5)

Denote the difference between the server’s and the
shared prediction functions as err(t) = fpr(t) − fsh(t).
The probability that the actual arrival time deviation from
fsh(t) is in-between thrvt and thrvt(i + 1) can be defined
as: P (thrvti ≤ |fact(t)− fsh(t)| < thrvt(i + 1) | scur) =
P (thrvti+err(t) ≤ e(∆t) < thrvt(i+1)+err(t) | scur).

The probability that a variable distributed according to
Equation 5 belongs to an interval (z1, z2), is F (∆t, z2) −
F (∆t, z1). The probability that the number of updates
equals i is: P (up = i) = P (thrvti ≤ e(∆t) < thrvt(i +
1) | scur) =
F (∆t, err(t) + thrvt(i + 1)) − F (∆t, thrvti + err(t)).

Equation 2 has to be evaluated with both decisions d−
and d+, inserting P (up = i) from the equation above. In

1313

the case of d+, fsh(t) = fpr(t), and the cost cct has to be
added to the journey cost.
Estimating the Time of the Next Server Update An up-
date from the server can be issued in three cases: (1) when
|fsh(t) − fpr(t)| reaches the threshold thrct, (2) when the
server changes its prediction due to changes in external data,
or (3) when the update would reduce further communication
costs.

In the first case, the next update is issued at time
mint{|fsh(t) − fpr(t)| ≥ thr ct}, if the prediction func-
tions do not change. Without this simplifying assumption,
the actual deviation time may be later.

In the second case, the average interval in-between exter-
nal updates ∆upext can be estimated using historical data;
however, it is not always necessary to update the vehicle
when a new prediction is formed. This again depends on the
change of prediction function, and the estimation of the cost
function. To eliminate this complexity, we ignore updates
due to the cost function. The interval ∆up that introduces
the deviation |fsh(t) − fpr(t)| ≥ thr ct is estimated as:

∆up =
∆upext

P (|fsh(tcur + ∆t) − fpr(tcur + ∆t)| ≥ thr ct)

Here ∆t is the average time interval until the next external-
data update (with respect to the most recent update). The
probability that the new prediction will differ by at least
thr ct from the shared prediction can be evaluated statisti-
cally.

In the third case, an update is issued when this is ex-
pected to reduce the remaining update cost. This leads to a
recursive estimation of the cost function, and therefore we
eliminate this case.

Finally, the estimate of the server’s update time is tup =
min(mint{|fsh(t) − fpr(t)| ≥ thr ct}, tcur + ∆up).

3.2. Time-Based Tracking

The cost function is evaluated similarly as for position-
based tracking. In time-based tracking, the prediction func-
tions fvt(t), fsh(t), and fpr(t) predict arrival times instead
of positions; therefore, both the domains and ranges of these
functions are time (as described in Section 2.3). The thresh-
old distances thrvt and thr ct are measured between the pre-
dicted arrival times at the nearest timing point rather than
between the predicted and the measured positions.

4. Experimental Evaluation

In this section, we report on an empirical evaluation of
the proposed techniques. In particular, we evaluate the
tracking techniques and the cost function. Real GPS data
collected from the city buses in the Copenhagen area [8]
were used for the evaluation.

4.1. Experimental Setup

A real bus route with 49 bus stops was used in the evalua-
tion. The actual duration of a journey on this route is 1 hour
and 43 minutes, during which a distance of nearly 33 kilo-
meters is covered. GPS positions were measured once per
second and were map-matched to the polylines of a digital
map that correspond to the bus route.

Since we would like to evaluate the tracking techniques
based on data obtained when using different prediction
functions, the prediction function was simulated according
to the following framework:

• The predicted travel times in-between the bus stops
and the waiting times at the stops are in the range of
0.5 to 2 times the actual times. The prediction error is
distributed normally within a given range. In-between
the timing points, the vehicle’s speed is predicted to be
constant.

• The vehicle and server update the shared prediction
function by calculating a time delay and adding this
to the initial prediction.

• An external update to the server (in reality, this could
be, e.g., new traffic information) is generated for each
timing point. A new prediction for the next timing
point is generated; the default error variance is 50 s,
and the new predicted time cannot be further from the
actual arrival time than the old prediction.

Timing-point based update would issue an update per
timing point, i.e., 49 updates for our setting. The experi-
mental results show that in most cases, this amount can be
reduced significantly while also providing pre-defined ac-
curacy guarantees. For position-based tracking (PBT) and
time-based tracking (TBT), the total numbers of updates are
the sums of vehicle and server updates that occur during the
journey. We consider three update polices that the server
may use: update when (1) the prediction function changes,
(2) the server’s threshold is reached, or (3) the cost function
estimates that the future updates would be reduced.

4.2. Default Parameters

Table 1 lists the default parameters used in the experi-
ments. Most values are the same for both PBT and TBT.
Thresholds for TBT are given in parentheses. The predic-
tion variance is defined as the deviation variance of the pre-
dicted travel time in-between two timing points or the wait-
ing time deviation at a timing point. Default prediction vari-
ances are chosen to be large in order to check how the al-
gorithms behave when prediction functions are inaccurate.
Server predictions are set to change quite frequently. Addi-
tional delay allows the arrival time to be later than expected.

1414

Table 1. Default Parameters
Parameter Value

Initial prediction variance 100 s
Server prediction variance 50 s
Average delay detection time 300 s
Server and vehicle thresholds thrct, thrvt 400 m (100 s)
Delay 1000 s
Single update costs cvt, cct cvt = cct = 1
Number of timing points 49

4.3. Experimental Results

The experimental study evaluates the tracking tech-
niques under varying circumstances. We focus here on the
influence of varying accuracies and thresholds, as these two
are arguably the most interesting parameters.

Results obtained when varying other parameters yield
similar results. For example, adding more delay to GPS
points has an effect similar to increasing the initial variance.
Only extreme delays require significantly more updates. In-
creasing the number of timing points increases the predic-
tion accuracy and therefore decreases the required number
of updates. Timing point-based tracking requires one up-
date per timing point; however, the corresponding accuracy
guarantees are (bounded by) the distances or travel times
in-between two timing points.
Prediction Accuracy The update frequency is expected to
be affected by the accuracy of both the initial prediction
and updates to the server’s prediction: with more accurate
prediction, less updates are expected. Three kinds of exper-
iments were performed: (1) the initial prediction accuracy
is fixed, while the updated prediction’s accuracy decreases,
(2) the updated prediction’s accuracy decreases, while the
initial prediction accuracy is fixed, and (3) the accuracy of
both the initial and updated predictions decreases.

The experimental results (Figures 2–4) show that larger
updated prediction variances (and therefore lower accura-
cies) increase the amount of required updates. The initial
accuracy is less significant, as it is improved as soon as a
server update takes place. Using the cost function (“Cost”)
requires fewer updates than updating with each server pre-
diction change (“All”) or updating only when the server
threshold is reached (“None”).

Compared with timing-point based tracking (49 up-
dates), only updating the bus every time the prediction
changes is more costly. The other techniques work well
even with less accurate prediction functions. TBT shows to
be very efficient if used with a cost function.
Thresholds The higher the tracking thresholds, the lower
the amounts of updates are expected to be. Two kinds of
experiments were performed: (1) The server’s and the vehi-
cle’s thresholds are equal (thr ct = thrvt) and (2) they vary
from 100 m to 1000 m (PBT) or from 30 s to 300 s (TBT).

10

20

30

40

50

60

70

10080604020

exp 1.1. updated variance, s

Cost
All

None

50

40

30

20
20 40 60 80 100

exp 1.2. initial variance, s

Cost
All

None

Figure 2. Varying Prediction Accuracy (PBT)

60

50

40

30

20
10080604020

exp 1.1. updated var, s

Cost
All

None

60

50

40

30

20

10080604020

exp 1.2. initial var, s

Cost
All

None

Figure 3. Varying Prediction Accuracy (TBT)

50

40

30

20

10080604020

exp 1.3. variance, s

Cost
All

None

(a) Position-based tracking

60

50

40

30

20

10080604020

exp 1.3. variance, s

Cost
All

None

(b) Time-based tracking

Figure 4. Varying Initial and Updated Accura-
cies Simultaneously

The experimental results (Figures 5 and 6) show that
smaller vehicle and server thresholds increase the amounts
of required updates. The ratio between the vehicle’s and
server’s thresholds is an important factor. The studies show
that it is infeasible to set thrvt > thr ct. When the vehicle
and server thresholds become equal (thrvt = thr ct = 500,)
further increasing vehicle threshold and decreasing server
threshold does not have significant influence on communi-
cation costs. Using the cost function requires less updates
than updating with each change of prediction or updating
only when the server threshold is reached.

1515

140
120
100
80
60
40
20

1000800600400200

exp 2.1. thresholds, m

Cost
All

None

0

40

80

120

160

200

800600400200

exp 2.2. vehicle threshold, m

Cost
All

None

Figure 5. Varying Thresholds (PBT)

0
20
40
60
80

100
120
140

25015050

exp 2.1. thresholds, s

Cost
All

None 800

600

400

200

25015050

exp 2.2. vehicle threshold, s

Cost
All

None

Figure 6. Varying Thresholds (TBT)

5. Conclusion and Research Directions

A number of applications in the areas of logistics, tran-
sit services, cargo delivery, and collective transport benefit
from maintaining real-time information on vehicle status,
most notably the vehicles’ positions on their routes, in the
infrastructure surrounding the vehicles.

This paper proposes cost-efficient tracking techniques
with accuracy guarantees for vehicles that travel along
known routes according to schedules. A vehicle and the
surrounding infrastructure, represented by a server, com-
municate only this is required to preserve pre-defined ac-
curacy guarantees, or when an update is expected to reduce
the subsequent communication costs. Experimental results
show that the communication costs can be reduced several
times in comparison to a currently used timing point-based
tracking policy.

Several research directions exist. A cost model is desir-
able that makes it possible to accurately compute the mini-
mum communication costs that are required to preserve ac-
curacy guarantees. Such a model would expose the limits
for improvement of the tracking policies. Furthermore, it is
of interest to develop accurate prediction functions that re-
duce the required amounts of updates. Experimental results
have shown that with accurate predictions of arrival times,
communication costs are very low.

Acknowledgments This research was conducted within
the project GPS Data Management with Applications
in Collective Transport, funded by the Danish Research
Agency, contract number 2106-05-0027.

References
[1] Y. Bin, Y. Zhongzhen, and Y. Baozhen. Bus arrival time

prediction using support vector machines. Int. Transp. Syst.,
10: 151–158.

[2] F. Cathey and D. Dailey. A prescription for transit ar-
rival/departure prediction using automatic vehicle location
data. Transp. Res. Part C, pp. 241–264, 2003.

[3] M. Chen, X. Liu, and J. XiaDOI Dynamic prediction method
with schedule recovery impact for bus arrival time. Transp.
Res. Rec, 1932(1): 208–217, 2005.

[4] S. I.-J. Chien, Y. Ding, and C. Wei. Dynamic bus arrival time
prediction with artificial neural networks. Transp. Engrg.,
128: 429–438, 2002.

[5] D. Crout. Accuracy and Precision of the Transit Tracker
System. Transp. Res. Rec, 1992(-1): 93–100, 2007.

[6] D. Dailey, S. Maclean, F. Cathey, and Z. Wall. Transit ve-
hicle arrival prediction: an algorithm and a large scale im-
plementation. Transp. Res. Rec., Transportation Network
Modeling, pp. 46–51, 2001.

[7] J. R. Hee and L. R. Rilett. Bus arrival time prediction using
artificial neural network model. In IEEE ITSC, pp. 988–993,
2004.

[8] Hovedstatens Udviklinksraad (HUR). http://www.hur.dk/.
[9] R. H. Jeong. The prediction of bus arrival time using auto-

matic vehicle location systems data. Doctoral dissertation,
Texas A&M University, 2004.

[10] R. Kalaputapu and M. J. Demetsky. Modeling schedule de-
viations of buses using automatic vehicle location data and
artificial neural networks. Transp. Res. Rec., 1497: 44–52,
1995.

[11] Nordjyllands Trafikselskab (NT).
http://www.nordjyllandstrafikselskab.dk/.

[12] T. Park, S. Lee, and Y.-J. Moon. Real time estimation
of bus arrival time under mobile environment. In ICCSA,
3043: 1088–1096, 2004.

[13] A. Shalaby and A. Farhan. Prediction model of bus arrival
and departure times using avl and apc data. Journal of Pub.
Transp., 7: 41–61, 2004.

[14] D. Tiešytė and C. S. Jensen. Challenges in the tracking and
prediction of scheduled-vehicle journeys. In IEEE PerCom
Workshops, pp. 407–412, March 2007.

[15] A. Čivilis, C. S. Jensen, and S. Pakalnis. Techniques for
efficient road-network-based tracking of moving objects. In
IEEE TKDE, 17(5): 698–712, 2005.

[16] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and
G. Mendez. Cost and imprecision in modeling the position
of moving objects. In ICDE, pp. 588–596, 1998.

[17] O. Wolfson, A. P. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units. Dis-
trib. and Par. Databases, 7: 257–387, 1999.

[18] O. Wolfson and H. Yin. Accuracy and resource consumption
in tracking moving objects. In SSTD, pp. 325–343, 2003.

[19] J. Zhou, H. Leong, Q. Lu, and K. Lee. Generic adaptive
moving object tracking algorithms. ICPP, pp. 93–100, 2006.

1616

