
Efficient Maintenance of Ephemeral Data

Albrecht Schmidt and Christian S. Jensen

Department of Computer Science, Aalborg University, Denmark
{al, csj}@cs.aau.dk

Abstract. Motivated by the increasing prominence of loosely-coupled systems,
such as mobile and sensor networks, the characteristics of which include inter-
mittent connectivity and volatile data, we study the tagging of data with so-called
expiration times. More specifically, when data are inserted into a database, they
may be stamped with time values indicating when they expire, i.e. when they are
regarded as stale or invalid and thus are no longer considered part of the database.
In a number of applications, expiration times are known and can be assigned at
insertion time. We present data structures and algorithms for online management
of data stamped with expiration times. The algorithms are based on fully func-
tional treaps, which are a combination of binary search trees with respect to a
primary attribute and heaps with respect to a secondary attribute. The primary
attribute implements primary keys, and the secondary attribute stores expiration
times in a minimum heap, thus keeping a priority queue of tuples to expire. A de-
tailed and comprehensive experimental study demonstrates the well-behavedness
and scalability of the approach as well as its efficiency with respect to a number
of competitors.

1 Introduction

We explore aspects of implementing an extension to Codd’s relational data model [5]
where each tuple in a relation is timestamped with an expiration time. By looking at a tu-
ple’s timestamp, it is possible to see when the tuple ceases to be part of the current state
of the database. Specifically, assume that, when a tuple r is inserted into the database,
it is stamped with an expiration time, texp(r). Tuple r is thus considered part of the
current state of the database from the time of insertion until texp(r). Expiration-time
semantics now ensures that operations, most prominently queries, do not see tuples that
have expired by the time associated with a query. Our study is motivated by the emer-
gence and increasing prominence of data management applications which involve data
for which the expiration time is known at the time of insertion, updates are frequent, and
the connectivity of the data sources that issue the updates is intermittent. Applications
which involve mobile networks, sensor networks, and the Internet generally qualify as
examples.

Data produced by sensors that measure continuous processes are often short-lived.
Consider a sensor network of temperature sensors that monitor a road network. It may
be assumed that a temperature measurement is valid for at most a fixed number of
minutes after it is measured, or the duration of validity may be determined by more
advanced computations in the sensor network. A central database receives temperature
measurements stamped with expiration times. A measurement from a sensor then auto-
matically disappears if the sensor does not issue a new temperature measurement before

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 141–155, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

pikde
Text Box
LNCS 3882, pp 141-155, 2006.(URL: http://www.springerlink.com/link.asp?id=m4727v5l10661g1x)Copyright © Springer-Verlag

142 A. Schmidt and C.S. Jensen

the old measurement expires. While a temperature sensor network may be relatively
static in nature, mobile devices that frequently log on to and log off from access points
form a more dynamic network. In such a context, it is natural to tag records that capture
log-ons with expiration times so that a session can be invalidated by the server after a
period of inactivity. Closely related examples are cookies and session keys used where
only stateless protocols like HTTP [20] are used for communication. Similarly, avail-
ability tactics like heartbeats [3], where devices periodically emit (heartbeat) messages
to indicate that they are still online, go together with expiration times in a natural way.
For a more detailed discussion about the role of expiration times in query processing
see [17].

By adding the notion of expiration time to a database management system (DBMS),
designers can help simplify software architectures and reduce code complexity while
retaining transparent semantics. A user of an expiration time-enabled SQL engine needs
not be aware of the new concept, as expiration time ∞ can be assumed for tuples for
which no expiration time is provided explicitly. A further benefit of the integration
of expiration times into a DBMS is that the number, and thus cost, of transactions
especially in distributed systems can often be reduced significantly because no explicit
delete statements to ‘clean-up’ previous transactions need be issued; since transaction
costs in these settings are often an important bottleneck, overall system performance
can increase significantly.

The contributions of this paper are as follows. (1) Motivated by the ubiquity of
loosely-coupled distributed systems with unstable connections such as mobile and sen-
sor networks, we argue that DBMS support for expiration time benefits applications, as
pointed out above. (2) The main technical contribution of this paper are online main-
memory algorithms and data structures that are capable of handling data expiration
efficiently on a variety of devices; this implies that expired data are automatically re-
moved as early as possible from the database without the need for user interaction. (3) A
comprehensive experimental study offers insight into resource consumption and other
performance characteristics such as scaling behaviour, response times, and throughput.

The remainder of the paper is structured as follows. The next section briefly outlines
the assumed (simple) extension to the relational model and discusses functional treaps
from an algorithmic point of view. Section 3 presents the results of a comprehensive
evaluation of the performance characteristics of treaps and a comparative study of the
performance of treaps with respect to various competing data structures; it also covers
a variety of functional issues in relation to expiration times and the use of treaps. After
a review of related work, the final section concludes the paper and identifies promising
directions for future research.

2 Treaps in Detail

2.1 Setting

We assume the following basic setting for our research: data sources emit tuples
stamped with expiration times. A relational view of these sources is provided, where
only current, i.e. unexpired, tuples are exposed to queries. Thus, expiration times can
be seen as a database-internal function texp : tuples → timestamps from tuples to

Efficient Maintenance of Ephemeral Data 143

timestamps. Assuming that a database dbexp of tuples with expiration times is given
and that the time associated with a query q is given by τq , then the tuples seen by q
are: { r | r ∈ dbexp ∧ texp(r) > τq}. It is a fundamental decision to associate expi-
ration times with tuples. Arguably, they could be associated with other constituents of
the relational model, including individual attribute values, attributes or other schema
elements. This design decision is motivated by a desire for clear semantics, simplicity,
and practicality [17, 18].

2.2 Overview

A treap is a combination of a tree and a heap: with respect to a (primary) key attribute, it
is a binary search tree; with respect to a second, non-key attribute, it is a heap. The idea
we elaborate on in the remainder of this paper is to use the key attribute for indexing
while managing expiration times using the second non-key attribute.

class Node;
class Inner extends < k, t, v > Node {

left child: Node;
key: k;
expiration: t;
data: v
right child: Node;

} /* Instantiate with: Inner(lc, k, t, c, rc) */
class Leaf extends Node {};

/* Instantiate with: Leaf */

Fig. 1. Treap node data type

We use the term (fully) functional [16]
for a data structure if an update of the
data structure produces a new version,
both physically and logically, without alter-
ing the original. Functional data structures
enable concurrent access through version-
ing [4]. In particular, by using a func-
tional treap then, as long as only one thread
updates the treap (like any other fully
functional data structure), concurrent (read)
access can be implemented with a minimum
of locking, which is desirable in a main-
memory environment.

The structure of a treap node is shown in Fig. 1. The layout of the tree is binary: each
node has a left and a right child, a key, and an expiration time; it also has a value field,
which may contain arbitrary data such as non-key attributes.

2.3 Example

We proceed to exemplify how functional treaps can be used to support expiration times
efficiently. Focus lies on eager removal of expired data.

Figure 2 shows the construction of a treap given the following sequence of (key,
expiration time) pairs to be inserted: (1, 7), (2, 6), (3, 6), (4, 0), (5, 7), (6, 6), (7, 8). A
pair (key, time) denotes a tuple with key ‘key’ and associated expiration time ‘time’.
Note that, for the time being, we assume that the key and the expiration time are sta-
tistically independent; in [18], we discuss in more detail what happens when we do not
make this assumption; we now just remark that we can use a hash function on the key to
achieve independence. The last step in Fig. 2 consists of removing the root node from
the treap, i.e. carrying out an expiration, for example at time 1. The algorithms that do
the actual work are discussed in the sequel.

Before presenting algorithms, however, we have a quick look at the notation used
in this paper. First, the functional nature is reflected in the code by the absence of

144 A. Schmidt and C.S. Jensen

insert (2,6) insert (3,6)insert (1,7)
(*)

insert (4,0)

insert (7,8)
insert (6,6)
insert (5,7)

remove (4,0)

(**)

 (2,6)

 (1,7) (3,6)

 (2,6)

 (1,7)

 (4,0)

 (2,6)

 (1,7) (3,6)

 (4,0)

 (2,6) (6,6)

 (1,7) (3,6) (5,7) (7,8)

 (1,7)

 (3,6)

 (6,6)

 (1,7) (5,7) (7,8)

(2,6)

Fig. 2. Example treap

the assignment operator and, instead, the allocation of new objects with the new key-
word whenever an update is performed. The function new t (a1, a2, . . . , an) allocates
a new object of type t and initialises it by calling the respective constructor with the
arguments a1, a2, . . . , an. Second, extensive use of ML or Scala-style pattern match-
ing [15] is made to bind parts of complex, nested data structures to variables in a concise
manner avoiding combinations of nested if-statements. For example, assuming the class
definitions of Fig. 1, using the second treap in the first row of Fig. 2 (marked (*)) and
the find function of Fig. 3 then the first clause of Fig. 3 is executed as follows.

1 function find (node, key) =
2 match node with
3 | Inner (, k, , item,) when (key = k) → item
4 | Inner (left, k, , , right) →
5 if (key < k)
6 then find (left, key)
7 else find (right, key)
8 | Leaf → raise exception (Key is not in treap)

Fig. 3. Lookup of a primary key

Assume we want to find the node
with the key 1, i.e. we call ‘find
(treap, 1)’ where treap is bound
(using the constructor notation) to
‘Inner (Inner (Leaf, 1, 7, ⊥, Leaf),
2, 6, ⊥, Leaf)’. If we match against
it the pattern ‘Inner (, k, , item,)
when (key = k)’ (line 3, Fig. 3),
the following variable bindings are
created: k = 2, item = ⊥ (⊥ de-
notes a non-applicable variable in
our case, i.e. we do not use the data field in this example). The underscore ‘ ’ in a
constructor denotes a ‘don’t care’ variable that is present in the class, but for which no
binding is created. Since k is bound to 2 and the function argument key to 1, the when
clause evaluates to false and the pattern does not match. However, the pattern in line
4 matches, and the following bindings are created: left = Inner (Leaf, 1, 7, ⊥, Leaf),
right = Leaf, and k = 2. Since the if statement evaluates to true, function find is called
recursively and terminates successfully.

If a treap is well-balanced, i.e. structurally similar to a height-balanced binary tree,
it is guaranteed that we can execute look-up queries in logarithmic time. Treaps being
also heaps implies that nodes with minimal expiration times cluster at the treap root.
If the root node has expired, i.e. its expiration timestamp e is smaller than the current
time, we can simply remove it.This is advantageous because we can keep the amount of
stale data to a minimum using an eager deletion policy: as long as the root node is stale
we remove it. Since stale data cluster at the root, no search is required. Furthermore,
this strategy has the advantage that we essentially only need one procedure for both
expiration and deletion: indeed, expiration is implemented as a small wrapper.

Efficient Maintenance of Ephemeral Data 145

2.4 Operations on Treaps

This section introduces the most important operations on treaps. Since we are not aware
of any other work that presents algorithms for the functional variant of treaps, we de-
scribe the operations in some detail.

Maintaining Balance. Like many other balanced tree structures, the insert and delete
functions of treaps maintain balance through order-preserving node rotations. The insert
function only rotates nodes on the path from a leaf, namely the newly inserted node, to
the root. The delete function uses rotations to move an interior node to the leaf level
without violating the order of the tree. Due to the functional nature of our kind of
treap, rotations during inserts and deletes are implemented by slightly different code:
for insertion (Fig. 4), the local function that implements the rotations is called rebalance
(see second line in figure). We remark that it is the way the treap is rebalanced that
destroys locality and makes it hard to adapt treaps to paginated secondary memory data
structures.

Insertion. Insertion is a two-stage process. First, we insert a pair (key, time) as if the
treap was a functional binary tree on key. We then execute rotations to re-establish the
heap property (while retaining the binary tree property), which may have been violated.
Insertion works as displayed in Fig. 4; it illustrated in several places in Fig. 2.

function insert (tree, key, time, item) =
local function rebalance (node) =

match node with
| Inner(Inner(s1, u, t′, i′, s2), v, t, i, s3) when (t > t′) →
new Inner(s1, u, t′, i′, new Inner(s2, v, t, i, s3))

| Inner(s1, u, t, i, Inner(s2, v, t′, i′, s3)) when (t > t′) →
new Inner(new Inner(s1, u, t, i, s2), v, t′, i′, s3)

| → node;
match tree with
| Inner(, k, , ,) when (key = k) → tree
| Inner(left, k, t, i, right) →

if (key < k)
then rebalance (new Inner(insert(left, key, time, item), k, t, i, right))
else rebalance (new Inner(left, k, t, i, insert(right, key, time, item)))

| Leaf → new Inner(Leaf , key, time, item, Leaf)

Fig. 4. Insertion into treaps

The second phase allocates new memory as it re-establishes the heap property. This
fact and because the function runs through the tree twice (top to bottom for insertion
and bottom to top for rebalancing) may seem to make insertion a comparatively expen-
sive operation; however, since the first phase already populates the CPU caches with
the nodes needed in the second phase, the overhead is not too large. The performance
figure later in this paper quantify the cost of insertion relative to expiration. The amor-
tised cost of insertion is O(log n) time where n is the number of elements stored in the
treap [19]. Additionally, each insertion also allocates O(log n) memory by producing

146 A. Schmidt and C.S. Jensen

a new version of the data structure; however, since we use node-copying [4] to imple-
ment concurrency rather than provide access to historical versions of the data, memory
management automatically reclaims O(log n) memory per insertion once it is not used
by other threads anymore. Thus, for single-threaded applications the overall memory
requirements per insertion are not higher than for conventional treaps. In the case of
multi-threaded applications, old treap versions are reclaimed as soon the owning thread
terminates. For practical workloads, this usually implies that algorithms does not incur
a memory overhead.

Removal and Expiration. Like insertion, removal is a two-stage process [18]. The first
step consists of locating the node that contains a given key. The second step includes
executing rotations so that the node sifts down and eventually becomes a leaf. After this
has happened, it is simply discarded. Removal of a key is also exemplified in Fig. 2
(marked (**) in Fig. 2). Like insertion, it is purely functional. By repeatedly calling
the deletion function as long as the root node is expired, we can eagerly remove all
stale data from the treap. Since the removal algorithm returns a new version of the treap
just like insert, the discussion of resource requirements is similar to the discussion of
insertion.

Other Operations. Depending on the area of application, other operations on treaps
make sense as well. For example, we can use full traversals of a treap to create snap-
shots of the current state of the database for statistics, billing, etc. Furthermore, if the
less-than relationship between keys returns sensible values, range queries on keys can
be used to quickly extract ordered intervals from the indexed keys. These operations
are implemented exactly as for binary trees, so no code is provided here. However, a
performance evaluation of full traversals is presented in the next section.

Concurrency Issues. The tactics used to achieve concurrency is versioning [4], imple-
mented by the node-copying method [7]. This implies that each modification to the data
structure produces a new version; the previous version can be then garbage-collected
once all pointers to it become stale. Therefore, treaps are not ever-growing data struc-
tures since only, besides the most recent version, only versions currently in use are
kept in memory. Thus, only one thread is allowed to update the data structure, but any
number of threads can read from it. As pointed out earlier, this type of design pattern
can be implemented in a nearly locking-free manner and provides for concurrent op-
erations at the cost of increased memory allocation and deallocation but not increased
overall memory usage. Modern generational garbage collectors [6] are optimised for
this kind of allocation pattern and provide favourable performance. Despite the in-
creased memory allocation and deallocation activity the overall storage requirements
are asymptotically not higher than traditional single-version implementation (assuming
a ‘standard’ database setting with a finite number of threads all of which feature finite
running times).

3 Experiments and Evaluation

This section reports on empirical studies of the performance of treaps. We take the
following approach: First, we present the formal framework of our evaluation which

Efficient Maintenance of Ephemeral Data 147

header key expiration time left child right child data

32 bits 32 bits 32 bits32 bits 32 bits 32+ bits

Fig. 5. Physical layout of an internal treap node

allows to reproduce results. Then we examine the performance of treaps for a diverse
range of workloads. Lastly, we compare treaps to a number of competitors, including
Red-Black trees and AVL trees.

3.1 Experimental Setup

The experiments were carried out on a PC running Gentoo Linux on an Intel Pentium
IV processor at 1.5 GHz featuring 512 MB of main memory available; no hard disk was
used during the experiments. The CPU caches comprise 8 KB at level 1 and 512 KB
at level 2. The compiler used was gcc/g++ 3.2. The performance data from which the
graphs displayed in this section were gathered from experiments lasting over 42 hours
of runtime on a single machine. Figure 5 displays the physical layout of an internal treap
node in our implementation. We fixed the size of the data field to 32 bits for our experi-
ments. All relevant data are inlined, so to access a key or expiration time, we do not have
follow a pointer, but we can read it locally in the record. This has been done mainly to
improve cache utilisation [1]; in general, however, the data field may contain a pointer
to non-local data. In order to explore the full potential and the limitations of treaps, we
generated synthetic data to get the data volume needed to test the behaviour of treaps
in the limit. The sensor and network hardware available to us are unable to deliver the
data volumes necessary to determine the performance limitations of the data structure.
Figure 6 plots counts of tuples across time and exemplifies a workload we used.

0 5000 10000 15000 20000 25000 30000

0e
+

00
2e

+
06

4e
+

06

Non−Uniform Traffic

Time in ms

U
ni

ts

size of database
insertions*1000
expirations*1000

Fig. 6. Database size and operation for non-uniform
traffic

The dashed line indicates the num-
bers of tuples that arrive at each par-
ticular point in time. For example,
the peak at approx. 20,000 millisec-
onds denotes that 4,000 tuples ar-
rive during the respective interval and
have to be inserted into the treap.
Without support for expiration time,
the network traffic would approxi-
mately double, and each spike indi-
cating the arrival of new data would
be followed by a spike indicating the
deletion of the very data comprising
the first spike (assuming that all data
expire a fixed duration after their
insertion).

We use the B-Model data generator proposed by Wang et al. [22], which is well
suited for our purposes. This generator is capable of generating workloads while con-
suming only a fraction of available system resources. Thus, it provides enough

148 A. Schmidt and C.S. Jensen

performance not to flaw results. To make it fit our purposes, we extend the generator
to work with four input parameters rather than the original three parameters. The three
original parameters, b, l, and N , are the bias, the aggregation level, and the total vol-
ume, respectively; we refer to this model as BModel(b, l, N). The bias b describes the
roughness of the traffic, i.e. how irregular it is and how pronounced the peaks are. The
aggregation level l measures the resolution at which we observe the traffic. The param-
eter N equals the sum of all measurements and specifies the total amount of traffic. The
new, fourth parameter is a random variable describing the distribution of the expiration
times of arriving network traffic, i.e. the time interval we consider the BModel(b, l, N)
arriving items valid.

To get an impression of both maximum throughput and response to extremely bursty
traffic, we divided our experiments into two parts. We first consider uniform traffic,
i.e. BModel(0.5, l, N). This is done to capture how treaps respond to continuous high
workloads. Since the versioning semantics call for frequent allocations of memory,
we can expect efficient memory management to be a key factor. Next, we consider
BModel(b, l, N), b ∈]0.5, 1.0[, i.e. bursty traffic. This is done to estimate how well
treaps act under workloads with more or less pronounced peaks. In these settings, min-
imum and maximum throughput are of interest. Examining treaps in this context is
a first step towards the consideration of stochastic quality-of-service guarantees. For
experiments which try to illustrate scaling behaviour, N is the parameter used to gen-
erate databases of different size. However, when we talk about the size of a database,
e.g. about 4 M tuples in Fig. 7(a), we mean the average number of unexpired tuples
residing in the database, potentially after some bootstrap.

3.2 Discussion of Treap Performance

We now turn our attention to Figs. 7(a) through 8(b), which describe the performance
of the data structure under different stress patterns and for different workloads. We first
investigate the performance of updates; then we turn our attention to querying.

Insertions and Expirations. We first examine the behaviour of treaps under a uniform
workload with insertions into a four million tuple database, i.e. after an initial bulk load,
the database consists of four million tuples on average, with insertions and expirations
basically cancelling out each other.

Figure 7(a) shows the throughput for such a setting. The conspicuous peaks are
mainly due to comparatively cheap memory allocation cost after major garbage col-
lections. Notice that the dotted line representing expiration remains, once expirations
set in, above the dashed line representing insertions; thus, expirations are cheaper than
insertions for large databases. This reflects the structure of the insertion algorithm, re-
quiring to traversal from the root to a leaf and back. On the other hand, expiring the root
only requires sifting the node to the leaf level before discarding it. Thus, expirations also
require fewer memory allocations than insertions.

Since treaps only guarantee amortised performance, it is also interesting to learn
to what degree the costs of the individual operations differ. Due to the high through-
put, which may exceed 100,000 operations per second on our platform, is very hard to
monitor the cost of an atomic operation without influencing the result to a degree that

Efficient Maintenance of Ephemeral Data 149

0 500 1000 1500 2000 2500

0e
+

00
2e

+
05

4e
+

05
6e

+
05

(wallclock) time in seconds

op
er

at
io

ns
 p

er
 s

ec
on

d

joint
insertions
expirations

(a) Throughput under uniform traffic (b =
0.5), 4 M tuples

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

(wallclock) time in seconds

D
en

si
ty

joint
insertions
expirations

(b) Probability density functions for uniform
traffic (b = 0.5), 4 M tuples

0 10 20 30 40 50 60

0e
+

00
4e

+
05

8e
+

05

(wallclock) time in seconds

op
er

at
io

ns
 p

er
 s

ec
on

d

joint
insertions
expirations

(c) Throughput under uniform traffic (b =
0.5), 40,000 tuples

0.0 0.1 0.2 0.3 0.4

0
10

20
30

40

(wallclock) time in seconds

D
en

si
ty

joint
insertions
expirations

(d) Probability density functions with uniform
traffic (b = 0.5), 40,000 tuples

0 500 1000 1500 2000 2500

0.
4

0.
6

0.
8

1.
0

(wallclock) time in seconds

re
so

ur
ce

 u
til

is
at

io
n

(e) Resource utilisation for run displayed in
Fig. 7(a)

0 10 20 30 40 50 60

0.
6

0.
7

0.
8

0.
9

1.
0

(wallclock) time in seconds

re
so

ur
ce

 u
til

is
at

io
n

(f) Resource utilisation for run displayed in
Fig. 7(c)

Fig. 7. Performance impressions, resource consumption, and peak performance

renders it unusable. Therefore, we move to a higher level of aggregation and consider
the lengths of intervals containing a fixed number of insertions and expirations. This
number was fixed to 80,000 for the experiments. While this rather large number theo-
retically may obscure the variance in the costs of individual operations, we did not expe-
rience this problem and found it a good trade-off between unobtrusiveness and intuition.

In Fig. 7(b), the Probability Density Function (PDF) of such an analysis displayed.
We note that the local maximum of the solid line representing expirations at 0.0 in-
dicates that the system wants to expire data, but there is no stale data present. This
results in an operation with nearly zero cost. Figure 7(b) also shows that expirations are
cheaper than insertions by a factor of approx. two and that the overall cost of a joint op-
eration, insertions and expirations combined, is reasonable. Disregarding the phantom

150 A. Schmidt and C.S. Jensen

expirations of nearly-zero cost, one can assume that the execution time of 80,000 inser-
tions lies between about 1.0 and 1.4 seconds. This suggests that treaps behave reliably
and predictably in practical settings.

To provide some evidence that the performance peaks in Fig. 7(a) are indeed memory
management-related, we concentrate on the results reported in Fig. 7(c). This time, the
database contains 40,000 tuples on average. Now, the local maxima in the graph are
noticeably less pronounced than in the large database. It turns out that because of the
small size, major re-organisations of the storage space can be avoided, keeping the
cost of individual memory allocations on about the same level. This is also reflected in
the PDF displayed in Fig. 7(d). The bandwidths of insertions, expirations, and of the
joint PDF are smaller in both absolute and relative terms. Figure 7(e) and 7(f) concern
resource utilisation. It can be seen that most of the time, the treap is able to insert data
at about half the maximum possible rate and that memory management causes some
pronounced spikes. Again, for smaller databases the spikes remain less pronounced.

Uniform traffic can be considered the worst case for treaps in the sense that it always
has to deliver as much performance as possible. In the case of non-uniform traffic,
we can expect the system to consume few resources when there are few operations,
while running resource-intensively when the numbers of operations peak. This is also
demonstrated in Fig. 6. The straight line indicates the database size. Since we use an
eager expiration and removal policy, the line also reflects the number of valid, i.e. non-
expired, tuples in the database. A note on the choice of the parameter b = 0.695234 for
non-uniform traffic: we chose b in this range because it is typical for Web traffic [22], a
scenario which is probably closest to our area of application.

Retrieval. Concerning retrieval performance, Fig. 8(a) presents the cost profile of un-
correlated lookups while varying the database size. The graph shows that the number
of lookups per second decreases as the database size grows and is thus consistent with
O(log n) key lookup complexity. Figure 8(b) illustrates how expensive it is to traverse
a treap in an in-order fashion. Traversal is an interesting operation, as it can be used
for creating snapshots, computing joins, etc. The operation is linear in the size of the
database, but benefits from caching: the path from the treap root the current node is
very likely to be resident in the cache hierarchy. Thus, the operation is surprisingly fast;
traversing a one million tuple database takes about one-third of a second on our test

2e+05 4e+05 6e+05 8e+05 1e+06

1.
5

2.
0

2.
5

3.
0

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(a) Scaling of 100,000 uncorrelated lookups
for AVL trees, Red-Black trees, and treaps

2e+06 4e+06 6e+06 8e+06 1e+07

0.
1

0.
2

0.
3

0.
4

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(b) Scaling of complete in-order traversal of
AVL trees, Red-Black trees, and treaps

Fig. 8. Generated traffic; lookup and traversal in database containing up to 16 M tuples

Efficient Maintenance of Ephemeral Data 151

platform. This indicates that the versioning semantics of our treaps does not impede
full traversals since the number of arriving tuples is certainly limited. Figure 8 also dis-
plays the performance of the same operations on AVL trees and Red-Black trees, which
are what we compare treaps against in the following subsection.

3.3 Comparing Treaps to Competitors

To estimate the performance and resource consumption of the treap index relative to
other data structures, we compared the behaviour of treaps to a number of competing
approaches. We use the following methodology: Besides requiring appropriate competi-
tors to provide an index on the key attribute, we distinguish between structures which
support eager expiration and structures which do not. Eager expiration implies that we
can remove expired data in a timely fashion from the data structure so that, for exam-
ple, ON EXPIRATION triggers can fire as soon as the item becomes stale and not at
some arbitrary, later point in time. Thus, eager expiration calls for priority queue-like
access to the data in addition to the index on the key values. We achieved this by com-
bining the index structures with priority queues. Since our context requires us to work
with main-memory data structures, we chose AVL trees and Red-Black trees [11] as
competitors to treaps. To support expiration on these structures, we applied (1) peri-
odic cleansing strategies, and (2) priority queue-supported, eager expiration strategies
to both data structures. Since treaps may require us to apply a hash function to key
values and, thus, may not support range queries under certain circumstances, we also
compared the performance of treaps to main-memory hash tables [11]. Again, we use
plain hash tables as well as heap-supported hash tables for eager expiration.

Maintenance Costs. To measure how dynamic a database instance is at a given point
in time we look at how many tuples of a snapshot would expire during a given interval.
Formally, we introduce the notion of Rate of Expiration (RoE), which is defined as the
ration between expired data and the sum of expired and current data, in a given time
interval. Thus, the Rate of Expiration is number between 0 and 1 (or 0% and 100%)
which captures how dynamic or how static a particular database state is by relating
the number of tuples expirations in a given time interval to the size of the database.
Note that the RoE does not take into account insertions and expiration from insertions;
it only measures the decay of a database state. An RoE of 100% would imply that,
during the interval d, all data expire, whereas an RoE of 0% implies that there are
no expirations. We note that expiration time-enabled data structures in general appear
particularly useful when RoE is relatively low, i.e. a significant part of the database
does not expire in the interval of interest; high RoEs imply that the we have to dispose
of large parts of a database, which in turn implies that we have to scan a large part
of the data—those to be expired—which we can do anyway without supporting data
structures.

Figure 9 compares the cost of maintaining treaps to the cost of maintaining the other
well-known data structures which were adapted to support expiration time. The RoE
varies from very dynamic 100% to much more static 1%. It turns out that treaps never
perform significantly worse than the other data structures but scale much better, both in
terms of memory requirements and processor time, for databases with relatively small

152 A. Schmidt and C.S. Jensen

10000 20000 30000 40000 50000 60000 70000 80000

0.
00

0.
10

0.
20

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(a) RoE = 100%

50000 100000 150000 200000

0.
0

0.
2

0.
4

0.
6

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(b) RoE = 5%

500000 1000000 2000000 3000000

0
2

4
6

8
10

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree
Red−Black tree
Treap

(c) RoE = 1%

10000 20000 30000 40000 50000

0.
00

0.
10

0.
20

0.
30

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree w/heap
Red−Black tree w/heap
Treap

(d) RoE = 100%

50000 100000 150000

0.
1

0.
2

0.
3

0.
4

0.
5

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree w/heap
Red−Black tree w/heap
Treap

(e) RoE = 5%

500000 1000000 1500000 2000000 2500000

0.
0

0.
2

0.
4

0.
6

0.
8

Database Size (# tuples)

T
im

e
in

 s
ec

on
ds

AVL tree w/heap
Red−Black tree w/heap
Treap

(f) RoE = 1%

Fig. 9. Performance comparison to AVL and Red-Black Trees with/without supporting heaps

Rate of Expiration, which we consider a typical case. In more detail, Figs. 9(a)–9(c)
illustrate that treaps outperform AVL trees and Red-Black trees for RoEs of 5% and 1%,
whereas they incur only a small overhead for an RoE of 100%. Note that in this case
expiration is done on AVL and Red-Black using traversals at the end of each interval, but
no additional memory is needed for supporting data structures; thus, expiration is not
eager. However, eager expiration can be implemented with supporting heaps as shown
in Figs. 9(d)–9(f). Note that in these figures AVL and Red-Black trees are combined
with heaps to support eager expiration. However, this incurs a memory overhead for
these data structures so that, given a fixed-size main memory, a treap could index more
than twice the data size than the competitors. Nevertheless, treaps outperform the other
data structures in all cases although not as clearly as in the heap-less experiment.

Query Performance. This subsection considers the question what query performance
(rather than the cost of maintenance) treaps feature in comparison to AVL and

Efficient Maintenance of Ephemeral Data 153

Red-Black trees. As mentioned earlier, Fig. 8 shows the performance for two important
query primitives used frequently in data management: traversals and lookup queries. It
turns out that, as Fig. 8(a) shows, treaps consistently outperform Red-Black trees and
are en par with AVL trees with respect to point queries or lookups. For small databases
AVL trees exhibit a slightly better performance where treaps are slightly ahead for larger
databases. Similarly, for scanning the data set in sort order, treaps perform slightly
worse than both, Red-Black and AVL trees, for small databases; for large databases,
they are again ahead of Red-Black trees as Fig. 8(b) shows. However, the important
point here is that the probabilistic performance guarantees of treaps do not incur a sig-
nificant (if at all) penalty on query performance.

Further Issues. The full version of this paper [18] covers several practically relevant
issues. Most notably, it relaxes the assumption of statistical independence between key
values and expiration times, by introducing a hash function to enforce the indepen-
dence. Additionally, the full version also compares treaps to expiration time-enabled
hash tables and discusses main-memory performance issues. Many other issues are also
discussed in somewhat more detail than presented here.

4 Related Work

At the level of query languages and data models, which are not the focus of this paper,
the concept of expiration time relates to the concept of vacuuming [9]. With vacuuming,
it is possible to specify rules that delete data: when the preconditions, e.g. related to
time, in the head of a rule, are met, the data identified by the body of the rule are
logically deleted from the database. Like expiration time, vacuuming separates logical
deletion from physical deletion. But whereas expiration times are explicitly associated
with the tuples in the database, vacuuming specifies which data to delete in separate
rules. We believe that the techniques presented in this paper may be relevant for the
efficient implementation of time-based vacuuming. Stream databases [2], on the other
hand, allow users to specify query windows; in this sense, they take an approach which
is opposite to expiration times, which let the data sources declare how long a tuple is
to be considered current. Some works that refer to the term “expiration” are slightly
related to expiration time and thus this paper’s contribution. Expiration has been used
in the context of view self-maintenance: Here the problem is which data that can be
removed (“expired”) without this affecting the results of a predetermined set of queries
(views) [8].

The use of expiration time has been studied in the context of supporting moving
objects [21]. The idea is that locations reported by moving objects that have not been
updated explicitly for some time are considered inaccurate and should thus be expired.
The REXP-tree extends the R-tree to index the current and anticipated future positions
of two- and three-dimensional points, where the points are given by linear functions of
time and are associated with expiration times. We are not aware of any related research
on main memory based indexing that incorporates expiration time.

Okasaki [16] offers a very readable introduction to purely functional data structures.
Our primary data structure, the (functional) treap, is described and analysed in substan-
tial detail by Seidel and Aragon [19]; it was first introduced by McCreight [14]. Later,

154 A. Schmidt and C.S. Jensen

treaps were primarily seen and interpreted as randomised search trees [19]. Treaps have
been used in a number of contexts; however, we are not aware of any time-related appli-
cations. Heaps are a classical data structure in computer science [11]. In this paper, we
technically achieve concurrency on functional treaps through versioning [4] by imple-
menting the node-copying method [7]. In a database context, Lomet and Salzberg [13]
present versioning supporting variants of B-trees and discuss related issues. Finally, we
remark that distributed garbage collection also shares similarities with expiring data
in databases; especially eager collection is sensible when scarce resources have to be
freed up.

5 Conclusion and Future Work

This paper argues that expiration time is an important concept for data management in a
variety of application areas, including heartbeat patterns in mobile networks and short-
lived data. It presents a functional, or versioned, variant of the previously proposed treap
along with algorithms for supporting data with expiration time, and it argues that this is
an efficient main-memory index for data with expiration times. Through comprehensive
and comparative performance experiments, the paper demonstrates that its proposal
scales well beyond data volumes produced by current mobile applications and thus is
suited for advanced applications.

Data expiration is an important and natural concept in many volatile application
settings where traditional ACID semantics are not appropriate. Often, devices such as
mobile phones, PDAs, sensors, and RFID tags experience intermittent connectivity, but
also do not need a full-blown transaction system for many tasks. In these settings, data
management applications can benefit from the underlying platform being expiration
time-enabled. Benefits include lower transaction workloads, reduced network traffic,
and the ability to free memory occupied by stale data immediately.

Support in the underlying platform for expiration time also have the potential of
simplifying application logic by removing the need for “clean-up” transactions. The
paper demonstrates through experiments that a functional treap, which is a binary tree
with respect to a key and a heap with respect to the expiration time, is an effective tool
for handling expiration times in main-memory settings.

Several interesting directions for future research exist in relation to the support for
expiration time in data management. When data are not as short-lived as assumed in this
paper, it might be beneficial to develop strategies for extending standard secondary-
memory data structures, e.g. heap files, B-trees, and hash files, with expiration time
support. We anticipate that expiration for secondary-memory structures requires strate-
gies different from those presented in this paper. Furthermore, to take full advantage
of database management system technology, expiration times have to be sensibly inte-
grated into SQL’s isolation levels and transaction system.

Acknowledgments. The authors would like to thank Peter Schartner for helpful com-
ments and pointers as well as Laurynas Speicys, Simonas Šaltenis, and Kristian Torp
for helpful discussions and their collaboration. C. S. Jensen is also an adjunct professor
in Department of Technology, Agder University College, Norway.

Efficient Maintenance of Ephemeral Data 155

References

1. Ailamaki, A., DeWitt, D., Hill, M.: Data page layouts for relational databases on deep mem-
ory hierarchies. The VLDB Journal 11 (2002) 198–215

2. Arasu, A., Babu, S., Widom, J.: CQL: A Language for Continuous Queries over Streams and
Relations. Proc. DBPL (2003) 1–19

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison Wesley,
(2003)

4. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database
Systems. Addison Wesley (1987)

5. Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13
(1970) 377–387

6. Diwan, A., Tarditi, D., Moss, J.: Memory System Performance of Programs with Intensive
Heap Allocation. ACM TOCS 13 (1995) 244–273

7. Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.: Making Data Structures Persistent. Journal
of Computer and System Sciences 38 (1989) 86–124

8. Garcia-Molina, H., Labio, W., Yang, J.: Expiring Data in a Warehouse. Proc. VLDB (1998)
500–511

9. Jensen, C.§.: Vacuuming. The TSQL2 Temporal Query Language (1995) 447–460
10. Jensen, C. S., Lomet, D.: Transaction Timestamping in (Temporal) Databases. Proc. VLDB

(2001) 441–450
11. Knuth, D.: The Art of Computer Programming, vol. 3, Sorting and Searching. Addison

Wesley (1998)
12. Lehman, T., Carey, M.: Query Processing in Main Memory Database Management Systems.

Proc. ACM SIGMOD (1986) 239–250
13. Lomet, D., Salzberg, B.: Access Methods for Multiversion Data. Proc. ACM SIGMOD

(1989) 315–324
14. McCreight, E.: Priority Search Trees. SIAM Journal on Computing 14 (1985) 257–276
15. Odersky, M., et al.: The Scala Programming Language. http://scala.epfl.ch (2005)
16. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1998)
17. Schmidt, A., Jensen, C. S., Šaltenis, S.: Expiration Times for Data Management. IEEE ICDE

(2006, to appear)
18. Schmidt, A., Jensen, C. S.: Efficient Management of Short-Lived Data. Technical Report

(2005) http://arxiv.org/abs/cs.DB/0505038
19. R. Seidel and C. Aragon. Randomized Search Trees. Algorithmica, 16(4/5): 464–497, 1996.
20. The World Wide Web Consortium. HTTP - Hypertext Transfer Protocol.

http://www.w3.org/Protocols/ (2005)
21. Šaltenis, S., Jensen, C. S.: Indexing of Moving Objects for Location-Based Services. Proc.

IEEE ICDE (2002) 463–472
22. Wang, M., Chan, N., Papadimitriou, S., Faloutsos, C., Madhyastha, T.: Data Mining Meets

Performance Evaluation: Fast Algorithms for Modeling Bursty Traffic. Proc. IEEE ICDE
(2002) 507–516

References containing URLs are valid as of 6 December 2005.

http://scala.epfl.ch
http://arxiv.org/abs/cs.DB/0505038
http://www.w3.org/Protocols/

	Introduction
	Treaps in Detail
	Setting
	Overview
	Example
	Operations on Treaps

	Experiments and Evaluation
	Experimental Setup
	Discussion of Treap Performance
	Comparing Treaps to Competitors

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

