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Abstract
This paper describes an approach to incorporating the

notion of expiration time into data management based on
the relational model. Expiration times indicate when tuples
cease to be current in a database. The paper presents a for-
mal data model and a query algebra that handle expiration
times transparently and declaratively. In particular, expi-
ration times are exposed to users only on insertion and up-
date, and when triggers fire due to the expiration of a tuple;
for queries, they are handled behind the scenes and do not
concern the user. Notably, tuples are removed automatically
from (materialised) query results as they expire in the (base)
relations. For application developers, the benefits of using
expiration times are leaner application code, lower trans-
action volume, smaller databases, and higher consistency
for replicated data with lower overhead. Expiration times
turn out to be especially useful in open architectures and
loosely-coupled systems, which abound on the World Wide
Web as well as in mobile networks, be it as Web Services or
as ad hoc and intermittent networks of mobile devices.

1 Introduction

Emerging distributed information systems based on tech-

nologies such as Web Services and mobile networks [2] ex-

hibit characteristics that are not easily reconciled with tradi-

tional distributed data management systems. One important

reason is that these former systems are often loosely cou-

pled, which means that connectivity might be intermittent

or that the clocks of different sub-systems are not synchro-

nised. As a consequence, traditional transactional qualities

of Database Management Systems (DBMS) in the spirit of

ACID [16] are hard and expensive to achieve. Furthermore,

determining cost factors and bottlenecks in the envisioned

volatile settings are network traffic and latency, especially

when certain quality constraints are to be met. This paper

extends the relational model [10] with the concept of expi-
ration times; the objective is facilitating the implementation

of loosely-coupled information systems.

The notion of expiration time is implicit in data whose

(approximate) lifetime is known when they are inserted into

a DBMS. Lifetimes are frequently available in data ware-

housing applications and for Web and monitoring data such

as session keys, credentials, tickets, cached copies, and tem-

perature or location samples, to name but a few [24]. In

these cases, we know the lifetime (or at least an upper

bound) that denotes until when a tuple is considered cur-

rent and thus part of the database [4]. In more traditional

settings, an administrator or user would issue an explicit

delete statement when or after a tuple’s lifetime elapses.

Expiration times automate this procedure and thus reduce

both user interaction and application code. In this manner,

expiration times facilitate the management of base relations

as well as materialised views. In particular, in keeping with

the assumed volatile settings, we propose to materialise and

maintain query results as far as possible independently of,

but in synchrony with their base relations.

Once query results are computed from base data, we are

interested in maintaining them as independently of the base

data as possible. Maintenance is an issue since tuples dis-

appear from the base relations when their expiration times

pass; to keep query results, which may reside on a remote

device, in synchrony with the relations they were computed

from, the query results must be modified so that they re-

flect the state of the base relations. Ideally, this should be

done by looking only at the expiration times of the tuples

of the query results and without referring back to the base

relations [5]. Independent maintenance of query results is

of paramount importance in loosely-coupled systems since

accessing the source data potentially incurs high costs or

may not be possible at all due to lack of connectivity or

bandwidth. Therefore, policies are needed on (1) how to

maintain the query results [23], whose tuples should expire

just like the source data they are computed from, and, later,

on (2) how to propagate updates to the source relations into

already computed queries as described in [5]. In this pa-

per, we start out by focusing on the former and assume that

there are no updates to the source data. We provide tech-

niques that enable us to extend the time for which query
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results may be maintained independently of the base data.

Since there exist efficient ways to support expiration

times with real-time performance guarantees [24], users of

expiration time-enabled databases can retain the usual ben-

efits of data management. For example, triggers can be sup-

ported that fire on expirations, as can integrity constraint

checking. This leads to a seamless integration of expi-

ration into database applications. Support for expiration

time is particularly convenient in applications that concern,

e.g., automatic session management in HTTP servers, short-

lived credentials and keys in cryptographic protocols, and

location status for moving objects.

The contributions of this paper are the following: (1) We

extend the relational model and algebra with support for

expiration time. (2) We evaluate how expiration times can

be used in data management and how they affect the query
processing when results are materialised. This is achieved

through a (3) classification of queries into monotonic and

non-monotonic ones; the former require no special action,

whereas the latter require occasional recomputation. (4) An

in-depth analysis of recomputation issues is presented, as

are strategies for minimising the resources needed for re-

computation. We conclude the coverage of expiration times

with a discussion of (5) how to achieve an integration with

other aspects of data management.

The remainder of this paper is laid out as follows: After

considering a motivating example, we present an expiration

time-enabled relational algebra in Section 2 and discuss two

operators requiring recomputation in detail. Section 3 ana-

lyses aspects of recomputation in detail. Before concluding,

we cover related work in Section 4. An associated technical

report [27] offers additional coverage.

2 Data Model and Algebra

To support expiration times, the relational framework

must undergo slight adjustments. It is our goal to handle

expiration times transparently and automatically, so that a

user who queries (rather than updates) a database does not

have to be aware of expiration times. The only occasions

expiration times concern users are on insertion and update,

where an expiration time may be assigned to a tuple.

2.1 Motivating Scenario

The application scenario, to be used in subsequent exam-

ples, concerns a dynamic, personalised news service. At the

heart of the service is an engine that maintains user profiles.

For simplicity, user profiles are expressed as a pair of user

ID and degree of interest; the relation in which a tuple is

stored denotes the topic of interest. Figure 1 shows a part

of an example database of user profiles Table ‘Pol’ (for pol-

itics) lists users, given by their IDs, along with the degrees

to which they are interested in politics. Because politics is

a core topic in a news service, the expiration times are rela-

tively large in comparison to those in the second table, ‘El’

(for elections), which records shorter term interests in the

more specific topic, elections.

texp
Pol(·) UID Deg

10 1 25

15 2 25

10 3 35
(a) Politics table Pol

texp
El (·) UID Deg

5 1 75

3 2 85

2 4 90
(b) Elections table El

Figure 1. Example relations at time 0.

The expiration times describes the times until when a

user’s degree of interest in a topic is to remain in effect. For

example, tuple 〈1, 25〉 in table Politics expires at time 10.

After this time, we would either generate a new profile for

this particular user based on past behaviour or ask the user

to explicitly renew the profile. Table El similarly records

levels of interest in the topic of elections. Tuples in both

tables feature the expiration times denoted in the column la-

belled texp; this column is typeset different from the relation

attributes, to indicate that the values are not user-accessible.

2.2 Data Model

We use the following definitions and notation. A rela-

tion R of arity α(R) is a subset of the Cartesian product

Dα(R) of the attribute domain D; a tuple r is an element

of a relation R. Given a relation R, we assume that its at-

tributes are numbered {1, . . . , α(R)}. The i-th attribute is

denoted by r(i). Furthermore, let max : timen → time
and min : timen → time be the maximum and minimum

functions of arbitrary arity on the totally ordered time do-
main that comprises times or timestamps including the sym-

bol ∞ that denotes infinity and is larger than any other time

value; for simplicity, we identify finite times with the non-

negative integers. We use the terms ‘query’ and (algebra)

‘expression’ interchangeably.

To support expiration times properly, they must be in-

tegrated into the data model. We achieve this by leaving

the main constituents of the relational data model unaltered.

For each relation R, we add a function texp
R (·) that takes a tu-

ple in relation R as argument and returns the expiration time

associated with the tuple.

Next, we assume the existence of a function texp(·) that

takes an algebraic expression, including a relation, as ar-

gument and returns an expiration time for the expression.

The expiration time of an expression is a lower bound on

the time when the materialised expression is no longer cor-

rect due to expiration of underlying tuples. The use of

this function will become apparent when we introduce non-

monotonic expressions.

Additionally, we require a function expτ : R → R that,

for a time τ , takes a relation as argument and returns all
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tuples of the relation that are unexpired at time τ . Thus,

expτ is defined as follows:

expτ (R) = {r|r ∈ R ∧ texp
R (r) > τ}

In this paper, τ usually denotes a current time. We later

elaborate on the choices that are possible for τ .

A further important desideratum is to retain the tradi-

tional semantics of the algebra when infinity is used as the

expiration time. All query operators in this paper are de-

fined in such a way that if all tuples are assigned expira-

tion time ∞ then the algebra operators work like their text-

book equivalents (cf. the SPCU algebra in [1], for example).

Thus, expiration time ∞ is used for a tuple with no expira-

tion time.

2.3 Algebra

When defining a relational algebra on the types of rela-

tions just defined, three issues must be dealt with. First, the

different operators must in some manner address the expi-

ration times associated with the argument tuples. Second,

the operators must produce tuples with expiration time, to

maintain closure. Third, also to maintain closure, the opera-

tors must specify an expiration time for their result relation.

With respect to the first issue, we gather there are two ob-

vious approaches: to simply disregard the expiration times

or to consider only tuples that have not yet expired at the

time the operator under consideration is applied. The for-

mer approach offers maximum flexibility, but is counter to

our objectives. So, we adopt an approach where we reuse

the textbook relational algebra, but replace each argument

relation R with expτ (R), where τ is the time when the op-

erator is applied. The second issue is addressed in the defi-

nition of each operator, and the third issue is covered at the

end of this section.

We proceed to introduce an expiration time-aware alge-

bra. We start out with an SPCU algebra [1] and consider the

four basic operators select, project, Cartesian product, and

union.

Selection. For the benefit of subsequent discussions, we

distinguish between correlated and uncorrelated selections,

i.e., comparison between two attribute values of a tuple and

comparison of a tuple’s attribute value and a constant.

σexp
p (R) ={t|t ∈ expτ (R) ∧ p(a)}, (1)

where p is a predicate of the form j = k or j = a, a ∈ D,

j, k ∈ {1, . . . , α(R)}, or a ∧- and ∨-connected composition

of these. Result tuples simply retain their expiration times:

∀t ∈ σexp
p (R) (texp

∗ (t) = texp
R (t)),

where the star ‘∗’ is a shorthand for the relation containing

the result tuples, i.e., σexp
p (R) in this case.

Cartesian Product. The lifetime of a tuple produced by

a cross-product is the minimum lifetime of the participating

tuples.

R ×exp S = {t|r ∈ expτ (R) ∧ s ∈ expτ (S) ∧ t = (2)

〈r(1), . . . , r(α(R)), s(1), . . . , s(α(S))〉}
∀t ∈ (R ×exp S) (texp

∗ (t) =

min{texp
R (〈t(1), . . . , t(α(R))〉),

texp
S (〈t(α(R) + 1), . . . , t(α(R) + α(S))〉)})

Projection. Since projection includes elimination of du-

plicate tuples, a tuple is assigned the maximum expiration

time of all its duplicates (including itself).

πexp
j1,...,jn

(R) = {t|t = 〈r(j1), . . . , r(jn)〉 ∧ r ∈ expτ (R)}
(3)

Note that the expiration times of result tuples are calculated

in a way that will recur in our discussion when we discuss

grouping and aggregation, e.g., see Equation (8):

∀t ∈ πexp
j1,...,jn

(R) (texp
∗ (t) =

max{texp
R (r)|r ∈ expτ (R) ∧ t = 〈r(j1), . . . , r(jn)〉})

Union. To compute the union of R and S we assign the

maximum expiration of the participating tuples to the re-

sult tuples. We require R and S to be union-compatible,

i.e., α(R) = α(S).

R ∪exp S = {r | r ∈ expτ (R) ∨ r ∈ expτ (S)} (4)

∀t ∈ (R ∪exp S) :

texp
∗ (t) =

⎧⎪⎨
⎪⎩

max{texp
R (t), texp

S (t)} if t ∈ R ∧ t ∈ S

texp
R (t) if t ∈ R ∧ t �∈ S

texp
S (t) if t �∈ R ∧ t ∈ S

We now know which expiration times to assign to tuples

produced by these four operators. The expiration times of

the complete results (rather than the individual tuples) of

the operations defined so far are given as follows: The expi-

ration time of a selection, a Cartesian product, a projection,

and a union is the minimum of the expiration time(s) of the

argument(s). The expiration time of a base relation is de-

fined to be infinity. It follows that the expiration times of all

expressions that we can currently construct is infinity; thus

texp(·) of any combination of operators and base relations

defined so far always yields ∞. This will change as new

operators are introduced in Section 2.6. For the time being,

we formally define texp as follows:

texp(e) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞ e is base relation

texp(e′) if e =σexp
p (e′) or

e =πexp
j1,...,jn

(e′)
min{texp(e1), texp(e2)} if e =e1 ×exp e2 or

e =e1 ∪exp e2
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2.4 Derived Algebraic Operators

We proceed to consider common derived operators.

Join. For joins, the expiration time semantics of the rewrite

given below coincide with our intuition:

R ��exp
p S = σexp

p′ (R ×exp S), (5)

where p is a selection predicate on the attributes of R and S
and p′ the semantic equivalent of p on R ×exp S.

Intersection. Intersection can be expressed in terms of

Cartesian product, selection, and projection. We again re-

quire R and S to be union-compatible as in (4), and define

intersection as follows:

R ∩exp S = πexp
1,...,α(R)(

σexp
1=α(R)+1∧···∧α(R)=α(R)+α(S)(R ×exp S)) (6)

Since the outer projection leaves the expiration times unal-

tered due to all tuples being unique and selections just pass

on the expiration times of their arguments, new expiration

times are only created in the inner Cartesian product. Thus,

tuples that belong to the intersection are assigned the min-

ima of the expiration times of the participating tuples.

Other common derived operators can be defined using

the same schema. Note that the left-hand sides of the op-

erator definitions contain no reference to expiration times.

This is consistent with our goal of hiding expiration times

from a querying user. The expiration times of joins and in-

tersections follow straightforwardly by simple composition

from the definitions of the expiration times of the operators

from which they are derived.

We remark that a number of practically very relevant op-

erators, such as outer joins, introduce attribute values which

do not originate from the input relations. We do not discuss

such operators in detail since we would have to extend our

data model with null values and three-valued logic; while

this is possible, the necessary machinery adds complica-

tions, and the introduction of the new operators does not

lead to significant, new insights. Thus, we only note that

operators which introduce new attribute values must ensure

that the newly introduced attribute values do not contribute

to the expiration time of a result tuple. The reasoning be-

hind this is akin to the reasoning that null values should not

contribute to aggregate values.

2.5 Monotonic Examples and Properties

Figure 2 illustrates the effects of expiration time on query

processing. Here we cover exclusively queries that involve

only monotonic operators as defined below.

Consider again the relations in Figure 1. Then Fig-

ures 2(a) and 2(b) illustrate the expiration of tuples from

time of origin 0 on. For example, the tuple Pol〈1, 25〉 ex-

pires at time 10; consequently, at time 5, its lifetime is the

〈1, 25〉
〈2, 25〉
〈3, 35〉

(a) Relation Pol at time 0
〈1, 75〉
〈2, 85〉
〈4, 90〉

(b) Relation El at time 0

〈25〉
〈35〉

(c) πexp
2 (Pol) at time 0

〈25〉
(d) πexp

2 (Pol) at time 10

〈1, 25, 1, 75〉
〈2, 25, 2, 85〉

(e) Pol ��exp
1=3 El at time 0

〈1, 25, 1, 75〉
(f) Pol ��exp

1=3 El at time 3

∅ (the query is empty)

(g) Pol ��exp
1=3 El at time 5

0 5 10 15
Figure 2. Example monotonic expressions.

mere remaining five ticks until 10. Figure 2(c) presents a

simple projection. Since the two tuples 〈1, 25〉 and 〈2, 25〉
coincide under πexp

2 , the result tuple inherits the maximum

lifetime of the two, according to Formula (3). Note that the

properly expired materialised query result 2(c) at any time

τ > 0 looks exactly as if the query had been computed

at time τ , which is illustrated in Figure 2(d) for τ = 10.

Figures 2(e) through 2(g) illustrate a materialised expres-

sion containing a derived operator, namely a join expres-

sion. Again, the value of the derived expression at any time

τ > 0 coincides with the recomputation at time τ .

We remark that operators (1)–(4) are monotonic [1] in the

sense that, if expiration times are ignored, R′
1×· · ·×R′

n ⊆
R1×· · ·×Rn implies e(R′

1×· · ·×R′
n) ⊆ e(R1×· · ·×Rn)

where e is a query expression consisting of (1)–(4) and

R1, . . . , Rn. Algebraic expressions that only consist of

monotonic operators inherit the monotonicity property from

their constituents. In the following, the term monotonic ex-
pression is used for the expressions composed of the mono-

tonic operators defined in this paper. The following prop-

erty holds for such expressions:

Theorem 1. Given a monotonic expression e and times-
tamps τ and τ ′, τ ≤ τ ′, the following holds:

expτ ′(e) = expτ ′(expτ (e))
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Proof. We consider the selection operation. Assume that

the materialised expτ (e) and expτ ′(e) are correct. Let t ∈
expτ (e). Then, for expτ ′(e) to be equal to expτ ′(expτ (e)),
the following must hold: t ∈ expτ ′(e) ⇒ expτ ′(expτ (e))
If e = σexp

p (R) then texp
e (t) = texp

R (t) according to (1). Thus,

if t ∈ expτ ′(R) then also t ∈ expτ (R). The correctness is

proved for (2)–(4) analogously. This also implies that the

theorem holds for (5) and (6).

Thus, if we materialise an expression e at time τ and

then gradually expire tuples from this expression until time

τ +m, we obtain the same results as if e had been computed

at time τ + m, meaning that the materialised result of a

monotonic expression remains valid (as long as no explicit

updates occur on the underlying base relations). The use

of expiration times on tuples and the operator definitions

ensure this. For aggregation and difference, which are non-

monotonic, this property does not hold.

2.6 Aggregation and Difference

We now add aggregation and difference operators to the

algebra. These operators differ from the operators discussed

so far in that they are not monotonic. The definition of ag-

gregation is based on the framework of Klug [19].

2.6.1 Aggregation
The simple way to assign an expiration time to a tuple pro-

duced by an aggregation is to set it to the minimum expira-

tion time of the tuples in the partition that the result tuple

belongs to. To make this statement precise, we define the

auxiliary function φexp:

φexp
j1,...,jn

(R, r) = {r′|r′ ∈ expτ (R)∧
〈r′(j1), . . . , r′(jn)〉 = 〈r(j1), . . . , r(jn)〉} (7)

This function returns all tuples in R equal to r under the

projection of attributes j1, . . . , jn, i.e., φexp returns the par-
tition of which r is an element.

In this paper, we allow only this kind of partitioning of

relations by tuple-wise equality of one or more attribute val-

ues. This corresponds to SQL’s GROUP BY clause. This

type of ‘stable’ partitioning ensures that when tuples in a

partition expire, the overall partitioning scheme is retained,

i.e., pairs of the remaining tuples belong to the ‘same’ parti-

tion as they belonged to before the expiration. Thus, stable

partitioning functions are also monotonic. This results in

the following definition:

Definition 1. A partitioning function φ is called stable if it
is total (i.e., it is defined for every input) and monotonic.

An example of an ‘unstable’ partitioning function is one

that partitions tuples in ordered bands so that the first band

consists of, say, the top 10% of the tuples according to some

attribute, the second band consists of the next 10% of the

tuples, etc. Although such a function would be total, it is

not monotonic since tuples may fall into a different band

after a recomputation.

Using φexp, we define aggregation as follows:

aggexp
j1,...,jn,f (R) = {t|t = 〈r(1), . . . , r(α(R)), a〉∧

r ∈ expτ (R) ∧ a = f(φexp
j1,...,jn

(R, r))} (8)

∀t ∈ aggexp
j1,...,jn,f (R)(texp

∗ (t) =

min{texp
R (r)|r ∈ φexp

j1,...,jn
(R, 〈t(1), . . . , t(α(R))〉)})

Here, f ∈ F , which is a family of aggregate functions
such as min1, max2, sum1, count3, or avg2, where the

subscripts identify the attributes in the argument relation to

which the functions are applied.

Note that by assigning the minimum expiration time of

all tuples in a given partition to the result tuples for that

partition, (8) yields a quite conservative bound on the pos-

sible lifetime of the tuple. For example, when calculating

a min aggregate, a tuple that is not minimal may have the

minimum expiration time; according to (8), the result tuples

from the partition inherit the expiration time of a tuple that

does not contribute to the aggregate value. In the sequel,

we prolong the expiration time of the results by taking into

account special properties of the standard SQL aggregate

functions. The idea is that, to obtain less conservative ex-

piration times of tuples, we ignore the lifetimes of all time-
sliced, neutral sets of tuples. We proceed to define these

concepts.

First, a time-sliced set of tuples is a set of tuples with

identical expiration times. Next, a neutral set of tuples with

respect to a given aggregate function is one that, if removed

from the partition under consideration, neither changes the

aggregate value nor its expiration time. For example, a set

of tuples with values that add up to zero is neutral with re-

spect to a sum aggregate. Given a partition P , Table 1 de-

fines neutral subsets of P for the standard SQL aggregate

functions

f N ⊆ P is neutral with respect to f if:

mini ∀t ∈ N (t(i) > f(P )∨
texp
∗ (t) < max{texp

∗ (r)|r ∈ P ∧ r(i) = f(P )})
maxi ∀t ∈ N (t(i) < f(P )∨

texp
∗ (t) < max{texp

∗ (r)|r ∈ P ∧ r(i) = f(P )})
avgi

P
t∈N t(i) = (|N |/|P |) P

r∈P r(i)

sumi

P
t∈N t(i) = 0

counti N = ∅

Table 1. Neutral Subsets.

The definitions of neutral sets for the avgi, sumi, and

counti aggregate functions are intuitive. There may be two

types of tuples in a neutral set for the mini aggregate func-

tion. First, there are tuples that have the aggregated attribute
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value larger than the minimum value in the partition. Ex-

piration of such tuples obviously does not change the ag-

gregate value. Next, there are tuples that have the aggre-

gated attribute value equal to the minimum value in the par-

tition. All such tuples, except those with the largest expira-

tion time, can expire without changing the aggregate value.

A neutral set for the maxi aggregate function has an analo-

gous structure.

The concepts of neutral and time-sliced sets are useful

for describing the validity of aggregate attribute values. The

idea is that an aggregate attribute value does not change

(meaning that the tuple to which it belongs does not need

to expire) as long as every time-sliced set that has expired

so far is neutral. As long as this condition holds, we can rely

on aggregate attribute values to remain correct. In this way,

we reduce the size of the set of tuples in the partition that

determine the expiration time for the tuples of this partition

in the result of the aggregate. We call this set the contribut-
ing set.

Definition 2. Let P be a partition and f be an aggregate
function. Let Nf,P be a set of time-sliced, neutral subsets
of P . Then the contributing set of tuples in P is given as:

Cf,P = P −
⋃

N∈Nf,P

N

Then, given a partition P and an aggregate function f ,

the expiration time of the aggregation result tuple t corre-

sponding to tuple r ∈ P (r = 〈t(1), . . . , t(α(R))〉) is de-

fined as follows:

texp
∗ (t) =

{
min{texp

R (l)|l ∈ Cf,P } if Cf,P �= ∅
max{texp

R (l)|l ∈ P} if Cf,P = ∅

This formula handles the special case where Cf,P = ∅. This

case occurs when an aggregate attribute value in the parti-

tion P remains valid until all tuples in the partition expire.

This may happen, for example, if all attribute values to be

aggregated are zero and the aggregate function is sum. The

new definition of the expiration time improves on the ex-

piration times of all aggregates except count which strictly

follows (8).

Having offered operational mechanisms that extend the

expiration times for aggregation result tuples for the five

standard SQL aggregate functions, we proceed to consider

in more abstract terms how to extend the expiration times

of result tuples without making specific assumptions about

the aggregate functions used.

To do so, we look at how the contributing sets of tuples

just introduced develop over time. As a helper, we define

the following predicate, where P is a partition and f is an

aggregate function:

χ(τ, P, f) ≡ f(expτ (P )) �= f(expτ+1(P ))

This predicate is true if applications of f to P at times τ and

τ +1 yield different results. This is helpful because we will

need to expire a tuple that contains such an aggregate value

when the value changes.

Before we can express the expiration times of tuples in

an aggregation result, we need a function ν that tells when

the aggregate value computed by aggregate function f on

partition P first changes.

ν(τ, P, f) = min{τ ′|τ ′ ≥ τ ∧ χ(τ ′, P, f)}

We are now able to define the expiration times of tuples in

aggregation results for any aggregation function f :

∀t ∈ aggexp
j1,...,jn,f (R)(

texp
∗ (t) = ν(τ, φexp

j1,...,jn
(R, 〈t(1), . . . , t(α(R))〉), f)) (9)

Thus, all tuples in a partition are assigned the same ex-

piration time, and they expire when the aggregate value

changes. We note that, in practise, the functions χ and ν are

best calculated when the actual aggregate values to a given

aggregate function are computed. This is more promising

than a naive translation of the above formulae for χ and ν
into code, which would be overly complex. Since we took a

similar avenue with the description and optimisation of the

standard SQL aggregates earlier in this section, we omit the

discussion of the more general optimisations for the sake of

brevity.

Moving on to defining the expiration time of a materi-

alised aggregate expression, we note that predicate χ may

return true in two different cases. In the first case, the

aggregate value, which is contained in some result tuple,

should be replaced by another aggregate value that is, how-

ever, unknown to us. So we have a tuple that should be

replaced by an unknown tuple. This forces us to expire the

entire materialised expression. In the second case, the entire

partition from which the tuple containing the aggregate at-

tribute value originates has expired. So the aggregate value

in the tuple should not be replaced by another value. Rather,

the entire tuples should simply be disregarded, or expired,

which is taken care of by the function above. In this case,

the materialised aggregate expression remains correct and

needs not expire.

Following this analysis, we can see that the following

formula tells us when all tuples in a partition have expired

(P is again a partition):

min{τ ′|τ ′ ≥ τ ∧ expτ ′(P ) = ∅}
= max{τ ′|τ ′ = texp

P (t) ∧ t ∈ P}

We now are also able to assign an expiration time to a ma-
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terialised aggregation at time τ :

texp(aggexp
j1,...,jn,f (R)) = min{texp(R),

min{τ ′ |τ ′ = ν(τ, P, f)∧
P = φexp

j1,...,jn
(R, r) ∧ r ∈ R∧

max{τ ′′|τ ′′ = texp
P (t) ∧ t ∈ P} > τ ′}}

Thus, the result of an aggregations becomes invalid what-

ever happens earlier: (1) The argument relation R, on which

the aggregation is computed, expires, or (2) the aggregate

attribute value of tuples forming a partition changes before

the corresponding tuples in the input relation have all ex-

pired.

2.6.2 Difference
The difference operator is yet another primitive operator,

i.e., it cannot be expressed by composing other operators.

When we compute R −exp S, a tuple r ∈ R retains its ex-

piration if it is not in S. Tuples that are only in S are disre-

garded:

R −exp S = {r|r ∈ expτ (R) ∧ r �∈ expτ (S)} (10)

The respective expiration times are calculated as follows:

∀t ∈ (R −exp S) (texp
∗ (t) = texp

R (t))

We now turn our attention to expressions involving the dif-

ference operator. To see when exactly we need to take ac-

tion and recompute, consider the case analysis in Table 2,

where t is a tuple.

condition texp
∗ (t) texp(e)

(1) t ∈ R ∧ t 
∈ S texp
R (t) ∞

(2) t 
∈ R ∧ t ∈ S n.a. ∞
(3) t ∈ R ∧ t ∈ S and

(3a) texp
R (t) > texp

S (t) n.a. texp
S (t)

(3b) texp
R (t) ≤ texp

S (t) n.a. ∞
Table 2. Lifetime analysis of e = R −exp S.

Case (3a) is when a whole query result becomes invalid.

Informally, if texp
R (t) > texp

S (t) then t ∈ R should show up

in R −exp S after t ∈ S expires. Thus, the result becomes

invalid at texp
S (t) since it contains (at least) one tuple too few.

The materialised expression R−exp S expires at time τR,

which is given as follows:

τR = min{texp
S (t)|t ∈ R ∧ t ∈ S ∧ texp

R (t) > texp
S (t)}

Thus, τR is the minimum time when case (3a) happens,

i.e., when a tuple from r ∈ R should re-appear in the re-

sult since the matching r ∈ S has expired. We can now

define texp for difference expressions as follows.

texp(R −exp S) = min{texp(R), texp(S),
min{texp

R (t)|t ∈ R ∧ t ∈ S ∧ texp
R (t) > texp

S (t)}} (11)

Thus, like for aggregation, a materialised difference expres-

sion becomes invalid, when one of its arguments becomes

invalid, or when a tuple should reappear in the result.

2.7 Further Examples and Properties

We now look at some examples that illustrate what

happens when non-monotonic operators are included in

queries. Let Pol and El be as in Figure 2(a) and 2(b). Then

expression πexp
2,3(agg

exp
{2},count(Pol)) in Figure 3(a) computes

a ‘histogram’ of the values and, from time 10, should con-

tain (only) the tuple 〈25, 1〉, but according to (8), it does not.

Instead, 〈25, 2〉 expires. Thus, from time 10 on, the result is

invalid.

〈25, 2〉
〈35, 1〉

(a) πexp
2,3(aggexp

{2},count
(Pol)) at time 0

〈3〉
(b) πexp

1 (Pol) −exp πexp
1 (El) at time 0

〈2〉
〈3〉

(c) πexp
1 (Pol) −exp πexp

1 (El) at time 3

〈1〉
〈2〉
〈3〉

(d) πexp
1 (Pol) −exp πexp

1 (El) at time 5

0 5 10 15
Figure 3. Some non-monotonic expressions.

The following example illustrates that expressions

might, for certain time intervals, even monotonically grow

in cardinality rather than shrink because of expirations.

The difference Pol −exp El at time 5 does not contain 〈1〉
although the recomputation of R − S contains the element.

Even worse, Pol−expEl increases monotonically before time

10. Thus, the expression is invalid from time 3 onwards.

See Figures 3(b) to 3(d).

This example illustrates that whether the expiration time

of a non-monotonic expression is actually less than ∞ de-

pends on the contents of the relation. For example, oper-

ations on empty relations or on relations all of whose tu-

ples have the same expiration time always result in expres-

sions with infinite expiration time and which thus will never

become invalid. In other cases recomputation may be re-

quired.

The following theorem states concisely when recompu-

tation of a materialised expression is needed.

Theorem 2. Let an expression e that is materialised at time
τ be given that has expiration time texp(e) and that consists
of operations (1)–(10). Also let a time τ ′ be given such that
τ ≤ τ ′ < texp(e). Then:

expτ ′(e) = expτ ′(expτ (e))
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Proof. The proof of Theorem 1 provides evidence for op-

erators (1)–(6). To see whether (8) holds, we have to con-

sider two things: First, a result never contains wrong values.

For this to hold, tuples must expire before the aggregate at-

tribute value contains an invalid value. Without any further

information, a valid value is either the current value or, if

the partition expires, no value at all. This is exactly what

the function ν does. Second, a result becomes invalid be-

fore any tuples are missing. This implies that all aggregate

tuples must either expire or remain valid before the result

expires, which is made sure by texp(e).
To prove the theorem for (10), we again have to check

that the result never contains wrong values. This is ensured

by (10). Second, we must ensure that the expression expires

before it contains too few tuples, i.e., in R−exp S there is no

t ∈ R with texp
R (t) > texp

S (t). This is ensured by Case (3a)

in Table 2.

In this proof we implicitly assumed that the arguments

never expire. It can be verified that texp for (8) and (10)

takes care of this case as well.

After texp(e) passes, the query result has to be (incremen-

tally) recomputed, as set forth earlier in this section.

3 Recomputation Aspects

Having presented various approaches to extending the

expiration times associated with query results, we proceed

to consider three kinds of techniques that also aim to re-

duce recomputation. We first consider different options for

performing recomputations when materialised expressions

expire. We then consider when to remove expired tuples.

Finally, we consider a more radical approach where we as-

sociate time intervals with expressions rather than simply a

single expiration time.

3.1 Recomputation Alternatives

When a materialised expression becomes invalid, we can

try to incrementally update it given the instance and possi-

bly some helper information we stored in anticipation of the

expiry, or we can simply recompute the expression. Which

option to choose is beyond the scope of this paper; the au-

thors instead refer the reader to the extensive literature on

updating views (e.g., [5] and [29]) which provides general

techniques.

Since the circumstances when an expression expires are

well-defined, one can take different steps to keeping the ex-

pression valid without requiring a user to request an update

explicitly. One option is to recompute the expression once

it becomes invalid; other than for recomputation and trans-

mission, no additional resources are required. Another op-

tion is to act on a per-operator basis. This is dicussed in

more detail in Section 3.4.2.

There are also opportunities for postponing the time

when a recomputation may have to take place. The idea

is to use algebraic equivalences [23] to rewrite query plans;

the objective is to reduce the following set of tuples, which

causes recomputations to happen:

{t|t ∈ R ∧ t ∈ S ∧ texp
R (t) > texp

S (t)}

A second opportunity is to apply rewriting to pull up non-

monotonic operators in query plans to reduce the effects

of recomputations on operators that depend on them. In

a DBMS, the cost estimation mechanisms can be made use

of to estimate the impact of a rewrite-rule application.

3.2 Eager Versus Lazy Removal of Expired Tuples

With eager removal, expired tuples are removed from

a materialised expression or base relation as soon as pos-

sible. This strategy is useful when events should be trig-

gered as soon as a tuple expires. In contrast, lazy removal
allows more freedom. Expired tuples are kept invisible to

the user [26], but may be removed physically in a delayed

fashion. Thus, lazy expiration provides more optimisation

opportunities than eager expiration [24].

3.3 Queries and Observers

To reduce recomputation, be it incremental or not, of the

materialised result of an expression that has expired, we

may modify the data model to not only contain a single ex-

piration time for the materialised result of an expression,

but instead to contain a set of time intervals during which

the result is valid.

To see why this is useful, consider the difference expres-

sion R −exp S, where both R and S contain a single tuple t
such that texp

R (t) > texp
S (t). Tuple t is first absent from the

materialised result of this expression. Then, when it expires

in S, it should appear in the result. And, when it later ex-

pires in R, it should again be absent from the result. Using a

single expiration time, the expiration time for the difference

is texp
S (t). With the new arrangement, we would associate

two intervals with the materialised expression, namely one

that extends from the current time until texp
S (t) and one that

extends from texp
R (t) and onwards. Similar reasoning is pos-

sible for other operators. As an extreme case, we can even

state that, if all tuples carry finite expiration times, a future

time exists where every materialised result of any expres-

sion is valid, namely when all tuples have expired.

Queries that are issued against a materialised expression

during the intervals specified for the materialised expres-

sion can be answered readily, without the need for recom-

putation of the expression. Other queries need special han-

dling. Recomputation is one option. In other cases, it may

be appropriate to either move the query backward in time

(intuitively returning a slightly outdated result) or forward
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in time (intuitively delaying the query), to a time where the

materialised expression is correct.

Being somewhat philosophical, we may equate queries

with observers and then observe the following: An (materi-
alised) expression is only required to contain correct values
when a user queries it. We refer to this point of view as

Schrödinger’s cat semantics [25].

3.4 Schrödinger Semantics

To define basic Schrödinger’s cat semantics for the non-

monotonic operators, we define two functions analogously

to texp
∗ and texp: I∗ tells us in which intervals a tuple is valid

in the expression being computed, and I tells when the ex-

pression is valid. Thus, for a relation R,

IR : R → 2intervals

where intervals is the set of intervals [τ1, τ2[, τ1 < τ2.

Thus, for a query σexp
p (R) issued at time τ , IR would re-

turn [τ, texp
∗ (t)[ for every tuple t ∈ R. This is also the case

for the other monotonic operators.

Similarly, we define the function I that tells us when a

query expression is valid. Again, for an expression e con-

sisting solely of monotonic operators, I(e) returns [τ,∞[,
if the query is issued at time τ . In the sequel, we discuss

what happens in the case of non-monotonic operators.

3.4.1 Aggregation
The validity intervals of an aggregation are constructed in a

two-step process: First, the validity times of individual tu-

ples are computed. Second, the intersection of the validity

times of all tuples constitutes the validity time of the com-

plete materialised expression.

To determine the validity time of a tuple, we extend the

function χ defined earlier to also cover intervals by adding a

second timestamp: An element of the results of an aggrega-

tion aggexp
j1,...,jn,f (R) on a relation R is valid in an interval

[τ ′, τ ′′[, τ ′ < τ ′′ iff

χ(τ ′, τ ′′, P, f) = ¬χ(τ ′, P, f) ∧ · · · ∧ ¬χ(τ ′′ − 1, P, f)

holds; that is, there is either no change in the aggregate

attribute value such that f(expτ (P )) = f(expτ ′(P )) =
· · · = f(expτ ′′(P )), or, alternatively, the partition expires

(τ is still the query time). Thus,

IR(t) =
⋃

χ(τ ′,τ ′′,P,f)∧f(expτ (P ))=f(expτ′ (P ))

[τ ′, τ ′′[.

For an expression, the Schrödinger validity is defined as

the intersection of the validity intervals of the member tu-

ples:

I(aggexp
j1,...,jn,f (R)) =

⋂
t∈R

IR(t).

An interesting question in this context is how many pos-

sible values there are for an aggregation as it develops over

time. In the sequel, we assume that the aggregate function

is deterministic, i.e., f(P ) = f(P ) is always true. If f is

deterministic, it can deliver, for a given partition P at most

|P | different values before the partition expires. Thus, for a

partitioning function φexp
j1,...,jn

(R, ·), the number of different

aggregate values is at most∑
t∈πexp

j1,...,jn
(R)

|φexp
j1,...,jn

(R, t)| = |R|,

i.e., the number of tuples in the relation. For a more pre-

cise calculation, we can use the function χ, which indicates

when an aggregate attribute value really changes. Thus, at

time τ ,∑
t∈πexp

j1,...,jn
(R)

|{τ ′|χ(τ ′, φexp
j1,...,jn

(R, t), f) is true∧τ ≤ τ ′}|

tells us how often an aggregate attribute value changes due

to expiring partitions. This is also the amount of memory

we need to store the future states of an aggregation.

3.4.2 Difference
A difference R−exp S is definitely valid after all t ∈ R with

t ∈ S, texp
R (t) > texp

S (t) have expired, i.e., after all tuples

t ∈ R which should later appear in the result have expired.

The difference expression is also definitely valid until the

first tuple t ∈ R, t ∈ S with texp
R (t) > texp

S (t) should appear

at time, i.e., until time texp
S (t), and after all critical tuples

have expired. Thus:

I(R −exp S) = [τ,∞[−
[ min{texp

S (t)|t ∈ R ∧ t ∈ S ∧ texp
R (t) > texp

S (t)},
max{texp

S (t)|t ∈ R ∧ t ∈ S ∧ texp
R (t) > texp

S (t)}[
(12)

To compute the validity intervals for the difference oper-

ator, we take into account the case analysis of Table 2. Ad-

ditionally, by keeping a priority queue of those r ∈ R that

are to be added at a certain point in time to e = R −exp S,

one can improve the independence between the materialised

e and R,S mainly at the expense of additional storage cost

and insertion operations. Finding out which r ∈ R qualify

involves a policy for deciding how many r to keep in the

queue and an algorithm for extracting them from the argu-

ments. The former point is a classic trade-off decision be-

tween saving future communication and time/space as well

as up-front communication cost. The latter point is a query

processing issue in the sense that we would like to able to in-

tegrate the creating of the priority queue into the difference

operator to reduce the additional overhead. The difference

operator can be implemented in a variety of ways, most no-

tably as a left outer anti-semijoin [17], which may be exe-

cuted as a hash join, a nested-loop join, or a sort-merge join.
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Whichever method we use, we can always gather the infor-

mation necessary to build the priority queue in O(n log n)
time, n being the number of elements in the queue, with

standard algorithms [20].

The idea of using a priority queue is compatible with the

notion of expiration time since we can interpret this priority

queue as a helper relation whose tuples expire; when they

expire, they should simply be inserted into the materialised

difference expression. Using this idea we, can extend the

validity time of the difference expression by building on the

machinery we defined earlier as laid out in the sequel.

In addition to the expression R −exp S defined in Equa-

tion (10), we define the following helper relation R whose

expired tuples are to be added to the result of Equation (10):

R(R −exp S) = {r|r ∈ expτ (R) ∧ r ∈ expτ (S)}
(∀t ∈ R(R −exp S)) : texp

∗ (t) = texp
S (t)

Theorem 3. Given a helper relation R(R−exp S), the non-
monotonic expression R −exp S can be patched with the
helper relation’s expiring tuples so that recomputation is
avoided, i.e., the expression’s expiration time is ∞. The ex-
piration time of a patching tuple t is texp

R (t).

Proof. We look at the events which involve a t ∈ R.

First, if t �∈ S then texp
∗ (t) = texp

R (t) according to (10); in

this case (12) tells us that its expiration time does not af-

fect the validity of the materialised expression. Second, if

t ∈ S then we distinguish between texp
R (t) > texp

S (t) and

texp
R (t) ≤ texp

S (t) (cf. Case (3a) in Table 2). The latter case

does not cause problems. In the former case, events happen

at the following times: texp
S (t) and texp

R (t). At time texp
S (t), t

should appear in the result. Since this is also the time when

t expires in R(R−exp S), it indeed does appear; since it dis-

appears at time texp
R (t) in the argument relation R, the theo-

rem also assigns the correct expiration time to the inserted

t ∈ R −exp S.

Note that the preceding theorem takes only differences

into account. This is mainly because, for difference, the

size of the priority queue depends only on the size of the

input relations, i.e., it contains at most |R ∩ S| elements.

A similar theorem about aggregation would have to take f
and the set of applicable attribute values into account, i.e., it

could require an infinite amount of storage needed for stor-

ing future values.

4 Related Work

At a data model and query language level, several lines

of research involve notions that relate to, but also differ

from, expiration time.

In particular, a kind of automatic data invalidation

is implicit in sliding window-based processing of data

streams [3], in that stream data with a time that exceeds

the lower end of a window is no longer visible. In this con-

text, it may even be of interest to attach semantics to expi-

ration times by exposing the semantics of the timestamps

to users, for example, to assign decreasing weights to data

items according to their age [11]. The core conceptual dif-

ference between stream databases and our concept of ex-

piration time is that, for the former, the user is required to

specify a window of interest whereas, for expiration time,

the data sources specify how long a certain tuple is to be

considered current; thus, the validity of a data item is user-

defined, whereas the expiration time is given by the data

source and not the user.

As expiration time concerns the deletion of data from the

current database state, expiration time relates to transaction

time, which concerns the evolution of the database [22].

While support for expiration time may thus be useful for

supporting transaction time, support for expiration time

does not imply support for transaction time because past

states are not retained. In a degenerate temporal database

where transaction and valid time coincide, expiration time

then also relates to valid time [18]. The notion of expiration

somewhat relates to approaches to the vacuuming of time-

referenced data [26]. In vacuuming, current-time dependent

algebraic expressions are introduced that specify tuples to

be deleted. In contrast, we attach explicit expiration times

to tuples allowing expiration to be data-driven rather than

user-driven. Other than this, we believe that expiration time

has not previously been studied in the area of temporal data

models and query languages.

Next, this paper proposes techniques that make it pos-

sible to extend the time during which a materialised query

result may be maintained independently of the underlying

base relations. This aspect of the paper can be comple-

mented with existing techniques for incremental view main-

tenance [5,6,23]. Expiration time-enabled databases, on the

other hand, exploit the knowledge about future events in the

life of data to improve the maintainability of views.

Finally, data validity in the context of (mobile) networks

has been investigated, and several notions of validity have

been proposed [4]. Expiration times can be used to pro-

vide certain guarantees for all of these notions, disregarding

approximate validity, which is not discussed in this paper.

When monitoring Web data, the notions of time-to-live can

be used to model and optimise latency and recency [7, 13].

5 Summary and Research Directions

The paper initially builds support for expiration time into

the relational algebra, the main purpose being to facilitate

data management in loosely-coupled systems, which are be-

coming increasingly widespread. The resulting framework

enables transparent and declarative handling of expiration

times, which are only exposed to the user at insertion and

updates. The framework distinguishes between monotonic
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and non-monotonic operators and algebra expressions. The

results of the former always have unlimited lifetimes and

never require recomputation, whereas the results of the lat-

ter may have limited lifetimes and thus may require recom-

putation. In particular, materialised non-monotonic expres-

sions may become invalid after data expire in the base rela-

tions and, thus, may have to be recomputed or patched. The

two non-monotonic operators, aggregation and difference,

were discussed in detail. We concluded by motivating the

formal setting of the work and by discussing the relation-

ship to temporal and stream databases.

Several promising directions for future work exist. This

paper assumes that the base relations are not updated, so that

only expiring tuples are removed; it would be interesting

to lift this restriction and integrate view update techniques.

Next, the introduction of techniques that offer approximate

query answers is reasonable in our setting and may yield

performance improvements; if we are interested in main-

taining, e.g., aggregate values with certain error bounds, we

might be able to improve performance. Finally, we plan to

incorporate expiration into query processing with (approxi-

mate) quality of service guarantees as well as into the SQL

framework.
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