
The COST Benchmark—Comparison and Evaluation of
Spatio-temporal Indexes

Christian S. Jensen, Dalia Tiešytė, and Nerius Tradišauskas

Department of Computer Science, Aalborg University, Denmark
{csj, dalia, nerius}@cs.aau.dk

Abstract. An infrastructure is emerging that enables the positioning of popula-
tions of on-line, mobile service users. In step with this, research in the manage-
ment of moving objects has attracted substantial attention. In particular, quite a
few proposals now exist for the indexing of moving objects, and more are under-
way. As a result, there is an increasing need for an independent benchmark for
spatio-temporal indexes.

This paper characterizes the spatio-temporal indexing problem and proposes
a benchmark for the performance evaluation and comparison of spatio-temporal
indexes. Notably, the benchmark takes into account that the available positions of
the moving objects are inaccurate, an aspect largely ignored in previous indexing
research. The concepts of data and query enlargement are introduced for address-
ing inaccuracy. As proof of concepts of the benchmark, the paper covers the appli-
cation of the benchmark to three spatio-temporal indexes—the TPR-, TPR*-, and
Bx-trees. Representative experimental results and consequent guidelines for the
usage of these indexes are reported.

1 Introduction

With the availability of mobile computing technologies, geo-positioning, and wire-
less communication capabilities, it has become possible to accumulate the changing
locations of populations of moving objects in real time. Consumer electronics are af-
fordable, current Global Positioning System (GPS) [1] receivers are capable of geo-
positioning with an accuracy of up to a few meters, the General Packet Radio Service
(GPRS) [2] and similar technologies have become common and relatively cheap means
of wireless data transfer. It is thus possible for an object to continually obtain and trans-
mit its current position to a central server.

Applications are emerging that require or may benefit from the tracking of the lo-
cations of moving objects. These occur in areas such as logistics, traffic management,
public transportation, and location-based services. Current applications usually track
only relatively small numbers of objects, but as the underlying technologies continue to
improve, applications that concern large numbers of objects are on the horizon.

The increasing interest in mobile location data has served as motivation for the devel-
opment of spatio-temporal indexes for the current and near-future positions of moving
objects. A number of spatio-temporal indexes have been proposed, such as R-tree-based
indexes, e.g., the TPR-tree [3], the TPR*-tree [4], the STAR-tree [5], and the REXP-
tree [6]; the quadtree-based index STRIPES [7], and the B+-tree-based Bx-tree [8], to
name but a few.

M.L. Lee, K.L. Tan, and V. Wuwongse (Eds.): DASFAA 2006, LNCS 3882, pp. 125–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

pikde
Text Box
LNCS 3882, pp 125-140, 2006.(URL: http://www.springerlink.com/link.asp?id=52j5u51548852766)Copyright © Springer-Verlag

126 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

This continuing proliferation of indexing techniques creates a need for a standard
procedure for performance evaluation and comparison. Although mathematical com-
plexity analysis is valuable, empirical evaluation [9] is indispensable for evaluation
and comparison of spatio-temporal indexing techniques. The current state of affairs is
that indexes being proposed are being evaluated empirically and are being compared
to, typically, one other indexing technique. The empirical studies reported are rarely
exhaustive and, not surprisingly, tend to focus on the favorable qualities of the index
being proposed. The availability of an independent benchmark specification establishes
an equal footing for obtaining experimental results and enables broader comparison.

This paper proposes a benchmark specification, termed COST, for the evaluation and
comparison of spatio-temporal indexes. The benchmark is independent in the sense that
it is proposed independently of a specific indexing technique. The benchmark aims to
provide a unified procedure that covers an extensive variety of possible and realistic
settings. In particular, the benchmark evaluates the index ability to accommodate un-
certain object positions. Queries and updates are considered, as are both I/O and CPU
performance.

The remainder of this paper is outlined as follows. Related work is covered in Sect. 2.
The addressed indexing problem is detailed in Sect. 3. Sections 4 and 5 contain the
benchmark specification. As proof of concepts, Sect. 6 reports on experimental results
that were obtained using the benchmark. Section 7 concludes and offers directions of
future work.

2 Related Work

We cover in turn existing benchmarks for spatio-temporal data, previous work on the
indexing of uncertain data, and past empirical evaluations of spatio-temporal indexes.

A number of benchmarks exist that measure transaction performance in traditional
database systems. For example, a set of benchmarks that evaluate system performance
and price is provided by Gray [10]. However, these benchmarks are not applicable to
spatio-temporal data.

Of relevance to moving objects, Theodoridis [11] provides a benchmark that includes
a database description and 10 non-predictive queries for the static and moving spatial
data. Myllymaki and Kaufman [12] also propose a benchmark, DynaMark, for moving
objects. The query and update performance measure is CPU time, as a main-memory
resident index is assumed. Future queries on anticipated future locations are not con-
sidered. Werstein [13] proposes a benchmark for 3-dimensional spatio-temporal data.
The benchmark is oriented towards general operating system and database system per-
formance comparison, including evaluation of the spatio-temporal and 3-dimensional
capabilities. Tzouramanis et al. [14] perform an extensive, rigorous experimental com-
parison of four types of quadtree-based spatio-temporal indexes, using a benchmark
specification when performing experiments with the four indexes. However, their pro-
posal concerns raster data, generated with the G-TERD benchmark tool.

The concept of data uncertainty for moving object positions has previously been
studied quite extensively (see, e.g., [15, 17, 18, 19]). While the bulk of this work has

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 127

been conducted independently of indexing, some works (see, e.g., [16, 19]) offer in-
sights into the indexing of uncertain positions. The present paper goes further by
proposing a simple and yet effective method for storing and retrieving position data
with accuracy guarantees. Existing indexes can straightforwardly be extended to ac-
commodate such data.

Many authors of spatio-temporal indexes have compared their indexes to usually one
other competitive index (e.g., [3, 4, 7, 8]). However, these comparisons tend to focus
on exploring the properties of the new index being proposed; and with the new index
being the main topic, the experimental specifications are relatively limited and lack
independence.

The benchmarks covered above consider neither uncertain data nor accuracy guaran-
tees. DynaMark shares similarities with COST benchmark with respect to the generated
traffic data, but it lacks aspects to do with future positions. To the best of our knowledge,
no independent benchmark exists that has been designed specifically for the evaluation
of disk-based indexes for the current and near-future uncertain positions of moving
objects.

3 Spatio-temporal Indexing

This paper is concerned with the indexing of large amounts of current and near-future,
2-dimensional moving object positions, and predictive queries are of interest. In this
setting, position data are received from continuously moving objects capable of report-
ing their position and velocity. Mobile applications—e.g., those that provide location-
enabled services to mobile users—issue queries on this data.

3.1 Spatio-temporal Data and Queries

The objects, represented as 2-dimensional points, update their positions periodically. As
the server is recording the positions of a large amount of objects, updates should occur
as rarely as possible. The current and anticipated future positions of the objects can be
queried at any time. Therefore, continuous function that approximates the actual object
movements and enables predictive queries is derived from the position data received.

An appropriate approximation function should satisfy the following requirements:
(1) the parameters of the function can be obtained from the moving object; (2) the
function reduces the amount of updates; (3) predicted positions are helpful in answering
predictive queries; and (4) the function is easy to compute and its representation is
compact.

It is common to predict an object’s near-future position using a linear function of
time [3, 4, 7, 8]. An object’s position at time t is denoted by a 2-dimensional vector

−→
P ,

and its velocity is given by a 2-dimensional vector
−→
V . The function takes time as an

argument, and returns the object’s position:

−→
P (t) = −→

P (tup) + −→
V (tup)(t − tup) (1)

Here tup is the time of the last update, at which the object’s position was
−→
P (tup);−→

V (tup) is the velocity at time tup, and
−→
P (t) is the predicted position at time t.

128 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

This function may be represented as a tuple (−→P (tref),
−→
V (tup)), where time tref is

an agreed upon, global reference time at which the object’s position is stored. When
an update of an object arrives at time tup, its position P (tref) at time tref is calculated
using (1).

The linear function satisfies the four requirements for the approximation function.
Velocity and position values are easy to obtain—they are output by GPS receivers [1],
and the velocity can also be estimated based on previous positions (first requirement).
The function’s value is calculated in a constant time, and the representation is com-
pact (fourth requirement). Studies show that using this function for vehicle positions,
the average number of updates is reduced by more than a factor of two for accuracy
thresholds below 200 meters, in comparison to the standard approach where the current
position is assumed to be given by the most recently reported position [17] (second
requirement). Finally, linear prediction offers better approximations of near-future po-
sitions than does constant prediction, yielding more reasonable answers to predictive
queries (third requirement).

Three types of queries that a spatio-temporal index should support can be distin-
guished [3]. Let t, t1, and t2 be time points and let qr, qr1 , and qr2 be 2-dimensional
rectangles.

Q1. Timeslice query Q1 = (qr, t) returns the objects that intersect with qr at time t.
Q2. Window query Q2 = (qr, t1, t2) returns objects that intersect with qr at some time

during time interval [t1, t2]. This query generalizes the timeslice query.
Q3. Moving window query Q3 = (qr1 , qr2 , t1, t2) returns the objects that intersect,

at some time during [t1, t2], with the trapezoid obtained by connecting rectangles
qr1 and qr2 at times t1 and t2, respectively. This query generalizes the window
query.

Figure 1 offers an example encompassing four objects and three queries in 1-dimen-
sional space. The arrows in the figure represent object movement.

The queries q1, q2, and q3 are timeslice,

-20

x

t

-10

0

10

2 4 6

20

o2

o1
o3

o1

o4

q1
q2

q3

Fig. 1. Example of objects and queries in a
1-dimensional space

window, and moving window queries, respec-
tively. Query q3 has spatial ranges q3r1 =
[−20, −10], q3r2 = [−25, −10], and time
range [5, 6]. The result of the query depends
on when the query is issued. If issued before
time t = 3, the result is {o1, o4}. Otherwise,
the result is {o4}. Object o1 is updated at
time 3 and its predicted trajectory changes.
Its new trajectory does not intersect with the
query.

3.2 Update Policies

The inaccuracy of the moving object positions available at the server side stems from
two sources. The positions measured by the moving objects (e.g., using GPS) are in-
accurate, and the use of sampling introduces inaccuracy. Because the measurement

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 129

inaccuracy is much smaller than the sampling inaccuracy in a typical setting, we as-
sume that the measurements are accurate and focus on the inaccuracy due to
sampling.

In particular, we assume an approach where, at any point in time, the actual position
of an object deviates from the position assumed on the sever side, the predicted position,
by no more than a chosen distance threshold thr . An update policy should be adopted
that satisfies the accuracy guarantee with as few updates as possible.

The so-called point-based update policy requires an object to issue an update when
the distance between the object’s current and its most recently reported positions
reaches the threshold value. With this policy, the server assumes that an object remains
where it was when it most recently reported its position. Frequent updates result.

To reduce the cost of updates a vector-based policy may be adopted [17], where
each moving object shares a linear prediction, as given by (1), of its position with the
server. When the distance between an object’s actual and predicted positions exceeds
the distance threshold thr , the object issues an update to the server. The point-based
policy is the special case of the vector-based policy, where the linear prediction function
is constant (

−→
V = −→0 , where −→0 is the zero vector).

P(ti)
thr P(ti+1)

thr

V(ti)P(ti)

P(ti+1)

(a) (b)
Ppr(ti+1)

Fig. 2. Point-based (a) and vector-based (b) update policies
with accuracy threshold thr

The point-based update pol-
icy is shown in Fig. 2 (a). Here,
the position

−→
P (ti) is updated

at time ti, and the actual posi-
tion remains in the circle with
center

−→
P (ti) and radius thr

for some time, yielding a pre-
dicted position of

−→
P (ti). At

time ti+1, the difference be-
tween the actual and predicted
positions reaches thr, and an update is issued.

Next, the vector-based policy is illustrated in Fig. 2 (b). First, at time ti, the object
reports its actual position

−→
P (ti) and velocity

−→
V (ti) to the server. The server’s predic-

tion is illustrated by the solid horizontal vector. The object shares this prediction with
the server. In addition, it repeatedly compares its actual position with the predicted po-
sition

−→
P pr. When at time ti+1, the object’s position is

−→
P (ti+1), the distance between

the two positions is thr , and an update is generated. Updates are sent only when needed
in order to maintain the accuracy guarantees.

As discussed in Sect. 3.1, the vector-based policy yields fewer updates than the point-
based policy for the same accuracy guarantees and therefore is preferable.

3.3 Query and Data Enlargement

The notions of precision (p) and recall (r) [20] are commonly used for measuring the
accuracy of a query result. The precision is the fraction of the objects in the result that
actually satisfy the query predicate, and the recall is the fraction of the objects that
satisfy the query predicate that are in the query result. Ideally, p = r = 1, meaning that
the query result contains exactly the objects that satisfy the query.

130 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

However, the data are inaccurate—the positions of the objects are only known with
accuracy thr . It is thus not possible to achieve p = r = 1; however, perfect recall
can be achieved1 and is a desirable requirement for an index. Thus, the query result is
guaranteed to contain all objects that may satisfy the query predicate.

To achieve prefect recall, it is necessary to take the inaccuracy of the predicted posi-
tions into account. This may be done by means of either data or query enlargement.

Query enlargement addresses position inaccuracy by expanding the query area by
thr in all directions. If different objects have different thresholds, the maximum thresh-
old must be used. Perfect recall is achieved as all the objects that are actually in the
query area have predicted positions that are no further than thr away from their actual
positions.

The “fattened” query rectangle may be obtained as the Minkowski sum [21] of the
two sets. Each point pq that belongs to the query rectangle qr is added to each point ps
that belongs to the segment s of length thr :

qr ⊕ s = {pq + ps|pq ∈ qr ∧ ps ∈ s}

Figure 3 (a) shows query enlargement in a 2-dimensional space.

thr

y

x

V

thr

(a) (b)

Fig. 3. Example of query (a) and data (b) enlargement

Next, with data enlarge-
ment object positions are ex-
panded into spatial regions
with extent. In particular, an
object’s position becomes a
circle with radius thr , instead
of being a point. The center
of the circle is the predicted
position. The object’s actual
position is always inside the
circle. If the circle intersects
with the query area, the object must be included in the query result. Figure 3 (b) il-
lustrates data enlargement. The shaded area denotes the movement of the object.

A spatio-temporal index should support either query or data enlargement. However,
existing indexes tend to ignore position inaccuracy and simply assume that they know
the exact position of each object, meaning that thr = 0. Such indexes must be adjusted
to index positions with non-zero threshold values.

4 Benchmark Data and Settings

The workload for an index consists of a sequence of the updates and queries. The bench-
mark specification contains definitions of workloads and procedures of using them. The
desired properties of the workloads and workload generation are discussed first. Defi-
nitions of benchmark procedures, termed experiments, then follow.

1 We note that perfect recall for queries that concern future times is only possible when updates
that occur between the time a query is issued and the future times specified in the query cannot
affect the query result.

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 131

4.1 Workload Parameters

A set of update and query parameters defines the benchmark workloads. The workloads
aim to simulate a wide range of situations in which an index may be used. The following
parameters are of interest:

Number of Objects. The number of objects largely determines the size of the index and
may be used to examine the scalability of the index.

Position and Velocity Skew. These parameters determine the distribution in space of
the object positions and velocities. They are highly related, as velocity skew leads to
position skew. An example of skew is the concentration of stationary vehicles in the
suburbs at night and in business districts during working hours, and many moving ve-
hicles during the morning and afternoon rush hours.

Update Arrival Pattern. The rate of updates depends on the chosen update policy as de-
scribed in Sect. 3.2. With the vector-based policy, the durations in-between updates vary
greatly. The update frequency depends on the movement trajectories and speeds of the
objects. This parameter allows examination of how an index accommodates different
frequencies of updates.

Position Accuracy Threshold. The distance threshold thr (defined in Sect. 3.2) affects
the update arrival rate and the query or data extents. By varying this parameter, the
index ability to support various update frequencies as well as data and query sizes can
be studied.

Query Parameters. The required query types, their spatial and temporal extents and
their time intervals are the query parameters of interest. The types of queries considered
are described in Sect. 3.1.

Workload Duration. The workload duration is measured as a number of updates exe-
cuted by the index. This parameter allows examination of how an amount of updates
affects the performance of an index.

4.2 Workload Generator

The workloads in the COST benchmark are generated using a workload generator that
extends the generator by Šaltenis et al. [22]. That generator was chosen as the starting
point because it is capable of easily creating workloads according to many of the pa-
rameters discussed in Sect. 4.1 and because it is fast in comparison to such generators
as CitySimulator [23, 24] and GSTD [25, 26], which use complex functions, e.g., func-
tions that control the interactions among the objects. We proceed to explain the original
generator, then describe the extensions implemented.

A workload intermixes queries and updates with a chosen proportion. An index is
then subjected to these operations. In the generator, object movement is either ran-
dom or network-based. To accommodate the latter, a number of “hubs” with random
positions and links between these form a complete, bi-directional, spatial graph. Ob-
jects move between hubs until the end of a simulation. The maximum speed of an

132 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

object is chosen randomly from a set of maximum speeds. An object accelerates and
decelerates when moving from one hub to another. Updates are generated in average
intervals of UpdateInterval time durations. For any kind of data, these parameters can
be set:

Objects . Total number of moving objects.
Space. The extent of the space where the objects are moving.
Speed i, i = 1, ..., 50. Possible maximum speeds of the objects. For each object, its

maximum speed is chosen at random.
TotalUpdates . The number of update operations performed in the simulation.
UpdateInterval . The average duration between two successive updates of an object.
Hubs . The number of destinations between which the objects are moving. Value 0

implies uniform (random) distribution.
QuerySize. The maximum spatial extent of a query in percentages of the indexed

space.
QueryTypes . The fractions of timeslice, window, and moving window queries (see

Sect. 3.1). The sum of the three fractions must add up to 1.
QueryTime. The maximum temporal extents of window and moving window queries.
QueryWindow . The maximum duration of time that queries may reach into the future.
QueryingInterval . Querying frequency relative to update operations.
QueryQuantity. The number of queries generated at each query generation event.

The generator was extended, enabling it to choose between its original update policy
and the vector-based policy (as described in Sect. 3.2). The original policy was ex-
tended so that it is able to randomly select a different update interval for each object.
Specifically, the generator was extended to accommodate three parameters:

UpdatePolicy . Either the shared prediction based vector policy (0) or the original
time-based (1) policy is used.

Threshold i, i = 1, ..., 50. The threshold distance between the predicted and the actual
positions, used in the vector policy (UpdatePolicy = 0). Up to 50 thresholds may
coexist. For each object, its threshold is chosen at random.

UpdateInterval i, i = 1, ..., 50. The average duration between two successive updates
of an object (as in the original generator). Up to 50 update intervals are possible.
For each object, its average update interval is chosen at random. This parameter is
used only when UpdatePolicy = 1.

With the vector-based update policy, updates are generated when the distance be-
tween the actual position of an object and the predicted position reaches Threshold i.
An additional update is generated when an object reaches a hub.

4.3 Evaluation Metrics

The COST benchmark uses two types of performance metrics: the average number
of I/O operations per index operation, and the average CPU time per index operation
(update, query). One I/O operation is one read of a page from disk to main memory or
one write of a page to disk. Reads and writes from and to the available main memory
buffer are not counted. The CPU time for one operation is the time of CPU usage from

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 133

the moment when the operation is issued to the moment when the result of the operation
is computed. I/O is typically considered to be the main cost factor in determining an
index’s performance, while the CPU time is a minor factor.

5 Definitions of Experiments

A benchmark experiment is defined by a set of workload parameters and disk page and
main memory buffer size settings. In each experiment, one parameter, or a set of related
parameters, as defined in Sect. 4.1, is varied. The set of experiments was chosen with
the objective of varying the important workload parameters from Sect. 4.1. Parameter
values are chosen so that the workloads cover a wide variety of situations. To ensure
that the benchmark stress-tests the indexes under study, some experiments use extreme
parameter values. The page and buffer size settings are kept constant for all experiments.

The default values for all workload parameters and settings are listed in Table 1. The
chosen values are commonly used in existing evaluations of spatio-temporal indexes
(e.g., [4, 8]). The default speeds are typical speeds of vehicles, and the number of hubs
simulates a real-world road network with a substantial number of destinations. The
page and buffer sizes are relatively small, the objective being to obtain the effects of
large indexes with relatively small volumes of data. For each experiment, described
shortly, only parameters with values that differ from the defaults are listed. Note that it is
possible to use only a subset of parameters Speed i, Threshold i, and UpdateInterval i,
i = 1, ..., 50, e.g., it is possible to assign the same speed to all objects by setting Speed1
and omitting parameters Speed i, i = 2, ..., 50.

All experiments measure the average CPU time and number of I/O’s per operation.

Table 1. Default workload parameters and settings used in experiments

Parameter Value Parameter Value
Page,Buffer 1 KB, 50 KB (50 pages) QueryInterval 400 updates
Objects 100 K QueryQuantity 2 (in total 1000)
Space 100, 000 × 100, 000 m2 QueryTime 10 s
Speed i, i = 1, ..., 4 12.5, 25, 37.5, 50 m/s QuerySize 0.25% of Space
TotalUpdates 200 K QueryWindow 50 s
Hubs 500 QueryTypes 0.6:0.2:0.2
UpdatePolicy 0 Threshold1 100 m

Experiment 1. Number of Objects Objective: Examine index scalability.
Parameter values: Points = 100, 200, ..., 1000K.
Number of workloads: 10.

Experiment 2. Position and Velocity Skew Objective: Examine the effects of position
and velocity skew.
Parameter values: Part 1 (very high skew): Hubs = 2, 4, ..., 20. Part 2 (average skew):
Hubs = 20, 40, ..., 200. Part 3 (low skew): Hubs = 500, 1000, ..., 5000, and 0 hubs
(uniform distribution).
Number of workloads: 10 for parts 1 and 2, 11 for part 3.

134 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

Experiment 3. Maximum Speeds of Objects Objective: Examine the effects of vary-
ing maximum speeds as well as varying distributions of speeds among the objects. As
fast objects are more likely to be updated than slow ones, the update frequency increases
with increasing speeds.
Parameter values: Part 1 (distribution of speeds): All objects are assigned either speed
25 m/s or 200 m/s, and workloads are generated so that the fractions of objects with
speed 200 m/s are: 0.02; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus, all Speed i

are assigned either 25 m/s or 200 m/s, and for each workload, the smallest i is cho-
sen that allows us to obtain the needed fraction of fast objects. Part 2 (low maximum
speeds): Speed1 = 0.05; 2; 4; 6; 8; 10; 12; 14; 16; 18. Part 3 (high maximum speeds):
Speed1 = 30, 60, ..., 300m/s.
Number of workloads: 11 for part 1, 10 for the parts 2 and 3.

Experiment 4. Position Accuracy Threshold Objective: Examine the influence of
varying thresholds as well as the distribution of varying thresholds among the objects.
Note that the update rate depends on the threshold and that the simulation time increases
as updates become infrequent.
Parameter values: Part 1 (distribution of thresholds): All objects are assigned either a
threshold of 100 m or a 1000 m, and workloads are generated so that the fractions of ob-
jects with speed 1000m are : 0.02; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Thus all
Threshold i are assigned either 100 m or 1000 m, and for each workload the minimum
i is chosen that allows us to obtain the needed fraction of objects with large (and small)
threshold. Part 2 (equal thresholds for all objects): Threshold 1 = 100, 200, ..., 1000m.
Number of workloads: 11 for part 1, 10 for part 2.

Experiment 5. Update Arrival Interval Objective: Examine the influence of varying
update intervals as well as distribution of update intervals. The update frequency affects
the time duration of a workload.
Parameter values: UpdatePolicy = 1. Part 1 (distribution of update intervals): Simi-
larly to the two previous experiments, two values of a parameter, here UpdateInterval i,
are used—60 s (frequent) and 600 s (rare). The value of i is chosen so that workloads
are obtained where the fractions of objects with an interval of 600 s are: 0.02; 0.1; 0.2;
0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 0.98. Part 2 (frequent updates): UpdateInterval1 =
20, 40, ..., 200 s. Part 3 (rare updates): UpdateInterval1 = 120, 240, ..., 1200s.
Number of workloads: 11 for part 1, 10 for parts 2 and 3.

Experiment 6. Index Lifetime Objective: Examine the effect of varying index lifetime
(in numbers of updates).
Parameter values: TotalUpdates = 100, 200, ..., 1000K.
Number of workloads: 10.

Experiment 7. Query Types Objective: Examine the differences in performance for
different types of queries: timeslice, window, and moving window queries.
Parameter values: QueryTypes = 1 : 0 : 0, 0 : 1 : 0, 0 : 0 : 1.
Number of workloads: 3.

Experiment 8. Query Parameters Objective: Examine the effects of varying spatial
extents, temporal extents, and time windows of queries.

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 135

Parameter values: Part 1 (spatial extents): QueryTypes = 0 : 1 : 0, QuerySize =
0.05, 0.15, ..., 0.95%. Part 2 (temporal extents): QueryTypes = 0 : 1 : 0, QueryTime
= 0, 20, ..., 120 s. Part 3 (time windows): QueryTypes = 1 : 0 : 0, QueryWindow =
0, 20, ..., 120 s.
Number of workloads: 10 for part 1 and 7 for parts 2 and 3.

6 Application of the COST Benchmark

In order to ensure that the benchmark was well specified and yields useful results, it was
applied for evaluating and comparing three existing indexes, namely the TPR-, TPR*-,
and Bx-trees [3, 4, 8]. The TPR*- and Bx-trees were chosen because they are recent and
represent the state of the art, and the TPR-tree is the predecessor of a dozen proposals
for spatio-temporal indexes.

6.1 Introduction to the TPR-, TPR*-, and Bx-Trees

The TPR-tree (Time Parametrized R-tree) [3] and its descendant, the TPR*-tree [4], are
based on the R*-tree [27]. These indexes are adapted for time-parametrized data and
queries. Data objects are assigned to minimum bounding rectangles (MBRs) as in the
R*-tree. Additionally, the TPR- and TPR*-trees use linear functions of time to represent
the movements of the objects and MBRs.

Operations in the TPR-tree are handled similarly to the operations in the R*-tree,
except that the penalty metrics of the R*-tree (e.g., MBR enlargement) are generalized
to being integrals over a time period ranging from the current time and H time units
into the future (calculated based on the update rate).

The authors of the TPR*-tree have modified the TPR-tree by introducing new inser-
tion and deletion algorithms. An additional heap structure is used during insertions with
the objective of achieving better insertions. Instead of the integral used in the TPR-tree,
the TPR*-tree calculates penalty metrics based on sweeping regions (the area covered
by a moving MBR from the current time and H time units into the future).

The Bx-tree uses the B+-tree structure and algorithms to store and retrieve data.
Spatial data are transformed into 1-dimensional data using space-filling curves.

The Bx-tree partitions the time axis into intervals with a duration equal to the maxi-
mum duration in-between two updates of any object. Each such interval is further par-
titioned into n phases. For each phase, an index partition is created, at most n + 1
partitions existing at a time. The partition in which to insert an object is chosen accord-
ing to the object’s insertion time. As time passes, partitions expire, and new partitions
are created. Objects in an expiring partition are reinserted into the newest partition.

The index key of an object is calculated using the update time and position of the
object that is stored at the reference time of object’s partition. To achieve perfect recall
(with the assumption that the accuracy threshold is 0), queries are expanded according
to the maximum velocity of all objects and the query time. The objects that qualify for
the query according to their velocities are selected; all other objects are filtered out.

For the experimental evaluation, the TPR- and TPR*-trees were extended to support
data enlargement, and the Bx-tree was extended to support query enlargement. Enlarged
data and query objects are approximated to squares and rectangles, respectively.

136 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

6.2 Experimental Evaluation Using the COST Benchmark

Implementations of the three indexes were obtained from their authors and modified
where needed in order to perform the benchmark experiments. The indexes require
a number of parameters to be set. For the Bx-tree, the maximum update interval is

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10

Amount of objects, 100K

Exp. 1. Avg I/O per update

0

4

8

12

16

30024018012060

Speed, m/s

Exp. 3.3. Avg I/O per update

0
2
4
6
8

10
12
14
16

10.80.60.40.2

Threshold, km

Exp. 4.1. Avg I/O per update

0
2
4
6
8

10
12
14
16

10080604020

High thresholds, %

Exp. 4.2. Avg I/O per update

0
5

10
15
20
25

98806040202

Long update intervals, %

Exp. 5.1. Avg I/O per update

0
2
4
6
8

10
12
14

2001601208040

Update interval, s

Exp. 5.2. Average I/O per update

0
40
80

120
160
200

1 2 3 4 5 6 7 8 9 10

Amount of objects, 100K

Exp. 1. Avg I/O per query

0
100
200
300
400
500

30024018012060

Speed, m/s

Exp. 3.3. Avg I/O per query

0
50

100
150
200
250

10.80.60.40.2

Threshold, km

Exp. 4.1. Avg I/O per query

0
40
80

120
160
200

10080604020

High thresholds, %

Exp. 4.2. Avg I/O per query

0
100
200
300
400

98806040202

Long update intervals, %

Exp. 5.1. Avg I/O per query

0
20
40
60
80

100
120
140

2001601208040

Update interval, s

Exp. 5.2 Avg I/O per query

Fig. 4. Example experimental results obtained using the COST benchmark

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 137

0
10
20
30
40
50
60
70

Q3Q2Q1

Query types

Exp. 7. Avg I/O per query

0
20
40
60
80

0.950.60.40.05

Query spatial extent, %

Exp. 8.1. Avg I/O per query

0
10
20
30
40
50
60
70

0 20 40 60 80 100120

Query temporal extent, s

Exp. 8.2. Avg I/O per query

Bx TPR TPR*

Fig. 5. An example of experimental results using the COST benchmark

120 s, there are 2 phases, the cell size is 100 × 100 m2. For the TPR and TPR*-trees,
H = 120 s.

Representative experimental results are provided in Fig. 4 and Fig. 5. The remaining
results are omitted due to space limitations. The experimental results in Fig. 4 show that
the indexes are sensitive to changing workloads. For example, high object speeds (more
than 75 m/s, Exp. 3.3) or rare updates (less than once in 160 s on average, Exp. 5.1
and 5.2) significantly degrade the query I/O performance of the Bx-tree. However, the
update performance of the Bx-tree tends to be more stable than for the TPR- and TPR*-
trees (Exp. 3.3, 5.1, and 5.2). When the threshold increases, the query and update per-
formances of the indexes degrade gradually (Exp. 4.1). However, when there is a high
percentage of objects with large thresholds, the query performance of Bx-tree degrades
significantly (Exp. 4.2). This is due to the resulting long update intervals and large query
expansions (Exp. 5.1 and 5.2).

The TPR- and TPR*-trees exhibit inadequate query performance when the index
size is large (in the benchmark experiments, above 600 K objects, Exp. 1). The Bx-tree
scales well for both query and update performance (Exp. 1).

Experiments that concern query types are shown in Fig. 5. The indexes are largely
insensitive to changing query types (Exp. 7). The Bx-tree has a higher overhead com-
pared to the other indexes when query spatial extent is small, but query performance
becomes similar for all indexes with larger queries (Exp. 8.1). Varying the temporal
extent from 0 to 120 s has only a small effect on query performance (Exp. 8.2).

The experiments demonstrate that the benchmark fulfills its purpose: it has uncov-
ered strengths and weaknesses of the indexes (only some of which were covered by
the papers that introduced the indexes). For example, the experimental results identify
situations in which the Bx-tree has lower query performance than the TPR-tree and
that were not covered by the paper presenting the Bx-tree [8]. As another example,
the benchmark shows that situations (not covered by the paper presenting the TPR*-
tree [3]) exist where the TPR-tree outperforms the TPR*-tree for updates.

Summarizing the experimental results, the TPR-, TPR*-, and Bx-trees appear each
to be the best choice in different situations, characterized by different workloads. The
Bx-tree seems to be a good choice in situations with large numbers of objects, which
degrade the performance of the TPR- and TPR*-trees. The Bx-tree also performs well
when the maximum interval in-between the updates is known; the maximum position

138 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

accuracy threshold is low; and the speeds of objects do not exceed the usual speeds of
vehicles. In other cases, the TPR- or TPR*-trees, which most often exhibit very similar
query performance, should be chosen. With extremely long update intervals, the TPR*-
tree might be preferable over the TPR-tree.

The TPR- and TPR*-trees appear to be the most versatile indexes; however, the Bx-
tree is based on the B+-tree; which is already available in many DBMSs. Therefore, a
creation of a more robust version of the Bx-tree may be promising direction for research.

7 Conclusions and Future Work

A number of indexes for the current and near-future positions of moving objects exist,
and more are underway. This state of affairs creates an increasing need for a neutral and
well-articulated experimental setting for evaluating and comparing these indexes.

This paper proposes a benchmark, termed COST, that is targeted specifically to-
ward the evaluation of such indexes. The benchmark aims to make realistic assump-
tions about the experimental settings—data is inherently inaccurate, predictive queries
that reach into the future are covered, the indexes are assumed to be stored persistently
on disk. More specifically, an update technique is assumed where positions are guaran-
teed to be accurate within agreed-upon thresholds and where updates occur only when
necessary in order to satisfy the guarantees. The indexes may use either query or data
enlargement to account for the inaccurate data. The benchmark includes a workload
generator, definitions of experiments, and evaluation metrics. It considers a wide range
of workload parameters that cover many real-world situations.

As proof of concept and to evaluate the benchmark, it was applied to the TPR-,
TPR*-, and Bx-trees. The experiment demonstrates that the benchmark is well-specified
and is capable of covering a wide range of situations. Weaknesses and strengths of the
indexes were detected by examining the sensitivity of the indexes to workloads with
varying parameter values, including workloads with extreme settings. The experimental
results cover situations that were not covered in the papers that introduced the indexes,
due to more extensive experiments. The obtained results provide guidance as to when
each of the indexes should and should not be used.

The benchmark may be extended by inclusion of such aspects as index size in disk
pages, CPU time and numbers of I/O for bulkloading and bulk operations, and evalua-
tion of concurrent accesses. Further studies of existing spatio-temporal indexes are also
warranted, possibly including detailed studies of special cases and aspects specific to
individual indexes. Examples include detailed studies of overlaps among MBRs, growth
rates of MBRs, and the grouping of objects into MBRs in R-tree-based indexes. For the
Bx-tree, such studies may cover query enlargement aspects and migration loads. For
all indexes, it is of interest to investigate aspects such as tree depths and node fanouts.
Studies such as these have the potential to offer insights that may guide the development
of improved indexes.

Acknowledgments. This research was conducted within the project Telematics Appli-
cations Based on Ubiquitous Sensor Networks, funded by the Electronics and Telecom-
munications Research Institute, South Korea. C. S. Jensen is also an adjunct professor
in Department of Technology, Agder University College, Norway.

The COST Benchmark—Comparison and Evaluation of Spatio-temporal Indexes 139

References

1. Blewitt, G.: Basics of the GPS technique: observation equations. Geodetic Applications of
GPS (1997) 10–54

2. Wikipedia: GPRS (2001–2005) http://en.wikipedia.org/wiki/GPRS.
3. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the positions of contin-

uously moving objects. In: Proc. ACM SIGMOD. (2000) 331–342
4. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method

for predictive queries. In: Proc. VLDB. (2003) 790–801
5. Procopiuc, C.M., Agarwal, P.K., Har-Peled, S.: STAR-tree: an efficient self-adjusting index

for moving objects. In: Revised Papers from the 4th International Workshop on Algorithm
Engineering and Experiments. (2002) 178–193

6. Šaltenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services. In:
Proc. ICDE. (2002) 463–472

7. Patel, J.M., Arbor, A., Chen, Y., Chakka, V.P.: STRIPES: an efficient index for predicted
trajectories. In: Proc. ACM SIGMOD. (2004) 635–646

8. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient B+-tree based indexing of mov-
ing objects. In: Proc. VLDB. (2004) 768–779

9. Zobel, J., Moffat, A., Ramamohanarao, K.: Guidelines for presentation and comparison of
indexing techniques. SIGMOD Rec. 25 (1996) 10–15

10. Gray, J., ed.: The Benchmark Handbook for Database and Transaction Processing Systems.
Morgan Kaufmann Publishers, Inc. (1993)

11. Theodoridis, Y.: Ten benchmark database queries for location-based services. The Computer
Journal 46 (2003) 713–725

12. Myllymaki, J., Kaufman, J.: DynaMark: A Benchmark for Dynamic Spatial Indexing. In:
Proc. MDM. (2003) 92–105

13. Werstein, P.F.: A performance benchmark for spatiotemporal databases. In: Proc. of the 10th
Annual Colloquium of the Spatial Information Research Centre. (1998) 365–373

14. Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: Benchmarking access methods for
time-evolving regional data. Data Knowl. Eng. 49 (2004) 243–286

15. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object
environments. IEEE Trans. on Knowl. and Data Eng. 16 (2004) 1112–1127

16. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional
uncertain data with arbitrary probability density functions. In: Proc. VLDB. (2005) 922–933

17. Čivilis, A., Jensen, C.S., J. Nenortaitė, J., Pakalnis, S.: Efficient tracking of moving objects
with precision guarantees. In: Proc. MobiQuitous. (2004) 164–173

18. Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and querying databases that
track mobile units. Distrib. Parallel Databases 7 (1999) 257–387

19. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In:
Proc. SSD. (1999) 111–132

20. Lazaridis, I., Mehrotra, S.: Approximate selection queries over imprecise data. In: Proc.
ICDE. (2004) 140–152

21. Weisstein, E.W.: Minkowski sum. From MathWorld—A Wolfram web resource (1999–2005)
http://mathworld.wolfram.com/MinkowskiSum.html.

22. Šaltenis, S., Jensen, C.S., Leutenegger, S., Lopez, M.: Indexing the positions of continuously
moving objects. Technical report, Aalborg University (November 1999)

23. Kaufman, J., Myllymaki, J., Jackson, J.: CitySimulator (2001)
https://secure.alphaworks.ibm.com/aw.nsf/techs/citysimulator.

24. Myllymaki, J., Kaufman, J.: LOCUS: A testbed for dynamic spatial indexing. IEEE Data
Eng. Bull. (Special Issue on Indexing of Moving Objects). 25 (2002) 48–55

140 C.S. Jensen, D. Tiešytė, and N. Tradišauskas

25. Theodoridis, Y., Nascimento, M.A.: Generating spatiotemporal datasets on the WWW. SIG-
MOD Rec. 29 (2000) 39–43

26. Theodoridis, Y., Silva, J.R.O., Nascimento, M.A.: On the generation of spatiotemporal
datasets. In: Proc. of the 6th International Symposium on Advances in Spatial Databases.
(1999) 147–164

27. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient and robust
access method for points and rectangles. In: Proc. SIGMOD. (1990) 322–331

	Introduction
	Related Work
	Spatio-temporal Indexing
	Spatio-temporal Data and Queries
	Update Policies
	Query and Data Enlargement

	Benchmark Data and Settings
	Workload Parameters
	Workload Generator
	Evaluation Metrics

	Definitions of Experiments
	Application of the COST Benchmark
	Introduction to the TPR-, TPR*-, and B^x-Trees
	Experimental Evaluation Using the COST Benchmark

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

