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Abstract. Most database applications manage time-referenced, or temporal,
data. Temporal data management is difficult when using conventional database
technology, and many contributions have been made for how to better model,
store, and query temporal data. Temporal aggregation illustrates well the prob-
lems associated with the management of temporal data. Indeed, temporal aggre-
gation is complex and among the most difficult, and thus interesting, temporal
functionality to support. This paper presents a general framework for temporal
aggregation that accommodates existing kinds of aggregation, and it identifies
open challenges within temporal aggregation.

1 Introduction

In database management, aggregation refers to the process of consolidating, or sum-
marizing, a database instance; this is typically done by creating so-called aggregation
groups of elements in the database and then applying an aggregation function, e.g., avg ,
count , or min , to each group, thus obtaining an aggregate value for each group.

In early work, Klug [6] put forward a formal relational database framework that en-
compassed aggregation. In his framework, aggregation is performed according to two
parameters: (1) a set of attributes drawn from an argument relation, termed grouping
attributes, and (2) pairs of a new attribute name and an aggregation function. The tu-
ples in the relation are partitioned so that tuples with identical values for the grouping
attributes are assigned to the same group. For each of the resulting aggregation groups,
each aggregation function is evaluated on the tuples in the group, and the result is stored
as a value of the associated attribute for each tuple in the group.

In temporal databases, tuples are typically stamped with time intervals that capture
the valid time of the information, or facts, they record. During the 1980’s, aggregation
was incorporated in several query languages, e.g., Ben-Zvi’s Time Relational Model [1],
Navathe and Ahmed’s TSQL [7], Snodgrass’ TQuel [8], and a proposal by Tansel [10].
Some of these advances were subsequently consolidated in the TSQL2 proposal [9].

When aggregating temporal relations, it is meaningful to also group the tuples ac-
cording to their timestamp values. With temporal grouping, groups of values from the
time domain are formed. A tuple is then assigned to each group that overlaps with its
timestamp, this way obtaining groups of tuples. When an aggregation function is ap-
plied to the groups of tuples, a temporal relation results. Different kinds of temporal
groupings have emerged as being important. In instant temporal aggregation, the time
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domain is partitioned into time instants, or points. In moving-window (or cumulative)
temporal aggregation, additionally a time period is placed around each time instant to
determine the aggregation groups. With span aggregation, the time line is partitioned
into user-defined time periods.

This paper presents a general model for temporal aggregation that extends Klug’s
framework and that subsumes the temporal approaches mentioned above. The model
provides orthogonal support for two aspects of aggregation: (a) the definition of partial
result tuples for which to report one or more aggregate values, and (b) the definition
of aggregation groups, i.e., the collections of argument tuples that are associated with
the partial result tuples and over which the aggregation functions are to be computed.
Aggregation then takes three parameters: a partial result relation, g; a mapping function,
θ; and a set of pairs of an aggregation function and an attribute name, fi/Ci.

The most related, past works are due to Vega Lopez et al. [11] and Böhlen et al. [3].
The former offers a framework that enables the analysis and comparison of different
forms of temporal aggregation based on various mechanisms for defining aggregation
groups, which all take advantage of different granularities. This leads to a point-based
view that is not capable to preserve lineage information, and the resulting aggregation
groups are contiguous in the time dimension, i.e., the union of the timestamps of all
tuples in an aggregation group forms a convex set of time points. The latter offers a
framework that decouples the partitioning of the time domain from the specification
of the aggregation groups. This paper’s proposal builds on this work and extends it
in several directions. We elaborate on the relation to Klug’s and SQL’s framework,
show how to express previous forms of temporal aggregation in the general model, and
discuss by examples the additional expressiveness of the general model.

We proceed to introduce a running example. Section 3 then defines the new model,
and Section 4 illustrates how important kinds of temporal aggregation can be defined
using the model. Section 5 proceeds to identify directions for further research in tem-
poral aggregation. Section 6 summarizes the paper.

2 Aggregation Example

Consider a temporal relation emp that captures work contracts with employees, record-
ing for each contract the name of the employee (N ), a contract identifier (CID), the de-
partment to which the employee is assigned for the duration of the contract, the monthly
salary for the contract period (S ), and the valid time of the contract (T ). An instance
of this relation is shown Fig. 1(a) and illustrated graphically in the upper part of Fig. 2,
where the horizontal lines indicate the valid-time intervals of the tuples.

We consider the following three temporal aggregation queries over the relation:

– QITA: For each month and department, what is the number of contracts?
– QMWTA: For each month, how many contracts have been in effect during this

month and the preceding two months?
– QSTA: For each half-year period and department, what is the number of contracts?

QITA exemplifies instant temporal aggregation, for which the aggregation is applied
to each database state, in this case to each month. To compute the aggregate result for
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N CID D S T
r1 Jan 140 DB 1200 [1,12]
r2 Dan 141 DB 700 [1,5]
r3 Dan 150 DB 700 [6,15]
r4 Tim 143 AI 2000 [4,9]

(a) Relation emp

D Cnt T

DB 2 [1,5]
DB 2 [6,12]
DB 1 [13,15]
AI 1 [4,9]

(b) QITA

D Cnt T

DB 2 [1,5]
DB 3 [6,7]
DB 2 [8,14]
DB 1 [15,17]
AI 1 [4,11]

(c) QMWTA

D Cnt T

DB 3 [1,6]
DB 2 [7,12]
DB 1 [13,18]
AI 1 [1,6]
AI 1 [7,12]

(d) QSTA

Fig. 1. Temporal Relation emp and Different Aggregation Queries
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(3,[4,11])

Fig. 2. Graphical Representation of the emp Relation and Aggregation Queries

a specific month, all tuples that are valid for that month are considered. Coalescing is
used to get an interval-timestamped result relation. Coalescing yields result tuples over
maximal time intervals, also called constant intervals. For forming maximal intervals
two options exist. Either, the coalescing is performed wrt. the aggregate value alone,
or it is performed wrt. the aggregate value and the lineage, i.e., the set of argument
tuples used for computing the aggregate value. Coalescing with lineage preservation is
the most general approach and is thus used here [2]. The result of QITA is shown in
Fig. 1(b) and graphically illustrated in Fig. 2. Note that without lineage preservation,
(DB, 2, [1, 5]) and (DB, 2, [6, 12) would have been merged.

QMWTA illustrates moving-window aggregation. Here, the aggregate value for each
month is computed over all tuples that overlap this month or one of the preceding two
months. Thus, the last result tuple extends beyond the end point of the last argument
tuple. To obtain result tuples over maximal intervals, coalescing is applied similarly to
how it is done for ITA. The result of QMWTA is shown in Fig. 1(c) and graphically
illustrated in Fig. 2.

QSTA is a span aggregation query. The time domain is first partitioned into half-year
intervals independently of the argument relation. Then, for each half-year interval, the
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aggregation function is computed over all argument tuples that overlap that half year.
The result of QSTA is shown in Fig. 1(d) and graphically illustrated in Fig. 2.

3 General Temporal Aggregation

3.1 Preliminaries

We assume a discrete time domain, ΔT , consisting of a totally ordered set of elements,
termed time points (or instants). We assume a data model in which a timestamp, T ,
is assigned to each tuple that captures when the corresponding fact was, is, or will be
true in the modeled reality. A timestamp is a convex set over the time domain and
is represented by two time points, [Ts ,Te ], denoting its inclusive starting and ending
points, respectively. In short, we assume a valid-time data model in which tuples are
timestamped with intervals.

A relation schema is a three-tuple R = (Ω, Δ, dom), where Ω is a non-empty,
finite set of attributes, Δ is a finite set of domains, and dom : Ω → Δ is a function
that associates a domain with each attribute. A temporal relation schema is a relation
schema with at least one timestamp valued attribute, i.e., ΔT ∈ Δ. A tuple r over
schema R is a function that maps every Ai ∈ Ω to a value vi ∈ dom(Ai). A relation r
over schema R is a finite set of tuples over R.

For notational simplicity, we assume an ordering of the attributes and represent a
temporal relation schema as r = (A1, . . . , An,T ) and a corresponding tuple as r =
(v1, . . . , vn, [Ts ,Te ]). For a tuple r and an attribute Ai we write r.Ai to denote the
value of the attribute Ai in r. For a set of attributes A1, . . . , Ak, k ≤ n, we define
r[A1, . . . , Ak] = (r.A1, . . . , r.Ak).

3.2 A General Model of Temporal Aggregation

Recall that Klug’s (and SQL’s) conventional framework for non-temporal aggregation
performs aggregation on an argument relation according to two parameters [6]:

1. A set of attributes drawn from the argument relation, termed grouping attributes
2. A set of pairs of a new attribute name and an aggregation function

The tuples in the argument relation are partitioned according to their values for the
grouping attributes. Then for each partition, each aggregation function given in the sec-
ond parameter is computed on the tuples in the partition, and the result is stored as
a value of the associated attribute for each tuple in the partition. The non-grouping
attributes of the argument relation may be eliminated from the result by means of a
projection using relational algebra.

The new model for temporal aggregation extends Klug’s framework to the temporal
context and generalizes it to provide orthogonal support for two important aspects of
aggregation: (a) the definition of partial result tuples for which to report one or more
aggregate values, and (b) the definition of aggregation groups, i.e., collections of argu-
ment tuples that are associated with the result groups and over which the aggregation
functions are computed.
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Aggregate results

Partial result relation g

Result relation

Argument relation r

Fig. 3. General Temporal Aggregation

We assume that the aggregation is applied to a relation r, as described earlier. The
new temporal aggregation model allows then to specify the following three parameters:
(1) a partial result relation, g, (2) a mapping function, θ, from r to g, and (3) a set of
aggregation functions, F. The aggregation model is illustrated in Fig. 3.

Instead of partitioning the tuples in the argument relation according to their values
for certain of their attributes, we introduce a separate partial result relation, g, that
contains a partial result tuple for each tuple that will be included in the result relation;
i.e., these tuples will be extended with the aggregate results to form final result tuples.
The partial result relation has schema G = (B1, . . . , Bm,T ), where the Bi are non-
temporal attributes and T is a timestamp attribute that specifies a time interval (or time
point, as a special case of an interval) over which to report an aggregation result. This
relation generally has as attributes a subset of the attributes of the argument relation, the
timestamp attribute being one of them. Thus, it can typically be specified as a relational
algebra expression over the argument relation, i.e., g = RA(r). In general, however,
the attributes Bi and the timestamp T in the partial result relation may also be obtained
from relations other than r.

The second parameter, mapping function, θ : r → g, maps tuples from the argument
relation, r, to tuples in the partial result relation, g. It may assign the same argument
tuple to zero, one, or many partial result tuples. In other words, function θ associates
with each partial result tuple a set of argument tuples, termed its aggregation group,
over which to compute the aggregates to be reported for that tuple. This differs from the
conventional framework, where each input tuple is mapped to exactly one group, based
on equal values over all grouping attributes.

The third parameter is retained from the conventional framework and specifies the
aggregation functions, F = {f1/C1, . . . , fk/Ck}. Each fi is some aggregation func-
tion that takes a (temporal) relation as argument and applies aggregation to one of the
relation’s attributes. The resulting value is stored as the value of an attribute named Ci.
For instance, the pair countCID/Cnt states that countCID counts the CID values in
the argument relation and returns the count, which is stored as a value of attribute Cnt .
Using this notation, we allow for a family of count functions, one for each attribute of
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the argument relation. For example, countN and countS counts over the name and the
salary attribute, respectively.

Definition 1 (General Temporal Aggregation). Let g be a partial result relation, θ
a mapping function, and F a set of aggregation functions, as introduced earlier. The
general temporal aggregation is then defined as follows:

GT [g, θ,F]r = {g ◦ f | g ∈ g ∧ rg = {r ∈ r | θ(r) = g} ∧ f = f1(rg), . . . , fk(rg)}
The schema of the result relation is (B1, . . . , Bm, C1, . . . , Ck,T ).

The mapping function, θ, defines and associates an aggregation group, rg ⊆ r, with
each partial result tuple, g ∈ g. The aggregation functions are computed over these
aggregation groups. The final result tuples are given as the partial result tuples extended
(◦, concatenation) with the results of the aggregation functions.

General temporal aggregation decouples the specification of the desired result tuples
(i.e., the partial result tuples) from the specification of the aggregation groups (i.e., the
mapping of argument tuples to the partial result tuples). In SQL and Klug’s framework,
the desired result tuples and the aggregation groups are determined by the grouping at-
tributes only. Each different combination of grouping attribute values forms then a par-
tial result tuple and—by equality on the attribute values—determines a corresponding
aggregation group. We believe that the specification of the partial result tuples should
be decoupled from the specification of the associated aggregation groups, and we find
it natural to allow for the use of other operators than simply equality comparison for
the specification of the aggregation groups. This yields a more flexible and expressive
framework for temporal aggregation.

An important aspect of the framework is that the values for the timestamp attribute
in the partial result tuples may be either fixed and provided by the user, or it may be
inferred from the data in the argument relation. The use of fixed intervals corresponds
to how the non-timestamp attribute values are treated: they must be provided explicitly.
The use of inferred intervals is unique to the timestamp attribute. An inferred interval
in a partial result tuple is calculated as the intersection of the intervals of the argument
tuples that contribute to the aggregate results to be associated with that partial result
tuple. These inferred intervals are termed constant because there are no changes in the
argument relation during these intervals. Constant intervals are non-overlapping and
maximal. Queries QITA and QSTA illustrate the difference between user-provided and
inferred intervals.

The new model is quite general. The partial result relation, g, is completely inde-
pendent of the argument relation, r, and its only purpose is to group the results. This
provides extensive flexibility in arranging the results according to various criteria, and
it makes it possible to express different forms of temporal aggregates including the ones
proposed previously. We will show this next.

4 Different Forms of Temporal Aggregation

In part to explore the use and generality of the proposed aggregation framework, we
show how three previously proposed forms of temporal aggregation can be expressed
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in a uniform manner using the framework. We also discuss aggregation queries that are
difficult or even impossible to express in terms of the traditional temporal aggregation
operators, but can be expressed easily in the new framework.

4.1 Instant Temporal Aggregation

In instant temporal aggregation (ITA), the time domain is partitioned into time instants,
and an aggregation group is associated with each time instant t that contains all tuples
with a timestamp that contains t. Then the aggregation functions are evaluated on each
group, producing each a single aggregate value for each t. Finally, identical aggregate
results for consecutive time instants are coalesced into the previously mentioned con-
stant intervals.

In some approaches, the aggregate results for a constant interval must also have the
same lineage, meaning that they are produced from the same set of argument tuples.
Query QITA and its result in Fig. 1(b) illustrate ITA. Without the lineage requirement,
the result tuples (DB , 2, [1, 5]) and (DB , 2, [6, 12]) would become (DB , 2, [1, 12]).

Definition 2 (Instant Temporal Aggregation). Let r be a temporal relation, F be a set
of aggregation functions, and A = A1, . . . , Ak be the grouping attributes in r. Further,
let s = π[A,Ts ]r ∪ π[A,Te +1/Ts]r be the start points and e = π[A,Ts−1/Te ]r ∪
π[A,Te ]r be the delimiting points of the constant intervals. Then the instant temporal
aggregation for the aggregation functions in F over the argument relation r grouped by
A can be expressed in the general temporal aggregation model as GT [g, θ,F]r, where:

g = π[A, [Ts ,min(Te)/Te ]](s ��[s.A = e.A ∧ Ts ≤ Te ] e)
θ(r) = {g ∈ g | g.A = r.A ∧ g.T ∩ r.T 
= ∅}

To express ITA, the partial result relation, g, needs to specify the constant intervals
of the result tuples, considering also the grouping attributes, A1, . . . , Ak. First, s and
e collect all start and end points of the constant intervals together with the grouping
attribute values. Each argument tuple, r ∈ r, induces two start points (the tuple’s start
point, r.Ts , and the successor of the tuple’s end point, r.Te+1) and two end points (the
tuple’s end point, r.Te , and the predecessor of the tuple’s start point, r.Ts−1). Second,
those pairs of start and end points are selected that form a valid constant interval. This
is the case if for each start point the closest end point that is greater than or equal to
the start point is selected. This can be expressed as a join followed by a generalized
projection.

Example 1. Consider Query QITA. The start and end points of the constant inter-
vals are given as s = {(DB , 1), (DB , 6), (DB , 13), (DB , 16), (AI , 4), (AI , 10)}
and e = {(DB , 0), (DB , 5), (DB , 12), (DB , 15), (AI , 3), (AI , 9)}, respectively. Sub-
stituting s and e in the expression for the partial result relation, we get g =
{(DB , [1, 5]), (DB , [6, 12]), (DB , [13, 15]), (AI , [4, 9])}. The aggregation functions
are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈ g | g.D =
r.D ∧ g.T ∩ emp.T 
= ∅}. To compute, for example, the aggregate value over the
constant interval [1, 5], the mapping function selects the two argument tuples r1 and r2.
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This definition of ITA preserves lineage: adjacent result tuples with the same aggre-
gate value are not coalesced if they are derived from different argument tuples (cf. the
first two result tuples of QITA for the DB department).

4.2 Moving-Window Temporal Aggregation

With moving-window temporal aggregation (MWTA) (first introduced in TSQL [7] and
later also termed cumulative temporal aggregation [8,12]), a time window is used to de-
termine the aggregation groups. For each time instant t, an aggregation group is defined
as the set of argument tuples that hold in the interval [t−w, t], where w ≥ 0 is a win-
dow offset. In some work [11], a pair of offsets w and w′ is used, yielding a window
[t−w, t+w′] for determining the aggregation groups. After computing the aggregation
functions for each aggregation group, coalescing is applied similarly to how it is done
for ITA to obtain result tuples over maximal time intervals.

Query QMWTA and its result in Fig. 1(c) illustrate MWTA. To answer this query, a
window is moved along the time line, computing at each time point an aggregate value
over the set of tuples that are valid at some point during the last three months.

While both ITA and MWTA partition the time domain into time instants, they differ
in how the aggregation groups for each time instant are defined.

Definition 3 (Moving-Window Temporal Aggregation). Assume the earlier defini-
tions of r, F, and A = A1, . . . , Ak , and let w be a non-negative window offset. Fur-
ther, let s = π[A,Ts ]r ∪ π[A,Te +w/Ts]r be the start points and e = π[A,Ts −
1/Te ]r ∪ π[A,Te +w−1/Te ]r be the end points of the constant intervals. Then the
moving-window temporal aggregation for the aggregation functions in F over relation
r grouped by A and using window offset w can be expressed as GT [g, θ,F]r, where:

g = π[A, [Ts ,min(Te)/Te ]](s ��[s.A = e.A ∧ Ts ≤ Te ] e)
θ(r) = {g ∈ g | g.A = r.A ∧ [g.Ts−w+1, g.Te] ∩ r.T 
= ∅}

The expression of MWTA is similar to that of ITA; the only difference is that the
effect of the window offset, w, must be considered both for the computation of the
constant intervals that are stored in the partial result relation, g, and in the mapping
function, θ. Intuitively, each argument tuple affects the aggregation result beyond its
own timestamp. Thus, to determine s and e to generate the timestamps of the partial
result tuples, the window offset, w, is added to the end points of the argument tuples.
The mapping function, θ, is modified similarly; the only difference is that the start point
of the partial result tuple is decreased by w in order to collect also argument tuples that
do not overlap with the timestamp of the result tuple, but have to be considered for the
computation of the aggregates.

Example 2. Consider Query QMWTA, which has a window offset of 3. The start
points of the constant intervals together with the grouping attribute values are
s = {(DB , 1), (DB , 6), (DB , 8), (DB , 15), (DB , 18), (AI , 4), (AI , 12)} and the
end points e = {(DB , 0), (DB , 5), (DB , 7), (DB , 14), (DB , 17), (AI , 3), (AI , 11)}.



Towards General Temporal Aggregation 265

Substituting s and e in the expression for the partial result relation, we get g =
{(DB , [1, 5]), (DB , [6, 7]), (DB , [8, 14]), (DB , [15, 17]), (AI , [4, 11])}. The aggrega-
tion functions are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈ g |
g.D = r.D ∧ [g.Ts−2, g.Te ]∩ emp.T 
= ∅}. To compute, for example, the aggregate
value over the constant interval [6, 7], the mapping function uses the argument tuples
r1, r2, and r3.

4.3 Span Temporal Aggregation

For span temporal aggregation (STA), the time domain is first partitioned into prede-
fined intervals that are defined independently of the argument relation. For each such
interval, an aggregation group is then given as the set of all argument tuples that overlap
the interval. A result tuple is produced for each interval by evaluating an aggregation
function over the corresponding aggregation group.

Query QSTAand its result in Fig. 1(d) illustrate STA. The pre-defined intervals are
6-month periods.

Unlike in ITA and MWTA, the timestamps of the result tuples in STA are specified
independently of the argument data. Most approaches consider only regular time spans
expressed in terms of granularities, e.g., years, months, and days.

Definition 4 (Span Temporal Aggregation). Assume the earlier definitions of r, F,
and A = A1, . . . , Ak, and let p be a relation with a single attribute T that contains the
time intervals over which to report result tuples. Then span temporal aggregation can
be expressed as GT [g, θ,F]r, where:

g = π[A]r × p

θ(r) = {g ∈ g | g.A = r.A ∧ g.T ∩ r.T 
= ∅}

In the expression of STA, we assume that the timestamps of the result tuples are
given in a relation p. This relation is joined with the argument relation, r, and projected
to the grouping attributes, A, and the timestamp attribute, T , to form the partial result
relation, g. The mapping function, θ, is the same as for ITA.

Example 3. Consider Query QSTA, which reports a result tuple for each six-month
period. The time intervals of the result tuples are then given as p = {([1, 6]),
([7, 12]), ([13, 18])}, which gives a partial result relation g = {(DB , [1, 6]),
(DB , [7, 12]), (DB, [13, 18]), (AI , [1, 6]), (AI , [7, 12]), (AI , [13, 18])}. The aggrega-
tion functions are F = {countCID/Cnt}, and the mapping function is θ(r) = {g ∈
g | g.D = r.D ∧ g.T ∩ emp.T 
= ∅}. To compute, e.g., the aggregate value over the
period [1, 6], the mapping function uses the tuples r1, r2, and r3.

Note that STA reports a result tuple for all predefined intervals. If the aggregate group is
empty, the aggregate value is 0 or NULL. This behavior can be controlled by adjusting
the definition of g.
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4.4 Aggregation over Non-contiguous Aggregation Groups

In ITA, MWTA, and STA the aggregation groups are defined over contiguous subsets
of the non-temporal and timestamp domains. For the non-temporal attributes, each ag-
gregation group is defined for a single attribute value; and for the timestamp, it is either
divided into single time points, for ITA, or into contiguous sets of time points, for
MWTA and STA.

It is desirable to also be able to compute aggregates over sets of argument tuples that
are non-contiguous in some of the attributes. With general temporal aggregation, aggre-
gation groups can be specified where the time domain is grouped into non-contiguous
groups of time points and the timestamps of the tuples in an aggregation group do not
necessarily overlap with the timestamp of the corresponding result tuple. Similarly, the
aggregation groups need not be disjoint with respect to non-temporal attributes. We
illustrate these capabilities by means of two examples.

Example 4. Consider the following query: What is the total number of contracts in
each quarter, summed up over the past two years? In this query the argument tuples
that contribute to a result tuple are temporally non-contiguous and do not overlap with
the timestamp of the result tuple. This query can be formulated as GT [g, θ,F]emp,
where:

g = {([1, 3]), ([4, 6]), ([7, 9]), ([10, 12])}
θ(r) = {g ∈ g | g.T ∩ [emp.Ts mod 12 + 1, emp.Te mod 12 + 1] 
= ∅}

F = {countCID/Cnt}
The partial result tuples simply specify the four quarters, whereas the mapping function
associates the argument tuples with the correct quarters.

Example 5. Consider the following query: For each department, what is the total num-
ber of contracts in the other departments? Here, the aggregation group of a partial result
tuple consists of tuples with a department value that is different from the department of
the partial result tuple. This query can be formulated as GT [g, θ,F]emp, where:

g = CI(π[r.D , s.T ](r ��[r.D 
= s.D ] r/s))
θ(r) = {g ∈ g | g.D 
= r.D ∧ g.T ∩ emp.T 
= ∅}

F = {countCID/Cnt}
where CI is a regular expression that computes the constant intervals as for ITA. Note
that the aggregation groups are not disjoint. With each partial result tuple we associate
all argument tuples with a different department value.

5 Open Challenges in Temporal Aggregation

The foundations of most temporal database technology were built in the 1980s and
1990s. In retrospect, much of that research seems to have focused implicitly on meet-
ing the relational data management needs of administrative applications. (This paper’s
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example database is a good representative of this class of application.) Over the last
decade, new types of applications and technologies have gained in prominence, includ-
ing ones that offer new challenges to temporal database technology and temporal aggre-
gation. We proceed to discuss challenges, most of which are due to these developments.

Update-Intensive Applications Based on Sampled Continuous Functions. The class of
update-intensive applications is gaining in prominence. For example, large populations
of vehicles may report their speeds and other sensed data. These data are samples of
continuous functions. For most times, a measured value of a function is not available.
The samples may have been reported according to a scheme that offers accuracy guar-
antees, or they may have been reported at regular time intervals. This is unlike the salary
attribute in our example, and this scenario suggests several challenges.

First, we may want to transform the sequences of samples to a representation where
we have a value for each point in time so that we are back in known territory. Issues
include how to accomplish this transformation, how accurately to do this, and how to
capture the inaccuracy.

Next, when applying an aggregation function to the sensed data, it becomes relevant
to take into account the inaccuracy of the data so that the inaccuracy of the result can be
reported. Likewise, when using the sensed data for defining the partial result relation,
the inaccuracy of the data is an important part of the equation.

Third, it may be observed that instant temporal aggregation and moving-window
temporal aggregation may return result relations that contain up to twice as many tuples
as the input relations, which seems counter to the goal of summarizing the data in
order to obtain an overview. It thus becomes of interest to be able to “aggregate an
aggregate.” We believe that it would be attractive to enable the users to control the trade-
off between result accuracy and result cardinality. For example, if the user specifies a
certain required accuracy, the aggregation should return the smallest number of tuples
needed to satisfy that accuracy.

Applications Involving Higher-Dimensional Temporal Data. Many application will in-
volve bitemporal, spatio-temporal, or n-dimensional data. Supporting aggregation for
such data offers several challenges. For example, with more than one dimension, it be-
comes necessary to define the 1+-dimensional equivalents of constant intervals. While
constant intervals are unique, such constant regions are not. The definition as well as
efficient implementation of maximal constant regions is a challenge.

Expressing General Temporal Aggregation in SQL. The SQL:2003 standard supports
window functions. With these, aggregates may be computed by sorting and scanning the
argument relation. While this is efficient, it does not support multidimensional group-
ings for which no single obvious ordering exists. Chatziantoniou’s EMF-SQL extends
the group by clause with grouping variables and introduces a such that clause
for constraining the grouping variables [5]. Neither approach supports the specification
of constant intervals, which is at the core of temporal aggregation. It would be inter-
esting to extend these approaches with support for time. A survey of approaches to
temporal aggregation in SQL-based temporal query languages is available [4].
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Extension to Non-Relational Data Models. Far from all data is stored in SQL databases.
Perhaps most notably, increasing amounts of data are stored in XML. Introducing tem-
poral support, including support for temporal aggregation, calls for reconsidering many
of the key data model and query language design decisions. For example: What is
the equivalent of a tuple? Is there something comparable to tuple-timestamping and
attribute-value timestamping? What are the implications of the hierarchical nature of
the model for timestamping and aggregation?

Efficient Evaluation Algorithms. The general model covered in this paper defines tem-
poral aggregation and offers a uniform way of expressing concisely the various forms
of temporal aggregation that have been studied in the past. However, the definition
does not imply an efficient implementation—a straightforward implementation would
require costly operations such as joins and scans of the argument relation (4 scans for
the delimiting points of the constant intervals and one for the aggregation). While ef-
ficient implementation of aggregation has been studied, solutions that integrate tightly
with state-of-the-art relational database technology are in order. One specific challenge
is to incrementally compute the partial result tuples as the argument relation is scanned,
to avoid more than one scan of the argument relation.

6 Concluding Remarks

The framework for aggregation that has been available in SQL for several decades and
that was formalized by Klug is very intuitive and has remained relatively unquestioned,
at least in the context of on-line transaction processing. We believe that it is time to
probe deeper. Specifically, the current framework is far from a panacea for all rela-
tional data management needs. We believe that aggregation can be rendered much more
expressive.

This paper has elaborated on that view, by presenting a general framework for tem-
poral aggregation, by illustrating how this framework accommodates existing forms of
aggregation, and by pointing out new challenges that invite others to engage in further
research—the general model proposed here is also not a panacea.
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