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Abstract

Audio music is increasingly becoming available in dig-
ital form, and the digital music collections of indi-
viduals continue to grow. Addressing the need for
effective means of retrieving music from such collec-
tions, this paper proposes new techniques for content-
based similarity search. Each music object is modeled
as a time sequence of high-dimensional feature vec-
tors, and dynamic time warping (DTW) is used as
the similarity measure. To accomplish this, the pa-
per extends techniques for time-series-length reduction
and lower bounding of DTW distance to the multi-
dimensional case. Further, the Vector Approxima-
tion file is adapted to the indexing of time sequences
and to use a lower bound on the DTW distance. Us-
ing these techniques, the paper exploits the lack of a
ground truth for queries to efficiently compute query
results that differ only slightly from results that may
be more accurate, but also are much more expensive,
to compute. In particular, the paper demonstrates
that aggressive use of time-series length reduction to-
gether with query expansion results in significant per-
formance improvements while providing good, approx-
imative query results.

1 Introduction

Radio broadcasting has entered the digital age, and
the record companies are selling digital music on-line.
As a consequence, digital audio music is more and
more widespread, and the personal collections of music
stored on MP3 players, PCs, and media centers grow
to thousands of songs. This development calls for ef-
ficient data management techniques for digital music
databases, which includes techniques for music infor-
mation retrieval.

Techniques for music similarity retrieval can be
grouped into three main categories. The first is the
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so-called metadata similarity retrieval, where differ-
ent metadata are created manually (e.g., as done by
Pandora [22]) or obtained automatically (e.g., as done
by All Music Guide [2]) from the music and used for
querying. Manual creation and update of metadata
lacks in “scalability,” and the automatic approach is
limited to what has been provided manually by others.

The second category of techniques uses collabora-
tive filtering (e.g., as done by Amazon [1]). Here, past
user behavior is exploited. For example, each time a
person listens to or purchases a piece of music, this can
be recorded. It then becomes possible to offer guid-
ance akin to “those who liked this music also like this
other music.” One advantage of collaborative filtering
is that it scales well to large databases. However, it
does not work well when new music is introduced.

The last category of techniques, which is the subject
of this paper, is content-based retrieval. Here, the au-
dio signal itself is processed and features are extracted
and used for querying. These techniques are auto-
matic, scale well to large music collections, and can be
integrated with the other two categories of techniques.
However, the length and high dimensionality of the ex-
tracted features offer challenges when it comes to the
efficient processing of queries.

Content-based retrieval consists of two general
steps. The first step concerns feature extraction from
the music signals. This paper utilizes state-of-the-art
music feature vectors, but does not study feature ex-
traction. Feature extraction is an active area of re-
search within the audio signal processing field. Music
feature vectors can be quite high-dimensional. For in-
stance, the popular AR coefficients [21] that are being
used successfully for genre classification can be ~100
dimensional. A song is usually represented by a time
sequence of such feature vectors, one for each short
time-frame of the song. The second step in content-
based retrieval concerns the storage and indexing of
feature vectors, and their subsequent use in querying.

We represent a music object in the database as a
time sequence of high-dimensional feature vectors. In
this setting, we aim at providing techniques for per-
forming efficient similarity retrieval. Efficiency implies



two aspects: applying a similarity measure that is as
meaningful and intuitive as possible from the point of
view of the users, and retrieving the result of a query
with low I/O and CPU costs relative to the size of the
database. In this paper, we address both aspects. We
are not aware of other approaches that represent music
as multi-dimensional time series.

The database community has studied the problem
of similarity querying for time series databases (e.g.,
[3,9,15,16,20]). Using the Euclidean distance for time
series results in variations in time shifting and time
scaling having an overly large effect. As a framework
for absorbing such variation with smaller effect, dy-
namic time warping (DTW) distance has been pro-
posed. This notion of distance allows very good match-
ing of similar subsequences that are shifted within a
limited range along the time dimension. Thus, dy-
namic time warping has been used in speech recog-
nition [12,25] as well as in fields such as bioinformat-
ics [4], video-data management [10], fingerprint match-
ing [18], and the classification of handwritten text [24].

Indexing of data when using DTW is challeng-
ing, as DTW distance is not a metric and moreover
is expensive to compute for large time series. Sev-
eral techniques have been proposed for indexing one-
dimensional time-series under DTW [14, 17, 30, 31].
These propose different lower bounding functions for
DTW, and Keogh [14] and Zhu and Shasha [31] also
study the idea of time-series length reduction. Vla-
chos et al. [26] investigate DTW indexing for multi-
dimensional time series. Their method works with
2D trajectories, which are split in Minimum Bound-
ing Rectangles and stored in an R-tree [11]. However,
when the dimensionality of the space is ~ 100, using
a hierarchical tree structure is more expensive than
linear search.

In this paper, we extend known DTW indexing
techniques to work with high-dimensional time series.
We approximate the original time series by reduced-
length time series. Due to the high dimensionality of
the feature vectors, hierarchical index structures are
inappropriate. We instead index them using the (Vec-
tor Approximation (VA) file [27]. We adapt the VA-
file to support e range queries for equal-length time
sequences when using a lower bound on the DTW dis-
tance as the distance measure. The highly subjective
nature of music similarity means that a ground truth
for queries does not exist. We propose techniques that
exploit this, by efficiently computing query results that
are similar to results that are significantly more expen-
sive to compute. Results of an empirical performance
study are reported that demonstrate that relatively
aggressive use of time series length reduction together
with query enlargement yields significantly improved
query performance while not affecting the query re-
sults substantially.

The rest of the paper is organized as follows. Sec-

tion 2 presents background information and related
work. Section 3 reviews the lower bounding of DTW
for one-dimensional time series and introduces a lower
bounding function for multi-dimensional time series.
Section 4 covers time series length reduction, the in-
dexing of multi-dimensional time series, and a new
range search algorithm for the VA-file. Finally, experi-
mental results are presented in Section 5, and Section 6
concludes the paper.

2 Background

The similarity measure used for similarity retrieval is
a very important consideration. Dynamic time warp-
ing (DTW) constitutes a flexible and promising frame-
work for music similarity. DTW has been used in
speech processing for several decades [12,25], and it
was introduced to the database community in 1994 by
Berndt and Clifford [6], who showed how to speed up
DTW computation using dynamic programming and
also demonstrated its applicability as a time series sim-
ilarity measure. However, not being a metric means
that DTW is not directly applicable in the context of
large databases. Computing DTW distances for every
possible query result is not feasible when working in a
very large database.

2.1 DTW Computation

We briefly review the definition of the DTW distance
in the context of multi-dimensional time series.

Let @ and C be two d-dimensional time series of
length n and m, respectively:

Q=(Q1,.-,Qn) Qi = (g, Gia)
C = (Cl, ...,Cm) Cj = (le, ...,de)

To align two sequences using DTW, a n-by-m ma-

trix is constructed where cell (i,j) contains the dis-
tance d(Q;,C;) (where d is, e.g., the Euclidean dis-
tance) between elements @; and C;. A warping path
W proceeds from cell (1,1) to cell (n,m), and it rep-
resents an alignment between pairs of elements from
Q and C.
W = wy,wa, ..., Wi, ..., g, max(m,n) < K < m+n—1
Thus, wy = (1,1) and wg = (n,m). A warping path
W has two more additional properties. First, W must
be continuous: Given wy, = (a,b) then wi_1 = (a’, V'),
where a —a’ < 1 and b — b < 1. This restricts the
allowable steps in the warping path to adjacent cells.
Second, W must be monotonic: Given wy = (a,b),
then wg—1 = (a/,v’), where a —a’ > 0 and b— V' > 0.
This forces the points in W to be monotonically spaced
in time.

The cardinality of the set of possible warping path
W grows exponentially with the lengths of the time se-
ries. The DTW distance is the minimum over all paths



in W of the squared root of the sum of the elements
along the path.

Definition 1 [14]
DTW(Q,C) = minwew \/ S p; wi

Figure 1 exemplifies DTW computation for the time
series:

Q =
c

~12,10,5,1,3,-2,—1,4,7,—3
21,2,4,11,6,11, -4, —5,1,6

The DTW distance for one-dimensional time series
can be computed using dynamic programming in time

O(nm) [6].
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Figure 1: DTW Computation—DTW (Q,C) = /78

Constraints may be imposed on warping paths that
limit how far a path may stray from the diagonal, thus
avoiding pathological paths and also speeding up the
computation [23]. For example, for our music time
series database, we want to avoid mapping the same
feature vector from one song to a large number of fea-
ture vectors from another song.

Two well-known constraints are the Sakoe-Chiba
band [25] and the Itakura parallelogram [12](see Fig-
ure 2). Figure 3 shows DTW computation for the same

Sakoe-Chiba Band Itakura Parallelogram
Figure 2: Constrained DTW

time series as in Figure 1, but with a Sakoe-Chiba band
constraint. In this case, we obtain DTW(Q,C) =

v/80. The constraint is defined by a warping range
r = 2, which produces a band of width 5 (i.e., 2r + 1)
along the diagonal.
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Figure 3: Constrained DTW Computation—

DTW(Q,C) = /80

2.2 Related Work

Yi et al. [30] are the first to investigate the use of
DTW in large databases. They propose an approxi-
mative indexing of DTW using FastMap [8]. The idea
is to embed the time sequences into an Euclidean space
that approximately preserves the distances between
them, and then use a classical multi-dimensional in-
dex structure like the R*-tree [5]. They also introduce
a lower bound for filtering out unlikely matches that
are inevitably introduced. The method outperforms
sequential scan, but the time to build the index grows
drastically with the length of the time series.

Kim et al. [17] are the first to introduce an exact al-
gorithm for indexing time series under DTW. They ex-
tract four features from the time sequences and index
them in a multi-dimensional index structure. In ad-
dition, they propose another lower bounding function
for DTW, which is defined on the four features and
guarantees no false negatives. However, the method
allows the extraction of exactly four features, while
actually only one of them, determined at query time,
is used in the lower bound. Therefore, the technique
generates many false positives that need to be refined
using expensive DTW distance computations.

Keogh [14] proposes a technique for exact index-
ing of DTW that guarantees no false negatives. The
technique can be applied only for equal length time
series and DTW computation where the warping path
is restricted (e.g., as shown in Figure 2). The core
idea is to define the envelope of a time series using the
term that defines the range of the warping path and
apply a new lower bound function computed on the
basis of the envelope of time series. Indexing of DTW
is achieved by performing a length reduction on both
the time series and the envelope using Picewise Aggre-



gate Approximation (PAA). The reduced length time
series are indexed using the R*-tree. Experimental re-
sults show that the pruning power of this lower bound
is 3—4 times better than that of Yi’s lower bound and
6 times better than that of Kim’s lower bound.

In follow-on work, Zhu and Shasha [31] have im-
proved on the technique for time series length reduc-
tion using PAA. They propose a new definition of the
envelope of a reduced time series, which is tighter that
Keogh’s envelope. This yields a tighter lower bound
distance for DTW, which is shown experimentally to
be 3 times tighter than Keogh’s lower bound.

All the above DTW indexing techniques have been
designed and studied for only one-dimensional time se-
ries. In this paper, we extend the DTW lower bound
function and the reduction of length of the time-series
of Keogh [14], and the reduction of length of the enve-
lope using the PAA technique of Zhu and Shasha [31],
to the multidimensional case.

Lee et al. [19] and Kahveci et al. [13] study multi-
dimensional time series, but consider only Euclidean
distance. More recently, Vlachos et al. [26] have in-
vestigated indexing of multi-dimensional time series
under DTW. They consider only the case of 2D tra-
jectories of moving objects. Their main idea is to split
the trajectories into MBRs and store them in an R-
tree. For a given query, a Minimum Bounding En-
velope (MBE) is constructed that covers all possible
matching areas of the query under warping conditions.
The MBE is decomposed into MBRs, and the R-tree
is probed, thus finding the potential candidates for the
query result.

Reducing the length of a time series does not reduce
its dimensionality. It is known that hierarchical index
structures cease to perform better than a linear scan
when the dimensionality of the space exceeds =~ 20 [27].
As we are faced with a dimensionality of =~ 100, we
build on the VA-file [27-29], which is known to still
perform better than linear scan when the dimensional-
ity of the space exceeds 20. Studies of dimensionality
reduction techniques is an interesting, but orthogonal
issue. The techniques we have considered, when re-
ducing the dimensionality from =~ 100 dimensions to
20, cause substantial information loss and lead to a
refinement step that is not competitive.

We adapt the VA-file to index the reduced time se-
ries and use as the distance measure the lower bound-
ing function of DTW. We define a new search algo-
rithm over the VA-file that performs efficient range
queries when indexing reduced length time series.

3 Lower Bounding the DTW

DTW computation is expensive, especially for long
time series. One solution is to apply the filter-and-
refinement paradigm, thus using an inexpensive lower
bounding function for filtering out the music objects
that may be good match, performing afterwards a re-

finement over the selected candidates using the DTW.
A good lower bound function needs to fulfill two re-
quirements: it must be inexpensive to compute, and
it must be a relatively tight lower bound. The second
requirement ensures that relatively few candidates are
left for the refinement.

3.1 One-Dimensional Lower Bounding

The best known lower bounding function [14] is defined
for one-dimensional time series and holds for the case
where the argument time series have the same length
and the warping paths are constrained. Further, the
distance for each element in a warping path is defined
to be the squared Euclidean distance, and the dynamic
time warping distance is the square root of the sum of
these.

As described in Section 2.1, the indices of the cells
in a warping path are constrained: given a cell wy, =
(i,5)k then j —r < i < j+ r, where r defines the
warping range. Both the Sakoe-Chiba band and the
Itakura parallelogram fall under this definition, while
for the Sakoe-Chiba band r is independent of ¢ and for
the Itakura parallelogram r is dependent on ¢. Using
the warping range r, the envelope of a time series @
has been defined as follows.

Definition 2 [14] The envelope of one-dimensional
time series @ = (q1,...,qn), denoted Env(Q) is a pair
of time series L = (I1,...,1,) and U = (ug, ..., uy):

L =min(gi—r : @igr) U = Max(¢i—r : Gigr)

A lower bounding measure for DTW(Q,C) for one-
dimensional time series is:

n (Ci — ui)Q if ¢; > uy
LB(Enw(Q),C) = |> % (ei—1)? ifei <l
i=1 0 otherwise

Lemma 1 [14] For two time series @ and C of length
n, for a constraint on the warping paths of the form
j—r <i<j+r, the following inequality holds:

LB(Env(Q),C) < DTW(Q,C)

3.2 Extension to Multiple Dimensions

We proceed to extend the lower bounding function de-
finition to multi-dimensional time series. We assume
that the time series have the same length and that the
warping paths are constrained.

Let Q = (le-'-in) where Qz = (qila -~-,Qid) be a

d-dimensional time series.

Definition 3 The envelope of d-dimensional time se-
ries @, denoted Env(Q), is a pair of d-dimensional
time series L = (L1, ..., L,) and U = (Uy, ..., Uy,) where
’ lid)a

(Uil, "‘7uid)7

Li = (lil,...
Ui =

lij = min(qei—ry; * q(itr)s)

Uij = maX(Q(i—r)j : Q(i+r)j)



A lower bounding measure for DTW(Q, C) is:

LB4_qim(Env(Q),C) = Zd(Env(Qi),Ci) where
i=1

(Cij — Ujj 2 if Cij > Ujj
d(EnU(Qi)v Cl) = Z (Cij - lij 2 if Cij < lij
=t | 0 otherwise

Lemma 2 For two d-dimensional time sequences @
and C' of length n and a constraint on the warping
paths of the form 7 —r < ¢ < j + r, the following
inequality holds:

LBq-aim(Env(Q),C) < DTW(Q,C)

Proof: See the appendix.

4 Indexing DTW for Multi-Dimensio-
nal Time Series

A lower bounding function for DTW is used for elim-
inating, at low cost, time series that cannot possibly
satisfy the query. However, although the lower-bound
computations are inexpensive, using these in conjunc-
tion with a linear scan of all time series still results
in substantial I/0O. To scale up to large databases, we
must avoid a linear scan. However, the effective index-
ing of long and high-dimensional time series is difficult.

The GEMINI framework [9] for length reduction
of time series has been applied successfully to one-
dimensional time series. In this framework, a one-
dimensional time series can be reduced so much that
it can be indexed using a structure such as an R*-tree.
The approach generates false positives, so subsequent
refinement is necessary. To avoid false negatives, the
length reduction transform must be lower bounding
the DTW so that the distance between any two re-
duced length time series is not exceeding their original
distance.

4.1 Time Series Length Reduction

The method used in [14] and [31] to perform length re-
duction for 1-dimensional time series is Piecewise Ag-
gregate Approximation (PAA).

Definition 4 [14] The PAA of the one-dimensional
time series C' = (cq1,...,¢,) is C = (&1, ...,Cn) Where
1< N <nand:

The PAA reduction of the envelopes using the
method in [31] is as follows.

Definition 5 [31] The PAA of the envelope of one-

dimensional time series C, denoted Env(C') is:

N X N &
li = ; E lp, ai = ; E Up
=4 (- 1)+1 =4 (i-1)+1

where i =1,2,..., N.

Lemma 3 [31] With the preceding definitions and
with C' and @ being equal-length, one-dimensional
time series, the following holds:

LB(Env(Q),C) < DTW(Q,C)

We proceed to extend the above definitions to
apply to multi-dimensional time series. Thus, let
Cc = (Cy,..,C,), where C; = (¢i1,...,cq) be a d-

dimensional time series.

Definition 6 The PAA of the d-dimensional time se-
ries C'is C' = (C4, ..., Cn) where C; = (€1, ..., Ciq) and

n
N’L

_ N
Gii = — § Co
iT Pj

p=2 (i—1)+1

with 1 < N <n.

Definition 7 The PAA of the envelope of the d-

dimensional time series @, denoted Env(Q) is the

pair L = (Ly,...,Ly) and U = (Uy,...,Uy), where

Lz’ = (lﬂ, ~-~7lid)7 Ui = (’l_l,il, -~-7aid) and:
N X N &
b= 2. i W= Z Up;
p:ﬁ(zfl)%»l p:%(171)+1

Lemma 4 With the preceding definitions and with C
and @ being equal-length, d-dimensional time series,
the following holds:

LBd—dim(Env(Q)a C) S DTW(Qa C)

Proof: The proof is very similar to that of
Lemma 3 [31], the extension to the d-dimensional case
being straightforward.

4.2 Similarity Range Queries

We define a similarity range query as follows.

Definition 8 Assume a set DB of d-dimensional time
series each of length n. The similarity e-range query
for a given d-dimensional time series ) of length n,
ole, Q)(DB), returns all time series C' € DB for which
DTW(Q,C) <e.



The approach to computing this query efficiently
consists of reducing the length of the time se-
ries, indexing the resulting time series, using this
structure for identifying the time series that satisfy
LBq_qim(Env(Q),C) < €, and finally performing re-
finement on the resulting candidates according to the
true DTW distances. Because distances in the reduced
space are much smaller than distances in the original
space, an € < ¢ is used instead of e.

As music similarity is highly subjective, there is no
ground truth for similarity queries in music databases,
such as the one considered here. This presents an op-
portunity to exploit the possibility of providing to the
user with an approximative query result, trading query
accuracy for better performance without the lower ac-
curacy being noticeable by the user.

As we shall see, time series length reduction sig-
nificantly improves query performance. Intuitively, as
time series length is reduced further and further, an
increasingly large €’ value must be used to ensure that
query results remain reasonably accurate. It turns
out that the performance is relatively insensitive to
increases in €.

4.3 Indexing Multi-Dimensional Time Series
Using the VA-File

As we use the VA-file, we first briefly review the core
idea underlying this technique. The VA-file [27] di-
vides the multi-dimensional space into 2° cells, allo-
cates an unique bit-string of length b for each cell, and
approximates all data points that fall into a cell by this
bit-string. The number b is calculated as b = 30, b;
where d is the dimensionality of the space and b; is
the number of bits assigned per dimension i. The VA-
file can simply be seen as an array of these compact
approximations.

Initially designed to be used for nearest neighbor
queries, the VA-file can also be used for range queries.
A range query on the VA-file is performed in a fil-
ter step and a refinement step. The filter step avoids
reading the actual data, but scans the entire approxi-
mation file. For each approximation, a lower bound on
the distance to the query is determined based on the
boundary points of the rectangular cells used by the
approximation. Further, candidates are selected only
if this lower bound is within the query range. The re-
finement step involves calculating the actual distance
between the query object and each selected candidate,
thus identifying the final result.

To be able to index time series with the VA-file, we
perform several adjustments to the VA-file. The VA-
file works with multi-dimensional points, so when in-
dexing time series, we must index the individual multi-
dimensional points of these. The number of objects
indexed is thus N times the number of time series,
where N is the length of a reduced-length time series.
The VA-file cell boundaries in each dimension are com-

puted based on these objects.

To preserve the notion of time series and to be able
to efficiently retrieve the time series that qualify as
potential candidates, we perform the following. The
points that make up a time series are stored consec-
utively in the VA-file, thus storing a time series com-
pactly. As all indexed time series have equal length
N, when scanning the VA-file during filtering, every
consecutive group of N approximations forms a time
series. Thus, the first approximation in a group has to
be compared with the first element of the query time
series, etc. until the Nth element is reached.

The VA-file has been designed to be used only with
L, metric distances. Instead, we use the DTW lower
bounding distance, which can be viewed as a modified
Euclidean distance, but is not a metric. However, as
will be shown in Section 5, the VA-file retrieval preci-
sion is not affected by this change.

For improved performance, an approximation of the
similarity e-range query described in Definition 8 is
computed in several steps: the time series are length
reduced and indexed in the VA-file, an ¢-range search
over the VA-file with ¢ < ¢ is performed, and the
potential candidates returned by the VA-file search are
refined by computing the actual DTW distances for
the original time series.

We substantiate by exhaustive experiments that
time series length reduction and appropriately chosen
values for € achieve improved query performance, at
the cost of approximate query results. The larger ¢’
becomes, the more precise the answers become, but
the computational cost also increases. We study this
trade-off in Section 5. Straightforward choice for the
range to be used in the reduced-length space may be
€ = %e. However, we shall see in Section 5 that more
precise results are obtained when using values for €’
that are larger. In this paper, the value of € is ob-
tained experimentally, and it is left for future work to
provide analytical means of selecting a good €.

Let us denote by LVA(Q, C) the VA-file lower bound
of the distance LBq_qim(Env(Q),C), where Q and
C are d-dimensional time series of reduced length
N and LVA(Q,C) < LBy_gim(Env(Q),C). An €'-
range query over the VA-file for a given @ is per-
formed by first selecting the time series C' for which
LVA(Q,C) < €, and then by further selecting only the
time series for which LBg_qim(Env(Q),C) < €.

We define LVA(Q,C) as follows. Let Q; =
(Gi1, -, @iq) be the current query element, Env(Q;) its
envelope, and C; = (1, ..., ¢iq) the current approxima-
tion that is scanned. We denote by rg ; the partition in
which falls g;; in dimension j and by r¢ ; the partition
in which falls ¢;; in dimension j. Any partition re ;
is represented by lower and upper boundary values,
denoted (Val[rz ;] and uVal[rz ;.

Definition 9 The VA-file lower bound of the distance
between the current scanned element and the current



query element, denoted by LVAZ-(QZ-, C’Z-) is:

LVA;(Q;, Ci) = Z?:l 1b;* where
LB(Env(Qi)j,uVal[r— ) ifre; <rg
LB(Env(Q

5]
(Env(Qi)j, WVallre;]) ifre; >rg;
0 lf 7’57]' = T'q,j

Ib; =

Definition 10 The VA-file lower bound of the dis-

tance LBq—_aim(Env(Q),C) is:

N
LVA(Q,C) = \| Y LVAi(Q:, Ci)
i=1

Algorithm 1 efficiently computes an approximation
of the similarity e-range query for equal-length d-
dimensional time series using the VA-file with time
series length reduction.

The algorithm reconstructs the time series from
their constituent elements in a cost effective manner.
Whenever in the currently scanned time series, the
LVA lower bound of the current element is larger than
€’? or the part of the time series that has already been
scanned generates an LVA distance larger than €', the
rest of the time series is skipped, thus avoiding useless
computations.

Finally, we can describe all steps involved in per-
forming a similarity range query in a database of d-
dimensional time series using dynamic time warping
distance as the similarity measure.

1. For all time series in the database, compute the
reduced-length time series and store them on disk.

2. Build a VA-file for the reduced-length time series.

3. For the query time series @, compute its reduced-
length time series () and the envelopes Env(Q)

and Env(Q) of these two time series.

4. Perform an €'-range query over the VA-file using
Algorithm 1.

5. Refine the potential candidates returned in step 4.
Compute the true DTW distances for the original-
length time series and select those with DTW dis-
tance to the query object that does not exceed e.

In summary, a similarity range query is performed
in three steps: the VA-file filter, the VA-file refine-
ment, and the final refinement. The VA-file filter
step implies scanning only the VA-file, which is sev-
eral times smaller in size than the reduced length time
series database. The first refinement step implies some
random disk accesses to read candidate reduced time
series, while the last refinement step performs even
fewer random disk accesses to read candidate original
time series.

Algorithm 1 VA-file e-Range Search

Input: query time series ) with envelope Env(Q)
Output: a list of references to potential candidates
of the e-range query
{Filter Step}
while scanning the VA-file do
Sum «— 0
skip «— false
{scan current time series C'}
for i=1to N do
read the current approximation Cj;
compute LVAL(Q“ C'l)
if / LVA7(Q“ Cz) > ¢ then
skip in the VA-file to the end of the Nth
approximation
skip «— true
else
Sum « Sum + LVA;(Q;, C;)
if v/ Sum > ¢’ then
skip in the VA-file to the end of the
Nth approximation
skip «— true
end if
end if
if skip then
break
end if
end for
if —skip then
mark C' as a good time series
end if
end while
{Refinement Step}
for all good time series C' do
read time series C from disk

compute LB4_gim(Env(Q),C)
if LBy _qim(Env(Q),C) < ¢ then
mark C as a potential candidate
end if
end for

return a list of references to all potential candidates

5 Experimental Results

The experiments reported upon in this section were
run on a database of 12, 086 music clips, each extracted
from a different song. A clip is 30 seconds long. This
length is relevant because the maximum legal length
of a piece of music that can freely be distributed on
Internet is 30 seconds. The music excerpts have been
further processed by extracting AR coefficients [21],
which have previously been shown to work well for
genre classification. More specifically, so-called Mel
Frequency Cepstral Coefficients (MFCCs) were ini-
tially extracted from short audio frames using a frame
size of 30ms and a hop size of 10ms. These were then
integrated over larger frames using the Autoregressive



(AR) model, which is a well-known technique for time
series regression. In the end, 95-dimensional feature
vectors were obtained for each second of music. A
music object in our database is thus a 95-dimensional
time series of length 30.

To speed up the query processing, each time series
is assigned an ID and is written on disk in a sepa-
rate file in binary format. The candidate time series
that need to be refined (during both the VA-file and
the final refinement) are represented by their ID, the
IDs being stored in sorted order. The original data
occupies approximatively 131MB.

In preparation for computing similarity e-range
queries, we compute reduced length time series for the
entire database and then index them using the VA-file
as described in Section 4.3. The VA-file implementa-
tion uses 8 bits per dimension. To construct the VA-
file partitions in each dimension according to our data
distribution, we use code from the open-source library
Colt [7]. The reduced length time series approxima-
tions are written in the VA-file in the following way:
the approximation for the entire reduced time series is
written followed by the ID, which is a 4 byte integer.

When scanning the VA-file, we use a small 2.25MB
buffer for all experiments. The buffer is used as fol-
lows: at startup, we load all the music object approx-
imations that fit, the rest being read from disk when
needed during the query processing. Computing the
reduced-length time series and generating the VA-file
are considered as startup costs. These costs are ex-
cluded from the query execution time measurements.
DTW distances are computed with a warping range of
r =2 r =3, and r = 4 that will generate a Sakoe-
Chiba band of width 5, 7, and 9, respectively, which
is moderately small relative to the length of the time
series, thus avoiding pathological warping paths.

For all experiments, we query with 100 randomly
selected objects from the database, and we report av-
erage measurements over these 100 queries. The code
is implemented in Java and all tests have been run on
a Pentium 4 PC with a 3.00GHz processor and 2GB
main memory, under Windows XP.

We first investigate the pruning power of the VA-file
filter and refinement steps as detailed in Algorithm 1
in Section 4.3, to determine whether using the VA-file
refinement is effective in reducing query performance.

Figure 4 shows the number of candidates selected
after VA-filtering and after the VA-refinement, for dif-
ferent values for € and time series length reductions.
Assuming that the distances in the reduced space de-
crease proportionally with the length reduction, € is
computed as € = %67 where n is the original time se-
ries length and N is the reduced length. We can see
that for all cases, the VA-filtering performs very well
relative to the VA-refinement. Only very few potential
candidates are discarded during VA-refinement.

Figures 5 and 6 further explore VA-refinement,
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Figure 4: Average Number of Retrieved Candidates
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Figure 5: Average Query Retrieval Time for Reduced
Length 5 and 6, Using VA-Filtering and Refinement
vs. Using Only VA-Filtering
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Figure 6: Average Query Retrieval Time for Reduced
Length 10, Using VA-Filtering and Refinement vs. Us-
ing Only VA-Filtering

which entails storing the reduced-length time series on
disk and performing random disk accesses to read all
time series selected during VA-filtering. As shown in
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Figure 7: Indexing Method Pruning Power for Time Series

the two figures, skipping the VA-file refinement yields
a small performance improvement. This improvement
is offset by only few extra random disk accesses to read
the original time series during the final refinement.

As omitting the VA-refinement saves disk because
the reduced time series do not need to be stored on
disk (it is only necessary to compute them when gen-
erating the VA-file), for the rest of the experiments,
each query is processed in two-steps: the VA-filtering
and the final refinement where the true DTW is com-
puted for original time series.

Our next experiments measure the impact of time
series length reduction on the number of retrieved can-
didates. We reduce the time series length from 30 to
5, 6, and 10. For different € values, we count the aver-
age number of candidates retrieved after VA-filtering
and in the final result. The value of € is computed as
before: ¢ = %e. The number of candidates returned
after VA-filtering is closely correlated with the number
of I/Os needed.

The results are reported in Figures 7(a), 7(b), and
7(c). To judge the recall of the query results, we com-
pute the numbers of objects in the query results when
the queries are computed in the original space. The
figures show that, as expected, the smaller the length
reduction is, the better the recall is (¢’ gets closer to €
and fewer false dismissals occur).

For the same € and € = %67 more candidates are
found when using a smaller length reduction. How-
ever, this requires much more candidates that need
to be refined by the computation of true DTW dis-
tances. We can observe that the number of candidates
returned from the VA-filtering grows much faster than
the number of finally retrieved candidates as the length
reduction becomes smaller.

Consequently, this results in worse performance. To
evaluate whether it is worth using a smaller length re-
duction to obtain higher recall, we measure the aver-
age query retrieval time. Figure 8 shows the estimated
average wall clock time for computing a query for dif-
ferent length reductions while varying € and ¢’ = %6.

As a sanity check, we also measure the performance
of two naive search strategies: (1) scan all original time
series and compute the true DTW distances for each;

—-s—naive approach, use only DTW

55 -#-naive approach, use DTW lower bound
—4—VA approach, reduced length=10
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Figure 8: Average Query Retrieval Time When Vary-
ing the Time Series Length

(2) scan all original time series, compute LBq_gim for
each and compute the true DTW distances only for
those that satisfy LBq_qim < €. When using smaller
length reductions, the query retrieval time exhibits a
tendency to increase quite quickly.

This leads to the following idea: to improve query
performance and improve query recall, we may apply
increased length reduction, but compensate by using
e > %[e in the reduced space—see Table 1.

For instance, with ¢ = 11.25 and using a length of
10 and ¢ = %e, we find on average 93.83% of the
candidates out of a total of 14.6 qualifying candidates
in 24.8 seconds. Using a length of 5 and ¢ > %e
we can find on average 94.52% of the candidates in
only 15.19 seconds. By lowering the query recall to
approximatively 83%, we can use a length of 5 and
obtain a query retrieval time of approximatively 12
seconds. We notice that increased length reduction
is advantageous, even when comparing the results for
reduced length 5 and reduced length 6. For instance,
when € = 11.4, retrieving on average 90.11% of the
total of 26.3 qualifying candidates requires on average
17.09 seconds for length 6, but only 15.22 seconds for
length 5.

Music similarity is highly subjective, and there is no
ground truth when querying a large music database.
In practice, it is therefore likely to be preferable to
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€ € N | retrieved | % from | time
(avg.) total (sec.)

11.25 3.75 10 13.7 93.83% 24.8
11.25 2.15 5 10.3 70.54% 11.05
11.25 2.40 6 10.2 69.86% 12.48
11.25 2.25 5 12.2 83.56% 11.89
11.25 2.49 6 11.8 80.82% 13.28
11.25 2.50 5 13.8 94.52% 15.19
11.25 2.76 6 13.7 93.83% 16.73
11.4 3.8 10 23.8 90.49% 25.17
11.4 2.225 5 18.7 71.1% 11.68
11.4 2.49 6 18.8 71.48% 13.3
11.4 2.325 5 21.5 81.74% 12.8
11.4 2.58 6 21.1 80.22% 14.41
11.4 2.5 5 23.7 90.11% 15.22
11.4 2.79 6 23.7 90.11% 17.09

Table 1: Trading Query Retrieval Recall for Query
Execution Time

compute an “approximate” query result very fast, over
computing the “exact” result slowly.

The next experiments measure the effects of varying
the warping range r, used when computing the DTW
distance. Figures 9 and 10 report the average number
of retrieved candidates and the average query retrieval
time, respectively, when using the VA approach for
time series of reduced length 5 and when increasing the
value of r from 2 to 3 and 4. As expected, enlarging
the warping range allows for a less strict similarity
matching. Thus, more candidates are found and more
time is needed for processing a query.
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Figure 9: Average Number of Retrieved Candidates
for Reduced Length 5, for Various Warping Ranges

In a last round of experiments, we evaluate the util-
ity of using the VA-file vs. using a linear scan in the
reduced length space. For different length reductions
and e values, we measure the estimated average clock
time for solving a query (see Figure 11). Using the VA-
file involves both filtering and refinement, while the
linear scan is performed by reading the reduced-length
time series from disk, once for every query. We see
that use of the VA-file yields on average 2 times bet-
ter performance than linear scan for reduced lengths
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Figure 10: Average Query Retrieval Time for Reduced
Length 5, for Various Warping Ranges

smaller than 10. However, above this value, the VA-file
becomes slower as it needs much more computations
to reconstruct the time series from the indexed multi-
dimensional points.

Finally, we have tested whether the VA-file retrieval
results are affected by the use of a non-L, distance
function. All experiments, run for different length re-
ductions and e values, have shown that the VA-file re-
finement step returns the same number of candidates
and the same candidates as a linear scan in the reduced
space.
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Figure 11: Average Query Retrieval Time for the VA-
File vs. Linear Scan

6 Conclusion and Research Directions

We have proposed techniques for efficient similarity
range query processing in music databases where each
music object is represented as a high-dimensional time
series and where dynamic time warping distance is use
as the notion of similarity between music objects.

The proposal extends known techniques for defining
a lower bounding function for dynamic time warping
distance and for time series length reduction to the
multi-dimensional case.

It applies the VA-file to the reduced-length time
series for performing approximate similarity range



queries. This entails adaption of the VA-file to index
time series as well as a new algorithm that takes into
account that time series of multi-dimensional points,
not simply multi-dimensional points, are being in-
dexed. The proposal also involves the use of a non-L,,
metric as a distance function, without this affecting
the query retrieval precision.

Finally, the paper reports on empirical performance
studies that demonstrate that it is possible to trade
query recall for improved performance, by using time
series length reduction and appropriate query expan-
sion. The studies also suggest that the refinement step
in the VA-file is ineffective and thus should be omitted.

An interesting aspect left for future work is to pro-
vide means of estimating an appropriate ¢ value for
a given music database, e-range query, and time se-
ries length reduction. Moreover, performance studies
with larger music collections and full-length songs are
warranted.

Next, while quite different from the research re-
ported on here, it is relevant to study the meaning-
fulness of using the DTW distance and the AR coef-
ficients for comparing similar songs. While it seems
this combination yields good comparison results, sys-
tematical studies are needed. Finally, it is relevant to
attempt to identify better notions of music similarity.

While we apply the proposed techniques in the
framework of music databases, the techniques are more
general, and it is of interest to apply the techniques to
different multi-dimensional time series databases.
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Appendix

Lemma 2 - Proof: We have to prove that

K
Z d(Env(Q);, C;) < Z Wi
k=1

The proof is similar to that of Lemma 1 [14]. We
assume the opposite and show that this leads to a con-
tradiction:

n K
Zd(Env(Q)i,C’i) > Zwk
i=1 k=1

The terms under the radicals are positive, so we can
square both sides:

n K
Z d(Env(Q);, C;) > Z W
i=1 k=1

We know that n < K, so we can match every term on
the left with a unique term on the right, which leaves
K — n terms unmatched.

n

Zd(EnU(Q)i,Ci) > Z

i=1 ke€matched

wg + Z Wk

k€unmatched

We map the i*" term on the left side with one of the
i"*" terms on the right side. Having several values of
7/ for a single 7, we can choose for the mapping the 7’
with the smallest value. All the other w; are placed
in the unmatched summation.

In the following, we try to determine what relational
operator is to be applied between one term on the left
side and its matched term on the right side.

d (Cij — ’U,ij)z if Cij > Ui d )
Z (Cij — lij)2 if Cij < lij <?7> Z (Cij — qi/j)
j=1| O otherwise =1

Next, we consider the relation between each j terms
in the summations and analyze the three cases that
are possible. We are in the 1-dimensional case, so we
can apply the same logics as in the proof of Lemma 1.
First, we consider the case when c;; > u;;.

(cij —uig)? <7 > (cij — qirj)?
(cij — uig) <? > (cij — qirj)
—ui; <> —qy;
qirj <7 > uyj
Girj <7 >max(qei—r); t d(i+r);)

Because time series Q and C have the same length n,
i —r<i<i +rimpliesi—r<i <i+r. So,

qiry < max(qii—ryj : Q(itr)s)

The case where c;; < l;; is handled similarly. The
third case is trivial (0 < (cij — qirj)?).

We can conclude that d(Env(Q);,C;) < w.
But if all matched terms in >, . . .cneqWk are
larger than their counterparts on the left side then

keunmatehed Wk has to be negative, which is wrong
as the square root of a sum of squared terms cannot
be negative. Thus, we have reached a contradiction.



