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Abstract

A number of applications in areas such as logistics,
cargo delivery, and collective transport involve the man-
agement of fleets of vehicles that are expected to travel
along known routes according to fixed schedules. Due to
road construction, accidents, and other unanticipated con-
ditions, the vehicles deviate from their schedules. At the
same time, there is a need for the infrastructure surround-
ing the vehicles to continually know the actual status of the
vehicles. For example, anticipated arrival times of buses
may have to be displayed at bus stops. It is a fundamental
challenge to maintain this type of knowledge with minimal
cost.

This paper characterizes the problem of real-time vehi-
cle tracking using wireless communication, and of predict-
ing the future status of the vehicles when their movements
are restricted to given routes and when they follow sched-
ules with the best effort. The paper discusses challenges
related to tracking, to the prediction of future travel times,
and to historical data analysis. It also suggests approaches
to addressing the challenges.

1 Introduction

This paper concerns the challenges inherent in maintain-
ing, at minimum cost, up-to-date information on the status
of each vehicle belonging to a fleet of vehicles traveling on
scheduled journeys. For example, the fleet may consist of
public buses, and the status information may be used in the
surrounding infrastructure that encompasses on-line arrival
time displays at bus stops and controllable traffic lights. As
other examples, the fleet may consist of public service taxis
or delivery trucks. In general, real-time vehicle status infor-
mation is useful for the managers and the users of the fleets.
Such information allows these actors to observe the move-
ment of a vehicle, to anticipate future travel times, and to
estimate the arrival times at scheduled timing points (e.g.,
bus stops or delivery points), to plan and reschedule jour-

neys, etc.
Systems are already available that enable this type of

monitoring. For example, some existing systems [1] em-
ploy PCs on-board the vehicles, GPRS and WiFi for data
communication, and GPS and tag readers for positioning.
The key challenge is to accomplish the monitoring accu-
rately and efficiently.

We consider scenarios where the vehicles follow their
routes and time schedules with the best effort. A route is
defined as a sequence of road segments in a digital road
network, and a schedule consists of points along a route,
where each point has an associated (scheduled) arrival and
departure time (these are termed timing points).

When a vehicle travels along public roads, it is inherently
difficult to predict the progress of the vehicle, as its progress
is affected by external factors such as waiting times at traffic
lights, congestion, road construction, weather conditions,
and accidents. The infrastructure that surrounds a vehicle
must therefore be informed on a continual basis about the
status of the vehicles in order to ensure an appropriate de-
gree of consistency between the actual status of the vehicles
and the knowledge of this status in the infrastructure. How-
ever, frequent updates introduce high communication costs,
and server-side updates easily become a bottleneck. Effi-
cient tracking techniques are then needed that reduce the
numbers of updates sent from the vehicles to the server that
represents the infrastructure, and from the server to the ve-
hicles, while maintaining sufficiently accurate vehicle status
information in the infrastructure.

In an existing approach to tracking, the server predicts
a vehicle’s near-future position and shares this prediction
with the vehicle (e.g., [2, 3, 4, 5, 6]). The vehicle issues an
update to the server with its current position-related status
when its actual position deviates from the predicted position
by more than an agreed-upon threshold. A new prediction
is then formed, and the procedure repeats itself. We extend
this general prediction sharing scheme. In particular, we
propose to extend the update policies to allow for complex
prediction functions and cost-driven decisions.

The efficiency of the tracking depends on the ability to
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accurately predict travel times, which, as stated, is challeng-
ing since travel times depend on many external conditions.
Records of historical vehicle traversals of routes may be uti-
lized in prediction algorithms. Thus, similar journeys from
the past can be identified, matched against an ongoing jour-
ney, and used to predict the future progress of that jour-
ney. To enable the utilization of historical data, definitions
of journey similarity and of which criteria should be used
to identify past journeys that match the current journey are
needed.

Public bus services is an application area where track-
ing and prediction techniques are already being applied, and
where such techniques face stringent quality requirements.
Accurate prediction of bus travel times is important because
it has the potential for reducing the travel times of the pas-
sengers and for increasing their satisfaction. In particular,
real-time information is provided to the passengers at bus
stops, on the Internet, and via mobile devices. This infor-
mation reduces waiting times and the need for departing
early in order to arrive on time. However, buses pose chal-
lenges: the travel times are inherently difficult to predict;
knowledge of their positions must be maintained with high
accuracy; and large fleets of buses introduce high commu-
nication and update processing costs.

The predominant travel-time prediction techniques in the
area of public transportation are Kalman filtering (KF),
e.g., [7, 8, 9], and artificial neural networks (ANNs),
e.g., [10, 11, 12]. The KF algorithms utilize real-time data;
studies suggest that they perform well for short-term pre-
diction. The ANNs utilize historical data. Their learn-
ing algorithms are computationally expensive, meaning that
they cannot be updated in real-time. We propose to extend
the existing models by combining real-time algorithms with
knowledge extracted from historical journey data.

This paper covers key challenges being addressed in an
on-going research project (www.cs.aau.dk/TransDB). The
industrial partner in this project, TNC Connect, has au-
tomatic vehicle location and real-time passenger informa-
tion as its business area and supplies intelligent transport
systems for public bus operations. One of its customers
also takes part in the project. The paper more specifically
covers challenges in the development of efficient track-
ing techniques and the prediction of future travel times of
scheduled-vehicle journeys. Efficient tracking relies on ac-
curate predictions. Patterns, derived from historical jour-
neys, are utilized for the travel time prediction.

The remainder of the paper is outlined as follows. Sec-
tion 2 introduces the assumed system architecture and
presents a framework for the efficient vehicle tracking. Sec-
tion 3 discusses challenges faced by tracking and prediction
algorithms for scheduled-vehicle journeys. Section 4 con-
cludes the paper.

2 Tracking System Architecture

The components of a transportation system encompass
moving vehicles, a central tracking server, and additional,
surrounding infrastructure components that are connected
to the system either wirelessly or via a wired network. The
server and other infrastructure require information related to
the current status of the vehicles, and the server can provide
the vehicles with relevant information. In the tracking con-
text, we focus on position-related vehicle status, although
other data (e.g., error messages) can also be considered part
of the vehicle’s status. The vehicles are equipped with com-
puting, positioning, and data communication capabilities.

The main purpose of tracking in a transportation system
is to maintain some required degree of consistency between
the real status of the vehicles and the record to these on the
server. The required consistency may be more or less strin-
gent, which results in higher or lower costs of maintaining
this dynamic, distributed system in a consistent state.

The diagram in Figure 1 describes the communication
between the central server (CS), a vehicle (VH), and the
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Figure 1. System architecture

surrounding infrastructure (Inf). The CS has a Central
Tracker (CTR) and a Central Predictor (CPR) module. The
VH has a Vehicle Tracker (VTR) module and a GPS re-
ceiver. The CTR module is responsible for controlling the
communication. The VTR receives GPS positions contin-
ually and updates the CTR with its position-related status
when necessary in order to maintain the required consis-
tency. The CPR module predicts the future travel times of
the vehicle. It obtains the current vehicle status from the
CTR, and it has access to a database with schedules, his-
torical journey data, and other relevant data. Updates of
other information (e.g., traffic volumes) are also possible.
The CTR updates each vehicle with a new prediction when
needed. The infrastructure can be updated by request (e.g.,
from mobile users), or when the system state changes.

Figure 2 describes a tracking-and-prediction scenario.
The server recomputes its prediction when triggering events
occur: such events include changes in external data, an
update from a VTR, or the start of a vehicle on a jour-
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Figure 2. Sequence diagram representing vehicle tracking

ney. At the start of a journey, the CTR calls function
predict in the CPR module to predict the journey pattern.
The CTR examines whether the VTR needs to be updated,
and possibly updates it with an initial prediction by calling
function updateVTR. When the VTR receives an Update
from the GPS receiver, the update policy decides whether
the CTR must be updated (function isUpdateNeeded ). If
yes, the CTR is updated by calling function updateCTR,
and the VTR recomputes the tracking function (function
updateVTR). The CPR then recomputes the server’s pre-
diction (function predict ). The CTR decides whether the
VTR has to be updated with the new predictions, and it then
possibly calls function updateVTR. The loop is repeated
throughout the journey.

3 Tracking and Prediction Challenges

3.1 Accuracy Guarantees

The tracking system is often required to guarantee a cer-
tain server-side accuracy of a continuous variable related to
a vehicle. In this paper, we consider two variables, namely
the current position of a vehicle and the arrival time at a
given timing point (e.g., a bus stop). The accuracy guar-
antee is that the actual values of these do not deviate from
the values assumed by the server and infrastructure by more
than a global threshold thr .

Two scenarios are possible. In the first, the vehicle and
the server always use the same prediction function and have
the same data available for prediction. In addition, the ve-
hicle knows its actual, current status. It updates the server
when the shared prediction deviates by thr from the actual
status.

In the second scenario, the server has more data avail-
able for prediction than has the vehicle. The server can then
update the vehicle when it updates its prediction for the ve-
hicle. In this scenario, the threshold thr is split between
the vehicle and the server. The threshold assumed by the
vehicle is thrv ≤ thr , and the threshold on the server is
thr c = thr − thrv. The server then has to update the ve-
hicle when its actual prediction deviates by thr c from the
prediction that is assumed by the vehicle. Furthermore, the
server is able to update the vehicle at any time—this may re-
duce the number of future vehicle and server updates, in this
case reducing the overall cost associated with the journey.
The second scenario generalizes the first, and we proceed to
consider it more closely.

If the server changes its prediction for a vehicle due
to external data only infrequently, most of threshold thr
should be assigned to the vehicle, i.e., to thrv. In gen-
eral, the quality of the server’s predictions, the changes
in external data, and the threshold values used all influ-
ence the tracking costs. The following generic cost func-
tion estimates the total cost of updates issued by the server
and vehicle from the current time and until the end of
the ongoing journey, given the current server state scur

that captures the information currently available to the
server: cost journey(scur) = cv

∑
j P (upv = j|scur)j +

cc

∑
j P (upc = j|scur)j, where upc, cc, upv, and cv are

the numbers of updates and the costs of a single update from
the server to the vehicle and from the vehicle to the server,
respectively. The function sums up the products of the costs
of one update, the probabilities that the vehicle and server
issue j updates, and j, where j varies from 1 to the maxi-
mum possible number of updates.

The cost until the end of the journey can be difficult to
estimate; it is more feasible to estimate the cost of a part of
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the journey until some time tk, assuming that at that time,
the server is in a state sk that is independent of the current
decision on whether or not to update the vehicle. Denote
the state of server s− if the decision d− of not to update is
taken, and denote it s+ if the decision d+ to update is taken
and the update is issued. Denote the transition from state si

to sk as si → sk. Then, the server should issue an update,
if cost journey(s− → sk) > cost journey(s+ → sk) + cc.

Support for accuracy guarantees is faced with several
challenges: (1) The threshold thr can be set manually. If
a limited budget for the tracking costs (wireless communi-
cation and server-side update costs) is given, it can be set
by the system. Different thresholds can then be assigned
to different vehicles and to different parts of a route so that
the budget is used optimally. (2) The appropriate settings of
many parameters, including thr c, thrv, and the parameter
that captures the quality of the server’s predictions, depend
on external conditions. The system should be able to main-
tain these settings itself under changing conditions. (3) The
probabilities in the cost function depend on the function it-
self, which renders the cost function recursive and difficult
to specify. (4) The thresholds, the parameters for the cost
function, and the prediction accuracy depend on each other.

3.2 Tracking Algorithms

The tracking algorithms currently employed in public
transportation systems often rely on timing points. When a
vehicle arrives at and departs from a timing point, it updates
the server with its current status. Such tracking has sev-
eral drawbacks: (1) The server is unaware of actual travel
pattern deviations when the vehicle is traveling in-between
timing points. This renders it difficult to accurately predict
near-future travel times. (2) Only relatively poor accuracy
guarantees may be derived. (3) Unnecessary costs are in-
curred when the vehicle is traveling as expected.

We propose to employ tracking algorithms that are based
on journey pattern prediction, as described earlier. The two
algorithms that we discuss next track a continuous variable,
which is either the position of a vehicle or a vehicle’s pre-
dicted arrival time at a timing point.

Position threshold-based tracking The continuous vari-
able being tracked is the current position of a vehicle. The
server and each vehicle share a function fc : T → P that
predicts the vehicle’s position at time t. The vehicle moni-
tors the distance |fa(t) − fc(t)| between its actual and pre-
dicted positions, and when this distance reaches the thresh-
old thrv, it updates the server with its status.

Similarly, the server monitors the distance |fpr(t) −
fc(t)| between its own prediction fpr and the prediction fc

it shares with the vehicle, and it updates the vehicle when
this distance reaches position threshold thr c. The server can

also update the vehicle at other times if this is believed to
reduce subsequent costs. The shared prediction fc is recom-
puted each time the vehicle or the server issues an update.
This framework is applicable when the position of a vehi-
cle is to be known by the server and infrastructure by some
specified accuracy.

Arrival time threshold-based tracking The continuous
variable being tracked is now a vehicle’s arrival time at a
future timing point. The server and the vehicle share func-
tion gc : T → T that predicts the vehicle’s arrival time at
the timing point as of time t. When, at time tup, the vehi-
cle’s prediction gv(t) deviates from gc(t) by threshold thrv,
the vehicle updates the server, and a new shared prediction
gc is computed based on the position fa(tup) of the vehi-
cle at the time of the update. The vehicle may recompute
gv due to fa(t), which it monitors. It is expected that the
predictions by gv are at least as accurate as those by gc.
As in position-based tracking, the server monitors the dis-
tance |gpr(t) − gc(t)| between the value of its prediction
function gpr and the shared prediction, and it updates the
vehicle when the threshold thr c is reached, or when a cost
function suggests that this will reduce subsequent cost.

In some cases, an update from the vehicle to the server
can be eliminated even though the threshold thrv is ex-
ceeded. For example, this is possible if gv predicts an early
arrival at the timing point and the prediction by gc is that
the vehicle will arrive at least thr c time units early, assum-
ing that only departure information is relevant to the prob-
lem domain. In this case, the vehicle knows that the server’s
function gpr also predicts an early arrival.

Using position tracking is not optimal when the objec-
tive is to predict arrival times. With position tracking, if a
vehicle stops within distance thrv of a timing point, it is
possible for the server to believe that the vehicle is at the
timing point, which may yield incorrect information in the
infrastructure. This does not happen with time prediction
tracking. Also, updates are not required where the vehicle’s
actual position deviates considerably from the server’s pre-
diction if this is expected to not delay the arrival. Actual
arrival time accuracy guarantees cannot be provided; how-
ever, position accuracy guarantees may be derived given all
prediction functions.

Challenges Development of tracking algorithms is faced
with several challenges: (1) Accuracy guarantees have to
be maintained while minimizing the status update costs. (2)
The cost of tracking depends on the quality of predictions—
it is a challenge to minimize the effects of inaccurate predic-
tions. The estimation of prediction uncertainties may help
evaluate prediction algorithms and control tracking parame-
ters. (3) System errors, communication delays, and mea-
surement inaccuracies must be taken into account.
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3.3 Prediction Algorithms

Accurate predictions of the movements of a vehicle must
be provided to the surrounding infrastructure, and such pre-
dictions are also exploited by the tracking algorithms. The
quality of a prediction is estimated by means of the notion
of prediction uncertainty. Both the average prediction error
(i.e., the average difference between the predicted and the
actual value) and the variance of the prediction error must
be minimized. Large, random errors are usually more frus-
trating for the users than small, frequent errors, and they
impact tracking efficiency more adversely.

It is important that accurate arrival times are predicted
as early as possible. The scheduled arrival times are not al-
ways the best predictions even at the start of a journey. A
large number of more or less predictable factors may affect
a journey. Movement patterns derived from historical jour-
ney data may be utilized in conjunction with real-time GPS
data to predict arrival times.

Predictions are continuously adjusted in real time during
the course of a journey. The Kalman filter is considered to
be a valuable predictor for short-term prediction when using
reasonable criteria. A Kalman filter can exploit available
data such as speed, position, and measurement accuracy.
Historical data should carry more weight than real-time data
in long-term predictions.

The challenges inherent in the prediction of a vehicle’s
movement are several: (1) The movement of a vehicle is af-
fected by factors that range from being quite predictable to
being unpredictable, which makes prediction difficult and
calls for continuous prediction. (2) Prediction techniques
rely on identification of past journeys (or patterns among
such journeys) that match the current journey. (3) It is at-
tractive to be able to match historical journey patterns to an
ongoing journey as early as possible.

3.4 Analysis of Historical Vehicle Jour-
neys

One approach to the discovery of patterns in historical
journey data is to apply clustering to these using, e.g., k-
means clustering [13] and to perform statistical evaluations
on the clusters [14]. This approach does not rely on prior
knowledge of external factors that affect vehicle movement.
Correlations between factors and journeys may be detected
by means of the clustering—e.g., the journeys in one cluster
may all have occurred during morning rush hour.

Another approach to obtaining patterns is by means
of a variety of data mining techniques. Such techniques
have been studied in the past, however, in different set-
tings. For example, Mamoulis et al. [15] propose a frame-
work for mining, indexing, and querying spatio-temporal
data. They analyze trajectories of mobile objects in 2-

dimensional space. Other existing approaches also focus on
2-dimensional space in mobile environments [16], or they
focus on general time series databases [17, 18]. The vehi-
cle trajectories discussed in this paper are constrained in the
temporal and spatial dimensions: vehicles move on routes
that are defined as sequences of road segments, and they
have to follow time schedules with the best effort. This set-
ting may allow us to simplify the existing algorithms, but
may also pose higher requirements to the efficiency of the
data mining techniques.

The position updates sent from the vehicles to the server
are often the only position-related data available for subse-
quent, off-line analysis of historical journeys. These data
and the associated position prediction functions that were
employed during the original tracking should be utilized for
representing the trajectories in a format that is well suited
for subsequent analysis.

During the tracking of a vehicle, a new prediction func-
tion is created every time an update from the vehicle or
from the surrounding infrastructure arrives. The function
hi

pr : T → P , i = 0, ..., k + 1, is the predicted trajectory
after update upi−1 at time tup

i−1, and h0
pr is the initial predic-

tion. The predicted trajectory hpr : T → P is defined based
on the predictions hi

pr:

hpr(t) =

⎧⎨
⎩

h0
pr(t) if t < tup

0

hi
pr(t) if t ∈ [tup

i−1, t
up
i ), i = 1, ..., k

hk+1
pr (t) if t ≥ tup

k

This function captures the predictions in effect during the
journey. The challenge is then to create a continuous non-
decreasing function, preferably with a compact representa-
tion, that is as close as possible to the actual trajectory, and
it is never further than thr from the actual journey.

For example, such a function can be specified by a fea-
ture vector that, for each timing point on the route consid-
ered, contains the travel time from the previous timing point
(points other than the timing points may also be used).

The analysis of historical journey data faces several chal-
lenges: (1) Patterns found in the data should represent
the actual distributions of the trajectories, and the patterns
should be updated by the system as more data becomes
available. (3) The algorithms should efficiently utilize the
spatial and temporal restrictions that apply to the scenario
considered, and they should enable the analysis of large
volumes of historical data. (4) Appropriate representations
of vehicle trajectories must be recovered based on sparse
tracking data.

3.5 Similarity Measures in Journey Pat-
terns

During the data analysis of historical journeys, a notion
of similarity between vehicle trajectories is needed that is
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efficient to compute.
An appropriate similarity function should satisfy at least

these properties: (1) delays of equal duration should yield
the same dissimilarity independently of when they occur
during a journey, (2) matching of sub-journeys should be
possible, (3) it should be robust to “dirty” data, and (4)
it should be a metric (i.e., satisfy the identity, symmetry,
and triangle inequality properties). Although analysis tech-
niques can accommodate non-metric similarity functions,
these adversely impact efficiency.

Dynamic Time Warping (DTW) [19] is a commonly used
similarity measure for time series. But this measure is com-
putationally expensive. Further the stretching and shifting
allowed may not be appropriate in our setting. A simple
measure that (to some degree) satisfies our requirements is
the (squared) Euclidean distance. The distance between two
journeys is then the sum of the squared differences between
the pairs of travel times in the two feature vectors that rep-
resent them. Various weights may also be introduced.

An appropriate similarity function must possess the fol-
lowing qualities: (1) it must enable the classification of jour-
neys in an intuitive manner, (2) it must be computationally
efficient, (3) it must enable the identification of correspon-
dences between influencing factors (e.g., accidents, weather
conditions) and the trajectories, and (4) it must enable the
matching of an ongoing journey against historical journeys.

4 Conclusions

This paper describes the problem of tracking and pre-
diction in the context of scheduled-vehicle journeys, and
it identifies key challenges. The focus of past work has
been on the tracking of the positions of vehicles traveling
along unknown routes. Although the tracking of scheduled-
vehicle journeys has the potential for being more efficient
than the tracking of vehicles that travel along unknown
routes, the requirements are often also higher. The same
holds for the accuracy of travel-time prediction.

The key tracking and prediction challenge can be formu-
lated in two ways: (i) given a limited budged for the track-
ing cost, achieve the maximum accuracy of the observed
and anticipated system status; (ii) given requirements for
the accuracy, achieve these requirements with the minimum
costs. Both variants aim to achieve the maximum gain at
the minimum cost. The primary challenges associated with
these can be summarized as follows: (1) prediction algo-
rithms must contend with the influence of external factors
that are only predictable to varying degrees, (2) update poli-
cies must be optimized, taking into account the problem do-
main, and (3) all system parameters must be maintained and
updated dynamically by the system itself in response to the
current system behavior.
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[2] A. Čivilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis, “Effi-
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