
The Islands Approach to Nearest Neighbor
Querying in Spatial Networks

Xuegang Huang, Christian S. Jensen, SimonasŠaltenis

October 19, 2006

TR-16

A DB Technical Report

Title The Islands Approach to Nearest Neighbor Querying in Spatial Networks

Copyright c© 2006 Xuegang Huang, Christian S. Jensen, SimonasŠaltenis.
All rights reserved.

Author(s) Xuegang Huang, Christian S. Jensen, SimonasŠaltenis

Publication History Extended version of: Xuegang Huang, Christian S. Jensen, Simonas
Šaltenis, “The Islands Approach to Nearest Neighbor Querying in Spa-
tial Networks.” In Proceeding of 9th International Symposium on Spatial
and Temporal Databases, Angra dos Reis, Brazil, August 22-24, 2005,
pp. 73–90.

For additional information, see theDB TECH REPORTShomepage:〈www.cs.aau.dk/DBTR 〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTSicon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meanings include happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with the birch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

Much research has recently been devoted to the data management foundations of location-based mobile
services. In one important scenario, the service users are constrained to a transportation network. As
a result, query processing in spatial road networks is of interest. In this paper, we propose a versatile
approach tok nearest neighbor computation in spatial networks, termed the Islands approach. By offer-
ing flexible yet simple means of balancing re-computation and pre-computation, this approach is able
to manage the trade-off between query and update performance, and it offers better overall query and
update performance than do its predecessors. The result is a single, efficient, and versatile approach to
k nearest neighbor computation that obviates the need for using severalk nearest neighbor approaches
for supporting a single service scenario. The experimental comparison with the existing techniques
uses real-world road network data and considers both I/O and CPU performance, for both queries and
updates.

1 Introduction

An infrastructure is emerging that enables location-based mobile services, and we are witnessing substantial
efforts in the research community to establish fundamental data management support for such services.
Mobile services typically involve service users and so-called points of interest. We consider the scenario
where these are located within a spatial network or, more specifically, a road network [13, 14, 15, 17, 21, 29].
The movements of the users, often termed moving objects, are constrained by the network, and the points
of interest can only be visited by traveling along the network. The relevant notion of distance is network
distance based on shortest-path computation. This scenario contrasts the one where no network is assumed,
movement is unconstrained, and Euclidean distance is used.

Existing approaches tok nearest neighbor (kNN) computation in spatial networks can be divided into
two types: approaches that computekNN queries by incrementally scanning the network untilk neighbors
are found, and approaches that apply some form of pre-computation and “compute”kNN queries by looking
up data collected in pre-computed data structure. Both types of approaches assume that the spatial network
is represented by graph-like data structures.

The first type of approach, denoted as “online computation,” naturally captures the dynamic aspects of
the network, e.g., the emergence or disappearance of points of interest, and applies some form of network
expansion-based search. This type of approach is able to output the network distances and paths to each
kNN, as these are computed as part of the process. The data structures used in online computation capture
the connectivity of the network and are easily updated. When compared to online computation, the second
type of approach, termed “pre-computation,” typically has better query performance, but has difficulty in
coping with frequent updates of the road network and the points of interest.

In this paper, we consider the performance of query as well as update processing, as efficient query
and update processing are important for location-based mobile services. In particular, we propose a novel
approach, termed the Islands approach, tokNN processing in spatial networks. This approach computes the
kNNs along with the distance to each, but does not compute the corresponding shortest paths. The rationale
for this design decision is that a mobile user is expected to only be interested in the actual path to a nearest
neighbor selected from thekNN result, and so the path computation is better left to a subsequent processing
step.

The Islands approach is designed with the assumption that the overall disk access cost of queries and
updates is the main performance evaluation criterion, and the approach aims to be efficient for varying
frequencies of queries and updates, which yields broad applicability. The versatility of the approach is
demonstrated by an experimental comparison with two other approaches that covers the cases these two are
optimized for. The comparison verifies the general applicability of the Islands approach, which has the best
overall performance.

1

This paper makes three main contributions.

• The Islands approach offers an attractive generalization of the existingkNN query processing tech-
niques for spatial networks. First, it employs a relatively simple data structure and an intuitive search
algorithm. Second, it is applicable to a broad range of mobile service scenarios, thus avoiding the
need for using more specialized algorithms for different scenarios.

• The Islands approach offers a direct and elegant way of controlling the amount of pre-computation
performed, thus enabling substantial flexibility in managing the trade-off between query and update
performance. By tuning the sizes of islands, the amount of pre-computation can be controlled. This
enables the approach to accommodate varying densities of points of interest and varying query versus
update frequencies.

• The paper presents an experimental evaluation that is significantly more comprehensive than previous
evaluations. Specifically, this is the first evaluation that covers both online computation and pre-
computation and considers both query and update performance in a setting with real road network
data. The paper thus offers new insight into relative merits of the existing approaches.

In Section 2, we proceed to introduce related work. Section 3 presents the Islands approach and its
variations. This is followed by a section that compares the Islands approach with existingkNN techniques
for data constrained to spatial networks. Section 5 then presents the empirical performance study that
characterizes the Islands approach as well as compares it with the existing algorithms. The last section
summarizes and offers directions for future research.

2 Related Work

Nearest neighbor computation is a classical topic. Many existing algorithms assume an indexing structure,
e.g., an R-tree, and search in a branch-and-bound manner [11, 18]. Many extensions and applications of
kNN computation have also been proposed [1, 6, 12, 20, 23, 24, 27, 28].

Query processing for objects moving in spatial networks, e.g., cars moving in road networks, has also
received attention recently. However, most existing spatial query processing techniques cannot be applied
directly in this setting, one reason being that the distance between two locations in a spatial network is the
length of the shortest path in the network between these rather than being the Euclidean distance.

This paper assumes a specific data model and disk-based data structure for a spatial network and its
associated data points as the foundation for its proposed algorithms. Among the several data models and data
structures available [5, 7, 8, 19, 25], we adopt a fairly standard graph-based data model and structure [8, 19]
so that the algorithms are generally applicable.

We consider several existing disk-based data structures for shortest path computation and general query
processing in spatial networks [9, 17, 22]. The CCAM structure [22] aims to support network computations
such as route evaluation and aggregate queries. In this structure, a two-way partition algorithm [4] is adapted
to partition the spatial network and then arrange network nodes into disk pages. Another algorithm for
partitioning a road network is proposed by Huang et al. [9], and Papadias et al. [17] propose a network
storage scheme for supporting both network-based and traditional Euclidean-distance-based spatial query
processing. Our storage scheme enhances this scheme to capture additional aspects of real-world road
networks.

As described, existing techniques forkNN computation in spatial networks can be characterized as
being either online processing techniques or pre-computation techniques. To provide a thorough discussion
of the existing techniques and to compare them in detail to the Islands approach, we defer consideration of
these works to Section 4.

2

3 The Islands Approach

Following a definition of the assumed transportation network model, concepts and observations related to
the use of islands are presented. Section 3.3 presents an algorithm forkNN computation based on islands,
and Section 3.4 covers extensions to the algorithm that enable it to utilize islands of different radiuses and
to accommodate additional semantics of transportation networks.

3.1 Transportation Networks and Query and Data Points

We consider location-based mobile services in road networks as our application scenario. In this scenario,
mobile service users are moving in a road network. A number of facilities or so-called points of interest,
e.g., gas stations or supermarkets, are located within the road network. We define the network distance
between a user and a point of interest as the length of the shortest path from the users’ current location to
the point of interest. Ak nearest neighbor query issued by a service user will return thek nearest points
of interest to the user based on the network distance. Usingquery pointto denote a user anddata pointto
denote a point of interest, we proceed to model the elements of the network scenario.

A road networkis defined as a two tupleRN = (G, coE), whereG is a directed, labeled graph and
coE is a binary, so-called co-edge, relationship on edges. GraphG is given byG = (V,E), whereV is
a set of vertices andE is a set of edges. Vertices model intersections and the starts and ends of roads.
An edgee models the road in-between two vertices and is a three-tuplee = (vs, ve, l), wherevs, ve ∈ V
are, respectively, the start and the end vertex of the edge. The edge can be traversed only fromvs to ve.
The elementl captures the travel length of the edge. Two edgesei andej are in the co-edge relationship
((ei, ej) ∈ coE), if and only if they represent the same bi-directional part of a road for which U-turn is
allowed.

Next, a location on the road network is a two tupleloc = (e, pos) wheree is the edge on which the
location is located andpos represents the distance from the starting vertex of the edge toloc.

A data pointis modeled as a set of locations, i.e.,dp = {loc1, · · · , lock}. Note that adding and removing
data points or their locations does not affect the road network itself, which is important for maintainability
in practice. Aquery pointqp is modeled as a location.

An edge with start vertexvi and end vertexvj is denoted byei,j . Figure 1 illustrates the concepts defined
above, e.g., edgee1,4 = (v1, v4, 2), data pointdp1 = {(e4,5, 1), (e5,4, 3)}, and query pointqp = (e7,6, 1).

Q

�
�
�
�

�
�
�

�
�
�

�
�
�
�A B

C

1

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

VV V

V

V V V

4

5
6 7

dp
2

4

dp
1

3

4

3

2

3
dp

1 2 3

1

3
2

6

3

5

qp
1

Figure 1: Road Network Model

The example road network in Figure 1 is assumed to have only bi-directional roads with no u-turn
restrictions and each data point has two positions—one on each side of a bi-directional road. The remainder
of the description of the Islands approach is carried out under these assumptions. Extension of the Islands
approach to capture various pragmatic road restrictions is covered in Section 3.4.

3

3.2 Observations

Intuitively, an incremental expansion process starting from the query point can be used to find thek nearest
data points in Euclidean space. To optimize the search process, one can “enlarge” each data point into a
big circle—see Figure 2(a)—so that the expansion process will terminate early. As shown in the figure,
data pointdp3 will be found as the nearest neighbor,dp1 is the second-nearest neighbor anddp2 is the
third-nearest neighbor. After touching the border ofdp2, the3NN search process can stop.

In a road network, given a distance valuer, theislandof a data pointdp is the subset of the road network
covered by a network expansion fromdp with the ranger. We definer as aradiusof this island. Intuitively,
all vertices with distance todp less than or equal to the radius belong to the island. We denote these vertices
asthe island’s vertices. A vertex of an island is aninternal vertexof the island if all its neighboring vertices
are vertices of the same island. A vertex of an island is aborder vertexof this island if at least one of its
neighboring vertices does not belong to this island. All the edges connecting the island’s vertices arethe
island’s edges. A location (or, a query point) in the road network isinsidean island if its network distance
to the data point of this island is less than or equal to the radius of the island.

As illustrated in Figure 2(b), for the part of the road network belonging to the island ofdp1 with a radius
of 5, v4 is an internal vertex andv1, v2, andv5 are border vertices. The locationloc = (e4,2, 2) is inside this
island.

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

2

dp3

qp

dp dp1

(a) Euclidean Islands

V

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

V4
dp

2dp
1

3
3

5

3
dp

1

3

11

2
4

3

6

V1

2

5

2

2

loc

qpV6

V3V2

V7

(b) Network Island

Figure 2: Observations on Islands

To record information about islands, each vertex in the network stores references to all the data points
that are centers of the islands covering the vertex. The distance from the vertex to the data point is stored
with each such reference. Then, similar to the Euclidean case in Figure 2(a), the network expansion process
of akNN query will be reduced, since a data point can be declared to be found when the expansion process
visits a border vertex of this data point’s island. If all islands have the same radius, and a query point is
already insidel islands, the data points corresponding to these islands are thel nearest neighbors of the
query point. The distances from the query point to thesel neighbors are found from the above-mentioned
pre-computed distances.

In general, thekNN search process includes two steps. First, we need to check the islands covering the
query point. Second, if the number of such islands is smaller thank, a network expansion is needed to find
additional islands.

If the islands have different radiuses, the islands approach uses the minimum radius,rmin, i.e., all data
points are assumed to have islands with radiusrmin (no larger than the islands they actually have). As will
be explained later, having different island radiuses brings flexibility to the Islands approach. Specifically,
the kNN query performance and the update efficiency can be controlled by changing the radiuses of the
islands in different regions of the road network. We proceed to describe the Islands approach with more
detail.

4

3.3 Islands-BasedkNN Algorithm

The Islands approach consists of a pre-computation component and an online network-expansion compo-
nent. The pre-computation component stores, for each vertex in the road network, references to the islands
that cover the vertex and the network distances from the vertex to the data points that generate the islands.
With this component, the network expansion, denoted asIslandExpansion(qp, k), first checks the islands
that the query pointqp is inside and maintains the data points found in a priority queue, then starts a network
expansion process fromqp to find borders of new islands. The network expansion process terminates when
the sum of the expansion radius and the minimum radius of all pre-computed islands exceeds the distance
from the query pointqp to thekth data point in the priority queue.

We proceed to describeIslandExpansion(qp, k) algorithm in the following. It is similar to the INE
algorithm [17], which in turn is a modified Dijkstra’s single source shortest paths algorithm. Two priority
queues,Qdp andQv, are used in the algorithm to record the covered data points and vertices together with
their distances to the query point, denoted asd(qp, dp) andd(qp, v). Both queues sort elements by the
distance value and do not allow duplicate data points or vertices. The size ofQdp is limited tok elements.

We introduceupdateanddequeoperations for the two queues. Theupdate(dp/v, dist) operation inserts
a new data point or vertex and the corresponding distance into the queue. If this data point or vertex is
already in the queue then, ifdist is smaller than the distance stored in the queue, the distance value in the
queue is updated todist. Thedequeoperation removes and returns the vertex with the smallest distance.
Suppose the minimum radius of all islands isrmin. The pseudo code ofIslandExpansion is given below.
QueuesQv andQdp are assumed to be empty initially.

(1) procedure IslandExpansion(qp, k)
(2) for eachdata pointdpon edgeqp.e: Qdp.update(dp, d(qp, dp))
(3) Qv.update(qp.e.vs, d(qp, dp.e.vs)), Qv.update(qp.e.ve, d(qp, qp.e.ve))
(4) for eachdp, if its island coversqp.e.vs or qp.e.ve: Qdp.update(dp, d(qp, dp))
(5) if ∃a, such that(a, qp.e) ∈ coE , do (2)–(4) assumingqp = (a, a.l − qp.pos)
(6) Letdpk denote thek-th element inQdp, dpk = ∅, if there is no such element
(7) dk ← d(qp, dpk) // dk ←∞ if dpk = ∅
(8) v ← Qv.deque, markv visited
(9) while d(qp, v) + rmin < dk

(10) for eachnon-visited adjacent vertexvx of v
(11) Qv.update(vx, d(qp, vx))

// d(qp, vx) assumes the pathqp → · · · → v → vx

(12) for eachdp, the center of an island coveringvx

(13) Qdp.update(dp, d(qp, dp))
(14) dk ← d(qp, dpk)
(15) v ← Qv.deque, markv visited
(16) return Qdp

Note that in line 13 of the algorithm,d(qp, dp) = d(qp, vx) + d(vx, dp), whered(qp, vx) is taken from
Qv andd(vx, dp) is the pre-computed distance stored withvx. Analogous computation ofd(qp, dp) is also
performed in line 4.

To see how the algorithm works, consider Figure 2(b) and let all three data points have islands with
radius6. Starting from the query pointqp = (e7,6, 1), the algorithmIslandExpansion(qp, 2) first adds
verticesv6 andv7 to Qv (Qv = 〈(v6, 1), (v7, 1)〉). Then it checks the islands coveringv6 andv7, and data
pointdp2 is found. Starting withv6, the expansion process finds the islands ofdp1, dp2 anddp3 through the
adjacent verticesv5 andv2. Thus,Qdp = 〈(dp2, 4), (dp1, 9)〉 andQv = 〈(v7, 1), (v5, 6), (v2, 8)〉. At the
next step, sincermin = 6 and the distanced2 from the query point to the2nd NN is9, only vertexv7 in Qv

5

needs to be checked (based on the while-loop criteria in line 9). Finally,dp2 anddp1 are the two data points
returned. It can be observed that using the pre-computed information, the network expansion finds the data
pointsdp1 anddp3 before reading the edges they are located at.

If k = 1, the algorithm starting fromqp will find dp2 in the first step. Sincermin = 6 and the
distance fromqp to dp2 is d1 = 4, the algorithm will finish without the network expansion process (since
d(qp, v6) + rmin > d1). This, as mentioned in Section 3.2, is always the case ifk or more islands cover the
query point.

TheIslandExpansion algorithm uses disk-based data structures for the network and pre-computed data.
Section 4 provides a detailed description of the data structures, and it compares the Islands approach with
the existing road networkkNN algorithms using examples. We proceed to discuss several extensions of the
Islands approach.

3.4 Extensions

Operations on the Radius In real-world applicationskNN computation is based on a disk-based road
network data structure. In addition to the query performance, the update efficiency of the road network data
should be considered. There are two types of updates of the road network data: updates of the network
itself, i.e., of vertices and edges, and updates of data points.

Updating a vertex or an edge may possibly require all islands covering this vertex or edge to be re-
computed. An initial check can be made to compute the network distance from the updated vertex or edge
to the centers of the islands covering it. If the distance remains the same, so do the islands. Updating a
data point causes its island to be re-computed. Such re-computation does not influence any other islands.
Since an update operation usually involves a network expansion, the island’s radius, which determines how
far the expansion process goes, can be tuned to control the update efficiency. For a large road network
with relatively few data points, the radiuses of islands can be increased so that thekNN search terminates
quickly. Conversely, in a small road network with many data points, the radiuses of islands can be decreased
so that the costs of update operations are reduced.

We proceed to define two operations on the radius of an island. Theshrink operationon an island
reduces the radius of this island, which improves the local update performance. Note that if the radius, after
being shrunk, is still no less than the smallest island radiusrmin of the road network, the shrink operation
has only minor impact on the query performance. Only if all islands are shrunk andrmin is decreased, the
query performance will be reduced.

The expand operationon an island increases the radius of this island, which reduces the local update
performance. Again, running the expand operation on individual islands will not necessarily increase the
query performance. Only when the expand operation is run on all islands, the smallest radiusrmin will
increase, and the overall query performance will be improved. Next, we will describe how the expand
operation can be used to increase the radiuses of islands in local areas of a spatial network, where queries
will then terminate earlier, by using a larger, localrmin value.

Summarizing, the shrink and expand operations can be applied to all islands to changermin so as to
balance the overall query and update performance. The following section describes how these operations
can be used to achieve different query and update performance trade-offs in different parts of a road network.

Cross-Area Island Expansion As has been described, islands in different parts of a road network can
have different radiuses. Intuitively, radius of islands in urban areas should be relatively small since the
densities of points of interest are relatively high and there are relatively frequent updates of road network
data. In rural area, islands can be given much bigger radiuses since the densities of points of interest are
much smaller and there are far fewer updates.

When akNN query is issued close to the border of two areas that have differentrmin values, algorithm
IslandExpansion introduced in Section 3.3 can be improved to take into account the differentrmin values.

6

We proceed to discuss how to modify theIslandExpansion algorithm to better handle such cross-area
expansions.

Border

Area A with
r

1

min = r
1

Area A with

minr = r 2

2

(<) r r1 2

dp

qp

v2

1

r 1

v

Figure 3: Cross-Area Island

We assume that islands of data points located near the border of
two areas can be pre-computed across borders. As shown in Figure 3,
data pointdp is located near the border between areasA1 andA2.
Note that the smallest island radiusrmin in A1 is r1 and inA2 is
r2, (r1 < r2). Sincedp is in A1, without loss of generality, suppose
the island fordp has a radius ofr1. A network expansion process
starts from a query pointqp in A2 to find kNNs and stops at vertex
v2, which is quite close to the border betweenA1 andA2.

Based on the pseudo code of theIslandExpansion algorithm,
d(qp, v2) + r2 ≥ dk. Note that vertexv1 belongs to the island of
dp andd(qp, v1) > d(qp, v2). But sincer1 < r2, it is possible that
d(qp, v1)+ r1 < d(qp, v2)+ r2. Thus, the expansion process starting
from qp will be insufficient if it only considersr2.

To handle this, we define anisolation regionfor road networkA2

(as shown in Figure 3). All vertices inA2 whose network distance to
the border ofA1 andA2 is less than or equal tor1 belong to this region. TheIslandExpansion algorithm
running insideA2 is correct if the expansion process does not enter this region. Otherwise, the radiusr1 has
to be used instead ofr2 in theIslandExpansion algorithm to ensure correctness. Note that for road network
A1, there is no need to define such a region sincer1 < r2 and the expansion process starting atA1 always
usesr1. In general, when two road-network areas meet, the isolation region must be pre-computed for the
area with the largerrmin.

How the road-network is divided (possibly automatically) into areas with differentrmin values is an
interesting future research direction.

Pragmatic Road Restrictions As mentioned, the above discussion assumes that all edges in the road
network are bi-directional and without U-turn restrictions. We proceed to extend the Islands approach to
accommodate pragmatic road restrictions. We make changes to both the pre-computation component and
the network expansion algorithm.

First, since edges in the real-world road networks are not always bi-directional, the network distance
from one location to another may not always be the same as the way back. Thus, in the pre-computation
component, each data point has two associated islands, i.e., the “incoming island” that is built by making
network expansion from the data point using “incoming” edges, and the “outgoing island” that is constructed
using “outgoing” edges. Then theIslandExpansion algorithm findsk nearest neighbor data points to (from)
a query point by using “incoming” (“outgoing”) edges of each vertex until enough “outgoing” (“incoming”)
islands are found.

Second, as described in the data model, a data point can be associated with more than one location. Two
ways exist for processing such a constraint. The first way is to treat each location as a different data point.
Then each location has its island. The network expansion process will eliminate islands denoting different
locations of the same data point. The second way is to define the data point as a new vertex in the road
network. Then, edges are defined to link the vertex with the locations associated with the data point. The
lengths of these edges are set to zero and no changes are made to theIslandExpansion algorithm.

Third, since U-turn restrictions are quite common in the real world, we propose two ways to process
U-turn restrictions. Note that we only need to consider edges with U-turn allowed that have at least one
data point. For such data points, we can either add one more location of the data point at the corresponding
co-edge (as assumed in Figure 2(b)), or we can always check the co-edge during the network expansion
process.

7

Fourth, for two roads that meet at a road intersection, there may exist turn restrictions that prohibit
the direct movement from one road to the other through the intersection. As shown by, e.g., Speičys et
al. [19], such turn restrictions can generally be handled by adding new vertices and zero-length edges to the
original network, thus obtaining a new network. By using this new network, the Islands approach needs no
modifications to handle turn restrictions.

4 The Islands Approach in Comparison to Existing Techniques

The Islands approach consists of a pre-computation component and a network expansion algorithm. With
the shrink andexpandoperations and the procedure for handling cross-area expansions, the trade-off be-
tween the performance ofkNN queries and road-network updates can be controlled. For comparison pur-
poses, we proceed to survey and exemplify the existingkNN algorithms. We also describe the disk-based
data structure for the road network and the pre-computed data.

4.1 Onlinek Nearest Neighbor Computation

Intuitively, kNN computation can be done by employing a best-first search through adjacent edges untilk
neighbors are found. In contrast to the traditional shortest-path algorithms in graph theory, thekNN search
in spatial networks has to employ a disk-based data structure for representing the network, the objective
being to minimize disk access.

Papadias et al. [17] introduce two algorithms forkNN computation in spatial network, namely Incre-
mental Euclidean Restriction (IER) and Incremental Network Expansion (INE). Based on the observation
that the Euclidean distance between any two locations never exceeds their network distance, the IER algo-
rithm obtainsk Euclidean nearest neighbors and arranges them in ascending order of their network distance
to the query point. Subsequent Euclidean neighbors are retrieved incrementally until the next Euclidean
neighbor has larger Euclidean distance than the network distance from the query point to thekth neighbor.

The second algorithm, INE, performs incremental network expansion from the query point and exam-
ines data points in the order they are encountered during the expansion process. The INE algorithm is an
adaptation of Dijkstra’s single source shortest paths algorithm on graphs. It terminates when the expansion’s
range exceeds the network distance to thekth nearest neighbor. It can be seen as a special case of the Islands
approach where each data point’s island has a radius of0.

It has been shown [17] that the INE algorithm outperforms the IER algorithm in every aspect. However,
there are still cases where the INE approach seems to be relatively inefficient. Specifically, its performance
depends on the density of the data points. Intuitively, for a large road network with only few data points,
the expansion process of the INE algorithm will have to scan large parts of the road network until enough
data points are collected.

The disk-based road network data structure used by the IER and INE algorithms has been adapted into
our testbed data structure. We use this structure because it preserves connectivity and locality of the road
network and because it is robust with respect to updates of the road network as well as data points.

4.2 kNN Pre-Computation Approach

To save the cost of network expansions in online computations, pre-computation techniques can be designed
to pre-calculate a certain amount of network distances between data points and vertices. Shahabi et al. [21]
introduce a technique to transform a road network to a high dimensional space in which simpler distance
functions can be used. The major drawback of this method is that it involves an off-line pre-computation
of the network distances between all pairs of vertices and uses high-dimensional spatial indexes which

8

limits its applicability and leads to poor performance. Kolahdouzan and Shahabi [14] propose the so-
called VN3 technique forkNN computation in road networks. Starting from each data point, VN3 first
creates a Network-Voronoi-Diagram [16], then pre-calculates the network distances within each Voronoi
polygon. The network expansion within each Voronoi polygon can then be replaced by a look-up over the
pre-computed distances.

Consider a Network-Voronoi-Diagram constructed for the example road network in Figure 1. As
shown in Figure 4, the Voronoi polygon ofdp2 contains border pointsb3, b4, and b5. Using the pre-
computed information, a2NN query from the query pointqp first finds thatqp is inside the Voronoi
polygon of dp2. Thus, dp2 is its nearest neighbor. Then the network distance fromqp to b3, b4, and

1

��

��

����

��

���
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

VV

V

V

4

dp
1

3

3

3
dp

2 3

1

5

V1

dp
2

2
2

33

4

2

V7qp

3

1

2.5

1

3

b

b

b

b
1.5

b

1

2
3

4

5

2

V6

1

Figure 4: Network Voronoi Dia-
gram

b5 can be found by look-up in a pre-computed distance table. To find
the next nearest neighbor, the VN3 approach generates a candidate set
consisting of “adjacent” data points, i.e., data points whose Voronoi
polygons are adjacent todp2’s polygon. Thus,dp1 anddp3 are in-
cluded in the candidate set. Then a refinement step is used to find
the actual network distance fromqp to these candidate data points.
Since the distances from border points ofdp1 anddp3 to these data
points are pre-computed, it requires just a look-up process to get the
network distance fromqp to dp1 anddp3 via the border pointsb3, b4,
andb5. The VN3 approach continues this process until enoughkNNs
are found.

The VN3 approach excels in query performance when the density
of data points is low, but is not efficient in situations when many data
points are located in a small network area, e.g., points of interest in a
city center. In addition, this approach does not provide a clear way of

representing different “types” of data points in the road network. it is possible to construct a “multi-level”
structure by constructing Voronoi diagrams for each type of data points, but such multi-level Voronoi-
diagrams do not enable efficient processing of thekNN queries for multiple types of data points. An
example of such query could be looking fork nearest tourist attractions such as museums, shopping malls,
and parks.

We are also aware of two very recent publications on the same topic. First, Cho et al. [3] propose the
UNICONS (UNIque Continuous Search) approach [3], for efficientk nearest neighbor and continuousk
nearest neighbor queries in road networks. The UNICONS approach pre-computes and storesk nearest
neighbors to a selected amount ofcondensingpoints in the network. The condensing point is defined as
the network vertex that has at least three adjacent vertices. However, the approach does not provide a
systematic way of choosing thecondensingpoints. In addition, such pre-computation is fragile to face
updates to the networks (i.e., a simple update to a vertex or edge will cause all the pre-computation data
to be re-generated). Second, Hu et al. [10] propose a novel approach, termed SPIE, which considers to
make reduction on the networks so that the number of edges can be decreased. To achieve this, a set of
inter-connectedshortest path trees(SPT) are generated based on the network. Starting from a vertex (a root
node) in a road network, a Dijkstras algorithm is called to grow the tree. During the tree-growth process,
a new tree noden is added if its distances to other existing tree nodes are preserved by the tree. This is
determined by checking if there is any adjacent edge ofn that connects it to a tree node closer than the
tree path. If such edge, denoted asshortcut, exists, this node becomes a new root and a new SPT starts to
grow from it. The SPTs is then transformed into the SPIE structure which provides further improvement
to thek nearest neighbor query performance. The SPIE approach has severe shortcomings which makes it
impractical. First, this approach assumes that the data points are distributed on network vertices which does
not fit in many situations that data points are represented with linear-referencing, i.e., they locate on edges
in-between two network vertices. And it will make the network more complex by adding each data point as

9

vertices to the network. Second, the modern transportation networks often involve one way streets, u-turn
restrictions, and turn-restriction on road junctions. These made the road network not as simple as a un-
directed graph. The SPIE approach will not benefit from making reductions on the networks by considering
these actual situations.

Due to the focus of our discussion, we choose to focus on comparing our approach with the VN3 and
INE approaches. We proceed to introduce a disk-based data structure for the INE, the VN3, and the Islands
approach.

4.3 Disk-Based Data Structure

The disk-based data structure for road network data used together with the INE, the VN3, and the Islands
approach is shown in Figure 5. This structure is an adaptation of the data structures proposed for the
INE [17] and VN3 [14] approaches.

The structure consists of six components, named as follows:Vertex–Edge, Edge–Data, Island–Pre-
computation, Voronoi–Polygon, Border–Adjacency, andVoronoi–Precomputationcomponent.

The road network and data points are represented by the Vertex-Edge and Edge-Data components. As
illustrated in Figure 5, based on the example road network in Figure 1, the adjacency listl4 for vertexv4 is
composed of entries standing for edges starting fromv4. The data pointdp1 located on edgee4,5 is stored
in an entry in the Edge-Data component. Specifically, in the Vertex-Edge component, each entry denotes
an edge and has the form(vsID , veID , ptNBVE , L, ptDP , ptI), wherevsID andveID are the id’s of the
start and end vertices,ptNBVE points to the disk page containing the end vertex,L is the length of this
edge,ptDP points to the disk page containing the data points on this edge, andptI points to the disk page
containing Island-Precomputation data of the end vertex. Pointers are set toNil if there is no linked page.
Entries in the Vertex-Edge component are assigned to pages based on the Hilbert value of the start vertex.

4

l
l 1

2

l 4
V2 dp1 5
V 2 4
V dp

. . .

. . . P

dp2
dp2

V
V

6

7

3
5

. . .

. . .
P
P6

6

P5

dp2
dp2
dp2

dp1
dp
dp

3

3

b
b
b

5

3

4

3
7

5.5 P
P
P

. . .

. . . 6P

b4 b1 11
b4 b2 10.5

. . .
b4 V2

Vb4 3
. . .

. . .

. . .
P8

9

. . .

P4

4P
4P

21 Nil

P
41P

2P

Component
Border−Adjacency

P

4
Nil

3

2

2

dp

3 2
4

dp1 e4,5 1
dp1 e5,4 3

. . . P3

Voronoi−Precomputation
Component

Edge−Data Component

l 3

l 5

1

2V
V

5V

V
V
V

4
4

4

P1

Component
Voronoi−Polygon

Vertex−Edge Component Island−Precomputation
Component

. . .

P2

4Adjacency List of V

9

8

8

Figure 5: Disk-Based Data Structure

Each entry in the Edge-Data component has the form
(dpID , eID , offset), wheredpID , eID denote the data
point and edge, andoffset is the distance from the start
vertex to the data point. We assume theeID value can be
obtained from thevsID andveID values in the Vertex-
Edge entry. Otherwise, these two attributes are used in-
stead. Both the Vertex-Edge and the Edge-Data compo-
nents are used in the INE algorithm.

For each vertex, the Island-Precomputation com-
ponent stores a list containing its distance to re-
lated islands. Each entry in the list has the form
(vID , dpID ,D) wherevID anddpID denote the vertex
and data point, andD is the network distance between
them. These entries are arranged into pages based on the
Hilbert values of the vertices. As illustrated in Figure 5,
the list of vertexv2 has three entries, describing its dis-
tances to the three data points. TheIslandExpansion
algorithm uses the Vertex-Edge component, the Island-
Precomputation component and the Edge-Data compo-
nent (only in the first step).

The VN3 approach uses the Voronoi-Polygon com-
ponent, the Border-Adjacency component, and the
Voronoi-Precomputation component. The Voronoi-

Polygon component stores, for each data point, the vertices inside its Voronoi polygon. This component

10

is used to decide the Voronoi polygon where the query point is located and provides the first nearest
neighbor. Each entry has the form(dpID , vID ,D , ptB), wheredpID denotes the data point generating
this Voronoi polygon,vID is the id of a vertex inside the Voronoi polygon,D is their distance, andptB
points to the disk pages of the Border-Adjacency component containing the border points and adjacency
information for all the Voronoi polygons. Each entry in the Border-Adjacency component has the form
(dpsID , dpeID , bID ,D , ptP), wheredpsID anddpeID denotes two data points whose Voronoi polygons
are adjacent,bID denotes one border point of the two Voronoi polygons,D is the distance from the border
point to the two data points, andptP is the pointer to the disk page containing pre-computed distance values
of this border point. The Voronoi-Precomputation component stores, for each border point, its distance to
other border points and vertices of the same Voronoi polygons.

We assume that the edge where the query point is located is known before the query so that it can
be visited directly. Otherwise, all the edges can be indexed using an R-tree, which can then be used for
“map-matching.” If the “id” or “name” of the edges can always be revealed for the query, aB+-tree can be
used to index these attributes and provide direct access to edges in the Vertex-Edge component. The whole
disk-based data structure for the example road network in Figure 1, consisting of 9 disk pages, is presented
in Appendix 6. Each island is given a radius of8. Each attribute value takes1 unit size, and we set the page
capacity to54 units.

4.4 Example

Based on the example road network, we proceed to exemplify the workings of the INE, VN3, and Islands
approaches. We employ an LRU buffer with a size of 2 pages and execute a2NN query for query point
qp = (e7,6, 1). We show the pages in the buffer and the total amount of disk access for the three approaches.
TheD.A.column denotes the amount of disk reads (in pages). For the INE and Islands approaches, we also
observe the content of the two queuesQv andQdp, and the distance fromqp to the second nearest data
point, denoted asd2. For the VN3 approach, we track the candidate set, the distance values used, and the
final data points found.

It can be observed from Figure 6 that the query performance of the Islands approach is sensitive to the
island radius used. Whenrmin = 8, the query results are found by checking the islands within which the
query point is located. When the radius is decreased to7, the network expansion takes2 more steps to
finish.

4.5 Update Operations

Update of network and data points for the INE approach is obvious—updates only affect one or adjacent
pages in the Vertex-Edge and Edge-Data component. Updating network and data point for the VN3 ap-
proach, as discussed in [14], requires adjacent Voronoi-Polygons to be re-generated. We can use a network
expansion process to update the Voronoi polygon of a data point. For example, to update the data pointdp1,
a network expansion starting fromdp1 will stop after neighboring data pointsdp2 anddp3 are found. The
re-computation process uses disk pagesP1, P2, andP3. Then pagesP5, P6, P7, andP9 and possibly page
P8 are accessed for updating.

For the Islands approach, updates cause the associated islands to be re-computed. As an example, to
update data pointdp1, the re-computation will need pagesP1, P2, andP3 for network expansion and will
then read pageP4 for updating data. We proceed to describe in detail how to handle updates to the network
data and the data points. These include theinsertion, deletionof network vertices, edges, data points and
changes to edge length as well as positions of data points on edges. We assume an in-memory listIsland-
Tableis available. Each entry in the list has the form(dpID , r), wheredpID denotes a data point andr is the
island size of this data point. As discussed in previous sections, the island sizer can be changed in various

11

Approach Steps Qv Qdp d2 Buffer D.A.

1 〈(v6, 1), (v7, 1)〉 ∅ ∞ P2 1

2 〈(v7, 1), (v5, 6), (v2, 8)〉 〈(dp2, 4)〉 ∞ P2, P3 2

3 〈(v5, 6), (v3, 7), (v2, 8)〉 〈(dp2, 4)〉 ∞ P3, P2 2

INE 4 〈(v3, 7), (v2, 8), (v4, 9)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P3 2

5 〈(v2, 8), (v4, 9)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P3 2

6 〈(v4, 9), (v1, 11)〉 〈(dp2, 4), (dp1, 9)〉 9 P1, P3 3

Island
rmin : 8

1 〈(v6, 1), (v7, 1)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2

Island 1 〈(v6, 1), (v7, 1)〉 〈(dp2, 4)〉 ∞ P2, P4 2

rmin : 7 2 〈(v7, 1), (v5, 6), (v2, 8)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2

3 〈(v5, 6), (v3, 7), (v2, 8)〉 〈(dp2, 4), (dp1, 9)〉 9 P2, P4 2
(a) Example of the INE and Island (rmin = 7, 8) Approaches

Steps Candidates Distances Results Buffer D.A.

1 ∅ ∅ {(dp2, 4)} P2, P5 2

2 {dp1, dp3} D(qp, b4), D(b4, dp3),
D(qp, b5), D(b5, dp1),
D(qp, b3), D(b3, dp3)

{(dp2, 4)} P5, P6 3

3 ∅ ∅ {(dp2, 4), (dp1, 9)} P8, P9 5
(b) Example of the VN3 Approach

Figure 6: Running Example of INE, Island, and VN3 Approach

area of the network to balance between update and query performance. We maintain an in-memory list for
the update operations. When an island needs to be re-generated, the valuer of each island inIsland-Table
provides the island size for the re-generation.
Update of vertex: When a new vertex is inserted to the network, we first need to update theVertex-Edge
component. Next, for each island covering adjacent vertices of this new vertex, we check if this island
also covers the new vertex (based on theIsland-Table) and update theIsland-Precomputationcomponent.
Similarly, when a vertex is deleted from the network, we read all the islands covering this vertex, re-generate
these islands and update theIsland-Precomputationcomponent as well as theIsland-Table. Modification on
a vertex will not change the data structure if it does not change the network topology related to this vertex.
Otherwise, the modification to the vertex is a combination of deletion and insertion steps on this vertex.
Update of edge:When a new edge is inserted or deleted, assuming that the two vertices of the edge are
already in the network, we read all the islands covering the any of the two vertices and re-generate these
islands. Next, when the length of an edge is increased, we need to re-generate those islands that cover both
vertices. If the length is decreased, all the islands covering any of the two vertices of the edge have to be
re-generated.
Update of data point: When a data point is inserted, we need to make a network expansion from this
data point and add the data point to all the network vertices inside this island. TheIsland-Tableis also
updated. Similarly, when a data point is deleted, we also make a network expansion to extract this data
point from each vertex inside the island of this data point. Thedeletionandinsertionprocesses can be used

12

as a combination of operations when the data point’s position on an edge is changed.

4.6 Further Improvement to Islands

In the network expansion process of theIslandExpansionalgorithm, when a new network vertex is de-
queued fromQv, all the islands (i.e., the data points) covering this vertex have to be read from theIsland-
Precomputationcomponent to update the queueQdp. This operation is not efficient as a “discovered” island
may still be accessed in the network expansion process. To reduce the redundancy, we propose to partition
the Island-Precomputationcomponent into two parts, i.e., theIsland-Precomputationi component and the
Island-Precomputationb component. Both components have the same format as theIsland-Precomputation
component. The first component,Island-Precomputationi, records a vertex, a data point and their distance
if the vertex is aninternal vertexof the data point’s island. The second component,Island-Precomputationb,
saves a vertex, a data point and their distance if the vertex is theborder vertexof the island of the data point.
In accordance to this modification, each entry in theVertex-Edgecomponent needs to have two pointers to
disk pages. One pointer links the entry to the islands where the start vertex of the entry is theinternal vertex
and the other links the entry to the islands where the start vertex is theborder vertex.

Data generation for the two components is obvious. Specifically, in the network expansion process of
generating each island, we only need to record the vertices that are “dequeued” from the queueQv and
check each vertex with the definitions ofinternal vertexandborder vertexto decide the component for
storing this island.

To modify theIslandExpansionalgorithm with the two components, in step 4 of the algorithm, it is
necessary to access islands from both theIsland-Precomputationi and theIsland-Precomputationb com-
ponents that cover verticesqp.e.vs andqp.e.ve. Next, at steps 12 and 13 inside the while-loop (i.e., the
expansion process), the algorithm only needs to read islands from theIsland-Precomputationb component
until k nearest neighbors are found.

Intuitively, by having these two components, the efficiency of thek nearest neighbor query is further
improved as the expansion process gets fewer accesses to the islands data. The update operation on this
“improved” islands is the same as described in the previous section but can be slightly more complex as
the two components need to be updated at the same time. To evaluate on how this further improvement
can influence the efficiency of Islands approach, we denote this asFI Island (Further Improved Islands)
approach and compare it with the aforementioned Islands approach in the next section.

5 Performance Evaluation

Two real-world datasets are used in the evaluation of the discussed approaches. The first dataset, AAL,
contains the road network of the Aalborg area in the Northern Jutland region of Denmark along with real
points of interest. The network contains11, 300 vertices,13, 375 bi-directional edges, and279 points of
interest. The second dataset, LA, represents the spatial network data of Los Angeles, California. This data
was obtained via the Internet [26] and converted into network files via the Tiger File Manager [2]. The
LA dataset contains195, 010 vertices and266, 335 bi-directional edges. We generate synthetic points of
interest for the LA network.

We measure the performance of the these approaches in terms of CPU time and cost of disk access. The
CPU time checks, by loading the whole network and pre-computed data into physical memory, the actual
running times of the experiments with the three approaches. To measure the disk access cost, we arrange
the road network and pre-computation data into the data structures described in Section 4.3, we set the page
size to4k, and we employ an LRU buffer. The buffer size is set to10% of the sum of the sizes of the
Vertex-Edge and Edge-Data components. The AAL dataset contains129 pages in the two components, and

13

the LA dataset contains4, 132 pages in the Vertex-Edge component. We disregard the space use that stems
from the queues and variables used in the algorithms and thus do not consider them as part of the buffer.

Three series of experiments are conducted. The first series assumes that there are no update to the road
network and studies the effects on query performance of varyingk, data point density, and islands radius.
The density of data points is the ratio between the number of data points and the number of bi-directional
edges in the road network. We define the maximum Euclidean distance between all vertices in the road
network asDmax. The island radius used is represented as the fraction ofDmax. In all experiments, islands
of the same road network have the same radius (In the case that the radiusrmin is too small for certain
islands, i.e., a data point is far away from at lease one vertex of its edge, we increase the size of this
particular island so that this island covers at least two vertices of the data point’s edge).

The second series of experiments considers both query and update performance on the INE, VN3 and
Islands approaches. We define the update ratioRu as the ratio of updates being executed per query. The
overall performance is the sum of the query and update cost. (To be consistent with the assumed application
scenario, we assume an online-processing system where update operations have to be processed together
with the query operations so as to provide correct query results). We use updates of edge lengths and updates
of the positions of data points on an edge as standard update operations. Given an update ratioRu and an
amount of queriesN , there areN · Ru updates on edges as well as data points. The experiments examine
the effect on the overall performance of the three approaches of varying update ratio, data point density, and
island radius.

The third series of experiments checks the pre-computation cost of the Islands approach. This includes
the CPU time and disk access cost on pre-computation of each island and the space requirements on storing
the pre-computed distance data.

In all experiments, the query points are randomly generated. For the first set of experiments, we execute
a workload of200 queries and report the average performance. For the second series of experiments, we
increase the number of queries so as to get a proper amount of update operations (the update ratio is assumed
to never exceed0.1). Experiments with the same update ratio are conducted at least three times to obtain
average performance figures.

The experiments are performed on a Pentium IV 1.3 GHZ processor with 512 MB of main memory and
running Windows 2000. The C++ programming language is used.

5.1 Experiments on Query Performance

In the first series of experiments, we present both CPU time and disk access costs of the experiments on
AAL data and focus on checking the disk access in the experiments with the LA data.
Query Performance Versusk In this experiment, the island radius is set to0.1 of Dmax andk is varied
from 5 to 200. We use the real world data points for the AAL road network and synthetic data points for
LA road network. The density of data points in AAL is0.02 while the density for LA is0.005. The results
are shown in Figure 7. It can be observed that with the growth ofk, the computational cost of all three
approaches increases. The CPU time of the Islands approach is better than those of the other two. Both the
VN3 and Islands approaches show less disk access than the INE approach. The Islands approach is better
than VN3 with respect to disk access cost untilk grows beyond50.
Query Performance Versus Density of Data Points In this experiment, the island radius is0.1 of Dmax.
The valuek is set to10. We remove the real data points in AAL and use synthetic data points in both AAL
and LA road network. The density is varied from0.001 to 0.5 to check the performance of the three ap-
proaches. It can be seen from Figure 8 that as the density increases, the INE approach improves substantially
and becomes competitive. The Islands approach has similar behavior. It has worse performance for the AAL
network and data than the VN3 approach (as shown in Figure 8(b)) when the density is less than0.005, but
becomes the best among the three approaches when the density exceeds0.005.

14

20010 20 505

250

200

150

100

50

0 k

CPU Time (msec)

INE

Island

100

VN3

(a) CPU Time (AAL)

INE

�
�
�
�

�� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

0

120

600

480

360

240

5020105 100 200
k

Disk Access (Pages)

VN3
Island

(b) Disk Access (AAL)

1000

�
�
�
�

�
�
�
�

�
�
�
�

����
�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

0

200

800

600

400

5020105 100 200
k

Disk Access (Pages)

VN3
Island

INE

(c) Disk Access (LA)

Figure 7: Query Performance Versusk

Density

0

10

20

30

40

CPU Time (msec)

INE

Island

0.50.10.050.010.0050.001

VN3

(a) CPU Time (AAL)

Disk Access (Pages)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�0

60

0.50.10.050.010.001 0.005

120

180

240

300 INE
VN3
Island

Density

(b) Disk Access (AAL)

Disk Access (Pages)

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�0

40

0.50.10.050.010.001 0.005

120

160

200 INE
VN3
Island

80

Density

(c) Disk Access (LA)

Figure 8: Query Performance Versus Density

For the LA network and data, the Islands approach always shows better performance than the VN3
approach. The two networks differ in that the connectivity among vertices and the density of edges in
the LA network are much higher than in the AAL network. This means that for the same density of data
points, the network expansion process for findingkNNs in the LA network finishes earlier than in the AAL
networks. The Islands approach is more favorable in the LA network, as each island is related to more
network vertices, which makes it fast for the network expansion process to discover an island. The VN3
approach, in the LA network with its high connectivity and density, possesses more border vertices and
pre-computed distance data. It thus requires more disk access in its filter and refinement steps.
Query Performance Versus Island Radius In this experiment, we setk = 10 and use the real data
points in AAL and synthetic data points in LA (density = 0.005). To determine the impact of island radius
on the query performance, the radius is varied from0.001 to 0.5 of Dmax. Note that in Figure 9, we also
draw horizontal lines for the INE and VN3 approaches. It can be observed that the Islands approach always
has a better CPU performance. As for disk access, when the radius is quite small, the VN3 approach has
less disk access. When the radius grows to0.05 of Dmax, the Islands approach begins to show the best
query performance among the approaches.
Query Performance On Further-Improved Island To evaluate the improvement to Islands approach (de-
scribed in Section 4.6), we compare the query performance ofFI Island with the Islands approach on the
effect of k, Island radius, and the density of data points. As illustrated in Figure 10, whenk grows big-
ger and the data point density decreases, theIslandExpansionalgorithm needs to access more Islands to
discover enough nearest neighbors. Compared to theIsland-Precomputationcomponent of the Islands ap-
proach, theIsland-Precomputationb component ofFI Islandsonly stores necessary data for the expansions
process (i.e., only the border vertices of islands remember the islands), theFI Island approach exhibits a

15

Island

CPU Time (msec)

40

30

20

10

0
Radius

INE

0.1 0.50.050.010.0050.001

VN3

(a) CPU time (AAL)

Radius

60

45

30

15

0
0.5

VN3

0.10.050.010.0050.001

Island

INE
Disk Access (Pages)

(b) Disk Access (AAL)
Radius

60

45

30

15

0
0.5

INE

VN3

0.10.050.010.0050.001

Island

Disk Access (Pages)

(c) Disk Access (LA)

Figure 9: Query Performance Versus Island Radius

slightly better query performance than the Islands. In other cases, performance of both approaches is very
close.

FI_Island
Island

10 20 505

250

200

150

100

50

0 k

100 200

Disk Access (Pages)

(a) Effect ofk

Island

0
0.50.10.050.010.0050.001

Disk Access (Pages)

Radius

30

15

22.5

7.5 FI_Island

(b) Effect of Radius

FI_Island
Island

0

15

30

45

60

Disk Access (Pages)

0.01 Density0.050.020.0050.001

(c) Effect of Data Point Density

Figure 10: Query Performance of Further-Improved Island (AAL)

5.2 Experiments on Overall Performance

In the second series of experiments, we present the experimental result on comparing the overall costs for
different densities and update ratios of the INE, the VN3, and the Islands approach with two islands sizes.
The value ofk is set to10 in these experiments—this value is not related to the update operation. We report
the overall performance costs by adding the cost of all queries to the cost of all updates of edges as well as
data points and dividing the totals by the numbers of queries.
Overall Query and Update Performance Versus Update Ratio In this experiment, the island radius is
fixed at0.01 of Dmax. We use real data points for the AAL road network and synthetic data points at a
density of0.005 for the LA road network. The update ratio is varied from0.0005 to 0.1 per query. It can
be seen from Figure 11 that the INE approach has a stable overall performance for different update ratios,
since the update operation only needs to read one or two disk pages. The VN3 approach is better than the
other two approaches when the update ratio is smaller than0.01. The Islands approach, with a radius of
0.01 exhibits almost the same trend as the INE approach.
Overall Performance Versus Density of Data Points In this experiment, the island radius remains at
0.01 of Dmax. The update ratio is set to0.01. We remove the real data points in AAL and use synthetic
data points in both networks.

The density is varied from0.001 to 0.5, to determine the overall performances of the three approaches

16

Update Ratio

100

0
0.10.050.010.0050.0010.0005

20

40

60

80

CPU Time (msec)
INE IslandVN3

(a) CPU Time (AAL)

Update Ratio

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

0

50

250

200

150

100

Disk Access (Pages)

0.0050.0005 0.01 0.10.050.001

Island
VN3
INE

(b) Disk Access (AAL)

0

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�100

Disk Access (Pages)

0.0050.0005 0.01 0.10.050.001

Island
VN3
INE

Update Ratio

80

60

40

20

(c) Disk Access (LA)

Figure 11: Overall Performance Versus Update Ratio

for varying densities. As can be seen from Figure 12, as the density increases, the overall performances the
three approaches improve. At a lower density, i.e.,0.001, the VN3 approach has best performance. When
the density grows to0.01 and beyond, the Islands approach becomes dominant. The INE approach becomes
superior when the density reaches0.5.

Island

0

10

20

30

40

Density
0.001 0.005 0.01 0.05 0.1 0.5

CPU Time (msec)

INE
VN3

(a) CPU Time (AAL)

Disk Access (Pages)

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

0
0.50.10.050.010.001 0.005
Density

160

240

320

400 INE
VN3

80

Island

(b) Disk Access (AAL)

Disk Access (Pages)

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

0.50.10.050.010.001 0.005

120

160

200

80

40

0

INE
VN3
Island

Density

(c) Disk Access (LA)

Figure 12: Overall Performance Versus Density

Overall Performance Versus Island Radius In this experiment, we set the update ratio to0.01 and use
the real data points in AAL and synthetic data points in LA (withdensity = 0.005). To check the impact
of the island radius on the query performance, the radius is varied from0.001 to 0.5 of Dmax.

In Figure 13, we also draw two horizontal lines for the INE and VN3 approaches, for which the radius
is not a parameter. It can be observed that the Islands approach has the best CPU performance when the
radius is0.05 or smaller. As for disk access, experiments on both the AAL and LA datasets show that the
overall performance of the Islands approach is better than those of the INE and VN3 for certain radiuses
(0.005 and0.01 for AAL and 0.05 for LA). When the radius exceeds0.05, the cost of re-computing the
islands becomes substantial since islands grow large and overlap significantly.
Island Radius Versus Density and Update Ratio To obtain additional insight into the adaptability of
the Islands approach, we conduct experiments on the LA data to check how this approach can be used to
cope with different update ratios and densities of data points. We use two island sizes, setting the radius to
0.01 and0.05 of Dmax in the experiments.

In Figure 14(a), we set the density to0.005. It can be observed that the islands with radius0.05 has
the best performance when the update ratio is smaller than0.01. When the update ratio grows to higher
than0.01, the islands with radius0.01 become the best. In the experiment shown in Figure 14(b), the

17

0.1

80

40

20

0
Radius

Island

60

CPU Time (msec)

100

VN3

INE

0.050.001 0.010.005 0.5

(a) CPU time (AAL)
Radius

0
0.50.10.050.010.005

1E+4

1E+3

1E+2

1E+1

0.001

Island

INE

VN3

Disk Access (Pages)

(b) Disk Access (AAL)
Radius

0
0.50.10.050.010.0050.001

25

50

75

100

125

INE

VN3

Island
Disk Access (Pages)

(c) Disk Access (LA)

Figure 13: Overall Performance Versus Island Radius

Disk Access (Pages)

�
�
�
�

�
�
�
�

�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

0
0.050.010.0050.0010.0005 0.1

INE Island (0.01)
Island (0.05)

Update Ratio

150

120

90

60

30

VN3

(a) Radius Vs. Update Ratio (LA)

Disk Access (Pages)

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�

�
�
�
�

0
0.50.050.010.001 0.005 0.1

1E+1

1E+2

1E+3

INE Island (0.01)
Island (0.05)

Density

VN3

(b) Radius Vs. Density (LA)

Figure 14: Islands Versus Update and Density

update ratio is fixed at0.01. We
still use islands with radiuses of
0.01 and0.05. When the density
is lower than0.005, the Islands
approach with an island radius of
0.005 achieves the best overall
performance. For higher densities,
the Islands approach with a radius
of 0.01 is a good choice. Only
when the density grows to0.5, the
INE approach shows the best over-
all performance.

5.3 Experiments on Pre-computation Cost

To evaluate on the pre-computation cost of the Islands approach, we list the CPU time, disk access, and
the amount of pre-computed distance pairs for the Islands approach on AAL network. Note that we do not
include the CPU time and disk access cost of assigning each pre-computed pairs into disk pages as the cost of

(a) Effect of Radius (b) Effect of Data Point Density

Figure 15: Islands Pre-computation Cost (AAL)

this process varies among different
hardware settings. As illustrated
in Figure 15, with the growth of
Island radius and the data point
density, the time complexity and
the space requirement (for storing
the pre-computed data) increases.
We omit the comparing of Islands
and VN3 approach on the pre-
computation cost. The compari-
son of Islands andFI Islandis also
saved as the latter has almost the
same pre-computation cost as the

Islands approach (as described in Section 4.6).

18

6 Summary and Future Work

This paper presents a versatile approach tok nearest neighbor computation in spatial networks, termed
the Islands approach. This approach generalizes existing re-computation and pre-computation approaches.
In particular, pre-computation is performed inside so-called islands, and re-computation is performed in-
between islands. An island intuitively is a sub-network with vertices and edges that are no further than a
certain distance, termed the radius, away from a data point. Variation of the radiuses of islands enables the
approach to accommodate networks with few as well as many data points and few as well as many updates.
This enables flexible management of the trade-off between update and query cost.

The paper experimentally compares the Islands approach with two popularkNN algorithms, namely
INE and VN3. The experiments result show that the Islands approach is indeed more versatile than these
and can be tuned to yield better performance in most cases. As a result, the Islands approach is thus attractive
for use in supporting location-based mobile services.

Several possible directions for future work exist.
It would be of interest to try to take into account additional semantics of road networks and transporta-

tion infrastructures. For example, real-time road conditions, such as road blocks or traffic jams, may be
taken into account. ComputingkNN queries in such “dynamic” networks offers new challenges [5, 7]. The
Islands approach is capable of using islands with different radiuses within different areas of the network.
Techniques for how to dynamically maintain a partitioning of a network into different areas, each with its
own, optimal island radius remains an open problem.

References

[1] R. Benetis, C. S. Jensen, G. Karciauskas, S. Saltenis. Nearest Neighbor and Reverse Nearest Neighbor
Queries for Moving Objects. InVLDB J.,15(3), pp. 229–249, 2006.

[2] T. Brinkhoff. The Tiger File Manager. http://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/.

[3] H. -J. Cho, C. -W. Chung. An Efficient and Scalable Approach to CNN Queries in a Road Network. In
Proc. VLDB,pp. 865–876, 2005.

[4] C. K. Cheng, Y. C. Wei. An Improved Two-Way Partitioning Algorithm with Stable Performance. In
IEEE Trans. CAD,10(12), pp. 1502–1511, 1991.

[5] Z. Ding, R. H. G̈uting. Modelling Temporally Variable Transportation Networks. InProc. DASFAA,
pp. 154–168, 2004.

[6] H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, A. E. Abbadi. Constrained Nearest Neighbor Queries. In
Proc. SSTD,pp. 257–278, 2001.

[7] R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and Querying Moving Objects in Networks.
Fernuniversiẗat Hagen, Informatik-Report 308, April 2004.

[8] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speičys, and I. Timko. Integrated Data Management for
Mobile Services in the Real World. InProc. VLDB,pp. 1019–1030, 2003.

[9] Y. W. Huang, N. Jing, and E. Rundenstener. Effective Graph Clustering for Path Queries in Digital Map
Databases. InProc. CIKM,pp. 215–222, 1996.

[10] H. Hu, D. L. Lee, J. Xu. Fast Nearest Neighbor Search on Road Networks. InProc. EDBT,pp. 186–
203, 2006.

19

[11] G. R. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. InTODS,24(2), pp. 265–318,
1999.

[12] G. S. Iwerks, H. Samet, K. Smith. Continuous K-Nearest Neighbor Queries for Continuously Moving
Points with Updates. InProc. VLDB,pp. 512–523, 2003.

[13] C. S. Jensen, J. Kolá̌r, T. B. Pedersen, I. Timko. Nearest Neighbor Queries in Road Networks. In
Proc. ACMGIS,pp. 1–8, 2003.

[14] M. Kolahdouzan and C. Shahabi. Voronoi-Based Nearest Neighbor Search for Spatial Network
Databases. InProc. VLDB, pp. 840–851, 2004.

[15] M. Kolahdouzan, C. Shahabi. Alternative Solutions for Continuous K Nearest Neighbor Queries in
Spatial Network Databases. InGeoInformatica,9 (4), pp. 321–341, 2005.

[16] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessellations, Concepts and Applications of
Voronoi Diagrams. John Wiley and Sons Ltd., 2nd edition, 2000.

[17] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao. Query Processing in Spatial Network Databases. In
Proc. VLDB,pp. 802–813, 2003.

[18] N. Roussopoulos, S. Kelley, F. Vincent. Nearest Neighbor Queries. InProc. SIGMOD,pp. 71–79,
1995.

[19] L. Speǐcys, C. S. Jensen, A. Kligys. Computational Data Modeling for Network Constrained Moving
Objects. InProc. ACMGIS,pp. 118–125, 2003.

[20] T. Seidl, H. P. Kriegel. Optimal Multi-Step k-Nearest Neighbor Search. InProc. SIGMOD,pp. 154–
165, 1998.

[21] C. Shahabi, M. R. Kolahdouzan, M. Sharifzadeh. A Road Network Embedding Technique for K-
Nearest Neighbor Search in Moving Object Databases. InGeoInformatica,7(3), pp. 255–273, 2003.

[22] S. Shekhar, D. Liu. CCAM: A Connectivity-Clustered Access Method for Networks and Network
Computations. InTKDE,19(1), pp. 102-119, 1997.

[23] Z. Song, N. Roussopoulos. K-Nearest Neighbor Search for Moving Query Point. InProc. SSTD,
pp. 79–96, 2001.

[24] Y. Tao, D. Papadias, Q. Shen. Continuous Nearest Neighbor Search. InProc. VLDB,pp. 287–298,
2002.

[25] M. Vazirgiannis, O. Wolfson. A Spatio Temporal Model and Language for Moving Objects on Road
Networks. InProc. SSTD,pp. 20–35, 2001.

[26] http://www.census.gov/geo/www/tiger/tgrcd108/tgr108cd.html.

[27] X. Xiong, M. F. Mokbel, W. G. Aref. SEA-CNN: Scalable Processing of Continuous K-Nearest Neigh-
bor Queries in Spatio-temporal Databases. InICDE, 2005.

[28] C. Yu, B. C. Ooi, K. L. Tan, H. V. Jagadish. Indexing the Distance: An Efficient Method to KNN
Processing. InProc. VLDB,pp. 421–430, 2001.

[29] J. S. Yoo, S. Shekhar. In-Route Nearest Neighbor Queries. InGeoInformatica,9(2), pp. 117–137,
2005.

20

Appendix

v1 v2 P1 3 Nil P4

v1 v4 P1 2 Nil P4

v2 v1 P1 3 Nil P4

v2 v3 P2 5 P3 P4

v2 v4 P1 4 Nil P4

v2 v6 P2 7 P3 P4

v4 v1 P1 2 Nil P4

v4 v2 P1 4 Nil P4

v4 v5 P2 4 P3 P4

(a) Page:P1

v3 v2 P1 5 P3 P4

v3 v7 P2 7 P3 P4

v5 v4 P1 4 P3 P4

v5 v6 P2 5 Nil P4

v6 v5 P2 5 Nil P4

v6 v2 P1 7 P3 P4

v6 v7 P2 2 Nil P4

v7 v3 P2 6 Nil P4

v7 v6 P2 2 Nil P4

(b) Page:P2

dp1 e4,5 1
dp1 e5,4 3
dp2 e2,6 4
dp2 e6,2 3
dp3 e2,3 2
dp3 e3,2 3

(c) Page:P3

v1 dp1 3
v1 dp2 7
v1 dp3 5
v2 dp1 5
v2 dp2 4
v2 dp3 2
v3 dp3 3
v4 dp1 1
v4 dp2 8
v4 dp3 6
v5 dp1 3
v5 dp2 8
v6 dp1 3
v6 dp2 3
v7 dp2 5
(d) Page:P4

dp1 v1 3 P6

dp1 v4 1 P6

dp1 v5 3 P6

dp2 v6 3 P6

dp2 v7 5 P6

dp3 v2 2 P6

dp3 v3 3 P6

(e) Page:P5

dp1 dp2 b5 5.5 P9

dp1 dp3 b1 4 P7

dp1 dp3 b2 3.5 P7

dp2 dp1 b5 5.5 P9

dp2 dp3 b3 3 P8

dp2 dp3 b4 7 P8

dp3 dp1 b1 4 P7

dp3 dp1 b2 3.5 P7

dp3 dp2 b3 3 P8

dp3 dp2 b4 7 P8

(f) Page:P6

b1 b2 3.5
b1 b3 3
b1 b4 11
b1 b5 9.5
b1 v1 1
b1 v2 2
b1 v3 7
b1 v4 3
b1 v5 7
b2 b1 3.5
b2 b3 2.5
b2 b4 10.5
b2 b5 9
b2 v1 4.5
b2 v2 1.5
b2 v3 6.5
b2 v4 2.5
b2 v5 6.5

(g) Page:P7

b3 b1 3
b3 b2 2.5
b3 b4 10
b3 b5 8.5
b3 v2 1
b3 v3 6
b3 v6 6
b3 v7 7
b4 b1 11
b4 b2 10.5
b4 b3 10
b4 b5 6.5
b4 v2 9
b4 v3 4
b4 v6 4
b4 v7 2

(h) Page:P8

b5 b1 9.5
b5 b2 9
b5 b3 8.5
b5 b4 6.5
b5 v1 8.5
b5 v4 6.5
b5 v5 2.5
b5 v6 2.5
b5 v7 4.5
(i) Page:P9

Figure 16: Sample Data Pages

21

