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Abstract

Much research has recently been devoted to the data management foundations of location-based mobile
services. In one important scenario, the service users are constrained to a transportation network. As
a result, query processing in spatial road networks is of interest. In this paper, we propose a versatile
approach td: nearest neighbor computation in spatial networks, termed the Islands approach. By offer-
ing flexible yet simple means of balancing re-computation and pre-computation, this approach is able
to manage the trade-off between query and update performance, and it offers better overall query and
update performance than do its predecessors. The result is a single, efficient, and versatile approach to
k nearest neighbor computation that obviates the need for using séwegalest neighbor approaches

for supporting a single service scenario. The experimental comparison with the existing techniques
uses real-world road network data and considers both I1/O and CPU performance, for both queries and
updates.

1 Introduction

An infrastructure is emerging that enables location-based mobile services, and we are withessing substantial
efforts in the research community to establish fundamental data management support for such services.
Mobile services typically involve service users and so-called points of interest. We consider the scenario
where these are located within a spatial network or, more specifically, a road network [13, 14, 15, 17, 21, 29].
The movements of the users, often termed moving objects, are constrained by the network, and the points
of interest can only be visited by traveling along the network. The relevant notion of distance is network
distance based on shortest-path computation. This scenario contrasts the one where no network is assumed,
movement is unconstrained, and Euclidean distance is used.

Existing approaches tb nearest neighbo(NN) computation in spatial networks can be divided into
two types: approaches that compiteN queries by incrementally scanning the network ubtileighbors
are found, and approaches that apply some form of pre-computation and “corhiNdejueries by looking
up data collected in pre-computed data structure. Both types of approaches assume that the spatial network
is represented by graph-like data structures.

The first type of approach, denoted as “online computation,” naturally captures the dynamic aspects of
the network, e.g., the emergence or disappearance of points of interest, and applies some form of network
expansion-based search. This type of approach is able to output the network distances and paths to each
kNN, as these are computed as part of the process. The data structures used in online computation capture
the connectivity of the network and are easily updated. When compared to online computation, the second
type of approach, termed “pre-computation,” typically has better query performance, but has difficulty in
coping with frequent updates of the road network and the points of interest.

In this paper, we consider the performance of query as well as update processing, as efficient query
and update processing are important for location-based mobile services. In particular, we propose a novel
approach, termed the Islands approact:N®I processing in spatial networks. This approach computes the
kNNs along with the distance to each, but does not compute the corresponding shortest paths. The rationale
for this design decision is that a mobile user is expected to only be interested in the actual path to a nearest
neighbor selected from tHeNN result, and so the path computation is better left to a subsequent processing
step.

The Islands approach is designed with the assumption that the overall disk access cost of queries and
updates is the main performance evaluation criterion, and the approach aims to be efficient for varying
frequencies of queries and updates, which yields broad applicability. The versatility of the approach is
demonstrated by an experimental comparison with two other approaches that covers the cases these two are
optimized for. The comparison verifies the general applicability of the Islands approach, which has the best
overall performance.



This paper makes three main contributions.

e The Islands approach offers an attractive generalization of the exigihgquery processing tech-
niques for spatial networks. First, it employs a relatively simple data structure and an intuitive search
algorithm. Second, it is applicable to a broad range of mobile service scenarios, thus avoiding the
need for using more specialized algorithms for different scenarios.

e The Islands approach offers a direct and elegant way of controlling the amount of pre-computation
performed, thus enabling substantial flexibility in managing the trade-off between query and update
performance. By tuning the sizes of islands, the amount of pre-computation can be controlled. This
enables the approach to accommodate varying densities of points of interest and varying query versus
update frequencies.

e The paper presents an experimental evaluation that is significantly more comprehensive than previous
evaluations. Specifically, this is the first evaluation that covers both online computation and pre-
computation and considers both query and update performance in a setting with real road network
data. The paper thus offers new insight into relative merits of the existing approaches.

In Section 2, we proceed to introduce related work. Section 3 presents the Islands approach and its
variations. This is followed by a section that compares the Islands approach with ekistihtechniques
for data constrained to spatial networks. Section 5 then presents the empirical performance study that
characterizes the Islands approach as well as compares it with the existing algorithms. The last section
summarizes and offers directions for future research.

2 Related Work

Nearest neighbor computation is a classical topic. Many existing algorithms assume an indexing structure,
e.g., an R-tree, and search in a branch-and-bound manner [11, 18]. Many extensions and applications of
kNN computation have also been proposed [1, 6, 12, 20, 23, 24, 27, 28].

Query processing for objects moving in spatial networks, e.g., cars moving in road networks, has also
received attention recently. However, most existing spatial query processing techniques cannot be applied
directly in this setting, one reason being that the distance between two locations in a spatial network is the
length of the shortest path in the network between these rather than being the Euclidean distance.

This paper assumes a specific data model and disk-based data structure for a spatial network and its
associated data points as the foundation for its proposed algorithms. Among the several data models and data
structures available [5, 7, 8, 19, 25], we adopt a fairly standard graph-based data model and structure [8, 19]
so that the algorithms are generally applicable.

We consider several existing disk-based data structures for shortest path computation and general query
processing in spatial networks [9, 17, 22]. The CCAM structure [22] aims to support network computations
such as route evaluation and aggregate queries. In this structure, a two-way partition algorithm [4] is adapted
to partition the spatial network and then arrange network nodes into disk pages. Another algorithm for
partitioning a road network is proposed by Huang et al. [9], and Papadias et al. [17] propose a network
storage scheme for supporting both network-based and traditional Euclidean-distance-based spatial query
processing. Our storage scheme enhances this scheme to capture additional aspects of real-world road
networks.

As described, existing techniques foNN computation in spatial networks can be characterized as
being either online processing techniques or pre-computation techniques. To provide a thorough discussion
of the existing techniques and to compare them in detail to the Islands approach, we defer consideration of
these works to Section 4.



3 The Islands Approach

Following a definition of the assumed transportation network model, concepts and observations related to
the use of islands are presented. Section 3.3 presents an algorithiMNaromputation based on islands,

and Section 3.4 covers extensions to the algorithm that enable it to utilize islands of different radiuses and
to accommodate additional semantics of transportation networks.

3.1 Transportation Networks and Query and Data Points

We consider location-based mobile services in road networks as our application scenario. In this scenario,
mobile service users are moving in a road network. A number of facilities or so-called points of interest,
e.g., gas stations or supermarkets, are located within the road network. We define the network distance
between a user and a point of interest as the length of the shortest path from the users’ current location to
the point of interest. A nearest neighbor query issued by a service user will returtk tiearest points
of interest to the user based on the network distance. Ugiegy pointto denote a user arthta pointto
denote a point of interest, we proceed to model the elements of the network scenario.

A road networkis defined as a two tupl& N = (G, cof), whereG is a directed, labeled graph and
co€ is a binary, so-called co-edge, relationship on edges. Gfaphgiven byG = (V, E), whereV is
a set of vertices and’ is a set of edges. Vertices model intersections and the starts and ends of roads.
An edgee models the road in-between two vertices and is a three-tupte(vs, v, 1), Wwherevs, v, € V
are, respectively, the start and the end vertex of the edge. The edge can be traversed onlytdrom
The element captures the travel length of the edge. Two edgemnde; are in the co-edge relationship
((ei,ej) € cof), if and only if they represent the same bi-directional part of a road for which U-turn is
allowed.

Next, alocationon the road network is a two tuplec = (e, pos) wheree is the edge on which the
location is located angos represents the distance from the starting vertex of the edige.to

A data pointis modeled as a set of locations, i&ny,= {locy, - - - , locy }. Note that adding and removing
data points or their locations does not affect the road network itself, which is important for maintainability
in practice. Aquery pointgp is modeled as a location.

An edge with start vertex; and end vertex; is denoted by; ;. Figure 1 illustrates the concepts defined
above, e.g., edge 4 = (v1,v4,2), data poinddp; = {(es5,1), (€54, 3)}, and query poingp = (e76,1).

Figure 1: Road Network Model

The example road network in Figure 1 is assumed to have only bi-directional roads with no u-turn
restrictions and each data point has two positions—one on each side of a bi-directional road. The remainder
of the description of the Islands approach is carried out under these assumptions. Extension of the Islands
approach to capture various pragmatic road restrictions is covered in Section 3.4.



3.2 Observations

Intuitively, an incremental expansion process starting from the query point can be used to fintktrest
data points in Euclidean space. To optimize the search process, one can “enlarge” each data point into a
big circle—see Figure 2(a)—so that the expansion process will terminate early. As shown in the figure,
data pointdps will be found as the nearest neighbdj, is the second-nearest neighbor ahd is the
third-nearest neighbor. After touching the bordetipf, the 3NN search process can stop.

In a road network, given a distance valygheislandof a data pointlp is the subset of the road network
covered by a network expansion frafp with the range-. We definer as aradiusof this island. Intuitively,
all vertices with distance tdp less than or equal to the radius belong to the island. We denote these vertices
asthe island’s verticesA vertex of an island is aimternal vertexof the island if all its neighboring vertices
are vertices of the same island. A vertex of an islandbem@er vertexof this island if at least one of its
neighboring vertices does not belong to this island. All the edges connecting the island’s vertites are
island’s edgesA location (or, a query point) in the road networkinsidean island if its network distance
to the data point of this island is less than or equal to the radius of the island.

As illustrated in Figure 2(b), for the part of the road network belonging to the isladp afith a radius
of 5, v4 is an internal vertex and , v2, andvs are border vertices. The locatidt: = (e4 2, 2) is inside this
island.

(a) Euclidean Islands (b) Network Island

Figure 2: Observations on Islands

To record information about islands, each vertex in the network stores references to all the data points
that are centers of the islands covering the vertex. The distance from the vertex to the data point is stored
with each such reference. Then, similar to the Euclidean case in Figure 2(a), the network expansion process
of akNN query will be reduced, since a data point can be declared to be found when the expansion process
visits a border vertex of this data point’s island. If all islands have the same radius, and a query point is
already insid€ islands, the data points corresponding to these islands arentsgrest neighbors of the
query point. The distances from the query point to theseighbors are found from the above-mentioned
pre-computed distances.

In general, th&NN search process includes two steps. First, we need to check the islands covering the
guery point. Second, if the number of such islands is smallerthametwork expansion is needed to find
additional islands.

If the islands have different radiuses, the islands approach uses the minimum ragliuse., all data
points are assumed to have islands with radijys (no larger than the islands they actually have). As will
be explained later, having different island radiuses brings flexibility to the Islands approach. Specifically,
the kNN query performance and the update efficiency can be controlled by changing the radiuses of the
islands in different regions of the road network. We proceed to describe the Islands approach with more
detail.



3.3 Islands-Based:NN Algorithm

The Islands approach consists of a pre-computation component and an online network-expansion compo-
nent. The pre-computation component stores, for each vertex in the road network, references to the islands
that cover the vertex and the network distances from the vertex to the data points that generate the islands.
With this component, the network expansion, denotedkasid Ezpansion(gp, k), first checks the islands

that the query poingp is inside and maintains the data points found in a priority queue, then starts a network
expansion process frogp to find borders of new islands. The network expansion process terminates when
the sum of the expansion radius and the minimum radius of all pre-computed islands exceeds the distance
from the query poingp to thekth data point in the priority queue.

We proceed to describBlandEzpansion(gp, k) algorithm in the following. It is similar to the INE
algorithm [17], which in turn is a modified Dijkstra’s single source shortest paths algorithm. Two priority
queues()q, andQ,, are used in the algorithm to record the covered data points and vertices together with
their distances to the query point, denotedi&g, dp) andd(gp,v). Both queues sort elements by the
distance value and do not allow duplicate data points or vertices. The si2zg of limited tok elements.

We introduceupdateanddequeoperations for the two queues. Tapdatédp/v, dist) operation inserts
a new data point or vertex and the corresponding distance into the queue. If this data point or vertex is
already in the queue then,distis smaller than the distance stored in the queue, the distance value in the
queue is updated tdist The dequeoperation removes and returns the vertex with the smallest distance.
Suppose the minimum radius of all islands-js;,,. The pseudo code dklandExpansion is given below.
Queues), andQ@) , are assumed to be empty initially.

(1) procedure IslandEzpansion(qp, k)
(2) for eachdata pointdp on edgegp.e Qqp,.updatédp, d(gp, dp))
(3) Qy.update(gp.e.vs,d(qp, dp.e.vy)), Qy.update(gp.e.ve, d(gp, gp.€.ve))
(4) for eachdp, if its island covergp.e.vs Or gp.e.ve: Qqp-updatédp, d(gp, dp))
(5) if Ja, such thata, gp.e) € co&, do (2)—(4) assumingp = (a, a.l — gp.pos)
(6) Letdp;, denote thé:-th element inQ) 4, dp;, = @, if there is no such element
(7)  di — d(qp,dpg) Il dy, — oo if dp, = &
(8) v+« Q,.dequemarkuv visited
(9) while d(gp, v) + rmin < dg
(10) for eachnon-visited adjacent vertex, of v
(11)  Q..updatéuv,,d(gp,va))
Il d(gp, v,) assumes the paglp — --- — v — v,
(12) for eachdp, the center of an island covering
(13) Qap-updatédp, d(qp, dp))
(14)  dy, < d(qp, dpx)
(15) v« Q,.deque markuv visited
(16) return Qg

Note that in line 13 of the algorithmi(gp, dp) = d(qp,v:) + d(v,dp), whered(gp, v,,) is taken from
Q. andd(v,, dp) is the pre-computed distance stored with Analogous computation af(gp, dp) is also
performed in line 4.

To see how the algorithm works, consider Figure 2(b) and let all three data points have islands with
radius6. Starting from the query poinfp = (e7¢,1), the algorithmIslandExpansion(gp, 2) first adds
verticesvg andvz; to @, (Q» = ((ve, 1), (v7,1))). Then it checks the islands coveringandvz, and data
pointdps is found. Starting withyg, the expansion process finds the islandgpaf dp», anddps through the
adjacent verticess andvs. Thus,Qqp = ((dp2,4), (dp1,9)) and@Q, = ((v7,1), (vs,6), (v2,8)). Atthe
next step, since,,;, = 6 and the distancé, from the query point to thend NN is9, only vertexv; in Q.
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needs to be checked (based on the while-loop criteria in line 9). Fidallyanddp, are the two data points
returned. It can be observed that using the pre-computed information, the network expansion finds the data
pointsdp; anddps before reading the edges they are located at.

If & = 1, the algorithm starting frongp will find dps in the first step. Since,,;, = 6 and the
distance fromgp to dps is di = 4, the algorithm will finish without the network expansion process (since
d(qp,ve) + rmin > d1). This, as mentioned in Section 3.2, is always the caB®ifmore islands cover the
guery point.

The Island Ezpansion algorithm uses disk-based data structures for the network and pre-computed data.
Section 4 provides a detailed description of the data structures, and it compares the Islands approach with
the existing road networkNN algorithms using examples. We proceed to discuss several extensions of the
Islands approach.

3.4 Extensions

Operations on the Radius In real-world application&NN computation is based on a disk-based road
network data structure. In addition to the query performance, the update efficiency of the road network data
should be considered. There are two types of updates of the road network data: updates of the network
itself, i.e., of vertices and edges, and updates of data points.

Updating a vertex or an edge may possibly require all islands covering this vertex or edge to be re-
computed. An initial check can be made to compute the network distance from the updated vertex or edge
to the centers of the islands covering it. If the distance remains the same, so do the islands. Updating a
data point causes its island to be re-computed. Such re-computation does not influence any other islands.
Since an update operation usually involves a network expansion, the island’s radius, which determines how
far the expansion process goes, can be tuned to control the update efficiency. For a large road network
with relatively few data points, the radiuses of islands can be increased so th&thheearch terminates
quickly. Conversely, in a small road network with many data points, the radiuses of islands can be decreased
so that the costs of update operations are reduced.

We proceed to define two operations on the radius of an island. shifiek operationon an island
reduces the radius of this island, which improves the local update performance. Note that if the radius, after
being shrunk, is still no less than the smallest island radjys of the road network, the shrink operation
has only minor impact on the query performance. Only if all islands are shrunk,ands decreased, the
query performance will be reduced.

The expand operation an island increases the radius of this island, which reduces the local update
performance. Again, running the expand operation on individual islands will not necessarily increase the
query performance. Only when the expand operation is run on all islands, the smallestrfadiugll
increase, and the overall query performance will be improved. Next, we will describe how the expand
operation can be used to increase the radiuses of islands in local areas of a spatial network, where queries
will then terminate earlier, by using a larger, loeg);,, value.

Summarizing, the shrink and expand operations can be applied to all islands to change as to
balance the overall query and update performance. The following section describes how these operations
can be used to achieve different query and update performance trade-offs in different parts of a road network.

Cross-Area Island Expansion As has been described, islands in different parts of a road network can
have different radiuses. Intuitively, radius of islands in urban areas should be relatively small since the
densities of points of interest are relatively high and there are relatively frequent updates of road network
data. In rural area, islands can be given much bigger radiuses since the densities of points of interest are
much smaller and there are far fewer updates.

When akNN query is issued close to the border of two areas that have diffeggntvalues, algorithm
IslandEzpansion introduced in Section 3.3 can be improved to take into account the diffefgnwalues.
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We proceed to discuss how to modify th€andEzpansion algorithm to better handle such cross-area
expansions.
We assume that islands of data points located near the border of

Area A jwith +AreaA pwith  two areas can be pre-computed across borders. As shown in Figure 3,
Mmin= 13 - Tmin=T3 data pointdp is located near the border between ardasand As.
‘\(rl< r2) Note that the smallest island radiug;, in A; is r; and in As is

ro, (r1 < 72). Sincedp is in A;, without loss of generality, suppose
the island fordp has a radius of;. A network expansion process

. starts from a query pointp in As to find kNNs and stops at vertex
V2 . vy, which is quite close to the border betwe¢nand A,.
P op | Based on the pseudo code of théandExpansion algorithm,

© d(gp,v2) + ro > di. Note that vertex; belongs to the island of
. . dp andd(gqp,v1) > d(gp,v2). But sincer; < ry, it is possible that
T d(gp,v1)+m1 < d(gp,v2) + r2. Thus, the expansion process starting
from ¢p will be insufficient if it only considers:s.
Figure 3: Cross-Area Island To handle this, we define asolation regionfor road networkA4,

(as shown in Figure 3). All vertices iA; whose network distance to
the border ofd; and A is less than or equal tg belong to this region. ThéslandExpansion algorithm
running insideAs; is correct if the expansion process does not enter this region. Otherwise, therfautigs
to be used instead of in the Island Expansion algorithm to ensure correctness. Note that for road network
Ay, there is no need to define such a region since: r, and the expansion process startinglatalways
usesr;. In general, when two road-network areas meet, the isolation region must be pre-computed for the
area with the larger,,;, .

How the road-network is divided (possibly automatically) into areas with differgpt values is an
interesting future research direction.

Border g

Pragmatic Road Restrictions As mentioned, the above discussion assumes that all edges in the road
network are bi-directional and without U-turn restrictions. We proceed to extend the Islands approach to
accommodate pragmatic road restrictions. We make changes to both the pre-computation component and
the network expansion algorithm.

First, since edges in the real-world road networks are not always bi-directional, the network distance
from one location to another may not always be the same as the way back. Thus, in the pre-computation
component, each data point has two associated islands, i.e., the “incoming island” that is built by making
network expansion from the data point using “incoming” edges, and the “outgoing island” that is constructed
using “outgoing” edges. Then tHelandExpansion algorithm findsk nearest neighbor data points to (from)

a query point by using “incoming” (“outgoing”) edges of each vertex until enough “outgoing” (“incoming”)
islands are found.

Second, as described in the data model, a data point can be associated with more than one location. Two
ways exist for processing such a constraint. The first way is to treat each location as a different data point.
Then each location has its island. The network expansion process will eliminate islands denoting different
locations of the same data point. The second way is to define the data point as a new vertex in the road
network. Then, edges are defined to link the vertex with the locations associated with the data point. The
lengths of these edges are set to zero and no changes are madétanttiBrpansion algorithm.

Third, since U-turn restrictions are quite common in the real world, we propose two ways to process
U-turn restrictions. Note that we only need to consider edges with U-turn allowed that have at least one
data point. For such data points, we can either add one more location of the data point at the corresponding
co-edge (as assumed in Figure 2(b)), or we can always check the co-edge during the network expansion
process.



Fourth, for two roads that meet at a road intersection, there may exist turn restrictions that prohibit
the direct movement from one road to the other through the intersection. As shown by, e.@ys$pei
al. [19], such turn restrictions can generally be handled by adding new vertices and zero-length edges to the
original network, thus obtaining a new network. By using this new network, the Islands approach needs no
modifications to handle turn restrictions.

4 The Islands Approach in Comparison to Existing Techniques

The Islands approach consists of a pre-computation component and a network expansion algorithm. With
the shrink and expandoperations and the procedure for handling cross-area expansions, the trade-off be-
tween the performance &NN queries and road-network updates can be controlled. For comparison pur-
poses, we proceed to survey and exemplify the exigtMly algorithms. We also describe the disk-based
data structure for the road network and the pre-computed data.

4.1 Online k Nearest Neighbor Computation

Intuitively, tNN computation can be done by employing a best-first search through adjacent edgks until
neighbors are found. In contrast to the traditional shortest-path algorithms in graph theaiNNtsearch

in spatial networks has to employ a disk-based data structure for representing the network, the objective
being to minimize disk access.

Papadias et al. [17] introduce two algorithms k&N computation in spatial network, namely Incre-
mental Euclidean Restriction (IER) and Incremental Network Expansion (INE). Based on the observation
that the Euclidean distance between any two locations never exceeds their network distance, the IER algo-
rithm obtainsk Euclidean nearest neighbors and arranges them in ascending order of their network distance
to the query point. Subsequent Euclidean neighbors are retrieved incrementally until the next Euclidean
neighbor has larger Euclidean distance than the network distance from the query poirittorikehbor.

The second algorithm, INE, performs incremental network expansion from the query point and exam-
ines data points in the order they are encountered during the expansion process. The INE algorithm is an
adaptation of Dijkstra’s single source shortest paths algorithm on graphs. It terminates when the expansion’s
range exceeds the network distance toktthenearest neighbor. It can be seen as a special case of the Islands
approach where each data point's island has a radi0s of

It has been shown [17] that the INE algorithm outperforms the IER algorithm in every aspect. However,
there are still cases where the INE approach seems to be relatively inefficient. Specifically, its performance
depends on the density of the data points. Intuitively, for a large road network with only few data points,
the expansion process of the INE algorithm will have to scan large parts of the road network until enough
data points are collected.

The disk-based road network data structure used by the IER and INE algorithms has been adapted into
our testbed data structure. We use this structure because it preserves connectivity and locality of the road
network and because it is robust with respect to updates of the road network as well as data points.

4.2 kNN Pre-Computation Approach

To save the cost of network expansions in online computations, pre-computation techniques can be designed
to pre-calculate a certain amount of network distances between data points and vertices. Shahabi et al. [21]
introduce a technique to transform a road network to a high dimensional space in which simpler distance
functions can be used. The major drawback of this method is that it involves an off-line pre-computation
of the network distances between all pairs of vertices and uses high-dimensional spatial indexes which



limits its applicability and leads to poor performance. Kolahdouzan and Shahabi [14] propose the so-
called VN3 technique fokNN computation in road networks. Starting from each data point, VN3 first
creates a Network-Voronoi-Diagram [16], then pre-calculates the network distances within each Voronoi
polygon. The network expansion within each Voronoi polygon can then be replaced by a look-up over the
pre-computed distances.

Consider a Network-Voronoi-Diagram constructed for the example road network in Figure 1. As
shown in Figure 4, the Voronoi polygon @l contains border pointss, by, and b5. Using the pre-
computed information, @NN query from the query poingp first finds thatgp is inside the Voronoi
polygon of dps. Thus, dps is its nearest neighbor. Then the network distance frgmo b3, b4, and
b5 can be found by look-up in a pre-computed distance table. To find
the next nearest neighbor, the VN3 approach generates a candidate set
consisting of “adjacent” data points, i.e., data points whose Voronoi
polygons are adjacent ps's polygon. Thusdp,; anddps are in-
cluded in the candidate set. Then a refinement step is used to find
the actual network distance frogp to these candidate data points.
Since the distances from border pointsdpf anddps to these data
points are pre-computed, it requires just a look-up process to get the
network distance fromp to dp; anddps via the border pointss, by,
andbs. The VN3 approach continues this process until endugNs
are found.

The VN3 approach excels in query performance when the density
Figure 4: Network Voronoi Dia- of data points is low, but is not efficient in situations when many data
gram points are located in a small network area, e.g., points of interest in a

city center. In addition, this approach does not provide a clear way of
representing different “types” of data points in the road network. it is possible to construct a “multi-level”
structure by constructing Voronoi diagrams for each type of data points, but such multi-level Voronoi-
diagrams do not enable efficient processing of 2NN queries for multiple types of data points. An
example of such query could be looking fonearest tourist attractions such as museums, shopping malls,
and parks.

We are also aware of two very recent publications on the same topic. First, Cho et al. [3] propose the
UNICONS (UNIque Continuous Search) approach [3], for efficiemearest neighbor and continuokis
nearest neighbor queries in road networks. The UNICONS approach pre-computes ané staesst
neighbors to a selected amountanindensingpoints in the network. The condensing point is defined as
the network vertex that has at least three adjacent vertices. However, the approach does not provide a
systematic way of choosing trendensingpoints. In addition, such pre-computation is fragile to face
updates to the networks (i.e., a simple update to a vertex or edge will cause all the pre-computation data
to be re-generated). Second, Hu et al. [10] propose a novel approach, termed SPIE, which considers to
make reduction on the networks so that the number of edges can be decreased. To achieve this, a set of
inter-connectedhortest path tree§SPT) are generated based on the network. Starting from a vertex (a root
node) in a road network, a Dijkstras algorithm is called to grow the tree. During the tree-growth process,
a new tree node is added if its distances to other existing tree nodes are preserved by the tree. This is
determined by checking if there is any adjacent edge tiat connects it to a tree node closer than the
tree path. If such edge, denotedstmrtcut exists, this node becomes a new root and a new SPT starts to
grow from it. The SPTs is then transformed into the SPIE structure which provides further improvement
to thek nearest neighbor query performance. The SPIE approach has severe shortcomings which makes it
impractical. First, this approach assumes that the data points are distributed on network vertices which does
not fit in many situations that data points are represented with linear-referencing, i.e., they locate on edges
in-between two network vertices. And it will make the network more complex by adding each data point as
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vertices to the network. Second, the modern transportation networks often involve one way streets, u-turn
restrictions, and turn-restriction on road junctions. These made the road network not as simple as a un-
directed graph. The SPIE approach will not benefit from making reductions on the networks by considering
these actual situations.

Due to the focus of our discussion, we choose to focus on comparing our approach with the VN3 and
INE approaches. We proceed to introduce a disk-based data structure for the INE, the VN3, and the Islands
approach.

4.3 Disk-Based Data Structure

The disk-based data structure for road network data used together with the INE, the VN3, and the Islands
approach is shown in Figure 5. This structure is an adaptation of the data structures proposed for the
INE [17] and VN3 [14] approaches.

The structure consists of six components, named as folloestex—Edge Edge—Data Island—Pre-
computation\Voronoi—PolygonBorder—AdjacencyandVoronoi—Precomputationomponent.

The road network and data points are represented by the Vertex-Edge and Edge-Data components. As
illustrated in Figure 5, based on the example road network in Figure 1, the adjaceigcydistertexwv, is
composed of entries standing for edges starting frgmThe data pointlp; located on edge, 5 is stored
in an entry in the Edge-Data component. Specifically, in the Vertex-Edge component, each entry denotes
an edge and has the fortns/D, velD, ptNBVE, L, ptDP, ptl), wherevsID andvelD are the id’s of the
start and end verticetNBVE points to the disk page containing the end vertexs the length of this
edge,ptDP points to the disk page containing the data points on this edgeptdmubints to the disk page
containing Island-Precomputation data of the end vertex. Pointers are/$gtitdahere is no linked page.
Entries in the Vertex-Edge component are assigned to pages based on the Hilbert value of the start vertex.

Each entry in the Edge-Data component has the form
Vertex-Edge Component Island—-Precomputatior (dpID, elID, offset), wheredpID, eID denote the data

e Component point and edge, andffset is the distance from the start
T2 lv TS Vyda]s] | vertex to the data point. We assume i@ value can be
| 4 A v; LN ij Voldp 4| obtained from theisID andvelD values in the Vertex- -
| : z EIViEV: P44/ Ps| s i Vodpy[2 ol Edge entry. Otherwise, these two attributes are used in-
] N 4 stead. Both the Vertex-Edge and the Edge-Data compo-
' Adjacency Listof V 4/ | Voronoi—Polygon nents are used in the INE algorithm.
Edge—DataComponent ___Component _ For each vertex, the Island-Precomputation com-
dg%l ‘ dpz--v- 5 ponent stores a list containing its distance to re-
dp, %j N [dp, vj 5 PZ 3 lated islands. Each entry in the list has the form
. p, | I Ps, (vID, dpID, D) wherevID anddpID denote the vertex
”””””””” Border-Adjacency and data point, and is the network distance between
Voronoi-Precomputation Component them. These entries are arranged into pages based on the
- Component 1 Hilbert values of the vertices. As illustrated in Figure 5,
T ﬁi&g Z Ez — the list of vertexv; has three entries, describing its dis-
bj b; 05 dpy|dps by 7 | P! - tancgs to the three data points. ThéundExpansion
o ! ! 6 | algorithm uses the Vertex-Edge component, the Island-
3 24 xZ Z A I | Precomputation component and the Edge-Data compo-
43 P, | nent (only in the first step).

The VN3 approach uses the Voronoi-Polygon com-

ponent, the Border-Adjacency component, and the

Figure 5: Disk-Based Data Structure  \/oronoi-Precomputation component. The \oronoi-
Polygon component stores, for each data point, the vertices inside its Voronoi polygon. This component

,,,,,,,,,,,,,,,
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is used to decide the Voronoi polygon where the query point is located and provides the first nearest
neighbor. Each entry has the fortvipID, vID, D, ptB), wheredpID denotes the data point generating

this Voronoi polygon,vID is the id of a vertex inside the Voronoi polygop, is their distance, angtB

points to the disk pages of the Border-Adjacency component containing the border points and adjacency
information for all the Voronoi polygons. Each entry in the Border-Adjacency component has the form
(dpsID, dpelD, bID, D, ptP), wheredpsID anddpelD denotes two data points whose Voronoi polygons

are adjacent)ID denotes one border point of the two Voronoi polygaRds the distance from the border

point to the two data points, andP is the pointer to the disk page containing pre-computed distance values

of this border point. The Voronoi-Precomputation component stores, for each border point, its distance to
other border points and vertices of the same Voronoi polygons.

We assume that the edge where the query point is located is known before the query so that it can
be visited directly. Otherwise, all the edges can be indexed using an R-tree, which can then be used for
“map-matching.” If the “id” or “name” of the edges can always be revealed for the qu&y;taee can be
used to index these attributes and provide direct access to edges in the Vertex-Edge component. The whole
disk-based data structure for the example road network in Figure 1, consisting of 9 disk pages, is presented
in Appendix 6. Each island is given a radiuslofEach attribute value takésunit size, and we set the page
capacity toh4 units.

4.4 Example

Based on the example road network, we proceed to exemplify the workings of the INE, VN3, and Islands
approaches. We employ an LRU buffer with a size of 2 pages and exe@lb guery for query point

qp = (e76,1). We show the pages in the buffer and the total amount of disk access for the three approaches.
TheD.A. column denotes the amount of disk reads (in pages). For the INE and Islands approaches, we also
observe the content of the two queugs and @4, and the distance fronp to the second nearest data
point, denoted ad,. For the VN3 approach, we track the candidate set, the distance values used, and the
final data points found.

It can be observed from Figure 6 that the query performance of the Islands approach is sensitive to the
island radius used. When,;, = 8, the query results are found by checking the islands within which the
query point is located. When the radius is decreased the network expansion tak@smore steps to
finish.

4.5 Update Operations

Update of network and data points for the INE approach is obvious—updates only affect one or adjacent
pages in the Vertex-Edge and Edge-Data component. Updating network and data point for the VN3 ap-
proach, as discussed in [14], requires adjacent Voronoi-Polygons to be re-generated. We can use a network
expansion process to update the Voronoi polygon of a data point. For example, to update the ddta,point
a network expansion starting frotp; will stop after neighboring data point®, anddps are found. The
re-computation process uses disk pagesP,, andPs;. Then page$’s, Py, P, and Py and possibly page
Py are accessed for updating.

For the Islands approach, updates cause the associated islands to be re-computed. As an example, to
update data poindp;, the re-computation will need pagés, P, and P; for network expansion and will
then read pag®;, for updating data. We proceed to describe in detail how to handle updates to the network
data and the data points. These includeitfsertion deletionof network vertices, edges, data points and
changes to edge length as well as positions of data points on edges. We assume an in-mesiandhist
Tableis available. Each entry in the list has the fofdpID, r), wheredpID denotes a data point ands the
island size of this data point. As discussed in previous sections, the islandcsinebe changed in various
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Approach Steps Qv Qap dy | Buffer | D.A.
1 ((ve,1), (vr,1)) 0 oo | Pl
2 ((v7,1), (v5,6), (ve,8)) ((dpa,4)) oo | Po,Ps | 2
3 ((vs5,6), (vs3,7), (v2,8)) ((dp2,4)) oo | P3,Py | 2
INE 4 ((v3,7), (v2,8), (v4,9)) | ((dp2,4),(dp1,9)) | 9 | Po, Ps | 2
5 ((v2,8), (v4,9)) ((dp2,4), (dp1,9)) | 9 | Po, P3| 2
6 ((v4,9), (v1,11)) ((dp2,4), (dp1,9)) | 9 | Pr,Ps | 3
ISIand8 1 ((vg, 1), (v7,1)) ((dp2,4), (dp1,9)) | 9 | Po, Py | 2
Island 1 (v, 1), (v7,1)) ((dpa,4)) oo | Py, Py | 2
Tmin @7 | 2 ((v7,1), (v5,6), (v2,8)) | ((dp2,4),(dp1,9)) | 9 | Po, Py | 2
3 ((v5,6), (v3,7), (v2,8)) | {(dp2,4),(dp1,9)) | 9 | Pa, Py | 2

(a) Example of the INE and Island.{;, = 7, 8) Approaches

Steps Candidates Distances Results Buffer | D.A.
1 1) 0 {(dp2,4)} Py, Ps
2 {dp1,dps} | D(gp,bs), D(ba,dp3), {(dp2,4)} Ps,Ps | 3
D(qpa b5)7 D(b57 dpl)a
D(qp,bs3), D(bs, dps)
3 0 0 {(dp2,4), (dp1,9)} | Ps,Po | 5

(b) Example of the VN3 Approach

Figure 6: Running Example of INE, Island, and VN3 Approach

area of the network to balance between update and query performance. We maintain an in-memory list for
the update operations. When an island needs to be re-generated, the @b&aeh island insland-Table
provides the island size for the re-generation.

Update of vertex: When a new vertex is inserted to the network, we first need to updatéettex-Edge
component. Next, for each island covering adjacent vertices of this new vertex, we check if this island
also covers the new vertex (based on ifland-Tabl¢ and update thésland-Precomputatiocomponent.
Similarly, when a vertex is deleted from the network, we read all the islands covering this vertex, re-generate
these islands and update fsand-Precomputationomponent as well as thgland-Table Modification on

a vertex will not change the data structure if it does not change the network topology related to this vertex.
Otherwise, the modification to the vertex is a combination of deletion and insertion steps on this vertex.
Update of edge: When a new edge is inserted or deleted, assuming that the two vertices of the edge are
already in the network, we read all the islands covering the any of the two vertices and re-generate these
islands. Next, when the length of an edge is increased, we need to re-generate those islands that cover both
vertices. If the length is decreased, all the islands covering any of the two vertices of the edge have to be
re-generated.

Update of data point: When a data point is inserted, we need to make a network expansion from this
data point and add the data point to all the network vertices inside this islandlslahd-Tableis also
updated. Similarly, when a data point is deleted, we also make a network expansion to extract this data
point from each vertex inside the island of this data point. déletionandinsertionprocesses can be used
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as a combination of operations when the data point’s position on an edge is changed.

4.6 Further Improvement to Islands

In the network expansion process of ttandExpansioralgorithm, when a new network vertex is de-
gueued from,, all the islands (i.e., the data points) covering this vertex have to be read frdsiahd-
Precomputatioromponent to update the queilg,. This operation is not efficient as a “discovered” island
may still be accessed in the network expansion process. To reduce the redundancy, we propose to partition
the Island-Precomputatiosomponent into two parts, i.e., thgland-Precomputationcomponent and the
Island-Precomputatidhcomponent. Both components have the same format dsl#rel-Precomputation
component. The first componeisg|and-Precomputatidn records a vertex, a data point and their distance
if the vertex is arinternal vertesof the data point’s island. The second componkstand-Precomputatidh
saves a vertex, a data point and their distance if the vertex otider vertexof the island of the data point.

In accordance to this modification, each entry in legtex-Edgecomponent needs to have two pointers to
disk pages. One pointer links the entry to the islands where the start vertex of the entiipiere vertex
and the other links the entry to the islands where the start vertex tder vertex

Data generation for the two components is obvious. Specifically, in the network expansion process of
generating each island, we only need to record the vertices that are “dequeued” from the&)guand
check each vertex with the definitions ioternal vertexandborder vertexto decide the component for
storing this island.

To modify thelslandExpansioralgorithm with the two components, in step 4 of the algorithm, it is
necessary to access islands from both Iiend-Precomputatidnand thelsland-Precomputatidhcom-
ponents that cover vertice®.c.vs andgp.e.v.. Next, at steps 12 and 13 inside the while-loop (i.e., the
expansion process), the algorithm only needs to read islands frorslaing-Precomputatidhcomponent
until k£ nearest neighbors are found.

Intuitively, by having these two components, the efficiency ofkheearest neighbor query is further
improved as the expansion process gets fewer accesses to the islands data. The update operation on this
“improved” islands is the same as described in the previous section but can be slightly more complex as
the two components need to be updated at the same time. To evaluate on how this further improvement
can influence the efficiency of Islands approach, we denote ths_&8and (Further Improved Islands)
approach and compare it with the aforementioned Islands approach in the next section.

5 Performance Evaluation

Two real-world datasets are used in the evaluation of the discussed approaches. The first dataset, AAL,
contains the road network of the Aalborg area in the Northern Jutland region of Denmark along with real
points of interest. The network contaim$, 300 vertices,13, 375 bi-directional edges, an2ir9 points of

interest. The second dataset, LA, represents the spatial network data of Los Angeles, California. This data
was obtained via the Internet [26] and converted into network files via the Tiger File Manager [2]. The
LA dataset contain$95,010 vertices and66, 335 bi-directional edges. We generate synthetic points of
interest for the LA network.

We measure the performance of the these approaches in terms of CPU time and cost of disk access. The
CPU time checks, by loading the whole network and pre-computed data into physical memory, the actual
running times of the experiments with the three approaches. To measure the disk access cost, we arrange
the road network and pre-computation data into the data structures described in Section 4.3, we set the page
size to4k, and we employ an LRU buffer. The buffer size is setl@3; of the sum of the sizes of the
Vertex-Edge and Edge-Data components. The AAL dataset coritzirsages in the two components, and
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the LA dataset containg 132 pages in the Vertex-Edge component. We disregard the space use that stems
from the queues and variables used in the algorithms and thus do not consider them as part of the buffer.

Three series of experiments are conducted. The first series assumes that there are no update to the road
network and studies the effects on query performance of vatyimgta point density, and islands radius.

The density of data points is the ratio between the number of data points and the number of bi-directional
edges in the road network. We define the maximum Euclidean distance between all vertices in the road
network asD,,..... The island radius used is represented as the fractidn,gf.. In all experiments, islands

of the same road network have the same radius (In the case that theggjus too small for certain
islands, i.e., a data point is far away from at lease one vertex of its edge, we increase the size of this
particular island so that this island covers at least two vertices of the data point’s edge).

The second series of experiments considers both query and update performance on the INE, VN3 and
Islands approaches. We define the update ffjias the ratio of updates being executed per query. The
overall performance is the sum of the query and update cost. (To be consistent with the assumed application
scenario, we assume an online-processing system where update operations have to be processed together
with the query operations so as to provide correct query results). We use updates of edge lengths and updates
of the positions of data points on an edge as standard update operations. Given an upd&tearati@n
amount of queriesV, there areN - R,, updates on edges as well as data points. The experiments examine
the effect on the overall performance of the three approaches of varying update ratio, data point density, and
island radius.

The third series of experiments checks the pre-computation cost of the Islands approach. This includes
the CPU time and disk access cost on pre-computation of each island and the space requirements on storing
the pre-computed distance data.

In all experiments, the query points are randomly generated. For the first set of experiments, we execute
a workload of200 queries and report the average performance. For the second series of experiments, we
increase the number of queries so as to get a proper amount of update operations (the update ratio is assumed
to never exceed.1). Experiments with the same update ratio are conducted at least three times to obtain
average performance figures.

The experiments are performed on a Pentium IV 1.3 GHZ processor with 512 MB of main memory and
running Windows 2000. The C++ programming language is used.

5.1 Experiments on Query Performance

In the first series of experiments, we present both CPU time and disk access costs of the experiments on
AAL data and focus on checking the disk access in the experiments with the LA data.

Query Performance Versusk In this experiment, the island radius is sedtd of D,,,, andk is varied

from 5 to 200. We use the real world data points for the AAL road network and synthetic data points for

LA road network. The density of data points in AAL(D2 while the density for LA i9.005. The results

are shown in Figure 7. It can be observed that with the growth, dhe computational cost of all three
approaches increases. The CPU time of the Islands approach is better than those of the other two. Both the
VN3 and Islands approaches show less disk access than the INE approach. The Islands approach is better
than VN3 with respect to disk access cost uhtjrows beyond0.

Query Performance Versus Density of Data Points In this experiment, the island radiugiid of D, .

The valuek is set tol0. We remove the real data points in AAL and use synthetic data points in both AAL

and LA road network. The density is varied fran®01 to 0.5 to check the performance of the three ap-
proaches. It can be seen from Figure 8 that as the density increases, the INE approach improves substantially
and becomes competitive. The Islands approach has similar behavior. It has worse performance for the AAL
network and data than the VN3 approach (as shown in Figure 8(b)) when the density is lés8Gihabut

becomes the best among the three approaches when the density éxgegds
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Figure 8: Query Performance Versus Density

For the LA network and data, the Islands approach always shows better performance than the VN3
approach. The two networks differ in that the connectivity among vertices and the density of edges in
the LA network are much higher than in the AAL network. This means that for the same density of data
points, the network expansion process for finditNNs in the LA network finishes earlier than in the AAL
networks. The Islands approach is more favorable in the LA network, as each island is related to more
network vertices, which makes it fast for the network expansion process to discover an island. The VN3
approach, in the LA network with its high connectivity and density, possesses more border vertices and
pre-computed distance data. It thus requires more disk access in its filter and refinement steps.

Query Performance Versus Island Radius In this experiment, we sét = 10 and use the real data
points in AAL and synthetic data points in LAl¢nsity = 0.005). To determine the impact of island radius

on the query performance, the radius is varied ffdfi9l to 0.5 of D,,,,. Note that in Figure 9, we also

draw horizontal lines for the INE and VN3 approaches. It can be observed that the Islands approach always
has a better CPU performance. As for disk access, when the radius is quite small, the VN3 approach has
less disk access. When the radius grow$.t% of D,,.., the Islands approach begins to show the best
query performance among the approaches.

Query Performance On Further-Improved Island To evaluate the improvement to Islands approach (de-
scribed in Section 4.6), we compare the query performanéé_tfland with the Islands approach on the

effect of k, Island radius, and the density of data points. As illustrated in Figure 10, wiggows big-

ger and the data point density decreases,|dl@mdExpansioralgorithm needs to access more Islands to
discover enough nearest neighbors. Compared ttsthed-Precomputatiocomponent of the Islands ap-
proach, thdsland-Precomputatidhcomponent of|_Islandsonly stores necessary data for the expansions
process (i.e., only the border vertices of islands remember the island$),_thkend approach exhibits a
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Figure 9: Query Performance Versus Island Radius

slightly better query performance than the Islands. In other cases, performance of both approaches is very

close.
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Figure 10: Query Performance of Further-Improved Island (AAL)

5.2 Experiments on Overall Performance

In the second series of experiments, we present the experimental result on comparing the overall costs for
different densities and update ratios of the INE, the VN3, and the Islands approach with two islands sizes.
The value oft is set tol0 in these experiments—this value is not related to the update operation. We report
the overall performance costs by adding the cost of all queries to the cost of all updates of edges as well as
data points and dividing the totals by the numbers of queries.
Overall Query and Update Performance Versus Update Ratio In this experiment, the island radius is

fixed at0.01 of D,,.,.. We use real data points for the AAL road network and synthetic data points at a
density of0.005 for the LA road network. The update ratio is varied frOm005 to 0.1 per query. It can

be seen from Figure 11 that the INE approach has a stable overall performance for different update ratios,
since the update operation only needs to read one or two disk pages. The VN3 approach is better than the
other two approaches when the update ratio is smaller@ttdn The Islands approach, with a radius of

0.01 exhibits almost the same trend as the INE approach.
Overall Performance Versus Density of Data Points In this experiment, the island radius remains at
0.01 of D,,4.. The update ratio is set @@01. We remove the real data points in AAL and use synthetic

data points in both networks.

The density is varied from.001 to 0.5, to determine the overall performances of the three approaches
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Figure 11: Overall Performance Versus Update Ratio

for varying densities. As can be seen from Figure 12, as the density increases, the overall performances the
three approaches improve. At a lower density, D01, the VN3 approach has best performance. When

the density grows t6.01 and beyond, the Islands approach becomes dominant. The INE approach becomes
superior when the density reaches.
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Figure 12: Overall Performance Versus Density

Overall Performance Versus Island Radius In this experiment, we set the update rati®idl and use
the real data points in AAL and synthetic data points in LA (witlnsity = 0.005). To check the impact
of the island radius on the query performance, the radius is varieddfr@i to 0.5 of D,,,q.

In Figure 13, we also draw two horizontal lines for the INE and VN3 approaches, for which the radius
is not a parameter. It can be observed that the Islands approach has the best CPU performance when the
radius is0.05 or smaller. As for disk access, experiments on both the AAL and LA datasets show that the
overall performance of the Islands approach is better than those of the INE and VN3 for certain radiuses
(0.005 and0.01 for AAL and 0.05 for LA). When the radius exceeds05, the cost of re-computing the
islands becomes substantial since islands grow large and overlap significantly.
Island Radius Versus Density and Update Ratio To obtain additional insight into the adaptability of
the Islands approach, we conduct experiments on the LA data to check how this approach can be used to
cope with different update ratios and densities of data points. We use two island sizes, setting the radius to
0.01 and0.05 of D4, in the experiments.

In Figure 14(a), we set the density @d05. It can be observed that the islands with radiu® has
the best performance when the update ratio is smaller@ttan When the update ratio grows to higher
than0.01, the islands with radiug.01 become the best. In the experiment shown in Figure 14(b), the
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5.3 Experiments on Pre-computation Cost

update ratio is fixed ab.01. We
still use islands with radiuses of
0.01 and0.05. When the density
is lower than0.005, the Islands
approach with an island radius of
0.005 achieves the best overall
performance. For higher densities,
the Islands approach with a radius
of 0.01 is a good choice. Only
when the density grows t@5, the
INE approach shows the best over-
all performance.

To evaluate on the pre-computation cost of the Islands approach, we list the CPU time, disk access, and
the amount of pre-computed distance pairs for the Islands approach on AAL network. Note that we do not
include the CPU time and disk access cost of assigning each pre-computed pairs into disk pages as the cost of
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Figure 15: Islands Pre-computation Cost (AAL)

Islands approach (as described in Section 4.6).

1E+7

[J CPU Time (msec)
Disk Access (Pages)
[l Pair of Distances

1E+6

1E+5

Number of Data Items

1E+4

1E+3+——

0.001 0.005

0.01

o
=)

i—_—___—__——~>»>

2

V22222222

N

0.05 Density

(b) Effect of Data Point Density

18

this process varies among different
hardware settings. As illustrated
in Figure 15, with the growth of
Island radius and the data point
density, the time complexity and
the space requirement (for storing
the pre-computed data) increases.
We omit the comparing of Islands
and VN3 approach on the pre-
computation cost. The compari-
son of Islands anBl _Islandis also
saved as the latter has almost the
same pre-computation cost as the



6 Summary and Future Work

This paper presents a versatile approach teearest neighbor computation in spatial networks, termed

the Islands approach. This approach generalizes existing re-computation and pre-computation approaches.
In particular, pre-computation is performed inside so-called islands, and re-computation is performed in-
between islands. An island intuitively is a sub-network with vertices and edges that are no further than a
certain distance, termed the radius, away from a data point. Variation of the radiuses of islands enables the
approach to accommodate networks with few as well as many data points and few as well as many updates.
This enables flexible management of the trade-off between update and query cost.

The paper experimentally compares the Islands approach with two pggiMualgorithms, namely
INE and VN3. The experiments result show that the Islands approach is indeed more versatile than these
and can be tuned to yield better performance in most cases. As a result, the Islands approach is thus attractive
for use in supporting location-based mobile services.

Several possible directions for future work exist.

It would be of interest to try to take into account additional semantics of road networks and transporta-
tion infrastructures. For example, real-time road conditions, such as road blocks or traffic jams, may be
taken into account. Computirg\NN queries in such “dynamic” networks offers new challenges [5, 7]. The
Islands approach is capable of using islands with different radiuses within different areas of the network.
Techniques for how to dynamically maintain a partitioning of a network into different areas, each with its
own, optimal island radius remains an open problem.
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Appendix

U1 V2 P1 3 Nil P4 V3 Vg P1 5 P3 P4 dp1 eas 1 U1 dp1 3
vy | vg | P | 2| Nil | Py vy | v | Py | 7| P3| Py dp1 6574 3 U1 dpg 7
vy | vy | P | 3| Nil| Py vs |vg | PL | 4] Py | Py dp, ere | 4 vy | dps | 5
V2 V3 PQ 5 P3 P4 Vs Vg Pg 5 | Nil P4 dp2 6672 3 V2 dpl 5
vo |vg | P | 4| Nil | Py vg | vs | Pa | 5| Nil | Py dp, ers | 2 vo | dp, | 4
Vg Vg P2 7 P3 P4 Vg (%) P1 7 P3 P4 dp3 6372 3 V2 dp3 2
vg | v | Py | 2| Nil| Py ve | vy | Pp | 2 | Nil | Py © PageT; v | dpy | 3
v |ve | Py | 4| Nil| Py vr | w3 | Py | 6| Nil| Py vy | dpy | 1
V4 | Vs P2 4 P3 P4 V7 | Ve P2 2 | Nil P4 Vg dp2 8
a) Pager; b) Pager: vy | dps | 6
Vs dp1 3
Vs dp2 8
U6 dp1 3
Vg dp2 3
U7 dp2 5
(d) PageP,
dp, | oo |3 P | | dp | dp, |05 |55 P Zl 22 3:'35 23 Zl 235 bs | by | 9.5
Rl I I I I I o I bo | by | 10 by | b2 | 9
dpl vy | 3| Ps dpl dp3 by | 3.5 | Py bl b4 95 b3 b4 85 b5 bg 8.5
dp2 Vg 3 P@ dp2 dpl b5 5.5 Pg bl 5 1 b3 5 1 b5 b4 6.5
dp, | vr | 5 | Ps dp, | dpy | b3 | 3 | Ps b1 U 5 b3 2 o bs | v1 | 8.5
dp3 vy | 2| P dp2 dp3 by 7 Py bl 22 7 bd U3 6 bs | v4 | 6.5
dp; | vs | 3| Ps dp, [dp, | b1 | 4 | Py bl v3 3 b3 V6 ; bs | vs | 2.5
(€) PageT dp; | dp, | b2 | 3.5 | P bl U‘f . b3 Z7 11 bs | vg | 2.5
dp, | dp, | b3 | 3 | P& bl I b4 bl ) bs | vr | 4.5
dp; | dp, | bs | 7 | Py b2 bl o5 4| b2 1105 (i) Page: %
(f) age s 2 3 . b4 b3 10
by | by | 10.5 by | b5 | 6.5
bz b5 9 b4 V2 9
by | 11 4.5 by | v3 4
b2 (%] 1.5 b4 Vg 4
bg V3 6.5 b4 (%rd 2
by | va | 2.5 (h) Pages
bz Vs 6.5
(g PageP7

Figure 16: Sample Data Pages
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