
A Flexible Query Framework for Music Data and Playlist Manipulation ∗

Maria M. Ruxanda Christian S. Jensen
Department of Computer Science, Aalborg University, Denmark

{mmr,csj}@cs.aau.dk

Abstract

Motivated by the explosion of digital music on the Web
and the increasing popularity of music recommender sys-
tems, this paper presents a relational query framework for
flexible music retrieval and effective playlist manipulation.
A generic song representation model is introduced, which
captures heterogeneous categories of musical information
and serves a foundation for query operators that offer a
practical solution to playlist management. A formal defi-
nition of the proposed query operators is provided, together
with real usage scenarios and a prototype implementation.

1 Introduction

Digital music is becoming increasingly widespread as
personal collections of music grow to thousands of songs.
Moreover, successful technologies like the Mp3 format
and the iPod have changed the way music is distrib-
uted and consumed. In this context, systems that of-
fer personalized music recommendations play a crucial
role in entertainment services and on-line music sales.
Several commercial music recommenders have already
achieved popularity, including Last.fm (www.last.fm), Pan-
dora (www.pandora.com), MusicIP (musicip.com), and
MyStrands (www.mystrands.com). The research prototype
of Sun, Search Inside the Music, is also notable. While
these systems build on different notions of music similar-
ity, they all deliver various forms of playlists to their users.
Specifically, the concept of a playlist has emerged as a key
unit of music exchange and delivery.

The popularity of music recommenders has created a de-
mand for the development of efficient techniques to sup-
port music retrieval and playlist manipulation. Music rec-
ommender systems have to deal with two main aspects: the
modeling of music similarity and the dynamic generation of
playlists based on music similarity; and the representation,
storage, and querying of music data to support similarity
search and playlist operations.

∗This research was supported by the Danish Research Council for Tech-
nology and Production Sciences project no. 26-04-0092 Intelligent Sound
(www.intelligentsound.org).

Existing research focuses primarily on music similarity.
While treating music similarity from different angles, vari-
ous approaches for playlists generation have been proposed.
For example, some approaches for playlist generation are
pure audio-based [11], other employ a hybrid (combination
of audio-content and social) music similarity [7]. The cre-
ation of playlists that meet given constraints has been ad-
dressed [1, 2], and approaches that incorporate user feed-
back have also been considered [9, 10].

Some work has been done on data and query models for
music and playlist manipulation [3–5, 12, 14]. However,
the existing work either disregards similarity queries and
playlists [12, 14], or addresses specific scenarios of playlist
manipulation [3–5]. The existing query models are limited
when seen in the broad context of music recommenders that
manage music and playlists in various ways.

This paper addresses the emerging needs of music rec-
ommender systems to retrieve similar music and manage
playlists over large music collections stored in databases.
We develop a flexible framework that encompasses, at the
database level, the functionalities of music recommenders
in a generic way, so that specific strategies of music rec-
ommendation can be easily plugged in. The contributions
of our work are as follows: 1) we introduce a song rep-
resentation model that captures the heterogeneous musi-
cal information — metadata, audio-content data, and so-
cial/collaborative data; the foundation of our model is a
conceptual, generic song-tuple, which is an abstraction over
any specific database storage design; 2) we treat playlists in-
tuitively, as ordered lists of songs, and we define query oper-
ators as an extension of a relational algebra that supports the
notion of order; the query operators deal with arbitrary mu-
sic similarities and cover similarity searches and similarity-
based generation, shuffling, and mixing of playlists; 3) we
implement a prototype version of the proposed operators in
the open source PostgreSQL database management system.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the song repre-
sentation model. Section 4 introduces the formal definitions
of our query operators, and Section 5 presents the prototype
implementation. Finally, Section 6 concludes the paper.

19th International Conference on Database and Expert Systems Application

1529-4188/08 $25.00 © 2008 IEEE

DOI 10.1109/DEXA.2008.23

693

AAU
Text Box
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

2 Related Work

Rubenstein [12] introduce a music data model that ex-
tends the entity-relationship model and implements the no-
tion of hierarchical ordering found in musical data. Wang et
al. [14] propose a music data model and query language, ex-
emplifying their use on musical instruments retrieval. How-
ever, both models lack an adequate framework to perform
similarity searches and playlist operations.

Jensen et al. [5] propose a data and query model for dy-
namic playlist generation that supports arbitrary similarity
measures. However, the retrieval operators are limited to the
case of continuous playlists, where songs are retrieved one
at a time taking into account the user’s skipping behavior.

Work more similar to ours was recently proposed by
Deliege and Pedersen [3, 4]. A music warehouse prototype
capable of performing arbitrary similarity searches is de-
scribed [3], but only nearest neighbors searches are covered.
A query algebra manipulating playlists, seen as fuzzy lists,
is introduced [4]. However, the query model is applicable
when solely modeling user feedback on the music.

Most related work is perhaps the list-based relational al-
gebra proposed by Slivinskas et al. [13], introducing the no-
tion of ordered lists in the relational model. While playlists
are conceptually ordered lists of songs, the operators in [13]
are the same as the standard ones except that they contend
with order; thus, they do not cover playlist manipulation.

Our work has several advantages over previous work.
We capture clearly, and in a generic manner, all categories
of musical information: metadata, audio-content, and so-
cial data. Compared for example to using dimension hi-
erarchies [4, 5], our data model is more flexible as it ab-
stracts over database design and can be accommodated in
any warehouse schema, including those mentioned above.
While it is natural to consider order when dealing with
playlists, the ordered relational algebra [13] does not target
playlist manipulation, and the fuzzy algebra [4] addresses
specific scenarios. We propose query operators that extend
the algebra in [13] and capture generic usage of playlists.

3 Generic Representation of Music

Outline. Playlists are made up of songs, which are being
manipulated when playlists are managed. Thus, a format for
the representation of a song in a music database is needed.

Currently, music recommendation approaches are based
on three categories of musical information: 1) metadata at-
tributes e.g., the title of song, the artist’s name; 2) collabo-
rative/social data obtained by, e.g., user profiling, user tag-
ging, or mining web blogs; 3) feature vectors extracted from
the audio signal. However, various music recommenders
use different subsets of the three categories of information,
or they use different instances of each, and various musical
aspects generate different notions of music similarity.

We aim at capturing at the database level this heteroge-
neous information in a flexible and generic manner, so that
particular implementations of music recommendation can
be accommodated. Our approach is to abstract over the de-
sign details of a specific database schema. Thus, we pro-
pose to model the notion of a song item in a music database
as a conceptual view, that encapsulates the various musi-
cal attributes and their associated notion of music similar-
ity. Then, arbitrary database schemas can be plugged in, to
physically underlie the relational view of song items.

A Song Representation Model. We propose a data rep-
resentation model that captures at the song level the three
heterogeneous categories of musical information.

Music metadata attributes are provided with the music,
e.g., when it is ripped using media player tools. They are
simple and can be easily stored in database relations.

The social data are obtained by capturing the use of the
music by users. We identify two steps in representing this
data in a database. The first step is that user profiling data
(e.g., a user’s ratings, playlists or tags) and entities com-
posing any mined social data (e.g., descriptive words mined
from web blogs) are grouped and captured in database re-
lations. The second step is to represent aggregated social
data at the song level. Such data, e.g., IDs of tags used for
a song or IDs of playlists in which the song appears, can be
captured in an array.

Example. We capture the top 3 most used tags for a song.
The social features of the song “Frozen” by Madonna are rep-
resented as the array [71, 23, 450], where the elements are IDs
denoting the tags “90s”, “dance”, and “electronic”.

A variety of audio feature vectors may also be extracted
from the audio signal of a song. Widely used features in-
clude the MPEG-7 and MFCC [6] coefficients. The audio
data can be represented straightforwardly at the song level
as an array of elements comprising of the extracted values.

According to recent research, hybrid music similarity
based on both audio and social features, is performing
well [7]. Thus, audio data, social data, and their combi-
nation are all important aspects of the music, each offering
useful measures of music similarity.

It is convenient to use an abstract data type to encapsu-
late such arrays of features (audio, social, or hybrid) and
their corresponding similarity measure 1. This way the var-
ious musical aspects that characterize a song, can each be
represented as an attribute of the song.

We model these arrays as the abstract data type, denoted
MFD (Music-Feature-Data) — see Table 1. Note that audio
and social feature vectors are usually multi-dimensional,
and audio features are frequently extracted on samples of
the song so that a large number of vectors is produced.

1While we focus on songs, artist similarity can be addressed by aggre-
gating over the songs by an artist and by using artist-targeted social data.

694

The key operation on the MFD type is the distance com-
putation dist. Concrete implementations of dist can use,
in addition to feature representation of songs, other music
information stored in database relations. Also note that the
similarity of songs can be evaluated in different ways, as
long as specialized dist implementations are provided.

The attributes that describe a song may be captured in a
database view as shown in Table 2. A song is represented
by a tuple with n+m columns, where n is the number of
metadata attributes and m is the number of MFD attributes.

Table 1. MFD Definition.
Data fields
len Array with the number of feature vec-

tors per song, for each kind of feature
dim Array with the dimensionality of fea-

ture vectors, for each kind of feature
vals Array with the feature values; in total�N

i=1 (len[i] · dim[i]) values, where
N= no. of kinds of features

Operations
MFD(len,dim,vals) Creates an instance of MFD
getValue() methods Get the values of the data fields
dist(mfd1 ,mfd2) Computes the similarity between two

MFD instances; can have various im-
plementations. e.g., cosine, Lp

4 Query Operators for Playlist Manipulation

Usage Vision. We consider common and key functionali-
ties provided by music recommender systems that manipu-
late playlists. We interpret the notion of a playlist broadly,
regardless of its output form (list of songs or a radio station).

We have investigated extensively various use-cases of
the popular music recommenders Last.fm, Yahoo!Music,
Pandora, MusicIP, and MyStrands. Our findings suggest
that several operations constitute key functionalities:
1. Similarity neighbor search. We include nearest and far-
thest neighbors. These are useful to support the dynamic
generation of personalized playlists. While nearest neigh-
bor searches are used the most (e.g., include in a playlist
songs close to those the user likes, and exclude songs close
to those the user dislikes), far neighbors can be handy when
shuffling playlists to achieve a jagged similarity transition.
2. Similarity range search. We include lower or upper
bounded ranges. These are useful to support the generation
of personalized playlists and the “hop”-like similarity-based
shuffling of playlists (see next 4.).
3. Sizing of playlists. This refers to retaining the correct
size of a playlist according to the user’s input settings —
playlists of a specified length, duration, or file size.
4. Similarity-based shuffling of playlists. We distinguish
between two cases. The first is a monotonic-like similarity
ordering of songs, for example smooth or jagged transition,
where the similarity distance between adjacent songs in a

playlist is either minimized or maximized. The second is a
“hop”-like similarity ordering of songs, where the distance
between adjacent songs is beyond/below a given threshold.
5. Smart mixing of playlists. A known example here is by
alternating their songs (as done in Pandora). New ways are
possible by applying a similarity-based shuffling to the mix.

Based on these, we define 6 query operators (see next),
which work on the proposed song representation model and
use a generic song similarity measure.

Proposed Query Operators. Conceptually, a playlist is
an ordered sequence of songs. Therefore, it is convenient
to treat relations as ordered lists. We thus use a relational
algebra with this characteristic [13]. The operators of this
algebra are the standard ones adapted to address order: pro-
jection (π), selection (σ), union (�), duplicate elimination
(rdup), difference (\), Cartesian product (×), aggregation
(ξ), sorting (sort), and the top k tuples of a relation (topk).

We extend the algebra by defining six new query oper-
ators that allow easy manipulation of playlists. We use λ-
calculus for the definitions. We consider that a relation con-
tains song-tuples, where a song-tuple is as exemplified in
Table 2. The basic notations are explained in Table 3.

The operation topN k : [R × T × OΩ × N] → R re-
turns k song-tuples of the input relation, which are the first
k near or far neighbors of the input song-tuple t (the second
argument), according to a music similarity measure. Since
similarity measures are encoded within the MFD attributes
of song-tuples, songs comparison can then be expressed us-
ing a sorting on MFD attributes. The third argument de-
notes a similarity ordering. We denote the set of all possi-
ble orders for MFD attributes from Ω by OΩ. For example,
(dist(Tags, t.Tags), DESC) is a similarity order.

topN k � λr, t, o, k.(r =⊥) →⊥,
topk(sort(r, o))

The operation range : [R×T ×R×{<,≤, >,≥}] → R
returns all song-tuples of the argument relation that, in
terms of similarity distance towards the argument song-
tuple, are within the range (lower or upper) bounded by a
threshold. The threshold value val is represented by the
third argument. The fourth argument denotes a relational
operator. The operation uses the basic function compare ,
which returns true or false, and implements a predicate.

range � λr, t, val, op.(r =⊥) →⊥,
compare(dist(head (r).MFD , t .MFD), val , op) →

head(r) @ range(tail (r), t, val, op),
range(tail (r), t, val, op)

The operation retainSize : [R×Ω×R] → R takes as ar-
guments a relation, a numerical attribute a of the argument
relation, and a real number val. It scans the argument rela-
tion until the sum of the attribute a for all scanned tuples is
exceeding the value val, and it returns the scanned tuples.

695

Table 2. A Relational Model for Song Representation.
ID Title Artist Year . . . MFCC Tags Genre Classif. & Playlists . . .
1 Let It Be The Beatles 1970 . . . MFD([15333],[6],vals1) MFD([1],[20],vals2) MFD([1,1],[15,100],vals3) . . .

Table 3. Basic Notations.
S = (Ω, Δ, dom) a song relation schema; Ω is a finite set of attributes, Δ is a finite set of domains,

dom : Ω → Δ associates a domain with each attribute. Specifically, Ω = {ID, M1, . . . , Mn, F1, . . . , Fm},
ID is a key attribute, Mi are metadata attributes, and dom(Fi) = MFD

t : Ω → ∪δ∈Δδ a song-tuple over schema S, such that for every attribute A of Ω, t(A) ∈ dom(A)

r a relation; it is a finite sequence of song-tuples over S such that ∀ t1, t2 ∈ r (t1 �= t2) ⇒ (t1[ID] �= t2[ID])

T , R T is the set of all song-tuples; R is the set of all relations comprising song-tuples
head(r), tail(r), have the same definition as in [13]; head(r) returns the first tuple of r; tail(r) returns r without its first tuple;

@ , ⊥ @ prepends a tuple to a relation; ⊥ denotes the empty relation

retainSize � λr, a, val .(r =⊥) →⊥,
head(πa(r)).a > val →⊥,

head(r) @ retainSize(tail(r), a, val − head(πa(r)).a)

The operation alternate : [R × R] → R merges the two
input argument relations by alternating their song-tuples.

alternate � λr1, r2.(r1 =⊥) → r2, (r2 =⊥) → r1,
head(r1) @ (head(r2) @ alternate(tail(r1), tail (r2)))

The operation neighborSimOrder : [R× OΩ] → R re-
orders and returns the song-tuples of the argument relation.
The ordering is done so that a smooth or jagged similarity
transition is enforced. It uses the topN k operation.

neighborSimOrder � λr, o.(r =⊥) →⊥,
(tail(r) =⊥) → head(r),

head(r) @ neighborSimOrder (t @ (tail (r) \ t), o)
where t = topN 1(tail (r), head (r), o, 1)

Operation hopSimOrder : [R×R×{<,≤, >,≥}] → R
re-orders and returns the song-tuples of the argument rela-
tion. The ordering enforces, whenever possible, a “hop”
similarity transition (adjacent song-tuples differ in terms of
similarity by a threshold value). It uses the range operation.

hopSimOrder � λr, val, op.(r =⊥) →⊥,
(tail(r) =⊥) → head(r),

(r1 �=⊥) → head(r) @ hopSimOrder (top1(r1) @
(tail(r) \ top1(r1)), val, op)

where r1 = range(tail (r), head (r), val, op),
head(r) @ hopSimOrder (tail(r), val, op)

5 A Prototype Implementation

We implemented a prototype version of the proposed
query operations in the open source database management
system PostgreSQL. The six operators were implemented as
functions in PL/pgSQL — a procedural language available
in the standard PostgreSQL distribution.

As our aim is to define generic query operators and ab-
stract over a specific database schema, the prototype im-
plementation assumes only that: 1) there is a relation/view

storing song-tuples (as shown in Table 2); 2) there is a rela-
tion/view storing playlists; and 3) these playlist-tuples have
at least three attributes denoting a playlist ID, a song ID, and
a track order. We also assume for simplicity that the playlist
ID is unique for playlists across all users. We judge the
above assumptions to be realistic in the application setup.

The proposed query operations were implemented in two
overloaded variants. The first assumes default names for the
attributes of a playlist-tuple — see the operation signatures
in Table 4. In the second variant, these attribute names are
additionally given as arguments to the query operations.

For testing, we used a music database of 62, 226 Mp3
songs, having a simple schema with two relations Songs
and Playlists, storing song-tuples and playlist-tuples, re-
spectively. A song-tuple has the key attribute song ID, the
metadata attributes title, artist, album, albumYear, duration,
genre, and one MFD attribute. The MFD attribute, denoted
GCC, encompasses audio features (15-dim) representing
genre classification coefficients [8]. To store it, we used an
array of real values. As the similarity measure, we imple-
mented the Euclidean distance as a function in PL/pgSQL.

Note that while we test in a simple setup, any storage
schema and any number of MFD attributes can be used, and
other similarity measures can be implemented in C, Perl,
Python, or Java — which are supported by PostegreSQL.

Next, we exemplify how the six operators can support
playlist operations in a real music recommendation setup
(see Table 5). For instance, Example 1 can be used when
playlists are generated based on a seed song, while Example
2 can be used for dynamic update of playlists (e.g., replac-
ing a song the user dislikes with the song returned by the
query). The other examples exhibit straightforward usages.

6 Conclusion

The paper proposes a relational query framework that
supports a song representation model that flexibly captures
heterogeneous musical information. The framework treats
playlists intuitively, as ordered lists of songs, and defines
query operators that accommodate generic music similarity

696

Table 4. Query Operations Signatures.
topN (songsStatement text, songsTable text, refSong ID integer, distance text, featureAttribute text, orderDir text,

k integer) : setof integer It returns the song IDs of the k found neighbors.
range (songsStatement text, songsTable text, refSong ID integer, distance text, featureAttribute text, orderDir text,

op text, threshold real) : setof integer It returns the song IDs of the songs found in the given range.
retainSize (songsStatement text, songsTable text, cutAttribute text, threshold real) : setof integer
It returns the song IDs that fit in the specified playlist size. If cutAttribute=’length’, it returns the first (int)threshold song IDs.
alternate (playlistsStatement text, arrayOfPlaylistsIDs text) : setof integer It returns the song IDs of the input playlists in
alternating order. For efficiency, it does not use the song-tuples, but only the song ID attribute stored in the playlist-tuples.
neighborSimOrder (playlistsStatement text, arrayOfPlaylistsIDs text, songsTable text, distance text, featureAttribute text,

orderDir text) : setof integer
It returns the song IDs of the input playlist(s) in the new order. It can be used for both single playlist-shuffling or playlists-mixing.
hopSimOrder (playlistsStatement text, arrayOfPlaylistsIDs text, songsTable text, distance text, featureAttribute text,

orderDir text, op text, threshold real) : setof integer
It returns the song IDs of the input playlist(s) in the new order. It can be used for both single playlist-shuffling or playlists-mixing.

where songsStatement is a table/view/select-statement comprising song IDs; songsTable is a table/view storing song-tuples;
distance is a function implementing a similarity measure; featureAttribute is the MFD attribute corresponding to the similarity
measure; orderDir ∈ {’ASC’, ’DESC’}; op ∈ {’<’, ’<=’, ’>’, ’>=’}; cutAttribute is a metadata attribute of the song-tuples, e.g.,
’duration’; arrayOfPlaylistsIDs is, e.g., ’[12,3,5]’; playlistsStatement is a table/view/select-statement comprising playlist-tuples;

measures and encompass the functionalities offered by con-
temporary music recommenders. In addition, we provide
a ready-to-use prototype implementation of the proposed
query operators in PostgreSQL.

Table 5. Usage Examples.
Example 1. Find the first 10 nearest neighbors of the seed
song 〈song ID=257〉, that appeared on an album in year 2000.
SELECT * FROM topN(’SELECT song ID FROM
Songs WHERE albumYear=2000’,’Songs’,257,
’Euclidean’,’GCC’,’ASC’,10)
Example 2. Find the first far neighbor of the seed song
〈song ID=9〉 that is dissimilar by at least 0.8 threshold, and
that is played by artist Madonna.
SELECT * FROM range(’SELECT song ID FROM
Songs WHERE artist=\’Madonna\’’,’Songs’,9,
’Euclidean’,’GCC’,’ASC’,’>=’,0.8) LIMIT 1
Example 3. Reset the size of playlist 〈playlist ID=5〉, so that
the duration is 60 minutes.
SELECT * FROM retainSize(’SELECT song ID
FROM Playlists WHERE playlist ID=5’,
’Songs’,’duration’,60)
Example 4. Create an alternating mix of the songs of playlists
〈playlist ID=3〉, 〈playlist ID=2〉, and 〈playlist ID=17〉.
SELECT * FROM Songs as t1, (SELECT * FROM
alternate(’Playlists’,’[3,2,17]’)) as t2
WHERE t1.song ID=t2.alternate
Example 5. Create a jagged transition mix of playlists
〈playlist ID=10〉 and 〈playlist ID=11〉.
SELECT * FROM neighborSimOrder(’Playlists’,
’[10,11]’,’Songs’,’Euclidean’,’GCC’,’DESC’)
Example 6. Shuffle playlist 〈playlist ID=1〉 by hop-similarity
transition with a strict hop of at least 0.5.
SELECT * FROM hopSimOrder(’Playlists’,’[1]’,
’Songs’,’Euclidean’,’GCC’,’ASC’,’>’,0.5)

References

[1] M. Alghoniemy and A. Tewfik. A Network Flow Model for
Playlist Generation. In Proc. ICME, pages 84–95, 2001.

[2] J. Aucouturier and F. Pachet. Scaling up Music Playlist Gen-
eration. In Proc. ICME, pages 105–108, 2002.

[3] F. Deliege and T. B. Pedersen. Fuzzy Song Sets for Music
Warehouses. In Proc. ISMIR, pages 21–26, 2007.

[4] F. Deliege and T. B. Pedersen. Using Fuzzy Lists for Playlist
Management. In Proc. MMM, pages 198–209, 2007.

[5] C. A. Jensen, E. M. Mungure, T. B. Pedersen, and K. I.
Sørensen. A Data and Query Model for Dynamic Playlist
Generation. In Proc. ICDE IEEE Workshop, pages 65–74,
2007.

[6] J. Jensen, M. Christensen, M. Murthi, and S. Jensen. Evalu-
ation of MFCC Estimation Techniques for Music Similarity.
In Proc. EUSIPCO, 2006.

[7] P. Knees, T. Pohle, M. Schedl, and G. Widmer. Combining
Audio-based Similarity with Web-based Data to Accelerate
Automatic Music Playlist Generation. In Proc. ACM Int.
Workshop on MIR, 2006.

[8] T. Lehn-Schiøler, J. Arenas-Garcia, K. Petersen, and
L. Hansen. A Genre Classification Plug-in for Data Col-
lection. In Proc. ISMIR, pages 320–321, 2006.

[9] E. Pampalk, T. Pohle, and G. Widmer. Dynamic Playlist
Generation Based on Skipping Behavior. In Proc. ISMIR,
pages 634–637, 2005.

[10] S. Pauws and B. Eggen. PATS: Realization and User Evalua-
tion of Automatic Playlist Generator. In Proc. ISMIR, 2002.

[11] T. Pohle, E. Pampalk, and G. Widmer. Generating Similarity
Based Playlists Using Traveling Salesman Algorithms. In
Proc. DAFx, pages 220–225, 2005.

[12] W. Rubenstein. A Database Design for Musical Informa-
tion. In Proc. ACM SIGMOD, pages 479–490, 1987.

[13] G. Slivinskas, C. Jensen, and R. Snodgrass. Bringing Order
to Query Optimization. SIGMOD Record, 31:2:5–14, 2002.

[14] C. Wang, L. J., and S. S. A Music Data Model and its Ap-
plication. In Proc. MMM, pages 79–85, 2004.

697

