
Continuous Clustering of Moving Objects
Christian S. Jensen, Member, IEEE, Dan Lin, Student Member, IEEE, and

Beng Chin Ooi, Member, IEEE

Abstract—This paper considers the problem of efficiently maintaining a clustering of a dynamic set of data points that move

continuously in two-dimensional euclidean space. This problem has received little attention and introduces new challenges to

clustering. The paper proposes a new scheme that is capable of incrementally clustering moving objects. This proposal employs a

notion of object dissimilarity that considers object movement across a period of time, and it employs clustering features that can be

maintained efficiently in incremental fashion. In the proposed scheme, a quality measure for incremental clusters is used for identifying

clusters that are not compact enough after certain insertions and deletions. An extensive experimental study shows that the new

scheme performs significantly faster than traditional ones that frequently rebuild clusters. The study also shows that the new scheme is

effective in preserving the quality of moving-object clusters.

Index Terms—Spatial databases, temporal databases, clustering.

Ç

1 INTRODUCTION

IN abstract terms, clustering denotes the grouping of a set of
data items so that similar data items are in the same groups

and different data items are placed in distinct groups.
Clustering thus constitutes the fundamental data analysis
functionality that provides a summary of data distribution
patterns and correlations in a data set. Clustering is finding
application in diverse areas such as image processing, data
compression, pattern recognition, and market research, and
many specific clustering techniques have been proposed for
static data sets (for example, [17], [28]).

With the increasing diffusion of wireless devices such as
PDAs and mobile phones and the availability of geoposi-
tioning, for example, GPS, a variety of location-based
services are emerging. Many such services may exploit
knowledge of object movement for purposes such as
targeted sales, system load balancing, and traffic congestion
prediction [3]. The needs for analyses of the movements of a
population of objects have also been fueled by natural
phenomena such as cloud movement and animal migration.
However, in spite of extensive research having been
conducted on clustering and on moving objects (for
example, [12], [15], [20], [21], [24]), little attention has been
devoted to the clustering of moving objects.

A straightforward approach to the clustering of a large
set of continuously moving objects is to do so periodically.
However, if the period is short, this approach is overly
expensive, mainly because the effort expended on the

previous clustering are not leveraged. If the period is long,
long durations of time exist with no clustering information
available. Moreover, this brute-force approach effectively
treats the objects as static objects and does not take into
account the information about their movement. For
example, this has the implication that it is impossible to
detect that some groups of data are moving together.

Rather, the clustering of continuously moving objects
should take into account not just the objects’ current
positions but also their anticipated movements. As we shall
see, doing so enables us to capture each clustering change
as it occurs during the continuous motion process, thus
providing better insight into the clustering of data sets of
continuously moving objects. Fig. 1 illustrates the clustering
effect that we aim for. Connected black-and-white points
denote object positions at the current time and a near-future
time. Our approach attempts to identify clusters at the
current time, as given by solid ellipses, and to detect cluster
splits and merges at future times, as represented by shaded
ellipses.

As has been observed in the literature, two alternatives
exist when developing a new incremental clustering scheme
[18]. One is to develop an entirely new specialized scheme
for the new problem of moving objects. The other is to
utilize the framework provided by a standard clustering
algorithm but develop new summary data structures for the
specific problem being addressed that may be maintained
efficiently in incremental fashion and that may be inte-
grated into such a framework. We adopt this second
alternative, as we believe that this is more flexible and
generic. In particular, the new summary data structures
may then be used together with a broad range of existing
standard clustering algorithms. In addition, the summary
data structures can be used for other data mining tasks such
as computing approximate statistics of data sets.

We consequently propose a new summary data struc-
ture, termed a clustering feature (CF), for each moving object
cluster, which is able to reflect key properties of a moving
cluster and can be maintained incrementally. Based on
these CFs, we modify the Birch algorithm [28] to enable
moving-object clustering (MC). As suggested, our scheme

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007 1161

. C.S. Jensen is with the Department of Computer Science, Aalborg
University, 2 Fredrik Bajers Vej 7E, Aalborg, DK-9220, Denmark.
E-mail: csj@cs.aau.dk.

. D. Lin is with the Department of Computer Science, Purdue University,
LWSN 2142R, 305 N. University Street, West Lafayette, IN 47907.
E-mail: lindan@cs.purdue.edu.

. B.C. Ooi is with the School of Computing, National University of
Singapore, 3 Science Drive 2, Singapore 117543.
E-mail: ooibc@comp.nus.edu.sg.

Manuscript received 19 July 2006; revised 9 Feb. 2007; accepted 18 Apr. 2007;
published online 1 May 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0347-0706.
Digital Object Identifier no. 10.1109/TKDE.2007.1054.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

AAU
Text Box
©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

can also be applied to other incremental clustering algo-
rithms based on cluster centers.

We summarize our contributions as follows: We employ
a notion of object dissimilarity that considers object move-
ment across a period of time. We develop CFs that can be
maintained incrementally in an efficient fashion. In our
scheme, a quality measure for incremental clusters is
proposed to identify clusters that are not compact enough
after certain insertions and deletions. In other words, we are
able to predict when clusters are to be split, thus avoiding
the handling of the large amounts of events akin to the
bounding-box violations of other methods [16]. An exten-
sive experimental study shows that the proposed scheme
performs significantly faster than traditional schemes that
frequently rebuild clusters. The results also show that the
new scheme is effective in preserving the quality of clusters
of moving objects. To the best of our knowledge, this is the
first disk-based clustering method for moving objects.

The organization of the paper is as follows: Section 2
reviews related work. Section 3 presents our clustering
scheme. Section 4 covers analytical studies, and Section 5
reports on empirical performance studies. Finally, Section 6
concludes the paper.

2 RELATED WORK

Many clustering techniques have been proposed for static
data sets [1], [2], [7], [10], [14], [17], [18], [19], [25], [28]. A
comprehensive survey is given elsewhere [11]. The K-Means
algorithm [17] and the Birch algorithm [28] are representa-
tives of nonhierarchical and hierarchical methods, respec-
tively. The goal of the K-Means algorithm is to divide the
objects into K clusters such that some metric relative to the
centroids of the clusters is minimized. The Birch algorithm,
which is proposed to incrementally cluster static objects,
introduces the notion of a CF and a height-balanced CF tree.
Our approach extends these concepts. A key difference is
that in Birch, the summary information of static data does
not need to be changed unless an object is inserted, whereas
in our approach, the summary information itself must be
dynamic and must evolve with time due to continuous
object movement.

Another interesting clustering algorithm is due to Yiu
and Mamoulis [26], who define and solve the problem of
object clustering according to network distance. In their
assumed setting, where objects are constrained to a spatial
network, network distance is more realistic than the widely

used euclidean distance (ED) for the measurement of
similarity between objects.

In spite of extensive work on the static databases, only a
few approaches exist for MC. We proceed to review each of
these.

Early work by Har-Peled [9] aims to show that moving
objects can be clustered once so that the resulting clusters
are competitive at any future time during the motion.
However, in a two-dimensional (2D) space, the static
clusters obtained from this method may have about eight
times larger radii than the radii obtained by the optimal
clustering, and the numbers of clusters are also much larger
(at least 15 times) than that for the usual clustering. Further,
this proposal does not take into account I/O efficiency.

Zhang and Lin [27] propose a histogram technique based
on the clustering paradigm. In particular, using a “distance”
function that combines both position and velocity differ-
ences, they employ the K-center clustering algorithm [6] for
histogram construction. However, histogram maintenance
lacks in efficiency—as stated in the paper, a histogram must
be reconstructed if too many updates occur. Since there are
usually a large amount of updates at each timestamp in
moving object databases, the histogram reconstruction will
occur frequently, and thus, this approach may not be
feasible.

Li et al. [16] apply microclustering [28] to moving objects,
thus obtaining algorithms that dynamically maintain
bounding boxes of clusters. However, the number of
maintenance events involved dominates the overall run-
times of the algorithms, and the number of such events is
usually prohibitively large. Given a moving microcluster
that contains n objects, the objects at each edge of the
bounding box can change up to OðnÞ times during the
motion, and each change corresponds to an event.

Kalnis et al. [13] study historical trajectories of moving
objects, proposing algorithms that discover moving clusters.
A moving cluster is a sequence of spatial clusters that
appear in consecutive snapshots of the object movements so
that consecutive spatial clusters share a large number of
common objects. Such moving clusters can be identified by
comparing clusters at consecutive snapshots; however, the
comparison cost can be very high. More recently, Spilio-
poulou et al. [22] propose a framework, MONIC, which
models and traces cluster transitions. Specifically, they first
cluster data at multiple timestamps by using the bisecting
K-Means algorithm and then detect the changes of clusters
at different timestamps. Unlike the above two works, which
analyze the relations between clusters after the clusters are
obtained, our proposal aims to predict the possible cluster
evolution to guide the clustering.

Finally, we note that the clustering of moving objects
involves future-position modeling. In addition to the linear
function model, which is used in most work, a recent
proposal considers nonlinear object movement [23]. The
idea is to derive a recursive motion function that predicts
the future positions of a moving object based on the
positions in the recent past. However, this approach is
much more complex than the widely adopted linear model
and complicates the analysis of several interesting spatio-
temporal problems. Thus, we use the linear model. We also
note that we have been unable to find work on clustering in
the literature devoted to kinetic data structures (for
example, [4]).

1162 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 1. Clustering of moving objects.

3 MOVING-OBJECT CLUSTERING

This section first describes the representation of moving
objects and then proposes a scheme to cluster moving
objects, called Moving-Object Clustering (MC).

3.1 Modeling of Moving Objects

We assume a population of moving objects, where each
object is capable of transmitting its current location and
velocity to a central server. An object transmits new
movement information to the server when the deviation
between its current actual location and its current server-
side location exceeds a specified threshold, dictated by the
services to be supported. The deviation between the actual
location and the location assumed by the server tends to
increase as time progresses.

In keeping with this, we define the maximum update time
ðUÞ as a problem parameter that denotes the maximum time
duration in between any two updates to any object.
Parameter U can be built into the system to require that
each object must issue at least one update every U time
units. This is rational due to the concern that if an object
does not communicate with the server for a long time, it is
hard to know whether this object keeps moving in the same
way or disappears accidentally without being able to notify
the server.

Each moving object has a unique ID, and we model its
point position in a 2D euclidean space as a linear function of
time. Specifically, an object with ID OID can be represented
by a 4-tuple ðOID; �xu; �v; tuÞ, where �xu is the position of the
object at time tu, and �v is the velocity of the object at that
time. Then, the (server-side) position of this object at time t
can be computed as �xðtÞ ¼ �xu þ �vðt� tuÞ, where t � tu.

3.2 Object Movement Dissimilarity

We aim to cluster objects with similar movements, taking
into account both their initial position and velocity. In
particular, we use weighted object positions at a series of
time points to define object dissimilarity. The computation
of dissimilarity proceeds in three steps.

We first select m, m � 1, sample timestamps t1; . . . ; tm,
each of which is associated with a weight wi. Their
properties are described as follows, where tnow denotes
the current time:

8i ðti < tiþ1 ^ tnow � ti � tnow þ U ^ wi � wiþ1Þ:

We thus only consider trajectories of moving objects within
a period of duration U after the current time, and sample
points are given a higher weight the closer they are to the
current time. This allows modeling of predicted positions
that become less accurate as time passes. The details of the
selection of weight values follow in Section 4.

In the second step, object positions are computed at the
chosen timestamps according to their movement functions.
Given an object O, its positions at times t1; . . . ; tm are
�xð1Þ; . . . ; �xðmÞ. The ED between a pair of positions, �x

ðiÞ
1 and

�x
ðiÞ
2 , of two objects, O1 and O2, at time ti is given by

ED �x
ðiÞ
1 ; �x

ðiÞ
2

� �
¼ �x

ðiÞ
1 � �x

ðiÞ
2

��� ��� ¼ ffi
ðxi11 � xi21Þ

2 þ ðxi12 � xi22Þ
2

q
;

where xijk is the kth dimensional position value of object Oj

at time ti.

Third, we define the dissimilarity function between O1

and O2:

MðO1; O2Þ ¼
Xm
i¼1

wi � ED2 �x
ðiÞ
1 ; �x

ðiÞ
2

� �
: ð1Þ

Note that when m ¼ 1 and w1 ¼ 1, the function reduces to

the (squared) ED.
We extend the function to apply to an object and a

cluster C that consists of N objects and has center Oc:

MðO;CÞ ¼ N

N þ 1

Xm
i¼1

wi � ED2 �xðiÞ; �xðiÞc

� �
: ð2Þ

The center Oc of a cluster is defined formally in the

following section.

3.3 Clustering Feature

We proceed to define the Clustering Feature (CF) for

moving objects, which is a compact incrementally main-

tainable data structure that summarizes a cluster and that

can be used for computing the average radius of a cluster.

Definition 1. The CF of a cluster is of the form

ðN;CX;CX2; CV ; CV 2; CXV ; tÞ, where N is the number

of moving objects in the cluster, CX ¼
PN

i¼1 �xiðtÞ,
CX2 ¼

PN
i¼1 �x2

i ðtÞ, CV ¼
PN

i¼1 �viðtÞ, CV 2 ¼
PN

i¼1 �v2
i ðtÞ,

CXV ¼
PN

i¼1ð�xiðtÞ�viðtÞÞ, and t is the update time of the

feature.

A CF can be maintained incrementally under the passage of

time and updates.

Claim 1. Let tnow be the current time and

CF ¼ ðN;CX;CX2; CV ; CV 2; CXV ; tÞ;

where t < tnow, be a CF. Then, CF at time t can be updated to

CF 0 at time tnow as follows:

CF 0 ¼ðN;CX þ CV ðtnow � tÞ;
CX2 þ 2CXV ðtnow � tÞ þ CV 2ðtnow � tÞ2;
CV ; CV 2; CXV þ CV 2ðtnow � tÞ; tnowÞ:

Proof. The number of moving objects N , the sum of the

velocities CV , and the sum of the squared velocities CV 2

remain the same when there are no updates. The three

components that involve positions need to be updated to

the current time according to the moving function. For

example, CX will be updated to CX
0

as follows:

CX
0 ¼

XN

i¼1
�xiðtnowÞ

¼
XN

i¼1
ð�xiðtÞ þ �viðtnow � tÞÞ

¼
XN

i¼1
�xiðtÞ þ ðtnow � tÞ

XN

i¼1
�vi

¼ CX þ CV ðtnow � tÞ:

The other two components are derived similarly. tu

Claim 2. Assume that an object given by ðOID; �x; �v; tÞ
is inserted into or deleted from a cluster with CF

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1163

CF ¼ ðN;CX;CX2; CV ; CV 2; CXV ; tÞ. The resulting CF

CF 0 is computed as

CF 0 ¼ðN � 1; CX � �x;CX2 � �x2; CV � �v;

CV 2 � �v2; CXV � �x�v; tÞ:

Proof. Omitted. tu
Definition 2. Given a cluster C, its (virtual moving) center

object Oc is ðOID;CX=N;CV =N; tÞ, where the OID is

generated by the system.

This center object represents the moving trend of the

cluster.

Definition 3. The average radius RðtÞ of a cluster is the time-

varying average distance between the member objects and the

center object. We term RðtÞ the average-radius function.

RðtÞ ¼

ffi
1

N

XN
i¼1

ED2ð�xiðtÞ; �xcðtÞÞ

vuut :

This function enables us to measure the compactness of a

cluster, which then allows us to determine when a cluster

should be split. More importantly, we can efficiently

compute the time when a cluster needs to be split without

tracking the variation of the bounding box of the cluster.

Claim 3. The average-radius function Rðt2Þ can be expressed as a

function of time, Rð�tÞ, and can be computed based on the CF

given at time t1 ðt1 � t2Þ.
Proof. Let the CF be given as of time t1 and assume that we

want to compute Rðt2Þ for a later time t2. We first

substitute the time variation �t ¼ t2 � t1 for every

occurrence of t2 � t1 in function Rðt2Þ:

ED2ð�xiðtÞ; �xcðtÞÞ ¼
XN

i¼1
ð�xiðt2Þ � �xcðt2ÞÞ2

¼
XN

i¼1
�x2
i ðt2Þ � 2�xiðt2Þ�xcðt2Þ þ �x2

cðt2Þ
� �

¼
XN

i¼1
ðð�xi þ �vi�tÞ2�

2 �xi þ �vi�tÞð�xc þ �vc�tÞ þ ð�xc þ �vc�tÞ2
� �

:

Then, we represent function Rðt2Þ as a function of �t:

Rð�tÞ ¼
ffi
ðA�t2 þB�tþ CÞ=N

p
; where

A ¼
XN
i¼1

�v2
i � 2�vc

XN
i¼1

�vi þN�v2
c ;

B ¼2
XN
i¼1

ð�xi�viÞ � �vc
XN
i¼1

�xi � �xc
XN
i¼1

�vi þN �xc�vc

 !
;

C ¼
XN
i¼1

�x2
i � 2�xc

XN
i¼1

�xi þN �x2
c :

Subsequently, the coefficients of function �t can be

expressed in terms of the CF.

A ¼ CV 2 � ðCV Þ2=N;

B ¼ 2ðCXV � CXCV =NÞ;

C ¼ CX2 � ðCXÞ2=N:
ut

3.4 Clustering Scheme

We are now ready to present our clustering scheme, which

employs the proposed dissimilarity function and CF, thus

enabling many traditional incremental clustering algo-

rithms based on cluster centers, to handle moving objects.
Our scheme utilizes the framework provided by the

Birch clustering algorithm, which, however, requires

several modifications and extensions: 1) concerning the

data structure, we introduce two auxiliary data structures in

addition to the hierarchical data structure, 2) we propose

algorithms for the maintenance of the new CF under

insertion and deletion operations, and 3) for the split and

merge operations, we propose algorithms that quantify the

cluster quality and compute the split time.

3.4.1 Data Structures

The clustering algorithm uses a disk-based data structure

that consists of directory nodes and cluster nodes. The

directory nodes store summary information for the clusters.

Each node contains entries of the form hCF;CP i, where CF

is the clustering feature and CP is a pointer to either a

cluster node or the next directory node. The structure

allows the clusters to be organized hierarchically according

to the center objects of the clusters and, hence, is scalable

with respect to data size. The directory node size is one disk

page.
Each cluster node stores the data objects, each repre-

sented as ðOID; �x; �v; tÞ, according to the cluster they belong

to. Unlike the directory node, each cluster node may consist

of multiple disk pages. The maximum capacity of a cluster

is an application-dependent parameter, which can be given

by users. By using the concept of maximum cluster

capacity, we guarantee that the clustering performance is

stable, that is, the maintenance cost for each cluster is

similar. It should be noted that the maximum cluster

capacity is only associated with the leaf cluster nodes. The

nodes at higher levels correspond to bigger clusters and can

also be returned to the users according to their requests.
In addition to this CF structure, two auxiliary structures,

an event queue and a hash table, are also employed. The

event queue stores future split events htsplit; CIDi in

ascending order of tsplit, where tsplit denotes the split time,

and CID is the cluster identifier. The hash table maps object

IDs to cluster IDs, that is, OIDs to CIDs, so that given the

ID of an object, we can efficiently locate the cluster that this

object belongs to. These two structures store much less data

than the whole data set (the event queue and the hash table

are only 1 percent and 10 percent of the whole data set size,

respectively) and, hence, they can be either cached in the

main memory or stored contiguously on a disk for efficient

scanning and loading into the main memory.

1164 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

3.4.2 Insertion and Deletion

We proceed to present the algorithms that maintain a
clustering under insertions and deletions.

The outline of the insertion algorithm is given in Fig. 2.
To insert an object O given by ðOID; �x; �v; tuÞ, we first find
the center object of some cluster C that is nearest to the
object according to M. A global partition threshold �g is
introduced that controls the clustering. Threshold �g gives
the possible maximum M distance between two objects
belonging to two closest neighboring clusters. To estimate
�g, we first need to know the average size of a cluster Sc.
Without any prior knowledge, Sc is computed as Sc ¼
Area=ðN=fÞ based on a uniform distribution (Area is the
area of the domain space, N is the total number of objects,
and f is the cluster capacity). If the data distribution is
known, Area can be computed as the area of the region
covered by most objects.

We can now define �g ¼
Pm

i¼1 wi � ð2
ffiffiffiffiffi
Sc
p
Þ2. The idea

underlying this definition is that if the distance between
two objects is always twice as large as the average cluster
diameter during the considered time period, these two
objects most probably belong to two different clusters. By
using �g, we can roughly partition the space, which saves
computation cost. If the distance between object O and
cluster C exceeds �g, we create a new cluster for object O
directly. Otherwise, we check whether cluster C needs to be
split after absorbing object O. If no split is needed, we insert
object O into cluster C and then execute the following
adjustments:

. Update the CF of C to the current time according to
Claim 1; then, update it to cover the new object
according to Claim 2.

. If a split time of the new cluster exists (that is,
procedure SplitTime returns a value larger than 0),
insert the cluster with this split time into the event
queue. Details to do with splits are addressed in the
next section.

. Update the object information in the hash table.

If cluster C is to be split after the insertion of object O,
we check whether the two resultant clusters (CID and
newCID) can be merged with other clusters. The function
CanMerge may return a candidate cluster for merge
operation. Specifically, an invocation of function Can-
Merge with arguments CID and CID0 looks for a cluster
that it is appropriate to merge cluster CID with, and if
such a cluster is found, it is returned as CID0. The merge
policy will be explained in Section 3.4.3.

Next, to delete an object O, we use the hash table to
locate the cluster C that object O belongs to. Then, we
remove object O from the hash table and cluster C, and we
adjust the CF. Specifically, we first update the feature to the
current time according to Claim 1 and then modify it
according to Claim 2. If cluster C does not underflow after
the deletion, we further check whether the split event of C
has been affected and adjust the event queue accordingly.
Otherwise, we apply the merge policy to determine
whether this cluster C can be merged with other clusters
(denoted as CID0). The deletion algorithm is outlined in
Fig. 3.

3.4.3 Split and Merge of Clusters

Two situations exist where a cluster must be split. The first
occurs when the number of objects in the cluster exceeds a
user-specified threshold (that is, the maximum cluster
capacity). This situation is detected automatically by the
insertion algorithm covered already. The second occurs
when the average radius of the cluster exceeds a threshold,
which means that the cluster is not compact enough. Here,
the threshold (denoted as �s) can be defined by the users if
they want to limit the cluster size. It can also be estimated as
the average radius of clusters given by the equation
�s ¼ 1

4

ffiffiffiffiffi
Sc
p

. We proceed to address the operations in the
second situation in some detail.

Recall that the average radius of a cluster is given as a
function of time Rð�tÞ (see Section 3.3). Since Rð�tÞ is a
square root, for simplicity, we consider R2ð�tÞ in the
following computation. Generally, R2ð�tÞ is a quadratic
function. It degenerates to a linear function when all of the
objects have the same velocities. Moreover, R2ð�tÞ is either
a parabola opening upward or an increasing line—the
radius of a cluster will never first increase and then
decrease when there are no updates. Fig. 4 shows the only
two cases possible for the evolution of the average radius

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1165

Fig. 2. Insertion algorithm.

Fig. 3. Deletion algorithm.

when no updates occur, where the shaded area corresponds
to the region covered by the cluster as time passes.

Our task is to determine the time, if any, in between the
current time and the maximum update time when the
cluster must be split, that is, �t ranges from 0 to U . Given
the split threshold �s, three kinds of relationships between
R2ð�tÞ and �2

s are possible—see Fig. 5.

In the first, leftmost two cases, radius R2 remains below

threshold �2
s , implying that no split is caused. In the second,

middle two cases, radius R2ð0Þ exceeds threshold �2
s , which

means that the insertion of a new object into cluster CID

will make the new radius larger than the split threshold and

thus cause an immediate split. In the last two cases, radius

R2 exceeds threshold �2
s at time ts, causing an event

hts; CIDi to be placed in the event queue.
The next step is to identify each of the three situations by

means of function R2ð�tÞ itself. We first compute R2ð0Þ. If
this value exceeds �2

s , we are in the second case. Otherwise,
R2ðUÞ is computed. If this value is smaller than �2

s , we are in
the first case. If not, we are in the third case, and we need to
solve the equation ðA�t2 þB�tþ CÞ=N ¼ �2

s , where the
split time ts is the larger solution, that is,

ts ¼ ð�Bþ
ffi
B2 � 4AðC � �2

sNÞ
q

Þ=ð2AÞ:

Note that when the coefficient of �t2 equals 0,
function R2ð�tÞ degenerates to a linear function, and
ts ¼ ð�2

sN � CÞ=B. Fig. 6 summarizes the algorithm.
At the time of a split, the split starts by identifying the

pair of objects with the largest M value. Then, we use these
objects as seeds, redistributing the remaining objects among
them, again based on their mutual M values. Objects are
thus assigned to the cluster that they are most similar to. We
use this splitting procedure mainly because it is very fast
and runtime is an important concern in moving object

environments. The details of the algorithm are shown in

Fig. 7.
We first pick up the farthest pair of objects seed1 and

seed2 (line 1), which will be stored in cluster CID1 and

CID2, respectively. For each remaining object Or in cluster

CID1, we compute its distances to seed1 and seed2 using M

(lines 6 and 7). If Or is close to seed1, it will remain in cluster

CID1. Otherwise, Or will be stored in cluster CID2. After all

the objects have been considered, we compute the CFs of

both clusters (lines 11 and 12).
After a split, we check whether each cluster C in the two

new clusters can be merged with preexisting clusters (see

Fig. 8). To do this, we compute the M-distances between the

center object of cluster C and the center object of each

preexisting cluster. We consider the k nearest clusters that

may accommodate cluster C in terms of numbers of objects.

For each such candidate, we execute a “virtual merge” that

computes the CF assuming absorption of C. This allows us

to identify clusters where the new average radius is within

threshold �g. Among these, we choose a cluster that will

lead to no split during the maximum update time, if one

exists; otherwise, we choose the one that will yield the latest

split time. Finally, we execute the real merge: We update

the CF, the hash table, and the event queue. The merge

algorithm is shown in Fig. 9.

1166 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 4. Average radius examples.

Fig. 5. Squared average radius evolution.

Fig. 6. Split time algorithm.

Fig. 7. Split algorithm.

4 ANALYSIS OF DISSIMILARITY VERSUS

CLUSTERING

In this section, we study the relationship between dissim-

ilarity measure M and the average radius of the clusters

produced by our scheme.
To facilitate the analysis, we initially assume that no

updates occur to the data set. This enables us to set the

weights used in M to 1—decreasing weights are used to

make later positions, which may be updated before they are

reached, less important. Also, to facilitate the analysis, we

replace the sum of sample positions in M with the

corresponding integral, denoted as M 0, from the time when

a clustering is performed and U time units into the future.

Note that M 0 is the boundary case of M that is similar to the

integrals used in R-tree-based moving-object indexing [21].
The next theorem states that the inclusion of an object

into the cluster with a smaller M 0 value leads to a tighter

and, thus, better clustering during time interval U .

Theorem 1. Let O ¼ ðOID; x; v; tuÞ denote an object to be

inserted at time tu; Ci, i ¼ 1; 2, denote two existing clusters

with Ni objects, center objects Oci ¼ ðOIDci; xci; vci; tuÞ, and

average radii Ri at time tu. Let Ri;O be the average radius of Ci

after absorbing object O. If M 0ðO;C1Þ < M 0ðO;C2Þ, then the

average squared distance between objects and cluster centers

after inserting O to cluster C1 is less than that after inserting

O to cluster C2:

Z U

0

ðN1 þ 1ÞR2
1;O þN2R

2
2

N1 þN2 þ 1
dt <

Z U

0

N1R
2
1 þ ðN2 þ 1ÞR2

2;O

N1 þN2 þ 1
dt:

Proof. M 0ðO;CiÞ computes the difference between the

position of object O and the center object Oci of cluster

Ci for the U time units starting at the insertion time tu.

Let xðtÞ and xciðtÞ denote the positions of objects O and

Oci at time tu þ t. We first reorganize M 0 to be a function

of the time t that ranges from 0 to U :

M 0ðO;CiÞ ¼
Ni

Ni þ 1

Z U

0

½xðtÞ � xciðtÞ�2dt

¼ Ni

Ni þ 1

Z U

0

½ðxþ vtÞ � ðxci þ vcitÞ�2dt

¼ Ni

Ni þ 1

"
1

3
ðv� vciÞ2U3 þ ðx� xciÞðv� vciÞU2

þ ðx� xciÞ2U
#
:

Next, we examine the variation of the radius of the
cluster that absorbs the new object O:

Z U

0

ðNi þ 1ÞR2
i;Odt�

Z U

0

NiR
2
i dt

¼
Z U

0

"
ðNi þ 1Þ ðAi;Ot

2 þBi;Otþ Ci;OÞ
Ni þ 1

�Ni
ðAit

2 þBitþ CiÞ
Ni

#
dt

¼
Z U

0

"
ðAi;O �AiÞt2 þ ðBi;O �BiÞtþ ðCi;O � CiÞ

#
dt

¼ 1

3
ðAi;O �AiÞU3 þ 1

2
ðBi;O �BiÞU2 þ ðCi;O � CiÞU:

We proceed to utilize Theorem 3, which states that the
average radius of a cluster can be computed from the
cluster’s CF. In the transformation from the third to the
fourth line, we use CV i ¼ Nivci:

�Ai ¼ Ai;O �Ai

¼ CV 2
i þ v2 � ðCV i þ vÞ2

Ni þ 1

 !
� CV 2

i �
CV

2

i

Ni

 !

¼ 1

NiðNi þ 1ÞCV
2

i �
2

Ni þ 1
CV ivþ

Ni

Ni þ 1
v2

¼ Ni

Ni þ 1
v2 þ N2

i

NiðNi þ 1Þ v
2
ci �

2Ni

Ni þ 1
vciv

¼ Ni

Ni þ 1
ðv� vciÞ2:

We express �Bi similarly. In the last transformation,
we use CV i ¼ Nivci and CXi ¼ Nixci:

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1167

Fig. 8. Identifying clusters to be merged.

Fig. 9. Merge algorithm.

�Bi ¼ Bi;O �Bi

¼ 2 CXV i þ xv�
ðCXi þ xÞðCV i þ vÞ

Ni

� 	

� 2 CXV i �
CXiCV i

Ni

� 	

¼ 2Ni

Ni þ 1
ðx� xciÞðv� vciÞ:

Finally, we express �Ci, utilizing CXi ¼ Nixci:

�Ci ¼ Ci;O � Ci

¼ CX2
i þ x2 � ðCXi þ xÞ2

Ni

 !
� CX2

i �
CX

2

i

Ni

 !

¼ Ni

Ni þ 1
ðx� xciÞ2:

We observe that

M 0ðO;CiÞ ¼
Z U

0

ðNi þ 1ÞR2
i;Odt�

Z U

0

NiR
2
i dt:

Utilizing the premise of the theorem, we haveZ U

0

ðN1 þ 1ÞR2
1;Odt�

Z U

0

N1R
2
1dt

<

Z U

0

ðN2 þ 1ÞR2
2;Odt�

Z U

0

N2R
2
2dt:

Then, both sides of the inequality are divided by the total
number of objects in C1 and C2, which is N1 þN2 þ 1.
The theorem follows by rearranging the terms. tu
The following lemma, based on Theorem 1, shows which

cluster a new object should be inserted into.

Lemma 2. The placement of a new object into the cluster C with
the nearest center object according to dissimilarity measure M

minimizes the average squared distance between all objects and
their cluster centers, termed D, in comparison to all other

placements.

Proof. Assume that inserting object O into another cluster C0

results in a smaller average distance between all objects
and their cluster centers, denoted D0, than D. Since C0 is
not the nearest cluster of O, M 0ðO;CÞ �M 0ðO;C0Þ.
According to Theorem 1, we have D � D0, which contra-
dicts the initial assumption. tu

In essence, Lemma 2 suggests how to achieve a locally
optimal clustering during continuous clustering. Globally
optimal clustering appears to be unrealistic for the con-
tinuous clustering of moving objects—it is not realistic to
frequently recluster all objects, and we have no knowledge
of future updates.

Next, we observe that use of the ED among objects at the
time a clustering is performed or updated can be expected
to be quite suboptimal for our setting, where we are to
maintain a clustering across time. This is because the ED
only measures the difference of object positions at a single
point in time, whereas M 0 measures the total difference
during a time interval. It may occur frequently that objects
close to each other at a point in time may be relatively far
apart at later times. Therefore, even if the ED between the

object and the cluster center is at first small, the correspond-
ing M 0 value could be larger, meaning that the use of the ED
results in larger average distance between objects and their
cluster centers.

We proceed to consider the effect of updates during the
clustering. Let F ðtÞ, where 0 < F ðtÞ � 1 and 0 � t � U ,
denote the fraction of objects having their update interval
being equal to t. We define the weight value wx at time tx,
where 0 � tx � U , as follows:

wx ¼
Z U

tx

F ðtÞdt: ð3Þ

This weight value can reflect the update behavior. The

reasons are given as follows: The update interval of any

object is less than the maximum update time U . After the

initial cluster construction, the probability that an object

will be updated before time tx is
R tx

0 F ðtÞdt. BecauseR U
0 F ðtÞdt ¼ 1, the probability that an object will not be

updated before time tx is then 1�
R tx

0 F ðtÞdt ¼
R U
tx
F ðtÞdt.

This weight value gives the “validity” time of an object. In

other words, it indicates the importance of the object’s

position at time tx.
Moreover, the weight value also satisfies the property

that tx � ty implies wx � wy. Let tx � ty. Then,

wx � wy ¼
Z U

tx

F ðtÞdt�
Z U

ty

F ðtÞdt

¼
Z ty

tx

F ðtÞdtþ
Z U

ty

F ðtÞdt�
Z U

ty

F ðtÞdt

¼
Z ty

tx

F ðtÞdt � 0:

In the empirical study, next, we use versions of
dissimilarity measure M that sum values at sample time
points, rather than the boundary (integral) case considered
in this section. This is done mainly for simplicity of
computation.

5 EMPIRICAL PERFORMANCE STUDIES

We proceed to present results of empirical performance
studies of the proposed clustering algorithm. We first
introduce the experimental settings. We then compare our
proposal with the existing K-Means and Birch clustering
algorithms. Finally, we study the properties of our
algorithm while varying several pertinent parameters.

5.1 Experimental Settings

All experiments are conducted on a 2.6-GHz Pentium 4
machine with 1 Gbyte of main memory. The page size is
4 Kbytes, which results in a node capacity of 170 objects in
the MC data structures. We assign two pages to each
cluster.

Due to the lack of appropriate real moving-object data
sets, we use synthetic data sets of moving objects with
positions in the square space of size 1,000 � 1,000 units. We
use three types of generated data sets: uniform distributed
data sets, Gaussian distributed data sets, and network-
based data sets. In most experiments, we use uniform data.

1168 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

The initial positions of all moving objects are chosen at
random, as are their movement directions. Object speeds
are also chosen at random, within the range of 0 to 3. In the
Gaussian data sets, the moving-object positions follow a
Gaussian distribution. The network-based data sets are
constructed by using the data generator for the COST
benchmark [5], where objects move in a network of two-
way routes that connect a given number of uniformly
distributed destinations. Objects start at random positions
on routes and are assigned at random to one of the three
groups of objects with maximum speeds of 0.75, 1.5, and 3.
Whenever an object reaches one of the destinations, it
chooses the next target destination at random. Objects
accelerate as they leave a destination, and they decelerate as
they approach a destination. One may think of the space
unit as being kilometers and the speed unit as being
kilometers per minute. The sizes of data sets vary from 10K
to 100K. The duration between updates to an object ranges
from 1 to U , where U is the maximum update time.

Unless stated otherwise, we use the decreasing weight
value as defined in (3), and we set the interval between
sample timestamps to be 10. We store the event queue and
the hash table in the memory. We quantify the clustering
effect by the average radius, and we examine the construc-
tion and update cost in terms of both I/Os and CPU time.

Table 1 offers an overview of the parameters used in the
ensuing experiments. Values in bold denote default values.

5.2 Comparison with Clustering Algorithms for
Static Databases

For comparison purposes, we choose the K-Means and
Birch algorithms, which are representative clustering
algorithms for static databases. To directly apply both the
K-Means and Birch algorithms to moving objects, both have
to recompute after every update, every k updates, or at
regular time intervals in order to maintain each clustering
effectiveness.

The number of clusters generated by MC is used as the
desired number of clusters for the K-Means and Birch
algorithms. Other parameters of Birch are set similarly to
those used in the literature [28]:

1. memory size is 5 percent of the data set size,
2. the initial threshold is 0.0,
3. outlier handling is turned off,
4. the maximum input range of phase 3 is 1,000, and
5. the number of refinement passes in phase 4 is one.

We then study the average radius across time. The smaller
the radius, the more compact the clusters.

5.2.1 Clustering Effect without Updates

In this initial experiment, we evaluate the clustering effect
of all algorithms across time assuming that no updates
occur. Clusters are created at time 0, and the average radius
is computed at each time unit. It is worth noting that the
weight values in MC are equal to 1 as there are no updates.
Fig. 10 shows that the average cluster radius grows much
faster for the K-Means and Birch algorithms than for the
MC algorithm, which intuitively means that MC clusters
remain “valid” longer than do K-Means and Birch clusters.
Specifically, at time 60, the average radii of the K-Means
and the Birch clusters are more than 35 percent larger than
those of the MC clusters.

Algorithm MC achieves its higher cluster longevity by
considering both object positions and velocities and, hence,
the moving objects in the same clusters have a similar
moving trend and may not expand the clusters too fast.

Observe also that the radii of the K-Means and Birch
clusters are slightly smaller than those of the MC clusters
during the first few time units. This is so because the
MC algorithm aims to achieve a small cluster radius along
the cluster’s entire lifetime, instead of achieving a small
initial radius. For example, MC may place objects that are
not very close at first but may get closer later in the same
cluster.

5.2.2 Clustering Effect with Updates

In this experiment, we use the same data set as in the
previous section to compare the clusters maintained
incrementally by the MC algorithm when updates occur
with the clusters obtained by the K-Means and Birch
algorithms, which simply recompute their clusters each
time the comparison is made. Although the K-Means and
Birch clusters deteriorate quickly, they are computed to be
small at the time of computation and, thus, represent the
near-optimal cases for clustering.

Fig. 11 shows the average radii obtained by all the
algorithms as time progresses. Observe that the average
radii of the MC clusters are only slightly larger than those of
the K-Means and the Birch clusters. Note also that after the
first few time units, the average radii of the MC clusters do
not deteriorate.

5.2.3 Clustering Effect with Data Set Size

We also study the clustering effect when varying the number
of moving objects. Fig. 12 plots the average radius. The

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1169

TABLE 1
Parameters and Their Settings

Fig. 10. Clustering effect without updates.

clustering produced by the MC algorithm is competitive for

any size of a data set compared to those of the K-Means and

the Birch algorithms. Moreover, in all algorithms, the

average radius decreases as the data set size increases. This

is because the capacity of a cluster is constant (in our case,

twice the size of a page) and the object density increases.

5.2.4 Clustering Effect with Different Data Distributions

Next, we study the clustering effect in different types of
data sets. We test two network-based data sets with 100 and
500 destinations, respectively, and one Gaussian data set.
As shown in Fig. 13, the average radii obtained by the
MC algorithm are very close to those obtained by the
K-Means and Birch algorithms, especially for the network-
based and Gaussian data sets. This is because objects in the
network-based data sets move along the roads, enabling the
MC algorithm to easily cluster those objects that move
similarly. In the Gaussian data set, objects concentrate in the

center of the space; hence, there are higher probabilities that
more objects move similarly, which leads to better cluster-
ing by the MC algorithm. These results indicate that the
MC algorithm is more efficient for objects moving similarly,
which is often the case for vehicles moving in road
networks.

5.2.5 Intercluster Distance

In addition to using the average radius as the measure of the
clustering effect, we also test the average intercluster
distance. The average intercluster distance of a cluster C is
defined as the average distance between the center of cluster
C and the centers of all the other clusters. Generally, the
larger the intercluster distance, the better the clustering
quality. Fig. 14 shows the clustering results in different types
of data sets. We can observe that the average intercluster
distance of MC clusters is slightly larger than those of K-
Means and Birch clusters in the network-based data sets.
This again demonstrates that the MC algorithm may be more
suitable for moving objects such as vehicles that move in
road networks.

5.2.6 Clustering Speed

Having considered clustering quality, we proceed to
compare the efficiency of cluster construction and main-
tenance for all three algorithms. Since K-Means is a main-
memory algorithm, we assume all the data can be loaded
into the main memory so that Birch and MC also run
entirely in the main memory.

We first construct clusters at time 0 for all algorithms.
Fig. 15 compares the CPU times for different data set sizes.
We observe that MC outperforms K-Means, with a gap that

1170 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 11. Clustering effect with updates.

Fig. 12. Clustering effect with varying number of moving objects.

Fig. 13. Clustering effect with different data distributions.

Fig. 14. Intercluster distance.

Fig. 15. Construction time.

increases with increasing data set size. Specifically, in the

experiments, MC is more than five times faster than

K-Means for the 100K data set.
In comparison to Birch, MC is slightly slower when the

data set becomes large. The main reason is that Birch does

not maintain any information between objects and clusters.

This can result in time savings in Birch when MC needs to

change object labels during the merging or splitting of

clusters. However, construction is a one-time task, and this

slight construction overhead in MC is useful because it

enables an efficient support for the frequent updates that

occur in moving-object databases.
After the initial construction, we execute updates until

the maximum update time. We apply two strategies to

enable the K-Means and Birch algorithms to handle updates

without any modifications to the original algorithms. One is

the extreme case where the data set is reclustered after

every update, labeled “per update.” The other reclusters the

data set once every time unit, labeled “per time unit.”

Fig. 16 shows the average computational costs per time unit

of all the algorithms for different data set sizes. Please note

that the y-axis in Fig. 16a uses a log scale, which makes the

performance gaps between our algorithms and other

algorithms seem narrow. Actually, the MC algorithm

achieves a significant better CPU performance than both

variants of each of K-Means and Birch. According to

Fig. 16a, the MC algorithm is up to 106 times and 50 times

faster than the first and the second variants of K-Means,

respectively. When compared to Birch, the MC algorithm is

up to 105 times faster than the first variant of Birch (Fig. 16a)

and up to five times faster than the second variant of Birch

(Fig. 16b).
These findings highlight the adaptiveness of the

MC algorithm. The first variants recompute clusters most

frequently and thus have by far the worst performance. The

second variants have lower recomputation frequency but

are then, as a result, not able to reflect the effect of every

update in its clustering (for example, they are unable to

support a mixed update and query workload). In contrast,

the MC algorithm does not do reclustering but instead

incrementally adjusts its existing clusters at each update.

5.3 Properties of the MC Algorithm

We proceed to explore the properties of the MC algorithm,
including its stability and performance under various
parameters and its update I/O cost.

5.3.1 The Number of Clusters

We first study the number of clusters, varying the data set
size and time. As shown in Fig. 17, the number of clusters
remains almost constant for the same data set as time
passes. Recall also Fig. 11 (in Section 5.2.2). We can derive
from these results that the MC algorithm maintains a
similar number of clusters and similar sizes of radii for the
same data set as time passes, which indicates that the
MC algorithm has stable performance. In other words, the
passing of time has almost no effect on the results produced
by the MC algorithm.

5.3.2 Effect of Weight Values

Next, we are interested in the behavior of the MC
algorithm under the different types of weight values used
in the dissimilarity measurements. We take two types of
weight values into account: 1) decreasing weights (see (3)):
wj > wjþ1, 1 � j � k� 1 and 2) equal weights: wj ¼ wjþ1,
1 � j � k� 1.

From now on, we use the total radius (that is, the product
of the average radius and the number of clusters) as the
clustering effect measurement since the numbers of clusters
are different for the different weight values. Fig. 18 shows
the total radius of clusters generated by using these two
types of weight values. It is not surprising that the one

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1171

Fig. 16. Maintenance time.

Fig. 17. Number of clusters with different data sizes.

using decreasing weight values yields a better performance.
As we mentioned before, the closer to the current time, the
more important the positions of moving objects are because
later positions have higher probabilities of being changed
by updates.

5.3.3 Effect of Time Interval Length between Sample

Points

Another parameter of the dissimilarity measurement is the
time interval length between two consecutive sample
positions. We vary the interval length and examine the
performance of the MC algorithm as time progresses (see
Fig. 19a). As expected, we can see that the one with the
shortest interval length has the smallest radius (that is, best
clustering effect). However, this does not mean that the
shortest interval length is an optimal value considering the
overall performance of the MC algorithm. We need to
consider the time efficiency with respect to the interval
length. In addition, we also observe that the difference
between the time intervals equal to 60 and 30 is much wider
than the others. The possible reason is that when the time
interval is 60, there are only two sample points (start and
end points of an object trajectory), which are not able to
differentiate the two situations shown in Fig. 4. Therefore, it
is suggested to use no less than three sample points so that
the middle point of a trajectory can be captured.

Fig. 19b shows the maintenance cost of the MC algorithm
when varying the time interval length. Observe that the
CPU time decreases with the increase of the time interval
length, whereas the I/O cost (expressed in milliseconds)

does not change much. This is because the longer time

interval results in less sample positions and, hence, less

computation. In contrast, the I/O cost is mainly due to the

split and merge events. When the time interval length

increases, the dissimilarity measurement tends to be less

tight, which results in less split and merge events.
Considering the clustering effect and time efficiency

together, the time interval length should not be larger than

30, as we need at least three sample points, and it should

not be too small, as this will yield unnecessarily many

computations. Therefore, we choose the number of sample

points to be a little more than three as a trade-off. In our

experiments, the number of sample points is six, corre-
sponding to the time interval length 10.

5.3.4 Update I/O Cost

We now study the update I/O cost of the MC algorithm

solely. We vary the data set size from 10K to 100K and run

the MC algorithm for the maximum update interval.

Fig. 20 records the average update cost. As we can see, the

update cost is only two to five I/Os because each insertion
or deletion usually affects only one or two clusters. This

suggests that the MC algorithm has very good update

performance.

6 CONCLUSION

This paper proposes a fast and effective scheme for the

continuous clustering of moving objects. We define a new

and general notion of object dissimilarity, which is capable

1172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

Fig. 18. Clustering effect with different types of weight values. Fig. 20. Update I/O cost.

Fig. 19. Effect of different interval lengths. (a) Clustering effect. (b) Maintenance time.

of taking future object movement and expected update
frequency into account, with resulting improvements in
clustering quality and runtime performance. Next, we
propose a dynamic summary data structure for clusters
that is shown to enable frequent updates to the data without
the need for global reclustering. An average-radius function
is used that automatically detects cluster split events,
which, in comparison to existing approaches, eliminates
the need to maintain bounding boxes of clusters with large
amounts of associated violation events. In future work, we
aim to apply the clustering scheme in new applications.

ACKNOWLEDGMENTS

The work of Christian S. Jensen was funded in part by the
Danish Research Agency’s Programme Commission on
Nanoscience, Biotechnology, and IT. The work of Dan Lin
and Beng Chin Ooi was funded in part by an A	STAR
project on spatiotemporal databases.

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan,
“Automatic Subspace Clustering of High Dimensional Data for
Data Mining Application,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’98), pp. 94-105, 1998.

[2] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’99), pp. 49-60,
1999.

[3] Applied Generics, RoDIN24, www.appliedgenerics.com/down
loads/RoDIN24-Brochure.pdf, 2006.

[4] J. Basch, L.J. Guibas, and J. Hershberger, “Data Structures for
Mobile Data,” Algorithms, vol. 31, no. 1, pp. 1-28, 1999.

[5] C.S. Jensen, D. Tiesyte, and N. Tradisauskas, “The COST Bench-
mark-Comparison and Evaluation of Spatio-Temporal Indexes,”
Proc. 11th Int’l Conf. Database Systems for Advanced Applications
(DASFAA ’06), pp. 125-140, 2006.

[6] T.F. Gonzalez, “Clustering to Minimize the Maximum Intercluster
Distance,” Theoretical Computer Science, vol. 38, pp. 293-306, 1985.

[7] S. Guha, R. Rastogi, and K. Shim, “CURE: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’98), pp. 73-84, 1998.

[8] M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V.J. Tsotras,
“On-Line Discovery of Dense Areas in Spatio-Temporal Data-
bases,” Proc. Eighth Int’l Symp. Spatial and Temporal Databases
(SSTD ’03), pp. 306-324, 2003.

[9] S. Har-Peled, “Clustering Motion,” Discrete and Computational
Geometry, vol. 31, no. 4, pp. 545-565, 2003.

[10] V.S. Iyengar, “On Detecting Space-Time Clusters,” Proc. 10th ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining (KDD
’04), pp. 587-592, 2004.

[11] A.K. Jain, M.N. Murty, and P.J. Flynn, “Data Clustering: A
Review,” ACM Computing Surveys, vol. 31, no. 3, pp. 264-323, 1999.

[12] C.S. Jensen, D. Lin, and B.C. Ooi, “Query and Update Efficient
Bþ-Tree Based Indexing of Moving Objects,” Proc. 30th Int’l Conf.
Very Large Data Bases (VLDB ’04), pp. 768-779, 2004.

[13] P. Kalnis, N. Mamoulis, and S. Bakiras, “On Discovering Moving
Clusters in Spatio-Temporal Data,” Proc. Ninth Int’l Symp. Spatial
and Temporal Databases (SSTD ’05), pp. 364-381, 2005.

[14] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical
Clustering Algorithm Using Dynamic Modeling,” Computer,
vol. 32, no. 8, pp. 68-75, Aug. 1999.

[15] D. Kwon, S. Lee, and S. Lee, “Indexing the Current Positions of
Moving Objects Using the Lazy Update R-Tree,” Proc. Third Int’l
Conf. Mobile Data Management (MDM ’02), pp. 113-120, 2002.

[16] Y. Li, J. Han, and J. Yang, “Clustering Moving Objects,” Proc. 10th
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’04), pp. 617-622, 2004.

[17] J. Macqueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[18] S. Nassar, J. Sander, and C. Cheng, “Incremental and Effective
Data Summarization for Dynamic Hierarchical Clustering,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’04),
pp. 467-478, 2004.

[19] R. Ng and J. Han, “Efficient and Effective Clustering Method for
Spatial Data Mining,” Proc. 20th Int’l Conf. Very Large Data Bases
(VLDB ’94), pp. 144-155, 1994.

[20] J.M. Patel, Y. Chen, and V.P. Chakka, “STRIPES: An Efficient
Index for Predicted Trajectories,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’04), pp. 637-646, 2004.

[21] S. �Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez,
“Indexing the Positions of Continuously Moving Objects,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’00),
pp. 331-342, 2000.

[22] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult,
“MONIC: Modeling and Monitoring Cluster Transitions,” Proc.
12th ACM SIGKDD Int’l Conf. Knowledge Discovery and Data Mining
(KDD ’06), pp. 706-711, 2006.

[23] Y. Tao, C. Faloutsos, D. Papadias, and B. Liu, “Prediction and
Indexing of Moving Objects with Unknown Motion Patterns,”
Proc. ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’04),
pp. 611-622, 2004.

[24] Y. Tao, D. Papadias, and J. Sun, “The TPR	-Tree: An Optimized
Spatio-Temporal Access Method for Predictive Queries,” Proc.
29th Int’l Conf. Very Large Data Bases (VLDB ’03), pp. 790-801, 2003.

[25] W. Wang, J. Yang, and R. Muntz, “Sting: A Statistical Information
Grid Approach to Spatial Data Mining,” Proc. 23rd Int’l Conf. Very
Large Data Bases (VLDB ’97), pp. 186-195, 1997.

[26] M.L. Yiu and N. Mamoulis, “Clustering Objects on a Spatial
Network,” Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’04), pp. 443-454, 2004.

[27] Q. Zhang and X. Lin, “Clustering Moving Objects for Spatio-
Temporal Selectivity Estimation,” Proc. 15th Australasian Database
Conf. (ADC ’04), pp. 123-130, 2004.

[28] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient
Data Clustering Method for Very Large Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data (SIGMOD ’96), pp. 103-
114, 1996.

Christian S. Jensen (PhD, DrTechn) is a
professor of computer science at Aalborg
University, Denmark, and an adjunct professor
at Agder University College, Norway. He serves
on the boards of directors and advisors for a
small number of companies, and he serves
regularly as a consultant. His research concerns
data management and spans issues of seman-
tics, modeling, and performance. With his
colleagues, he has published widely on these

subjects, and receives substantial national and international funding for
his research. He received Ib Henriksen’s Research Award 2001 for his
research in mainly temporal data management and Telenor’s Nordic
Research Award 2002 for his research in mobile services. His service
record includes the editorial boards of the ACM Transactions on
Database Systems, the IEEE Transactions on Knowledge and Data
Engineering, and the IEEE Data Engineering Bulletin. He is a member
of the Danish Academy of Technical Sciences, the EDBT Endowment,
and the VLDB Endowment’s Board of Trustees. He was the general
chair of the 1995 International Workshop on Temporal Databases and
a vice program committee (PC) chair for the 14th International
Conference on Data Engineering (ICDE ’98). He was the PC chair or
cochair for the Workshop on Spatio-Temporal Database Management,
held with the 25th International Conference on Very Large Data Bases
(VLDB ’99), the Seventh International Symposium on Spatial and
Temporal Databases (SSTD ’01), the Eighth International Conference
on Extending Database Technology (EDBT ’02), VLDB ’05, the Fifth
ACM International Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE ’06), and the Eighth International Conference
on Mobile Data Management (MDM ’07). He is a vice PC chair for
ICDE ’08. He has served on more than 100 program committees. He is
a member of the IEEE.

JENSEN ET AL.: CONTINUOUS CLUSTERING OF MOVING OBJECTS 1173

Dan Lin received the BS degree (First Class
Honors) in computer science from Fudan Uni-
versity, China, in 2002 and the PhD degree in
computer science from the National University of
Singapore in 2007. Currently, she is a visiting
scholar in the Department of Computer Science
at Purdue University. Her main research inter-
ests cover many areas in the fields of database
systems and information security. Her current
research includes geographical information sys-

tems, spatiotemporal databases, location privacy, and access control
policies. She is a student member of the IEEE.

Beng Chin Ooi received the BS (First Class
Honors) and PhD degrees from Monash Uni-
versity, Australia, in 1985 and 1989, respec-
tively. He is currently a professor of computer
science in the School of Computing, National
University of Singapore. His current research
interests include database performance issues,
index techniques, XML, spatial databases, and
peer-to-peer (P2P)/grid computing. He has
published more than 100 conference/journal

papers and served as a program committee (PC) member for a number
of international conferences (including the International Conference on
Management of Data (SIGMOD), the International Conference on Very
Large Data Bases (VLDB), the International Conference on Data
Engineering (ICDE), the International Conference on Extending Data-
base Technology (EDBT), and the International Conference on
Database Systems for Advanced Applications (DASFAA)). He is an
editor of GeoInformatica, the Journal of GIS, the ACM SIGMOD Disc,
the VLDB Journal, and the IEEE Transactions on Knowledge and Data
Engineering. He is a member of the ACM and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1174 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 9, SEPTEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

