
S-GRID: A Versatile Approach to Efficient Query
Processing in Spatial Networks

Xuegang Huang, Christian S. Jensen, Hua Lu, and Simonas Šaltenis

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220, Aalborg, Denmark
{xghuang,csj,luhua,simas}@cs.aau.dk

Abstract. Mobile services is emerging as an important application area for
spatio-temporal database management technologies. Service users are often con-
strained to a spatial network, e.g., a road network, through which points of inter-
est, termed data points, are accessible. Queries that implement services will often
concern data points of some specific type, e.g., Thai restaurants or art museums.
As a result, the relatively few data points are relevant to a query in comparison
to the number of network edges, meaning that queries, e.g., k nearest-neighbor
queries, must access large portions of the network.

Existing query processing techniques pre-compute distances between data
points and network vertices for improving the performance. However, pre-
computation becomes problematic when the network or data points must be
updated, possibly concurrently with the querying; and if the data points are mov-
ing, the existing techniques are inapplicable. In addition, multiple pre-computed
structures must be maintained—one for each type of data point. We propose a
versatile pre-computation approach for spatial network data. This approach uses
a grid for pre-computing a simplified network. The above-mentioned shortcom-
ings are avoided by making the pre-computed data independent of the data points.
Empirical performance studies show that the structure is competitive with respect
to the existing, more specialized techniques.

1 Introduction

In step with the emergence of an infrastructure that enables the deployment of mobile
services, the database research community has begun to consider the challenges brought
on by scenarios where services are delivered to large populations of mobile users. In one
important setting, the service users are constrained to a spatial network such as a road
network, and the services involve nearest-neighbor queries on points of interest, which
we term data points, that are accessible via the network.

As an example, consider Figure 1 where we aim to find the nearest restaurant for a
mobile user q among six restaurants R1, R2, . . . , R6. To address this type of problem, we
model the spatial network as a graph structure. Specifically, a spatial network is mod-
eled as a directed and labeled spatial graph RN = (V, E), where V = {v0, v1, . . . , vm}
is a finite set of vertices and E is a finite set of edges. Vertices model intersections
and starts and ends of roads, and each vertex has an associated point position in two-
dimensional Euclidean space.

D. Papadias, D. Zhang, and G. Kollios (Eds.): SSTD 2007, LNCS 4605, pp. 93–111, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

AAU
Text Box
LNCS 4605, pp 93-111, 2007.
(URL: http://www.springerlink.com/content/n5524mw150t6/)
Copyright © Springer-Verlag

94 X. Huang et al.

An edge models the part of a road in-between two vertices. It is a three-tuple ei,j =
(vi, vj , l), where vi, vj ∈ V is the start and end vertex of the edge, respectively, and
l captures the travel length of the edge (for simplicity, we assume only bi-directional
edges, i.e., edge ei,j is equivalent to edge ej,i, but are oppositely directed).

q
R

R2
R3

R

5R1

4

R6

Fig. 1. Example Spatial Network

Two sets of points, termed query points and data
points are also assumed. Each such point p is either a
vertex or a two-tuple s = (ei,j , pos) consisting of an
edge ei,j and a travel length pos from vi along edge
ei,j .

Next, the graph and data points must be stored
on disk using an appropriate data structure (e.g., the
CCAM structure [14]). Then a query such as the ex-
ample query from above is processed by accessing this
data structure.

The example spatial network and data points in Figure 1 are represented as shown in
Figure 2. To find the nearest neighbor among dp1, . . . , dp6 of the query point, which is
located at vertex v6, a graph search is performed. For example, an algorithm similar to
Dijkstra’s algorithm or the A* algorithm [11] can be used to incrementally search the
graph starting at v6 until the nearest neighbor is found.

To be more specific, the INE search algorithm [12] uses two priority queues, Qv

for adjacent vertices and Qdp for data points. Given the query point q = v6, adjacent
vertices of q are visited and out into Qv (i.e., Qv = 〈(v7, 1), (v5, 2), (v9, 3), (v2, 3)〉).
As no data points are found, the vertex v7 in Qv is dequeued, and its adjacent vertices v3
and v8 are inserted, i.e., Qv = 〈(v5, 2), (v3, 2), (v8, 2), (v9, 3), (v2, 3)〉. Data point dp1
is found when v5 is dequeued and its adjacent vertices are accessed (Qdp = 〈(dp1, 3)〉).
The process continues until the minimum distance from q to a vertex in Qv is no smaller
than the distance to the nearest data point (i.e., 3).

1

1 v2
v3 v4

v5

v6
v7 v8

v9 v10

v11

v12 v13 v14

1dp
5dp

6dp

3dp2dp 4dp

v15

1 1

1

2

1

2
3

13

2

1

1

1

1

2

3

3

5

4

4

4

5
1

1

5

2

v

Fig. 2. Example Network

This process, termed in-
cremental network expansion,
has been used as an ingredi-
ent in most existing algorithms
for spatial-network queries, in-
cluding (continuous) k nearest
neighbors ((C)KNN), reverse
nearest neighbors (RNN), k
closest pairs, e-distance join,
and aggregate nearest neigh-
bors (ANN).

Nearest neighbor queries
have been studied extensively
in settings where the Euclidean

distance is assumed and R-trees are used. The problem of computing KNN queries
in spatial network databases has only been addressed more recently. Early work in
this direction presented a general framework for supporting NN queries, that included
a detailed data model and hierarchical search algorithms [8]. Subsequent work has

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 95

considered the optimization of the disk accesses to the network data and data points
during query processing.

The INE algorithm and extensions of it have been used for computing range queries,
KNN queries, k closest pair queries, and e-distance joins [12]. This approach works
well for dense data points, but it entails excessive accesses to the network data when
the data points are sparse. To improve performance, pre-computation techniques have
been proposed for primarily KNN and CKNN queries. In the next section, we review
three such proposals, namely the VN3 [9], Islands [3], and SPIE [5] approaches.

While these approaches represent significant advances, they also have shortcomings.
The data points are assumed to be known to the system prior to any queries. While
this assumption will work in some (important) settings, it does not make for a versatile
solution. Another limitation is that all data points are assumed to be relevant for all
queries, while each query will generally concern only certain types of data points. Next,
the approaches do not contend well with updates. Queries have to be “frozen” until
the updates (including costly re-pre-computations) have been performed. The query
performance then depends on the performance of the updates.

Motivated by these limitations and the need for versatile techniques, we propose a
novel and more general pre-computation structure, the S-GRID (Scalable Grid), that
enables the efficient computation of a broad range of query types in spatial networks.
Results of experimental studies show that the S-GRID provides excellent performance
in comparison to its competitors.

In summary, the S-GRID approach optimizes the network expansion inherent to
many query processing algorithms in spatial networks, while offering the following
features.

1. Unlike the existing pre-computation approaches, the S-GRID does pre-computation
solely on the network data, and data points are associated with the pre-computed
data only at query time.

2. With the existing approaches, updates may cause queries to pause until the updates
are complete. With the S-GRID, queries affected by an update are able to expand on
the original network data inside the grid cell being updated.

3. While the handling of traffic restrictions such as one-way streets and turn restrictions
at intersections is difficult with the existing approaches, the S-GRID encapsulates
these into a simple, virtual network so that the query processing can be kept simple
and efficient.

The rest of the paper is organized as follows. Section 2 explores previous techniques
for efficient KNN query processing in spatial networks. The next section presents the
details of the solution. Section 4 empirically compares this solution to existing algo-
rithms. Finally, Section 5 summarizes the paper and suggests research directions.

2 Related Work

As mentioned already, network expansion has been used in a range of query processing
algorithms, including algorithms for KNN [12,4], CKNN [1], RNN [18], and ANN [17]
queries, as well as for data clustering [16]. We proceed to consider briefly two early

96 X. Huang et al.

proposals for KNN query processing and then proceed to consider three additional pro-
posals in some detail.

The first proposal is to transform a road network to a high-dimensional Euclidean
space in which the traditional KNN search algorithms can be applied [13]. This trans-
formation involves the off-line pre-computation of the network distances between all
pairs of vertices, and it uses high-dimensional spatial indexes. As a result, the proposal
is of limited interest in our setting.

The next proposal involves two approaches to KNN query processing, namely the
INE approach already explained and an approach called IER that exploits Euclidean
distances for achieving better performance [12]. To find the KNNs of a query point
q, this approach uses an incremental KNN algorithm to find the nearest neighbors in
Euclidean distance. These are then sorted in ascending order of their network distance
to q and the distance of the k-th neighbor is denoted as dmax. These KNNs and dmax

are being maintained while subsequent Euclidean neighbors are retrieved incrementally,
until the next Euclidean nearest neighbor has larger Euclidean distance than dmax. It is
shown that the INE approach clearly outperforms the IER approach. Further, the IER
approach is inapplicable for all notions of distance such as travel time.

Inspired by the use of Voronoi diagrams in Euclidean spaces, the Voronoi-based
Network Nearest Neighbor approach (VN3 [9]) generates a Network Voronoi Diagram
based on a given set of data points and pre-computes the network distances within each
generated Voronoi polygon. Nearest neighbor computations can then utilize the pre-
computed distances.

Figure 3 shows the network Voronoi diagram for our example. The Voronoi polygon
of data point dp3 contains four border points: b1, b2, b3, b4. The first nearest neighbor
of query point q can be directly found as dp3 because q is inside the Voronoi polygon
of dp3. To find the next nearest neighbors, the data points of the neighboring Voronoi

1

dp

2dp

1b 5b
6b

7b

8b
10b

9b 6dp

11b

5dp

4b 3b

2b
4dp

3dp
q 2.5

2.5

1

Fig. 3. NN Search with VN3

polygons are collected as the can-
didate set. Then a refinement is
applied to find the actual network
distance from q to these data
points. Specifically, a network ex-
pansion is made to find the net-
work distances from q to the
border points of dp3. Then the
distance from q to the neighbor-
ing data points can be found by
adding the query-to-border dis-
tances to the pre-computed border-
to-data point distances of the

adjacent polygons. As shown in Figure 3, since the distance from q to b2 is 2.5 and the
pre-computed distance from b2 to dp4 is 2.5, the network distance from q to dp4 is 5.

The VN3 approach excels when there are few data points. One limitation is that a
Voronoi diagram cannot be generated without knowledge of all the data points. Another
is that it does not contend well with queries that concern only data points of certain
types. Thus, the approach of generating a Voronoi diagram for each type of data points,

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 97

such as Thai restaurants, museums, and shopping malls, renders it difficult to process
“multi-type” queries such as “find the k nearest Thai and Chinese restaurants and mu-
seums” (or “sub-type” queries such as “find the k nearest modern art museums”). A
service that identifies all nearest friends will need a diagram for each unique set of
friends.

The Islands approach provides versatility as it enables to control the amount of pre-
computation done in preparation for computing KNN queries [3]. First “islands” are
pre-computed: starting from each data point, all vertices that are within a given radius
rmin to the data point are part of the data point’s island, and the distance to the data
point for each such data point is recorded.

A KNN query processing algorithm then makes network expansions from the query
point while using the pre-computed “islands” encountered during the expansions.

Using a radius of 3, Figure 4 shows the islands generated for our example. Here,
query point q is inside the island of dp3, which is the nearest neighbor of q. To find
subsequent nearest neighbors, a network expansion is made from q. Since vertex v10 is
inside the island of dp4 and v6 is inside the islands of dp1 and dp5, we can find their
network distance to q as DN (q, dp4) = 6, DN(q, dp1) = 7, DN(q, dp5) = 7. The
expansion continues until the distance from q to the next vertex plus rmin is no smaller
than the distance to the kth nearest neighbor.

2

dp
6dp

2dp

v13

v6

v10

3dp

5dp

4dp

3

3

2
1

1
q

1

1 1
1

Fig. 4. NN Search with Islands

In the Islands approach, it is pos-
sible to control the sizes of the is-
lands (i.e., the radius value rmin).
This offers flexibility in balanc-
ing the amount of pre-computation
data, the cost of updating the pre-
computed data, and the efficiency
of the KNN queries. But as for
the VN3, the Islands approach re-
quires a pre-knowledge of all the
data points. And when updating
the pre-computation data in both
approaches, all the KNN queries

“covering” the network area that is being updated must wait for the update to complete.
Thus, the update performance affects the query performance.

The SPIE approach reduces the network into a set of inter-connected shortest path
trees (SPTs) [5]. Dijkstra’s algorithm is adapted to grow the SPTs, which are later trans-
formed into SPIEs (Shortest Path tree with horizontal edges and triangular Inequality
Edges). Making the assumption that the data points are located on the network vertices,
an index is built that stores, for each tree node, the nearest data points in its descendants
as well as the distances. The KNN queries are then processed on the SPIEs instead of
the real network.

The assumption that the data points are located on network vertices is a limitation
in many situations. In practice, data points are located on the edges and are represented
using linear referencing [2]. Adding a vertex for each data point on an edge will sub-
stantially increase the size of the network. Next, transportation networks often involve

98 X. Huang et al.

one-way streets, u-turn restrictions, and turn-restrictions at intersections. As a result,
although the SPIE approach yields a nice reduction of a network that is a simple undi-
rected graph, the same reduction process does not apply when the constraints and re-
strictions on edges and vertices are considered.

Previous work on hierarchical structures for path-finding in road networks [7] is not
closely related to this paper’s contribution. While that work focuses on shortest-path
computations, this paper focuses on KNN and other queries. Also, the S-GRID does
not use a hierarchical structure, but a simple 2D grid to organize the pre-computation
process and direct the KNN queries.

Summarizing the existing solutions, three basic techniques exist that aim to reduce
the cost of expensive network expansions. First, by pre-computing network distances
between the vertices of the network and the data points in a specific area of the network,
the network expansion covering this area can be avoided by instead looking up the
distance values. For example, in the VN3 approach, expansions in each Voronoi cell can
be avoided as there is only one data point in each cell and the pre-computed border-to-
border and border-to-data distances are used. Second, by linking more data points with
each vertex, the query algorithm has knowledge of more candidate nearest neighbors at
earlier stages of a network expansion, which restricts the expansion scope. For example,
in the Islands approach, the k nearest neighbors can be found immediately if the query
point is inside at least k islands. Third, by simplifying the network (as in the SPIE
approach), queries are processed more efficiently because the expansions are applied
on a sparser network.

Common to all of the above approaches is that the pre-computations are data-point
dependent: distances to data points are pre-computed (in all three approaches) and the
network is subdivided based on the positions of the data points (in the VN3 approach).
However, as mentioned in the introduction, this dependence on the data points is often
either undesirable or not possible at all. Thus, in contrast to the previous research, we
make the fundamental assumption that the data points and their positions are known to
the system only at query time. This yields a much more versatile solution. The challenge
then becomes one of achieving competitive performance while using only data-point
independent pre-computations.

The idea of network partitioning and network connectivity indexing is extensible to
other application domains where graphs are queried. For instance, a recent paper [6]
introduces a similar divide-and-conquer approach for keyword searches on graphs. The
proposed BLINKS approach uses heuristic-based algorithms to partition the graph. In
contrast, the S-GRID takes advantage of the spatial embedding of the network and
employs a regular spatial grid to partition the network.

3 The S-GRID Approach

The S-GRID approach is so named because it employs a 2-dimensional grid for “sum-
marizing” a network and performing pre-computations. In particular, distance pre-com-
putations are made that involve the intersection points between the grid and the network.
These grid-based pre-computations usually simplify the network—the grid-network in-
tersection points together with the connections among these points form a simpler,

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 99

virtual network. At query time, it is possible to link, in a simple and efficient way,
queries and data points to the pre-computations.

By varying the number of cells, the trade-offs between query performance, update
performance, the pre-computation costs, and the size of the pre-computation data can
be tuned. Although grids have been used for a variety of purposes in many contexts in
spatial databases (e.g., in [15]), we believe that our use of a grid in the context of a
spatial network database is novel. We proceed with the details of the new approach.

3.1 Grid Partitioning and Pre-computation

As described, we apply a 2-dimensional grid to the spatial network. The part of the
network inside a grid cell forms one or more mutually disconnected sub-networks. A
vertex belongs to a grid cell if its coordinates place it inside the cell. If the two vertices
of an edge belong to different cells, we define the midpoint of this edge as a border point
between the two cells. A vertex with coordinates that intersect with a grid boundary is
also a border point. For example, points p1, p2, . . . , p7 in Figure 5(a) are the border
points when we apply the shown 2 × 2 grid to the network in Figure 2 (note that p7
is a vertex while the others are midpoints). We model each grid cell as a three-tuple
ce = (V ,BP ,DP) where V is the set of vertices belonging to the cell, BP is the set
of border points of the cell, and DP is the set of data points inside the cell. Next, if a
vertex or a border point is connected to another border point through a sub-network of
the cell, the length of the shortest path connecting them in the sub-network is termed
their connected distance in the cell. For instance, in Figure 5(b), the connected distance
between vertex v2 and border point p2 in Cell1 is 4.5.

For each cell, we pre-compute two types of distance values: (a) the connected dis-
tance for each pair of connected border points; (b) the connected distance for each
pair of a connected vertex and a border point. The spatial network as well as the pre-
computation data are stored on disk in the Vertex-Edge, Cell-Border, and Vertex-Border
components. The Vertex-Edge component corresponds to a similar structure in the INE
and Islands approaches [3,12]: adjacency lists of vertices are mapped to disk pages
based on the Hilbert values of the vertices.

For our example, page pg1 in Figure 6 contains the adjacency lists of vertices v1 and
v2. Each entry in an adjacency list corresponds to an edge in the graph and contains the

2

p4

p6

p3

p7

p1

p5

3Cell 4Cell

Cell1 2Cell

�
�
�
�

p
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

(a) A 2 × 2 Grid

2

1 v2 v3

p4p2p1

v8
v5

1dp

v6 v7

5dp

p5

1.5

1

v

�
�
�
�

1

1

12
1

3

2.5

1

3
2

1

1

�
�
�
�

�
�
�
�

�
�
�
�

(b) Cell1 in Detail

Fig. 5. Example Grid Partition

100 X. Huang et al.

Vertex−Border Component

1

l 2

l 3

l4

pg1

pg2

l5

l6

pg1

pg5

pg5

pg5

pg1
pg3

v1
1Cell 2p1p
1Cell 1p 4p

pg4

pg3

1Cell
2Cell
3Cell

1v 1p
1p 1v

2p 1v
2p1v

4.5
4.5

5.5
5.5

... ...
pg5

Page:

... ...

2
2

2

51v
1v

v2 2

v
v
v1... ...

Adjacency List of
6
7.5... ...

Vertex−Edge Component

Cell−Border Component

... ...
In−Memory
Hash Table

l

Fig. 6. Example Data Structure

identifications of the start vertex (e.g., v1) and the end vertex (e.g., v5), the length of the
edge (e1,5 = 2), a pointer to the disk page (pg3) containing the adjacency list of the end
vertex (v5), and a pointer to the disk page (pg5) in the Vertex-Border component that
stores the connected distances between the start vertex (v1) and the border points of the
cell to which this vertex belongs (Cell1).

The Cell-Border component stores the distances between the border points of the
grid cells. For example, in Figure 6, the entries in page pg4 record the connected dis-
tances between border points p1, p2, p4, p5 of Cell1 in Figure 5(b). The in-memory hash
table links each grid cell to its corresponding disk pages in the Cell-Border component.
Note that no data points are represented in these data structures.

The computation of connected distances among the border points and vertices in a
cell is simple. From each border point, a network expansion is made in the sub-network
of the cell following the edges in the reverse direction to find the distances from the
reachable vertices. For each vertex discovered in the expansion, the distance to the
border point is recorded in the Vertex-Border component. The expansion stops when
an edge contains another border point; in this case, the connected distance between the
two border points is recorded in the Cell-Border component.

The resulting pre-computation data structure has a number of features useful when
processing queries and performing network updates.

First, with the 2-dimensional grid and the Vertex-Border component, it is easy to link
the data points with the pre-computation data. We introduce a function discoverData-
Points(DP , ce) that returns all the data points from the set DP that belong to the grid
cell ce. The function scans the data points in DP . A data point dp = (e, pos) belongs
to a cell if its nearest vertex on edge e belongs to this cell. The cell memberships of
data points can also be maintained dynamically as data points are inserted, deleted, or
updated. Finally, for each of the returned data points dp, the function returns a set of
entries (p, dp, d(p, dp)), where p is a border point and d(p, dp) is the connected distance
from p to dp in ce. It is straightforward to compute these distances, since distances from
end-vertices of edge e to border points of the cell can be found in the Vertex-Border
component.

Second, the border points together with the links among them form a virtual network.
Unless the grid is very dense, the shortest path connecting two border points in the
virtual network has fewer edges than the shortest path connecting the same points in the

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 101

underlying network. Note that if no pre-computation is done, to find a data point that is
one of the nearest neighbors of a query point, the shortest path between the query point
and this data point has to be traversed in the underlying network. If this shortest path
traverses border points p1, . . . , pb (where b ≥ 2), a sub-path connecting border points
pi and pi+1 is a shortest path between these two points in some cell of the grid, i.e., it
corresponds to an edge in the virtual network. Thus, once a network expansion reaches a
border point, it can proceed more efficiently in the virtual network. The above-described
discoverDataPoints function extends the virtual network with data points so that they
can be discovered via expansion in the virtual network.

Third, update operations to the pre-computation data are local and data-point inde-
pendent. Specifically, when a vertex or an edge is added, modified, or deleted from
the Vertex-Edge component, network expansions from each of the border points of the
corresponding grid cell should be made to refresh the distances. Since we only com-
pute the connected distance inside one cell, the cost of update operations is limited to
the sub-networks inside this cell. Thus, by varying the number and thus size of the grid
cells, the cost of updates can be controlled. In addition, when the network expansions of
queries visit cells that are being updated, these expansions can use the underlying net-
work instead of the virtual network in these cells. This way, network update operations
do not block querying.

Finally, as mentioned, the number of grid cells can be varied. If the data point density
is low, a sparse grid (i.e., with large cells) improves query performance as the expan-
sion process is on a virtual network with fewer vertices. In contrast, a dense grid will
have better update performance since the part of the network influenced by an update
becomes smaller. In the two extremes, i.e., when there is only one cell in the grid or the
grid cells become too small, the approach is not efficient. However, by tuning the cell
size, it is possible to achieve improved update and query performance.

We proceed to describe how S-GRID is used to process the KNN query.

3.2 KNN Query Processing

We adapt the INE algorithm [12] to compute the KNN query using the S-GRID. Briefly,
given a query point q, a value k, and a set of data points DP , we first start a network
expansion, termed the inner expansion, in the cell where q is located. Whenever a border
point is reached, the outer expansion proceeds from that point. The outer expansion is
an expansion on the virtual network formed by the border points and their links.

If the cell holds no data points or when the shortest paths to all data points inside the
cell have been discovered, the inner expansion is stopped. The Vertex-Border compo-
nent is used to traverse directly from inside a cell and into the virtual network. When
the outer expansion visits a border point, the discoverDataPoints function is used to
find all data points in the cells that share this border point. This process continues until
k nearest neighbors are found.

We provide the pseudo code of the KNN algorithm in the following. In addition to
the three above-mentioned parameters, the algorithm gets a set of grid cells CE as a
parameter. We use two priority queues, Qdp and Qv, to record, respectively, data points
and vertices (or border points) together with their distance to the query point, denoted

102 X. Huang et al.

as d(q, dp) and d(q, v). Both queues sort elements by the distance value and do not
allow duplicate data points or vertices. The size of Qdp is limited to k elements.

Both queues have update and deque operations. The update(dp/v, dist) operation in-
serts a new data point or vertex and the corresponding distance into the queue. If this data
point or vertex is already in the queue then, if dist is smaller than the distance stored
in the queue, the distance value in the queue is updated to dist. The deque operation
removes a vertex or a border point with the smallest distance and returns it. Another
in-memory list L caches all the “discovered” data points returned by the discoverDat-
aPoints function. Queues Qv and Qdp and list L are assumed to be empty initially.

(1) procedure KNN (q, k,DP ,CE)
(2) sort(DP , CE) // put DP into subsets based on cells
(3) Let the subsets of DP be ce1.DP , . . . , cem.DP
(4) ceq ← findcell(q)
(5) for each dp ∈ findDP(q.e, ceq): Qdp.update(dp, d(q, dp))
(6) for each v ∈ {q.e.vs, q.e.ve} Qv.update(v, d(q, v))
(7) for each bp ∈ ceq.BP : Qv.update(bp, d(q, bp)) // Vertex-Border is used
(8) Qdp = 〈(dp1, d(q, dp1)), . . . , (dpk, d(q, dpk))〉
(9) dk ← d(q, dpk) // dk ← ∞ if dpk = ∅

(10) vx ← Qv .deque, mark vx as visited
(11) while d(q, vx) < dk ∧ Qv �= ∅
(12) if vx is a vertex
(13) for each non-visited adjacent vertex vy of vx

(14) for each dp ∈ findDP(ex,y, ceq)
(15) Qdp.update(dp, d(q, vx) + d(vx, dp))
(16) if vy ∈ ceq .V : Qv .update(vy , d(q, vx) + ex,y.l)
(17) if ceq.DP = ∅ ∨ (ceq .DP ⊂ Qdp ∧ ∀dp ∈ ceq.DP , d(q, dp) ≤ d(q, vx))

// shortest paths found to all dp ∈ ceq.DP
(18) prune each (v, d(q, v)) from Qv if v is a vertex
(19) else // vx is a border point; switch to the virtual network
(20) for each ceki ∈ findcells(vx,CE)
(21) if ceki �= ceq ∧ |ceki.DP | > 0 ∧ ceki is undiscovered
(22) L ← L ∪ discoverDataPoints(DP , ceki)
(23) mark ceki as discovered
(24) for each non-visited adjacent border point vy ∈ ceki of vx

(25) Qv .update(vy , d(q, vx) + d(vx, vy)) // Cell-Border is used
(26) for each (vx, dpxi, d(vx, dpxi)) ∈ L
(27) Qdp.update(dpxi, d(q, vx) + d(vx, dpxi))
(28) dk ← d(q, dpk)
(29) vx ← Qv.deque, mark vx as visited
(30) return Qdp

The algorithm first partitions the data points in DP according to the cells they belong
to. Then the network expansion begins with the part of the network inside the cell
ceq (lines 12–16). The border points of ceq are treated as additional vertices of the
network. When the shortest paths to all the data points in ceq have been computed, the
inner expansion on the actual network is completed (lines 17–18), and the algorithm
continues only with the outer expansion on the virtual network (lines 19–27). When
border points are visited by the outer expansion, the algorithm discovers data points in

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 103

p3

p2

p6

p7

p5
1dp

5dp

v6v5
v7

p4

v2 v3

Cell1 2Cell

3Cell 4Cell

�
�
�
�

�
�
�
�

1

1

2

2.5

6q
p

3

3 1

1

1
21

1.52.5

1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

(a) 2NN at q

Step Qv Qdp dk

1 (v7, 1), (v3, 1), (p4, 1), (p2, 3.5),
(p5, 4), (p1, 6.5)

∅ ∞

2 (v3, 1), (p4, 1), (v6, 2), (p2, 3.5),
(p5, 4), (p1, 6.5)

∅ ∞

3 (p4, 1), (v6, 2), (p2, 3.5), (p5, 4),
(v2, 4), (p1, 6.5)

(dp5, 2) ∞

4 (v6, 2), (p2, 3.5), (p3, 3.5), (p5, 4), . . . (dp5, 2), (dp4, 4) 4
5 (p2, 3.5), (p3, 3.5), (p5, 4), . . . (dp5, 2), (dp4, 4) 4
6, 7 (p5, 4), . . . (dp5, 2), (dp4, 4) 4

(b) Running Steps

Fig. 7. Example KNN Query

the cells that sharing the border points (lines 20–23). Note that it is possible for inner
and outer expansions to run concurrently, which may happen, for example, if the query
point is quite close to the border of a cell. The algorithm guarantees that both expansions
will stop if KNNs are found.

The algorithm uses three auxiliary functions. Function findDP(ex,y, ce) returns the
data points in ce.DP that are located on one of the edges ex,y and ey,x and also belong
to cell ce. Function findcell(q) returns the cell that q belongs to, i.e., the cell that its
nearest vertex, either q.e.vs or q.e.ve, belongs to. Finally, findcells(p,CE) returns the
cells that have p as a border point.

To illustrate the working of the algorithm, consider a 2NN query at vertex v8 in
Figure 2. The algorithm first scans the network inside the cell of query point q = v8—
see Figure 7(a). The border points of the cell are also inserted into Qv based on their
distance to q. The steps in computing the query are listed in Figure 7(b). In step 3, since
the border point p4 is closer to q than other vertices such as v6, the algorithm discovers
data points in cell4, and data point dp4 is found through p4. After data points dp5 and
dp4 are found, steps 6 and 7 continue and visit adjacent points (in the virtual network)
of p2 and p3, and then the algorithm stops.

The KNN algorithm with the S-GRID improves the efficiency of the INE algorithm
in three ways. First, the inner expansion is avoided fully or in part, if there are no
data points in the cell of the query point or if all these data points have been reached,
respectively. Second, by doing the inner and outer expansions concurrently, more data

104 X. Huang et al.

points are inserted into Qdp early in the algorithm, which restricts the expansion scope.
Finally, the expansion on the virtual network formed by the border points and their links
utilizes the pre-computation data to link data points with border points, which makes it
possible to find these data points in the virtual network.

In some cases, these optimizations will not take effect. For instance, when there
are more than k data points in the cell of the query point and the query point is close
to the center of the cell, all the nearest neighbors needed may be found by the inner
expansion, in which case the efficiency of the S-GRID algorithm is equal to that of
the INE algorithm. To improve this, the system can maintain several S-GRIDs with
different cell sizes and assign a proper S-GRID to run the KNN algorithm based on the
location of the query point and the data point density.

3.3 Extensions

The S-GRID approach is useful for the computation of many different kinds of queries.
To illustrate this, we describe how the S-GRID can be used for computing range and
CKNN queries.

Range Query. The range query retrieves all data points that are within a given network
distance R of a query point. Intuitively, the same network expansion process can be
used for the range query as for the KNN query, except that the termination condition in
line 11 of the KNN algorithm has to be changed to d(q, vx) < R ∧ Qv �= ∅. Note that
the S-GRID is used in the same way to maintain the inner and the outer expansions.

CKNN Query. The CKNN query retrieves k nearest data points along a given query
path, i.e., it finds k nearest neighbors to any point of a given path in the network.
Existing solutions for CKNN query in spatial networks [1,10] depend on an efficient
algorithm for the static KNN query. Specifically, as indicated by the most recent pro-
posal, UNICONS (UNIque Continuous Search) [1], to perform a CKNN query on a
path ni, ni+1, . . . , nj , it is sufficient to retrieve data points directly on the path and then
run a static KNN query at each vertex nk on the path (i ≤ k ≤ j) [1, Lemma 2]. To
improve the efficiency of such KNN queries, the UNICONS approach pre-computes
and stores KNNs of a selected nodes in the network. The S-GRID approach can be used
for processing the static KNN queries at the path nodes. Similar to the UNICONS ap-
proach, we can also store KNNs of every border point of the S-GRID so that when a
KNN query reaches a border point, it can re-use the KNNs of this border point and does
not need to expand further from this point.

Accommodating Traffic Regulations. The S-GRID approach only requires few mod-
ifications in order to be able to contend with traffic regulations when computing KNN
queries. Specifically, when one-way roads, streets with u-turn restrictions, and road
junctions with turn restrictions have to be considered in the expansion process, only the
inner expansion needs to check these constraints. The outer expansion on the virtual
network needs not contend with such restrictions, as they have already been addressed
during pre-computation.

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 105

4 Empirical Evaluation

4.1 Settings

To gain insight into the performance of the S-GRID, we conduct experiments with two
datasets. The first represents the real-world road network and points of interest in Aalborg
(AAL), Denmark, and it contains 11, 300 vertices, 13, 375 bi-directional edges, and 279
data points. The second dataset is the road network data of San Francisco (SF) (down-
loaded from http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/),which
contains 175, 343 vertices and 223, 140 bi-directional edges. For the SF dataset, we use
synthetic data points that are generated randomly with a density of 0.1% (the density is
the number of data points versus the number of bi-directional edges in the network).

The road network and pre-computation data are arranged into disk pages based on
the data structures described in Section 3.1. We set the page size to 4k and use an LRU
buffer for caching the disk pages read by the algorithms. The total size of the LRU
buffer is 15% of the network data (i.e., the Vertex-Edge component). The AAL and SF
datasets contain, respectively, 129 and 4, 023 pages in the Vertex-Edge component.

We compare with the INE and the Islands approaches [3], and the consider the per-
formance of these approaches in terms of the CPU running time and the amount of disk
I/O operations. All the tested approaches are implemented in C++ and performed on a
Pentium IV 1.3 GHZ processor with 512 MB of main memory and running Windows
2000. Query points are randomly generated in all the experiments. Each reported per-
formance number is the average number obtained after measuring the performance in
several runs of the experiment.

Two series of experiments are conducted. The first series studies the performance of
the KNN query comparing the S-GRID, the INE, and the Islands approaches. In these
experiments, we vary k, the density of the data points, and the number (and size) of
grid cells. The second series of experiments examines the cost of pre-computation and
update operations in the Islands and S-GRID approaches.

4.2 Experiments on KNN Query Performance

In this experiment, we examine how the performance of KNN queries is related to the
value of k, the density of data points, the size of the grid cells in the S-GRID approach,

Fig. 8. Effect of K

and the island size in the
Islands approach. We set
k = 5 for the experi-
ments with the density, the
grid cell size, and the is-
land size. The AAL and SF
networks use grids of size
8 × 8 and 20 × 20, respec-
tively.

To express the island
size, we define the max-
imum Euclidean distance

106 X. Huang et al.

between all vertices in the road network as Dmax. The island radius used is then repre-
sented as a fraction of Dmax. In all experiments, the islands of the same network have
the same radius. In the case where the island size is less than the edge length, we set
the island to cover the edge of the data point. The AAL network uses an island size of
0.05Dmax while the SF network uses 0.01Dmax.

As shown in Figures 8 and 9, the KNN algorithm with the S-GRID requires more
CPU time than the INE and Islands approaches. This is because each vertex in the

Fig. 9. Effect of Data Point Density

virtual network has
more adjacent edges
than the original spa-
tial network. This in-
creases the insertion
and sorting times in
queue Qv of the net-
work expansion algo-
rithm. The S-GRID
requires fewer disk
accesses than INE,
but is slightly worse
than the Islands ap-

proach. The superior performance of the Islands approach (when compared to the
S-GRID) is due to the usage of pre-computed distances to the queried data-points in
the Islands approach. The slightly lower performance of the S-GRID is the price that
is paid for the flexibility of not having to know the set of data points at the time of
pre-computation.

Figure 10 reports on experiments where the S-GRID cell size is varied. As expected,
the results of the experiments show that when the number of cells increases, the per-
formance of the KNN queries improves. However, as illustrated in Figure 10, when the

Fig. 10. Effect of Number of Grid Cells

cells get too small,
there are too many
border points and
links, which increase
the cost of expansions
on the virtual network
to the point where it
becomes even more
expensive than just
making expansions
on the original net-
work.

4.3 Experiments with Pre-computation and Update

With the objective of exploring the cost of pre-computations with the Islands and
S-GRID approaches, the second series of experiments measure the disk I/O and number
of generated data items (i.e., the amount of border points, links, and pairs of distances)

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 107

Fig. 11. Pre-computation and Storage Costs—S-GRID and Islands

during pre-computation. We do not report the time for writing the pre-computation data
to disk as this time is proportional to the number of generated items. Updates to the
network edges and vertices are relatively rare when only the spatial coordinates and the
topology of the network are considered. However, for applications where the distance in
the road network is measured as the travel time, the frequency of network updates can
surpass even the frequency of queries. That is why we also study the network update
performance of the compared pre-computation approaches.

The “pair of distances” recorded in Figure 11 shows the number of distances (i.e., the
distances from vertices to data points or border points) collected during pre-computa-
tion. The figure shows that the pre-computation cost for the S-GRID is higher than the
corresponding cost for the Islands approach for small islands, but that it decreases with
increasing numbers of grid cells since the network expansion scope from each border
point gets smaller.

To illustrate the difference between the original network and the virtual network of
the S-GRID, we list the number of vertices and edges (edges ei,j , ej,i are counted as
one) in the original AAL and SF networks as well as the corresponding virtual networks.

108 X. Huang et al.

As shown in Figure 12, the 3×3 and 8×8 grids on the AAL network have fewer vertices
and edges, which can lead to improved KNN query performance (as in Figure 10). Note
that the 15 × 15 grid on the AAL network produces fewer vertices, but more edges,
when compared to the original network. Nevertheless, an order of magnitude reduction
in the number of vertices (for the 15 × 15 grid) results in improvements of the query
performance (compared to the INE in Figure 10). Similar to this, the 10×10 and 20×20
grids on the SF network improve the query performance. When the grid is too dense,
i.e., 50 × 50 or 100 × 100, there are too many edges in the virtual network, which
negatively effects the efficiency of the query algorithms. The space consumption of the
S-GRID, while dependent on the number of grid cells, is generally larger than the space
consumption of the Islands approach (see Figure 11). Again, the space is sacrificed for
the flexibility of the S-GRID. To discover the appropriate number of grid cells for the
specific network and data sets, an iterative approach can be used which, by running
a certain amount of test queries over several different grid partitionings, chooses the
number of grid cells that results in the most efficient execution of the test queries.

To examine the cost of updates in the S-GRID and the Island approaches, we ran-
domly pick one edge in the AAL network and vary its length so as to collect the CPU
and disk I/O costs of the re-computations of pre-computed data. We vary the amount of
grid cells and the size of islands and measure the update cost.

Network Vertices Edges
AAL 11, 300 13, 375

AAL (3 × 3 Grid) 221 7, 282
AAL (8 × 8 Grid) 485 10, 774

AAL (15 × 15 Grid) 1, 006 16, 986
SF 175, 343 223, 140

SF (10 × 10 Grid) 2, 213 172, 275
SF (20 × 20 Grid) 4, 726 262, 187
SF (50 × 50 Grid) 11, 692 381, 705

SF (100 × 100 Grid) 22, 822 419, 307

Fig. 12. Reduction of Network Size

As illustrated in Figure 13, the update cost
in the S-GRID decreases as the cells get
smaller since the cost of doing network ex-
pansions is smaller for smaller cells. The cost
of doing updates on the islands increases dra-
matically as the islands increase in size. With
small islands, it is very likely that an edge is
not in any island, in which case the update
cost is close to zero (one only needs to up-
date the network data). When the island size
increases, each edge is likely associated with
more than one island so that the update oper-
ation has to re-generate more islands.

Fig. 13. Update Cost of S-GRID

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 109

Fig. 14. “Sub-Category” Query and Update

To test how efficiently the S-GRID and other approaches perform “sub-type” KNN
queries that search for NNs belonging to a sub-type of data points in the dataset, we
randomly divide the 279 data points in AAL network into 10 groups (with 28 or 27 data
points in each group) and implement KNN query algorithms that use the INE, S-GRID,
and Islands approaches for finding KNNs in one of the groups. The default value of k
is 5 and we use an 8 × 8 grid. We vary the size of the islands.

To support sub-type queries, the Islands approach creates islands for all the data
points and the online expansion algorithm checks if a newly-discovered island belongs
to the target category, to determine whether further expansion is necessary. In addi-
tion, we show the update cost (changing one edge weight) of the Islands and S-GRID
approaches. As demonstrated in Figure 14, for the KNN query, the S-GRID approach
requires fewer disk accesses than the INE, and the island size has to grow to 0.3Dmax

for the Islands approach to have better performance than the INE and S-GRID. How-
ever, the cost of updates in the Islands approach with islands of even smaller size (e.g.,
0.05, 0.1, 0.2 of Dmax) is worse than the update cost of S-GRID. Thus, in terms of over-
all performance of processing sub-type queries and processing updates, the S-GRID is
better than the Islands approach. Note that, in the reported experiments, all data points
are divided only into 10 “sub-types.” In real applications, the data points may be divided
into much more “sub-types,” which further increases the advantage of the S-GRID over
the Islands approach.

5 Summary and Future Work

Spatial network databases have gained substantial attention with the development of ad-
vanced positioning and mobile communication and computing technologies. One cur-
rent focus is on how to reduce the amount of disk accesses needed for executing spatial
and spatio-temporal queries in spatial network databases.

In particular, different approaches to pre-computation has been studied with the pur-
pose of achieving efficient query processing. Motivated by the limitations of existing
pre-computation approaches, this paper proposes a more versatile approach, termed the
S-GRID, to pre-computation.

110 X. Huang et al.

In a world where few query processing and indexing techniques proposed by the
research community are finding their way into products, and where software vendors
tend to prefer versatile and robust techniques over more specialized ones, even though
the latter perform factors better, we believe that the S-GRID is significant.

The key new benefit of the S-GRID is that it offers competitive query performance
without making the assumption that all data points are known in advance, i.e., before
the pre-computation can be accomplished in preparation for the processing. As another
benefit, the S-GRID also enables query processing to proceed in parallel with updates
to, and the consequent re-pre-computation on, the spatial network. Yet another benefit
is that it is easy to integrate support for traffic regulations into the S-GRID approach.

Several directions for future work exist. First, it is of interest to perform analytical
cost modeling of the S-GRID and to compare with the existing VN3, Island, and SPIE
approaches. Second, a uniform two-dimensional grid has been used in the S-GRID.
Since a non-uniform grid can capture more appropriately a network with dense and
sparse regions, it is of interest to consider if or how a non-uniform grid can be used with
the S-GRID approach. In addition, the partitioning can be made much more “network-
aware” [6] in order to reduce the number of boundary points, which in turn may reduce
the space consumption and the running time of the S-GRID approach. Third, this paper
has hinted at how traffic regulations of real-world road networks can be accommodated
in pre-computation. We believe, however, that real-world complexities such as those
that stem from traffic regulations should be considered in more detail.

References

1. Cho, H.J., Chung, C.W.: An Efficient and Scalable Approach to CNN Queries in A Road
Network. In: Proc. VLDB, pp. 865–876 (2005)

2. Hage, C., Jensen, C.S., Pedersen, T.B., Speicys, L., Timko, I.: Integrated Data Management
for Mobile Services in the Real World. In: Proc. VLDB, pp. 1019–1030 (2003)

3. Huang, X., Jensen, C.S., Šaltenis, S.: The Islands Approach to Nearest Neighbor Querying in
Spatial Networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

4. Huang, X., Jensen, C.S., Šaltenis, S.: Multiple k Nearest Neighbor Query Processing in Spa-
tial Network Databases. In: Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006.
LNCS, vol. 4152, pp. 266–281. Springer, Heidelberg (2006)

5. Hu, H., Lee, D.L., Xu, J.: Fast Nearest Neighbor Search on Road Networks. In: Grust, T.,
Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patranjan, P.-L., Sat-
tler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 186–203.
Springer, Heidelberg (2006)

6. He, H., Wang, H., Yang, J., Yu., P.: BLINKS: Ranked Keyword Searches on Graphs. In:
Proc. SIGMOD (to appear, 2007)

7. Jing, N., Huang, Y.W., Rundenstener, E.: Hierarchical Optimization of Optimal Path Finding
for Transportation Applications. In: Proc. CIKM,, pp. 261–268 (1996)

8. Jensen, C.S, Kolář, J., Pedersen, T.B., Timko, I.: Nearest Neighbor Queries in Road Net-
works. In: Proc. ACM GIS,, pp. 1–8. ACM Press, New York (2003)

9. Kolahdouzan, M., Shahabi, C.: Voronoi-based Nearest Neighbor Search for Spatial Network
Databases. In: Proc. VLDB,, pp. 840–851 (2004)

10. Kolahdouzan, M., Shahabi, C.: Alternative Solutions for Continuous k Nearest Neighbor
Queries in Spatial Network Databases. GeoInformatica 9(4), 321–341 (2005)

S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks 111

11. Pearl, J.: Heuristics: Intelligent Search Strageties for Computer Problem Solving. Addison
Wesley, Reading (1984)

12. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query Processing in Spatial Network
Databases. In: Proc. VLDB, pp. 802–813 (2003)

13. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A Road Network Embedding Technique
for K-Nearest Neighbor Search in Moving Object Databases. GeoInformatica 7(3), 255–273
(2003)

14. Shekhar, S., Liu, D.: CCAM: A Connectivity-Clustered Access Method for Networks and
Network Computations. TKDE 19(1), 102–119 (1997)

15. Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-Temporal Databases. In: Proc. ICDE, pp. 643–654
(2005)

16. Yiu, M.L., Mamoulis, N.: Clustering Objects on A Spatial Network. In: Proc. SIGMOD, pp.
443–454 (2004)

17. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate Nearest Neighbor Queries in Road Net-
works. TKDE 17(6), 820–833 (2005)

18. Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse Nearest Neighbors in Large Graphs.
TKDE 18(4), 540–553 (2006)

	Introduction
	Related Work
	The S-GRID Approach
	Grid Partitioning and Pre-computation
	KNN Query Processing
	Extensions

	Empirical Evaluation
	Settings
	Experiments on KNN Query Performance
	Experiments with Pre-computation and Update

	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

