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ABSTRACT
Emerging communication and sensor technologies enable new ap-
plications of database technology that require database systems to
efficiently support very high rates of spatial-index updates. Previ-
ous works in this area require the availability of large amounts of
main memory, do not exploit all the main memory that is indeed
available, or do not support some of the standard index operations.

Assuming a setting where the index updates need not be written
to disk immediately, we propose an R-tree-based indexing tech-
nique that does not exhibit any of these drawbacks. This technique
exploits the buffering of update operations in main memory as well
as the grouping of operations to reduce disk I/O. In particular, op-
erations are performed in bulk so that multiple operations are able
to share I/O. The paper presents an analytical cost model that is
shown to be accurate by empirical studies. The studies also show
that, in terms of update I/O performance, the proposed technique
improves on state of the art in settings with frequent updates.

1. INTRODUCTION
As sensor, communication, and computing technologies continue

to evolve, it is becoming increasingly feasible and attractive to
monitor, record, and query data that capture the evolving states of
continuously changing real-world phenomena.

As an example that is representative of this new class of update-
intensive applications, consider advanced location-based services,
e.g., in the context of intelligent transport systems, where the po-
sitions of a large population of GPS-equipped moving objects are
tracked on a server. To maintain accurately the current positions
of such objects, the positions must be updated frequently. Exper-
iments with GPS data from vehicles traveling in semi-urban en-
vironments show that to know the positions of the vehicles being
tracked with an accuracy of 200 meters requires an update from
each vehicle on average every 15 seconds [8].

The efficiency of the processing of updates determines the max-
imum update throughput, which in turn determines the maximum
number of objects that can be tracked with a given accuracy.

Spatial indexes were originally developed with applications in
mind that were characterized by relatively static data, and focus was
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on the efficient support for queries. In particular, the predominant
spatial index, the R-tree [3, 11], supports queries efficiently, but
updates are far from being efficient enough to support applications
such as the one that involves the tracking of a large population of
moving objects [15].

To improve the efficiency of spatial-index updates, a number of
approaches have recently been proposed. The so-called bottom-
up approaches aim to reduce the need for the expensive top-down
tree traversals involved in R-tree deletions. They do so by offer-
ing direct leaf-level access [14]. Another approach is to try to
avoid performing deletions on disk, by accumulating them in main-
memory [23]. Yet another type of approach is to buffer and group
operations in main memory or on disk with the purpose of enabling
operations to share I/O’s [1, 15].

With few exceptions [24], previous approaches assume a persis-
tent index, such that, upon finishing the processing of an update,
the update is recorded in the index on disk. This means that an up-
date costs at least one I/O. In the types of applications we consider,
even this cost is too high to support a high throughput of updates.
The high update rates offer an opportunity to soften the index-
persistence requirement: even if some recent updates are lost due to
a system crash, after only a short waiting period, fresh updates will
arrive for the objects affected. We note that existing approaches
can achieve sub-one I/O updates by simply using a write-back disk
page buffer, where dirty pages are not committed to disk after each
operation. However, this use of the available main-memory is in-
ferior when the objective is to speed up updates—the paper offers
experimental results that demonstrate this.

Assuming the softer persistency requirements, this paper explores
the efficient use of all available main memory to reduce the I/O
costs of R-tree update operations as much as possible. The main
contribution is a data structure, named the RR-tree, that consists of
a main-memory R-tree and a conventional disk-based R-tree. The
former enables efficient search on a main-memory buffer of update
operations, i.e., both insertions and deletions. In contrast to previ-
ous research that uses multiple, large disk-based buffers of update
operations and supports only batched queries [2], our proposal sup-
ports instantaneous queries.

When the operation buffer gets full, all operations in the buffer
are clustered into groups. The operations that belong to the largest
group(s) are then performed in bulk on the disk R-tree in order to
minimize the I/O. This is similar to buffer emptying in the LGU
algorithm [15], but is different from the complete emptying of the
large, disk-based buffers used in buffer-tree approaches [2]. The
paper includes an analytical study that justifies the selective buffer
emptying strategy.

An empirical study is also reported. A setting is assumed in
which the positions of moving objects are known only with some



predefined accuracy. Thus, a moving object issues an update when
its current position deviates by the predefined accuracy from the
position it reported most recently. This setting improves on those
where accurate positions are assumed. The empirical study vali-
dates the analytical modeling, and it offers insights into the perfor-
mance properties of the RR-tree. In particular, the study shows that
the RR-tree is able to significantly outperform an R-tree that uses
an LRU buffer, which is the current state of the art. The study also
shows that the RR-tree significantly outperforms a recent proposal
for an update-efficient R-tree.

In contrast to previous research on I/O efficient update of R-trees,
the RR-tree does not require some minimum amount of main mem-
ory to work. Thus, if no main memory is available, the RR-tree
works (largely) as a regular R-tree. If all data fits in main memory,
the RR-tree works as a main-memory R-tree. This behavior makes
the proposal quite flexible.

Finally, because the R-tree heuristics are treated as black-boxes,
the proposed approach is not limited to R-trees, but is easily ex-
tendible to the wider class of so-called grow-post trees, which in-
cludes variants of the R-tree [16].

The paper starts with a formulation of the problem setting in Sec-
tion 2. The proposed data structure, algorithms, and their proper-
ties are described in Section 3, and a cost model is presented in
Section 4. The results of an experimental evaluation are reported
in Section 5. Section 6 then covers related work. Finally, Section 7
concludes and identifies directions for future research.

2. PROBLEM SETTING

2.1 Data And Update Operations
Consider a location-based service or fleet management applica-

tion where a server tracks the current positions of a population of
moving objects. It is a fundamental observation that, due to the
discrete sampling of the movements and the inherent inaccuracy
of positioning technologies, the positions of the objects cannot be
known accurately at the server. Instead, the position of an object o
may be assumed to be known with an accuracy thro [8, 21].

The inaccuracy was only recently taken into account in moving-
object indexing research [12, 13]. In particular, two approaches
may be used that take into account the inaccuracy of positions while
still achieving perfect recall of queries, meaning that queries are
guaranteed to return all qualifying objects, possibly in addition to
false positives. With data enlargement, the position of an object o
is represented by a circle with radius thro, which can be replaced
by a bounding square for indexing purposes. With the less flexible
query enlargement, a global maximum accuracy threshold thr is
used, and each query region is enlarged according to this threshold.

We assume data enlargement; thus, the database stores pairs con-
sisting of an object id, objId , and the object’s current position, p,
represented by a square, which as a special case can degenerate to
a point. Such an 〈objId , p〉 pair is termed an identification tuple.

We classify database update operations as object insertions, ob-
ject deletions, and object updates. When an object reports its posi-
tion for the first time, an insertion occurs: a new identification tu-
ple 〈objId , pnew 〉 is inserted into the index. When an object stops
being tracked by the system, a deletion occurs: the identification
tuple 〈objId , pold〉 is deleted from the index. Updates are the most
common operations in the workloads we consider. These consist
of a pair of an index deletion and an index insertion that deletes
the old identification tuple and inserts a new identification tuple:
〈objId , pold〉−, 〈objId , pnew 〉+, where “−” denotes a deletion and
“+” denotes an insertion. In the following, we consider only index-
level operations, so an (index) update operation denotes either an

insertion or a deletion.
To simplify the presentation, we assume that the sequences of

operations are valid. Thus, the operations concerning an object
objId come in the following order: 〈objId , p1〉+, 〈objId , p1〉−,
〈objId , p2〉+, . . . , 〈objId , pi−1〉−, 〈objId , pi〉+.

As mentioned in the introduction, we do not require the index
to be fully persistent. It is assumed that after a crash, the index
is rebuilt by waiting until the objects report their positions, which
will happen in a relatively brief time interval in a scenario with
frequent updates. Alternatively, the proposed index can be used as
a secondary index on otherwise persistent data. The index can then
be rebuilt from scratch in the event of a crash.

Although the proposed data structure supports the same queries
as an R-tree, for brevity, we focus on range queries that, given a
query rectangle, return all objects such that their true positions in-
tersect the rectangle.

2.2 The R-Tree
The R-tree is a height-balanced tree [11]. Each node consists

of a set of entries. The identification tuples are stored as entries
in the leaf nodes. The objId values of these tuples may then be
interpreted as pointers to additional data for the objects. Non-leaf
node entries take the same form as the leaf-node entries, but an
identifier now points to a tree node at the next level of the tree, and
the position is a minimum bounding rectangle (MBR) that contains
the (approximations of the) positions of all objects stored in the
subtree pointed to.

The size of a node is that of a disk page. This size determines the
maximum fan-out of the index, which is the maximum number of
entries that fit in a node. The actual fan-out of any non-root node
is between the maximum and some value that is no larger than the
ceiling of the maximum divided by 2. The actual fan-out of the
root is at least 2. The R-tree is equipped with update algorithms
that ensure these properties. The algorithms eliminate underfull
nodes and reinsert their entries, and they split overfull nodes.

Figure 1 shows an example of an R-tree that indexes the positions
of 9 objects.
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Figure 1: R-tree with maximum fanout 3, minimum fanout 2

The prototypical query supported by the R-tree is the range query:
given a rectangle, this query retrieves all objects with positions that
may overlap with this rectangle.

The R*-tree [3] is a variant of the R-tree that has the same data
structure as the R-tree but is equipped with update algorithms that
render it more efficient than the R-tree.

3. DATA STRUCTURE AND ALGORITHMS
Section 3.1 introduces the data structure and its properties. Sec-

tions 3.2–3.6 describe the update algorithms and their subroutines,
simultaneously proving selected properties. Section 3.7 illustrates
the workings of these algorithms by means of an example. Finally,
Section 3.8 covers range search.



3.1 The RR-Tree Data Structure
The RR-tree data structure consists of two R-trees: a disk-based

tree and an operation-buffer tree in main memory. The disk-based
tree is a standard R-tree with the identification tuples introduced
in Section 2 as leaf-node entries. In contrast, the operation-buffer
tree stores operations yet to be performed on the disk-based tree.
Its leaf-node entries thus consist of identification tuples augmented
with deletion flags that indicate whether an entry represents an in-
sertion or a deletion. In the following, if not specified otherwise,
the terms entry and node refer to entries and nodes of the disk-based
R-tree.

The operation buffer has room for Cmax pending insertion and
deletion operations, and the current number of operations in the
buffer is denoted by C, C ≤ Cmax. Since flushing of the opera-
tion buffer to the disk-based tree is done only at certain points in
time, the buffer might contain operations that invalidate some of the
data in the disk tree. The property below characterizes the relation
between the data on disk and the operations in the buffer. We use
ωd to denote a data entry in the disk-based R-tree, and ω+

m (ω−
m) to

denote a corresponding insertion (deletion) operation in the main-
memory operation buffer.

Property 1. For any given identification tuple ω = 〈objId , p〉
from the sequence of operations, exactly one of the following four
cases is true at any given time. If the last operation concerning
ω was a deletion, (1) there is no ωd, no ω+

m, and no ω−
m, or (2)

there is a ωd and an ω−
m. If the last operation concerning ω was an

insertion, (3) there is no ωd, but there is an ω+
m , or (4) there is an

ωd, and there is no ω+
m and no ω−

m.

Note that if no operations concerning ω have yet been performed,
case 1 of the property holds trivially.

Figure 2 illustrates the four cases and the possible transitions
between them. While the operation buffer is a main-memory R-
tree, for simplicity, it is depicted as a list in figures. Also note that
Property 1 is not formulated with respect to objId or p alone. There
may naturally exist several objects in the index that share the same
location (equal p values). Further, several obsolete locations for the

..., 〈id, p〉−, ...

...,〈id, p〉, ... ...

2:
EmptyBuffer
Piggyback

..., 〈id, p〉+, ...

...

3:

After 〈id, p〉+

EmptyBuffer
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...,〈id, p〉, ... ...

4:

...
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Operation buffer

Index tree

After 〈id, p〉−

〈id, p〉−

 
〈id, p〉+ 〈id, p〉−

〈id, p〉−, 〈id, p'〉+, ...

...,〈id, p〉, ... ...

Case 3 for 〈id, p'〉:

〈id, p'〉+

Figure 2: Possible states of the index for the 〈id , p〉 tuple

same object (equal objId values) might be recorded in the index
together with the object’s current location. This case is illustrated
in the bottom-right corner of the figure, where p′ is the current
position of the object id and p is an old position.

3.2 Insertion and Deletion Operations
Insertions and deletions are implemented by the same UPDATE

algorithm, using the delFlag parameter to distinguish the two types

of operations (see Algorithm 1). This algorithm first checks whether
the operation buffer (buf ) has room for the current update operation
and empties part of the buffer if necessary (EMPTYBUFFER). Then
it checks if the opposite operation already exists in the buffer by
querying it. An opposite operation is defined as the operation with
the same p and objId , but with the opposite deletion flag value. If
such an operation is found, the previous operation is removed from
the buffer and the incoming operation is ignored. We call this an

Algorithm 1 The UPDATE algorithm
UPDATE(objId , p, delFlag)
1 if buf is full
2 then EMPTYBUFFER
3 oppositeEntry ← 〈objId , p,¬delFlag〉
4 if buf .exists(oppositeEntry)
5 then buf .remove(oppositeEntry)
6 else buf .insert(〈objId , p, delFlag〉)

annihilation. Otherwise, if the opposite operation is not found, the
incoming operation is inserted into the operation buffer.

The lemma that follows implies that the annihilation algorithm
is correct with respect to Property 1.

LEMMA 1. Property 1 holds after invocation of the UPDATE
algorithm if C < Cmax holds as a precondition (the buffer is not
full and EMPTYBUFFER is not called).

PROOF. Proof by induction. In the case of a newly created,
empty tree, Property 1 holds trivially. Assume that Property 1 holds
before an UPDATE. Next assume that we are about to perform an in-
sertion for ω = 〈objId , p〉. This means that the most recent update
for ω was a deletion or this is the first insertion for ω. As illustrated
in Figure 2, the index is then either in state 1 or in state 2. If it is in
state 1, processing an insertion is trivial: it is added to the buffer,
transforming the index into state 3.

Processing ω+ when the index is in state 2 yields a relatively rare
case of annihilation. For example, this may occur when a stationary
object repeatedly sends updates. In this case, an insertion arrives
when there is already a deletion in the buffer for the same object
at the same position. The annihilation removes both operations,
transforming the tree into state 4: {ωd, ω−

m}+ ω+ = ωd.
If the processed operation is a deletion then the most recent up-

date was an insertion and the index is either in state 3 or in state 4.
In state 3, processing ω− results in the most common case of

annihilation, transforming the state of the structure into state 1:
ω+

m + ω− = ∅.
Finally, in state 4, ω− is simply added to the buffer, transforming

the index into state 2: ωd + ω− = {ωd, ω−
m}.

While the annihilation in state 3 is intuitive, to better understand
the intuition of annihilation in state 2, consider what would happen
if the involved operations were allowed to complete on the disk
tree one by one. The deletion from the buffer first removes the
data from the tree; then, later, the insertion creates an entry that is
identical to the one removed. The combined effect is that the tree
transforms into state 4, the effect of which is identical to that of the
annihilation.

3.3 EmptyBuffer Algorithm
The EMPTYBUFFER algorithm, presented in Algorithm 21, is re-

sponsible for committing some of the operations in the buffer to
1For brevity, we do not distinguish between nodes and entries
pointing to these nodes in the pseudo code descriptions of the al-
gorithms. Consequently, all MBR update and node reading and
writing operations are implicit.



disk. Note that although all operations are removed from the buffer
in line 2 of the pseudo code, some of them are usually put back
into the buffer in the GROUPUPDATE algorithm, described in Sec-
tion 3.4. In addition, with the appropriate bookkeeping, the imple-
mentation of the algorithm needs not materialize the opList as is
done in the pseudo code.

Algorithm 2 The EMPTYBUFFER algorithm
EMPTYBUFFER()
1 opList← buf.GetAllOperations
2 buf.remove(opList)
3 siblings← GROUPUPDATE(rootNode, opList)
4 while |siblings| > 1
5 do rootNode← newNodeWithEntries(siblings)
6 siblings← GROUPSPLIT(rootNode)

The GROUPUPDATE algorithm performs the argument opera-
tions on the root node of the disk tree and returns a set of root-level
sibling nodes, i.e., subtrees of the same height as the disk tree, in-
cluding the original root. If this set contains other nodes than the
original root, the tree is grown by creating a new root. It is possible
that there were so many sibling entries that the new root overflows.
In that case, the new root is split, which grows the tree further.

The GROUPSPLIT algorithm used in line 6 (and as a subroutine
of GROUPUPDATE) checks whether the node is overflowing. If not,
it returns the original node; otherwise, the node is repeatedly split
by the regular R*-tree split algorithm [3] until none of the result-
ing nodes are overflowing, in which case all the nodes created are
returned. Although more advanced implementations of GROUP-
SPLIT are possible [6], we do not consider them. This is because
the node is usually split no more than once, as the number of buffer
entries processed is typically a small fraction of the size of the tree
disk.

3.4 GroupUpdate Algorithm
The GROUPUPDATE, presented in Algorithm 3, is the core of the

proposed indexing technique. It executes the specified operation
list (a sublist of the operations formerly present in the buffer) on
the specified subtree.

Algorithm 3 The GROUPUPDATE algorithm
GROUPUPDATE(node, opList)

1 if node is leaf
2 then EXECUTEENTRIES(node, opList)
3 else pushG← GETPUSHDOWNOPS(opList, node)
4 regroup← false
5 for each 〈child, opSublist〉 in pushG
6 do if regroup
7 then return GROUPUPDATE(node, pushG)
8 pushG← pushG \ opSublist
9 node.remove(child)

10 newCh← GROUPUPDATE(child, opSublist)
11 if newCh = {newChild}
12 then regroup
13 ← INTEGRATECHILD(node, newChild)
14 else node.add(newChildren)
15 if |node| = 1 and node is non-leaf
16 then node← node[1]
17 return GROUPSPLIT(node)

If the subtree is a leaf node then the operation list is executed on
the node trivially by means of EXECUTEENTRIES, which just adds

insertion entries to the node and removes existing entries matched
by deletion entries. If the subtree is rooted at a non-leaf node, GET-
PUSHDOWNOPS returns a mapping from its child nodes to the in-
dividual operation sublists that should be executed on these nodes.
As will be discussed later, some of the operations from opList can
also be put back into the buffer and are thus not processed during
this buffer emptying.

Each mapping in pushG is then executed in turn by a recursive
GROUPUPDATE call (line 10). This results in a list of new child
nodes in newCh . The rest of the algorithm is concerned with in-
tegrating these nodes into the tree. In the simplest case, there are
two or more such nodes. Their entries are trivially added to the
current node. If only one child node is returned, further and more
complicated treatment may be necessary in case the child is un-
derfull or has shrunk in height. This is handled by INTEGRATE-
CHILD and is discussed in the next section. This algorithm may
change other sibling child entries, invalidating the remaining, non-
processed mappings in pushG . This is signaled by the regroup
flag, which forces a restart of GROUPUPDATE. It is guaranteed that
at least one mapping is completed before such a restart can occur;
thus, the algorithm is guaranteed to terminate.

After performing all the operations, the current node might con-
tain only one entry, in which case it is replaced by its child in the
tree, thus shrinking the tree in height. The node may also end up
overfull. It is then passed to GROUPSPLIT, which returns a list
of non-overflowing nodes. This list is returned as the result of the
algorithm.

The next lemma states that the UPDATE algorithm complies with
Property 1 when EMPTYBUFFER is called. The proof assumes that
those operations that reach the leaves of the disk tree are correctly
routed there by the GETPUSHDOWNOPS algorithm.

LEMMA 2. Property 1 holds after invocation of the UPDATE
algorithm if C = Cmax holds as a precondition (the buffer is full).

PROOF. According to the Lemma 1, Property 1 holds as a pre-
condition. For every identification pair ω that is contained in the
buffer, the tree might be in either state 2 or state 3. EMPTYBUFFER
will either leave the ω in the buffer, or the operation will be per-
formed correctly on the disk tree and removed from the buffer. In
the latter case, the index will move from state 2 to state 1, or from
state 3 to state 4 (see Figure 2). After buffer emptying, the incom-
ing operation will be processed as in Lemma 1.

A consequence of Lemmas 1 and 2 is the following theorem. The
proof is trivial and thus omitted.

THEOREM 1. After invocation of the UPDATE algorithm, Prop-
erty 1 holds.

3.5 IntegrateChild Algorithm
The INTEGRATECHILD algorithm (Algorithm 4) is responsible

for adding an arbitrarily-looking R-tree to the current node. Several
cases must be handled. One case is where the root of the new tree
is the only child of the current node. Then the current node is re-
moved and the child node takes its place. More commonly, the root
of the new tree has siblings in the current node and is either under-
full or normal. The contents of an underfull node are merged into
the sibling nodes by the MERGESUBTREES call, whereas a normal
node is inserted into tree by INSERTSUBTREE, as discussed shortly.

Subroutines INSERTSUBTREE and MERGESUBTREES serve sim-
ilar purpose—putting a subtree into the main tree—and have simi-
lar implementations. The principal difference is that INSERTSUB-
TREE handles a subtree whose root is a normal (not underfull) node,
whereas MERGESUBTREES handles the case of an underfull node.



Algorithm 4 The INTEGRATECHILD algorithm
INTEGRATECHILD(node,newCh)
1 if |newCh| 6= 0
2 then if |node| = 0
3 then node← newCh
4 else if newCh is underfull
5 then
6 return MERGESUBTREES(node,newCh)
7 else
8 return INSERTSUBTREE(node,newCh)
9 return mustNotRegroup

The INSERTSUBTREE (Algorithm 5) checks whether the speci-
fied node is at the right level for insertion of the subtree, i.e., the
distance to the leaf level from the node in the main tree must be
equal to the subtree height.

Algorithm 5 INSERTSUBTREE algorithm
INSERTSUBTREE(node, subtree)
1 if subtree is one level below node
2 then node.add(subtree)
3 else childNode ← CHOOSESUBTREE(node, subtree)
4 INSERTSUBTREE(childNode, subtree)
5 childNodes ← GROUPSPLIT(childNode)
6 node.add(childNodes)
7 if |childNodes| > 1
8 then return mustRegroup
9 return mustNotRegroup

If so, a new entry for the subtree is created and inserted into the
node. This case is the most common, and it does not incur any ad-
ditional I/O. However, if the specified node is not at the right level
to accommodate the subtree, then, using the minimum bounding
rectangle of the subtree, the standard R∗-tree CHOOSESUBTREE
algorithm is called to identify an appropriate node one level below,
and INSERTSUBTREE is called recursively. After returning from
the recursive call, GROUPSPLIT is called on the potentially over-
flowing child node, and the resulting entries are inserted into the
parent node.

Since GROUPSPLIT may replace one child node with two new
child nodes, it invalidates any parent GROUPUPDATE mappings for
this node. This situation is signaled to the caller by the return value.

The MERGESUBTREES algorithm is very similar to INSERTSUB-
TREE. The only difference is that when the node at the right level is
found, it is merged with the underfull node passed as an argument
to the algorithm.

To complete the definition of the update algorithms, the GET-
PUSHDOWNOPS algorithm is discussed next. It is used in algo-
rithm GROUPUPDATE, to route groups of operations down the disk
tree.

3.6 GetPushDownOps Algorithm
Given an operation list and a node of the disk tree, the GET-

PUSHDOWNOPS algorithm (Algorithm 6) determines which of the
operations should be pushed down and to which children of the
node. First, the GROUPOPERATIONS subroutine is called to es-
tablish the mapping between the operations and the child nodes
according to the usual R∗-tree rules (see Algorithm 7). The map-
ping returned is a list of 〈childNode, opSublist〉 tuples . Each in-
sertion is mapped to a single child node according the R∗-tree’s
CHOOSESUBTREE algorithm [3]. Each deletion is mapped to all

Algorithm 6 The GETPUSHDOWNOPS algorithm
GETPUSHDOWNOPS(node, opList)
1 mapping ← GROUPOPERATIONS(node, opList)
2 if node is the root
3 then for each 〈chNode, sublist〉 in mapping
4 do if |sublist | < k
5 then
6 mapping ← mapping \ {〈chNode, sublist〉}
7 buf .insert(sublist)
8 return mapping

Algorithm 7 The GROUPOPERATIONS algorithm
GROUPOPERATIONS(node, opList)
1 opMapping ← ∅
2 for each op in opList
3 do if op is a deletion
4 then matchingChildren ← Covering(node, op)
5 for each chNode in matchingChildren
6 do opMapping ← opMapping ∪ {op→ chNode}
7 else childNode ← CHOOSESUBTREE(node, op)
8 opMapping ← opMapping ∪ {op→ childNode}
9 return opMapping

child nodes whose bounding rectangle includes it (as returned by
the Covering method in line 4 of the algorithm).

As shown in Algorithm 6, if the node is not the root, the algo-
rithm just returns the mapping obtained from the call to GROUP-
OPERATIONS. If the node is the root, the algorithm removes from
the mapping all operation sublists that have fewer than k opera-
tions. Operations in these sublists are put back into the buffer. The
idea using an operation threshold for the buffer emptying is to avoid
spending expensive I/O on the small groups, so that as many oper-
ations as possible share the same I/O.

Choosing a threshold k is not trivial. If a large value for k is
chosen, this will cause only very few groups to be emptied, leading
in turn to the need for very frequent buffer emptying. Choosing
a small k value also has obvious drawbacks. The analytical cost
modeling in Section 4 provides a way to choose an optimal value
of k.

Note that because some sublists of operations are put back into
the buffer, one copy of a deletion may be put back into the buffer
while another is sent down the tree. For this reason, if the deletion
succeeds to delete an entry in the index tree, the EXECUTEEN-
TRIES algorithm (called from GROUPUPDATE) removes the corre-
sponding copy of the deletion operation from the buffer if there is
one.

Two special cases are not shown in the pseudo code. If all sub-
lists of operations have fewer than k operations, one largest sublist
is sent down the tree. Finally, a special and rare case occurs when
only groups, consisting solely of copies of deletions, are sent down
the tree. If none of these deletions are successful, no operations are
removed from the buffer. If this occurs, we empty the whole buffer.

Having described all the algorithms needed for maintaining the
RR-tree, we proceed to illustrate the workings of the algorithms.

3.7 Example
Figure 3 shows a small example were a number of update op-

erations are performed, causing a buffer emptying. The leftmost
part of the figure shows the positions of eight objects stored in an
R-tree. The four empty circles (a1, a2, c2, j) represent insertions
that are in the buffer or future updates that will be discussed in the
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Figure 3: Performing a set of operations on the RR-tree

following. The light gray circles (a, c) represent the positions that
are in the disk tree, but that have corresponding deletion entries in
the buffer. In the example, object a moves from a to a1 to a2, and
object c moves from c to c1 to c2. We assume a disk R-tree with
a maximum fan-out of 3 and a minimum fan-out of 2. The buffer
size is C = 5 and the operation threshold is k = 4.

Note that the initial state of the tree holds two positions, c and c1,
for object c. This happened after the part of the buffer containing
the insertion of c1 was emptied, while the deletion of c was left
in the buffer. Next, a and c update their positions, resulting in the
following sequence of updates: a−1 , a+

2 , c−1 , c+
2 . The deletion of

a1 and the corresponding insertion already in the buffer annihilate.
The remaining three operations are inserted into the buffer.

The insertion of a new object j triggers a buffer emptying. The
figure shows how the GROUPOPERATIONS algorithm divides the
operations into two groups: one for node X and one for node Y .
Note that, due to the overlap between the MBRs of X and Y , c−

and c−1 are copied into both groups. Because the group for node Y
has fewer than k elements, its entries are put back into the buffer.
The operations in the other group proceed down the tree to nodes
K and L, as shown in the figure. Note that, after reading node X ,
the algorithm discovers that c1 can not be found in this subtree and
c−1 is not sent further, but c− is sent to node L, it succeeds, and its
copy is removed from the buffer.

The performed operations result in a number of structural changes
to the disk tree. Node L is rendered underfull and is merged with
node K. As a result, node X contains only one child; thus, X
is replaced by its child, reducing the height of the subtree to one.
The shorter subtree is then inserted into node Y using the IN-
SERTCHILD algorithm. Finally, the single-entry root is removed,
finishing the buffer emptying. At last, the operation that caused the
buffer emptying, j+, is inserted into the buffer. The resulting disk
tree and buffer are shown at the rightmost end of the figure.

Note that the demonstrated shrinking (and growing) of subtrees
are very rare for realistic node sizes and workloads that mostly con-
tain deletion-insertion pairs.

3.8 Search Algorithm
The SEARCH algorithm in Algorithm 8 is an adjusted standard

R-tree search algorithm. It operates by first querying the disk tree.
The resulting answer set is modified to take the buffer data into
account. Thus, objects that have corresponding deletions in the
buffer are removed from the set, and any objects from the buffer
that overlap with the query rectangle are included into the set. As
the following theorem shows, the resulting set is the correct answer.

THEOREM 2. The SEARCH algorithm, performed after a series
of calls to the UPDATE algorithm, returns correct results.

PROOF. Assume that the current position of object objId is pc.
In a series of update operations concerning object objId , the last
operation for any identification tuple 〈objId , p〉 (p 6= pc) is a dele-
tion. According to Theorem 1, the index is in state 1 or in state 2
with respect to these identification tuples (see Figure 2). Trivially,

Algorithm 8 SEARCH algorithm
SEARCH(rectangle)
1 leafNodes ← GETOVERLAPPINGLEAFNODES(rectangle)
2 answer ← ∅
3 for each leaf in leafNodes
4 do answer ← answer ∪ SEARCHNODE(leaf , rectangle)
5 PIGGYBACK(node)
6 for each entry in answer
7 do if there is a matching deletion in the operation buffer
8 then answer ← answer \ {entry}
9 return answer ∪ buf .SearchInsertions(rectangle)

the query will not return any such identification tuples correspond-
ing to state 1. Identification tuples corresponding to state 2, even
if chosen in line 4 of the algorithm, are subsequently eliminated by
matching entries from the buffer in line 7.

Now let the last operation for 〈objId , pc〉 be an insertion. Ac-
cording to Theorem 1, the index is in state 3 or in state 4 with
respect to this identification tuple (the tuple is either in the buffer
or in the disk tree). Thus, if pc satisfies the query, it will be returned
either from the disk tree (line 4) or the buffer (line 9).

In addition to querying, the SEARCH algorithm takes the oppor-
tunity to perform some of the operations in the buffer on the leaf
nodes of the disk tree that are read during querying. This is done
by calling PIGGYBACK presented in Algorithm 9.

Potentially all the insertion entries that are contained in the node
MBR and all the deletion entries that can remove corresponding
node entries might be performed and thus removed from the buffer.
However, the number of operations actually performed is limited
by the requirement to keep the node from neither overflowing nor
underflowing, to avoid the cost and complexity of having to adjust
the tree.

Algorithm 9 PIGGYBACK algorithm
PIGGYBACK(node)
1 matchingBufEntries ← SEARCHBUFFER(MBR(node))
2 i← getNumOfInsertions(matchingBufEntries)
3 d← getNumOfDeletions(matchingBufEntries)
4 newSize ← |node|+ i− d
5 if newSize > Smax

6 then i← i− (newSize − Smax )
7 else if newSize < Smin

8 then d← d− (Smin − newSize)
9 EXECUTEFROMBUFFER(matchingBufEntries, node, i, d)

The operations are executed by means of an algorithm called EX-
ECUTEFROMBUFFER, which is similar to EXECUTEENTRIES used
in GROUPUPDATE, except that it takes two additional parameters
that specify thresholds for the number of insertions and deletions
that can be executed. It also removes the completed operations
from the buffer.



In Algorithm 9, Smin and Smax is the minimum and the maxi-
mum number of allowed entries in an R-tree node, respectively.

Because such piggybacking corresponds to the emptying of part
of the buffer, the reasoning in the proof of Lemma 2 also applies to
show that PIGGYBACK does not violate Property 1. Thus, query-
result correctness is not compromised. Also, note that piggyback-
ing is designed to be a performance optimization that can be dis-
abled without any effects in the correctness of SEARCH or any other
algorithm.

4. ANALYTICAL COST MODELING
As mentioned in Section 3.6, choosing the right value for the

operation threshold (k) is non-trivial. The cost of buffer emptying
has to be balanced against the frequency of the buffer emptying.
Nevertheless, the emptying of larger groups at the root level should
intuitively lead to more sharing of I/O operations. This section de-
scribes a cost model that confirms this intuition. More specifically
we show that if the buffer size is not very small compared to the to-
tal number of objects, the best value for k is the size of the largest
group of operations, i.e., only the largest group of operations has to
be emptied from the buffer on each buffer emptying.

Because the objective of the cost model is not to model the per-
formance accurately in absolute terms, we are able to make a num-
ber of simplifying assumptions. We explain these assumptions at
the beginning of Sections 4.1 and 4.2.

We first model how often the buffer is emptied and then estimate
the I/O cost of the buffer emptying. The notation used is summa-
rized in Table 1.

C Current number of operations in the buffer
Cs Starting number of operations in the buffer

Cmax Capacity of the buffer
O Number of objects
k Operation threshold
S Average fan-out of disk tree nodes
R Fan-out of the root
X Sequence of update operations
W Expected number of buffer entries
K I/O costs associated with buffer emptying

Table 1: Cost Model Notation

4.1 Frequency of EmptyBuffer Invocations
To enable the estimation of the frequency of EMPTYBUFFER in-

vocations, we assume that the number of objects being tracked is
O and that Cmax < O. We also assume that the index is in steady
state, such that the set of objects being tracked neither grows nor
shrinks. A workload then consists of pairs of deletions and inser-
tions. As we assume a general setting where updates are much more
frequent than queries, we assume that the effects of piggybacking
on the buffer can be ignored.

Assume that the an invocation of EMPTYBUFFER has emptied x
operations from the buffer, so Cs = Cmax − x operations remain
in the buffer. We then proceed to determine how many operations
that can be entered into the buffer before the buffer gets full and the
next invocation of EMPTYBUFFER occurs. To do that, we need to
consider the effects of annihilation because these reduce the size of
the buffer.

The second case of annihilation, where an incoming insertion
annihilates with a deletion in the buffer (the transition from state 2
to state 4 in Figure 2), is rare, as it occurs only when an object sends
duplicate updates in rapid succession.

The first case of annihilation, where an incoming deletion anni-
hilates with an insertion in the buffer, is more frequent. Its proba-
bility depends on the number of insertions currently residing in the
buffer. Assuming that operations come in deletion-insertion pairs
and buffer emptying empties equal amounts of deletions and inser-
tions, half of the operations in the buffer are deletions and half of
the operations are insertions, i.e., at any time, there are C/2 inser-
tions in the buffer and the probability of annihilation is C/(2O).

To see why this is true, consider what happens when a deletion-
insertion pair is added to the buffer. If no annihilation occurs, the
number of insertions and the number of deletions in the buffer are
each increased by one. If the deletion annihilates with an insertion
already in the buffer, the addition of the new insertion results in un-
changed numbers of deletions and insertions in the buffer. Summa-
rizing, a deletion-insertion pair leaves C unchanged with probabil-
ity C/(2O) and increases C by 2 with complementary probability
1− C/(2O).

Between buffer emptyings, the probability of C increasing (Pinc)
varies from max(Pinc(C)) = Pinc(Cs) = 1 − Cs/(2O) to
min(Pinc(C)) = Pinc(Cmax ) = 1−Cmax/(2O). Such a process
can be modeled precisely as a Markov chain, but, to simplify the
analysis, Pinc is assumed to be constant and equal to the average of
the minimum and the maximum values:

Pinc =
min(Pinc(C)) + max(Pinc(C))

2
= 1− Cs + Cmax

4O

We now know the probability with which an incoming deletion-
insertion pair will increase the buffer size by two. Assume a work-
load X of operations consisting of |X|/2 deletion-insertion pairs.
Starting with Cs operations in the buffer, and assuming that the
buffer does not become full in the process, the expected final num-
ber of entries in the buffer after processing the workload is:

W (X, Cs, Cmax ) = Cs + 2Pinc
|X|
2

= Cs +
|X|(4O − (Cs + Cmax ))

4O
(1)

Then the expected buffer-filling workload size |X| can be triv-
ially derived from Equation 1 as follows:

Cmax = W (X, Cs, Cmax )

⇒ |X|(Cs, Cmax ) =
4O(Cmax − Cs)

4O − (Cs + Cmax )

Expressing |X| as a function of Cmax and x, where x = Cmax−
Cs, we obtain:

|X|(Cmax , x) =
4Ox

4O − 2Cmax + x
(2)

The next section models the I/O cost of buffer emptying.

4.2 EmptyBuffer Cost Model
All update I/O is due to EMPTYBUFFER invocations. In order

to estimate the cost of EMPTYBUFFER, we assume that incoming
operations are uniformly distributed in the data space; thus, an op-
eration from the buffer is equally likely to be routed by the R-tree
algorithms to any of the root’s subtrees.

Next, we assume that a deletion is only sent to one subtree at the
root level. This is a reasonable assumption for R-trees storing point
or small-region data (which is the case in our setting) because this
results in MBRs with little overlap. We also assume that each object
has only one position recorded in the disk tree. Thus, cases such
as the one shown for object c in Figure 3 are very rare. Finally, we
assume that those sublists of operations that are sent to the subtrees
of the root read and write all the nodes in these subtrees.



Under the above assumptions, we show that emptying only the
largest group leads to the smallest amortized cost of update opera-
tions. We end by discussing when the last assumption holds.

The first step is to compare the amortized I/O cost per update op-
eration resulting from using two different operation threshold val-
ues. Thus, we compute the cost when k = kmax , the size of the
largest group of operations at the root. Then, we compare this cost
with the cost when k = kmax − ε (ε ≥ 0), the size of the next
largest group.

If K1 is the cost of reading and writing one subtree of the root
then the total cost of emptying the largest group from the buffer is
2+K1 (including the reading and writing of the root node). Divid-
ing this cost by the number of update operations that are necessary
to fill the buffer again, we get the amortized update cost when only
the largest group is emptied:

KU,1 =
2 + K1

|X|(Cmax , kmax )

Combining this with Equation 2, we get:

KU,1 =
(2 + K1)(4O − 2Cmax + kmax )

4Okmax
(3)

If two largest groups are emptied (2kmax − ε operations in to-
tal), two subtrees of the root are accessed, and the corresponding
amortized update cost becomes:

KU,2 =
2 + 2K1

|X|(Cmax , 2kmax − ε)

=
(2 + 2K1)(4O − 2Cmax + 2kmax − ε)

4O(2kmax − ε)

=
(1 + K1)(4O − 2Cmax + 2kmax − ε)

4Okmax − 2Oε
(4)

Comparison of Equations 3 and 4 sheds light on when KU,1 ≤
KU,2. First, note that if the root node was kept in main memory, the
first term in the numerators of both formulas would become simply
K1, as reading and writing the root would not be necessary. In this
case, KU,1 is always smaller than KU,2.

We proceed to show that even if the root node is not pinned in
memory, KU,1 ≤ KU,2 for sufficiently large Cmax . In particular,
the inequality KU,1 ≤ KU,2 can be simplified to:

(4O− 2Cmax )(2kmax − ε(2+K1)) ≤ K1kmax (2kmax − ε) (5)

To see when the inequality holds, we estimate kmax and K1. The
cost K1 is equal to twice the average number of nodes in the subtree
of the root. Due to the large fan-out of an index tree, the size of
the subtree can be accurately approximated by the number of leaf
nodes in the subtree, which is, on average, equal to O/(SR), where
S is the average fan-out of the disk R-tree nodes (except the root)
and R is the current fan-out of the root. Thus, K1 ≈ 2O/(SR).

The size of kmax depends on Cmax and R. We assume that the
size of the largest group is f times larger than the average group
size, i.e., kmax = fCmax/R, where f > 1. With these estimates
of K1 and kmax , it is easy to prove that Equation 5 is satisfied when:

Cmax ≥
3SR2

f
.

This means that for large enough buffers, emptying only the
largest group of operations is the most efficient strategy even if the
root node of the disk R-tree is not kept in main memory.

We proceed to compute the smallest size of the group of opera-
tions at the root level, such that emptying this group from the op-
eration buffer results in touching the whole subtree of the root with

high probability. This is a key assumption of the analytical model
and it provides, indirectly, another lower bound for Cmax .

For an entire subtree to be touched when performing a group of
operations, all leaves of the subtree must receive at least one op-
eration. In general, distributing n objects among g groups with
uniform probability results in groups of objects whose sizes follow
the binomial distribution B(n, 1/g) [18]. When kth operations are
distributed among O/(SR) leaves, the number of operations reach-
ing a leaf follows the distribution B(kth , SR/O). The probability
that a leaf of the subtree will not get any operations then is:

f(0; kth , SR/O) =

„
1− SR

O

«kth

We require that this probability is low, specifically lower than
0.05:

f(0; kth , SR/O) ≤ 0.05 ⇒ kth ≥
ln 0.05

ln(1− SR/O)
(6)

Using the Taylor series centered at 1 to approximate the denom-
inator, we get kth ≥ 3O/SR. For the cost model to apply, we
require that kmax − ε ≥ kth . Assuming that ε is small and that
kmax = fCmax/R, this condition can be expressed as follows:

Cmax ≥
3O

Sf
. (7)

Factor f does not have a simple analytical form, but it is a small
constant larger than one. In Section 5, we explore experimentally
for which settings of Cmax the average size of the largest group of
operations satisfies Equation 6. How to choose the optimal value
of k for small buffers, when Equation 6 is not satisfied, is an inter-
esting topic for future research.

5. EXPERIMENTAL EVALUATION
In this section we describe the results of performance experi-

ments with the RR-tree and two competing proposals. The settings
for the experiments are described first. This is followed by the pre-
sentation of results.

5.1 Experimental Setup
Three indexing techniques are covered in the experiments: the

RR-tree, the RUM-tree [23], and the R∗-tree. The XXL library [4]
implementation of the R∗-tree was used. The RR-tree was also
implemented on top of the XXL library [4]. The RUM-tree im-
plementation was kindly provided to us by its inventors [23]. We
modified the implementation to add an LRU buffer.

Unless stated otherwise, a 4 kilobyte page size (and thus tree
node size) is used both for disk trees and the buffer tree of the
RR-tree. Also when not stated otherwise, the size of the opera-
tion buffer in the RR-tree is chosen so that, on average, it is able to
store the number of operations that is equal to the 5% of the number
of tracked objects. For most of the experiments with the RR-tree,
no disk-page buffer is used. When a page buffer is used, the LRU
write-back page replacement policy is applied so that dirty pages
are written to disk only when they are evicted from the buffer.

To generate a workload, the generator from the COST bench-
mark [13] is used. This generator simulates a number of moving
objects that update their positions using the shared-prediction based
update approach. More specifically, point-based tracking is used,
meaning that an object updates its position when its current posi-
tion reaches a distance to its most recently reported position that is
equal to an agree-upon accuracy threshold thr . The objects’ posi-
tions are inserted into the index as bounding squares of the circles
with radius thr .



We use two kinds of workloads generated by the COST gener-
ator. In the uniform workloads, an object starts from a random
position and moves in a random direction and at a random speed
between 0 and 180 km/h in-between updates. In the non-uniform
workloads, simulated objects move in a road network that is a com-
plete graph connecting 20 randomly placed intersections. Three
classes of objects are generated with maximum speeds of 45, 90,
and 180 km/h.

Each of the generated workloads is a mix of insertions, dele-
tions, and queries. First, all objects are inserted. Then, they send
updates (deletion-insertion pairs) according to the update approach
described above. The I/O performance is measured also only after
the index reaches steady state, i.e., all objects are inserted.

Range queries are distributed uniformly in the workload and in
the data space. Each query range is a rectangle covering 0.02%
of the data space. Table 2 shows the default values of the work-
load parameters used for all of the experiments (unless the value of
the parameter is varied in the experiments). Note that in this table

Parameter Default Value
Number of moving objects 100, 000
Size of the dataspace 100km× 100km
Accuracy threshold 200m
Number of updates 400, 000
Queries per update 1 : 20, 000

Table 2: Workload Parameters

(and later in the graphs) an update denotes an individual deletion
or insertion, not counting the initial insertions. Thus, when the ra-
tio of the number of queries to the number of updates is equal to
1/20, 000, this means that one query is performed for every 10, 000
deletion-insertion pairs.

We have chosen to use 400, 000 operations in the workloads be-
cause the use of workloads with larger numbers of operations does
not significantly change the performance numbers. A performance
graph later in this section demonstrates this.

5.2 Cost Model Validation
The first set of experiments were run with the goal of validating

the conclusions of the cost model presented in Section 4, namely,
that emptying only the largest group of operations is the most ef-
ficient strategy. For this purpose, we compared this strategy with
the strategy where threshold k is set to some static value (static
thresholding). Uniform and non-uniform workloads were run with
different static values of the operation threshold k and two settings
for the operation buffer size: 5% and 20% of the number of moving
objects. Note that when k = 1, the buffer is emptied completely.
Also when, for a specific buffer emptying, k > kmax the algorithm
empties just the largest group of operations. Figure 4 plots the up-
date performance of the RR-tree under different buffer-emptying
strategies. The position of the point for the largest-group emptying
on the x-axis shows the average size of the largest group of opera-
tions. The graph demonstrates that emptying only the largest group
is more efficient than using any static threshold value.

Figure 5 plots the average size of the largest group of operations
when the size of the buffer is varied. It also shows the smallest
value of this parameter when the cost model assumptions still hold
(see Equation 6). The graph demonstrates that the cost model ap-
plies when the buffer is larger than 2% of the number of objects.
This applies for both uniform and non-uniform workloads. Note,
of course, that this percentage depends on the average fan-out of the
R-tree used in the experiments (S), as can be seen from Equation 7.
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5.3 Exploring the RR-Tree Algorithms
For the rest of the experiments, we use non-uniform workloads.

First, we explore selected properties of the RR-tree. The goal of the
first experiment is to determine how effective the operation buffer is
at increasing the update performance in comparison to the use of an
LRU write-back page buffer. In this experiment, part of the avail-
able memory is allocated to the operation buffer, and the rest is al-
located to the LRU page buffer. The total amount of main memory
is kept constant, but the fraction allocated to the operation buffer
is changed. The experiment is run with two workloads, one with
few queries and one with an equal amount of queries and object
updates. The I/O performance is averaged over all three types of
operations: insertions, deletions, and queries.

Figure 6 shows very clearly that when most of the operations are
updates, all of the available main memory should be allocated to
the operation buffer. On the other hand, reducing the size of the
page buffer increases the cost of queries. Thus, when the workload
contains a lot of queries, part of the memory should be allocated to
the operation buffer and part to the page buffer.

The effect of query piggybacking (as described in Section 3.8)
was studied for operation buffer sizes of 5% and 20% of the num-
ber of moving objects. The experiments show that piggybacking
starts to have a noticeable effect when there is a substantial frac-
tion of queries in the workload. For example, for the 5% buffer
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size and 200 updates per query in the workload, only about 4.9%
of updates are performed by the PIGGYBACK algorithm during the
processing of queries. When the number of updates per query drops
to 20, about half of the updates are performed by the PIGGYBACK
algorithm.

5.4 Comparing the Indexes
To ensure that the comparison of the three indexes fair and thus

obtain meaningful results, in each of the experiments, we allocate
exactly the same amount of main memory to each index. All the
available main memory is used for the page buffer for the R∗-tree.

The RR-tree uses all of the available memory for the operation
buffer in most experiments. The exception is that in the experi-
ments with high ratios of queries, the RR-tree divides memory be-
tween the operation buffer and the page buffer. The division used
in each case was chosen through a number of performance exper-
iments. The RUM-tree uses a part of the available main memory

0

0.5

1

1.5

2

2.5

3

3.5

100 1000 10000 100000

I/
O

pe
ro

pe
ra

tio
n

Buffer size in objects

R-tree
RUM-tree

RR-tree

Figure 7: Scalability with respect to available main memory

for its update memo, and the rest is used for the page buffer. Two
parameters, the inspection ratio and the clean-on-touch flag [23],
are used to control how eagerly the obsolete entries are removed
from the RUM-tree. Experiments with three different configura-
tions of the RUM-tree were run to determine which one performs
the best: 20% inspection ratio with clean-on-touch, 0% inspection
ratio with clean-on-touch, and 0% inspection ratio without clean-
on-touch. The configuration with 20% inspection ratio and clean-

on-touch was chosen. This result is in correspondence with the
findings of the inventors of the RUM-tree.

Figure 7 shows how the indexes compare for different sizes of
available main memory. Note that the amount of main memory is
given in terms of the average number of objects that can fit in the
memory organized into an R-tree. The amount of main memory
is varied from 0.1% to 100% of the number of moving objects.
The RR-tree clearly outperforms the other two approaches. For
example, when the amount of main-memory is equal to 10% of the
number of moving objects, the update performance of the RR-tree
is almost four times better than that of the RUM-tree and more than
seven times better than that of the R∗-tree.
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Figure 8 shows how the different approaches perform when the
ratio of updates and queries is changed. Again the RR-tree is better

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

2× 105 4× 105 8× 105 1.6× 106

I/
O

pe
ru

pd
at

e

Workload size in operations

R-tree
RUM-tree

RR-tree

Figure 9: Scalability with respect to workload duration
under all settings except when there are more queries than updates.
In this setting, where the query performance is the dominant fac-
tor, the RUM-tree performs better than the RR-tree, because the
RR-tree uses a smaller page buffer than the RUM-tree.

The next two sets of experiments explore the performance of
the indexes under different workload sizes and different disk page
sizes. The graphs in Figure 9 show that the performance of the
RR-tree tree does not degrade with an increasing length of the
workloads. The graphs in Figure 10 demonstrate that, as expected,
the I/O performance is improved when the disk page size is in-
creased.
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6. RELATED WORK
We proceed to consider relevant previous work on the efficient

update of general disk-based data structures and, particularly, on
efficient updates in R-trees.

Techniques for the bulk-loading of data structures are relevant
for the problem of efficient updates. Notably, Choubey et al. [7]
have proposed algorithms that aim to perform many insertions on
an existing index structure in one go. However, these algorithms
are not directly applicable in our setting because they focus on the
search performance of the resulting structure, whereas the perfor-
mance of the bulk-loading itself is of secondary importance. In
addition, they do not consider deletions.

An approach to dealing with frequent updates of continuous vari-
ables such as positions is to model the positions as linear functions
of time instead of the standard constant functions of time. When
representing the position of an object by a linear function as, e.g.,
proposed by Wolfson et al. [22], the modeled position stays close
to the actual for longer periods of time. It has been shown that, for
a range of reasonable accuracy thresholds, the number of updates
needed to maintain the positions of vehicles is reduced by almost a
factor of 3 [8]. The use of such linear functions on the top of R-tree
was first proposed by Šaltenis et al. [19] and subsequently explored
by others. These proposals are orthogonal to our proposal, and it is
possible to combine them to obtain the combined benefits.

In a survey, Graefe [9] presents a general overview of techniques
for speeding up B-tree updates. One of the techniques covered—
the buffering of insertions in a separate data structure—is used
in our proposal. The survey also describes a differential file de-
sign that enables the buffering of deletions and updates in addition
to insertions. Differential indexes and on-line index construction
were researched in the context of B-trees and relaxed index persis-
tence [17, 20]. These approaches are similar to the buffer of the
RR-tree that buffers all incoming updates (i.e., deletions and inser-
tions). To the best of our knowledge, partial and selective emptying
of the operation buffer was not explored in these works. Graefe [9]
also mentions a non-logged B-tree, which directly corresponds to
our notion of relaxed persistence or use as a secondary index. Fi-
nally, in recent work, Graefe [10] briefly discusses how so-called
merged B-trees can be used to conveniently store a main index and
to-do lists that contain unprocessed keys.

The problem of frequent updates in R-tree was recently tack-
led by Lee et al. [14], who present the most competitive proposal
for bottom-up updates of R-trees. The bottom-up approach avoids

potentially expensive top-down traversals and exploits the update
locality of continuous variables. However, an auxiliary data struc-
ture, required in order to access the bottom level, uses a significant
amount of space and is disk based. Because of this, updates still
take at least 3 I/Os. Additionally, the proposal includes a main-
memory data structure that compactly stores a summary of the tree.
This structure helps save I/O in the case of non-local updates, but
uses a fixed amount of main memory. In contrast, our proposed
technique is top-down and mitigates the drawbacks of top-down
traversals by performing operations in batches. Thus, there is no
need for direct leaf-level access, and our proposal uses all available
main memory.

Arge has proposed a general tree buffering technique that asso-
ciates a buffer with every non-leaf node [1]. Operations are then
not performed immediately, but are placed in the buffers. Once a
buffer gets full, its contents are moved to the buffers at the next
level in its subtree. Main memory is used for the buffer emptying.
Arge et al. have also applied the technique to R-trees [2], and Van
den Bercken and Seeger [5] have explored similar techniques. A
drawback of all these techniques is that they cannot answer queries
immediately. Either queries are buffered together with the inser-
tions and deletions or all the buffers have to be emptied before pro-
cessing a query. In both cases, the resulting query latencies may
not be acceptable for on-line applications. Our proposal shares the
idea of buffering and performing updates lazily and in batches. A
key difference is that, in order to support efficient, instantaneous
queries, the RR-tree does not use disk-based buffers for the inter-
mediate nodes—it uses only a single main-memory buffer.

Lin and Su combine the buffer-tree and bottom-up techniques [15].
They attach disk-based insertion buffers to intermediate nodes and
perform insertions top-down in batches. Similarly to the RR-tree,
partial buffer emptying is employed to increase sharing of I/O. To
avoid multiple partial traversals for a single deletion, deletions are
gathered in a main-memory deletion buffer that is applied lazily and
directly to the leaf-level nodes. A main-memory based leaf-level
access table facilitates this. The major drawback of this approach
is that the size of the main-memory based leaf-level access table
is of the same order of magnitude as the size of the database. For
example, for R-trees, the size of this access table is one third of the
size of the index.

A recent approach by Xiong and Aref [23] significantly lowers
the average update cost by performing deletions in main memory.
However, insertions are performed using the ordinary R-tree al-
gorithm, so there are no further performance gains for these. A
main-memory data structure, called update memo, is responsible
for keeping information about deletions as well as about the latest
and obsolete data entries. This approach is similar to ours, in that
deletions are performed in main memory.

The LUGrid approach [24] is the only related approach that in-
dexes spatial data and makes the same persistence assumptions
we do. The approach uses a disk-based grid file, a main-memory
memo structure for keeping track of deletions, and a main-memory
grid for storing unprocessed insertions. Similar to our proposal, the
LUGrid flushes the insertions from a main-memory grid cell when
it becomes full. In contrast to our proposal, the LUGrid cannot
store objects with extents, the circular object-positions of moving
objects cannot be indexed.

While the related approaches described above strive to solve prob-
lems similar to ours, with the exception of the B-tree approaches
and the LUGrid, they cannot be directly compared to our proposal
because of the different persistence assumptions. Those approaches
assume a persistent index; thus, an update requires always at least
one I/O. In contrast to this, the RR-tree does not have to write ev-



ery incoming operation to disk. As a result, better performance
than one I/O per update can be achieved.

7. CONCLUSION AND RESEARCH
DIRECTIONS

Motivated by emerging database applications that involve the
monitoring of large collections of continuous variables and thus are
characterized by high rates of updates, this paper presents a novel
data structure, called the RR-tree, that supports updates more ef-
ficiently than existing proposals while also supporting queries. In
contrast to related work, this data structure is capable of efficiently
using any amount of main memory, and it supports the same set-
tings and operations as an ordinary R-tree. Another core difference
to the related work is a relaxed persistence assumption: we argue
that relaxed persistence of an index is appropriate in a setting with
hyper-dynamic data.

The RR-tree builds on two main ideas. First, operation buffering
in main memory enables execution of the majority of update opera-
tions quickly, and it allows some updates to annihilate one another,
thus avoiding any I/O at all. Second, by grouping operations on
buffer emptying, the index enables all operations that travel to the
same node of the tree to share I/O.

A strong point of this approach is its orthogonality to the tree-
like data structure being buffered. This makes it possible to adapt
the approach to other types of trees. This yields a quite general con-
tribution. Furthermore, this approach is orthogonal to other means
of exploiting the available main memory. This enables adaptation
of the RR-tree to different workloads, by combining the operation
buffer with some page-cache buffer, e.g., an LRU cache.

The empirical performance study includes favorable comparisons
with the conventional LRU-cached R-tree and with the state-of-the-
art RUM-tree. The study also offers general insight into the benefits
of LRU caching in the paper’s setting.

Several interesting directions for future research exist. We expect
it to be very interesting to apply the proposed techniques to other
indexes in the class of grow-post trees, e.g., the TPR-tree. Next, we
note that this paper’s focus has been on I/O efficiency. However,
the RR-tree does use an in-memory R-tree to efficiently support
querying. Thus, the proposal should be competitive with respect
to CPU performance. Still, studies of CPU performance and the
investigation of techniques that reduce the CPU cost are in order.
Finally, while we mention that a simple approach to recover from a
main-memory loss is to wait for all the objects to report their posi-
tions, other, more advanced, log-based recovery techniques may be
invented.
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