
The VLDB Journal (2006) 15(3): 229–250
DOI 10.1007/s00778-005-0166-4

REGULAR PAPER

Rimantas Benetis · Christian S. Jensen ·
Gytis Karčiauskas · Simonas Šaltenis

Nearest and reverse nearest neighbor queries
for moving objects

Published online: 25 January 2006
c© Springer-Verlag 2006

Abstract With the continued proliferation of wireless
communications and advances in positioning technologies,
algorithms for efficiently answering queries about large pop-
ulations of moving objects are gaining interest. This pa-
per proposes algorithms for k nearest and reverse k nearest
neighbor queries on the current and anticipated future posi-
tions of points moving continuously in the plane. The former
type of query returns k objects nearest to a query object for
each time point during a time interval, while the latter re-
turns the objects that have a specified query object as one of
their k closest neighbors, again for each time point during
a time interval. In addition, algorithms for so-called persis-
tent and continuous variants of these queries are provided.
The algorithms are based on the indexing of object positions
represented as linear functions of time. The results of empir-
ical performance experiments are reported.

Keywords Continuous queries · Incremental update ·
Location-based services · Mobile objects · Neighbor
queries · Persistent queries

1 Introduction

We are currently experiencing rapid developments in key
technology areas that combine to promise widespread use
of mobile, personal information appliances, many of which
will be on-line, i.e., on the Internet. Industry analysts uni-
formly predict that wireless, mobile Internet terminals will
outnumber the desktop computers on the Internet.

This proliferation of devices offers companies the op-
portunity to provide a diverse range of e-services, many of
which will exploit knowledge of the user’s changing loca-
tion. Location awareness is enabled by a combination of po-
litical developments, e.g., the recent de-scrambling of the
GPS signals and the US E911 mandate [8], and the contin-

R. Benetis · C. S. Jensen (B) · G. Karčiauskas · S. Šaltenis
Aalborg University, Department of Computer Science,
Aalborg Øst, Denmark
E-mail: csj@cs.aau.dk

ued advances in both infrastructure-based and handset-based
positioning technologies.

The area of location-based games offers good examples
of services where the positions of the mobile users play a
central role. In the BotFighters game, by the Swedish com-
pany It’s Alive, players get points for finding and “shooting”
other players via their mobile phones. Only players close
by can be shot. In such mixed-reality games, the real physi-
cal world becomes the backdrop of the game, instead of the
purely virtual world created on the limited displays of wire-
less devices [7].

To track and coordinate large numbers of continuously
moving objects, their positions are stored in databases. This
results in new challenges to database technology. The con-
ventional assumption, that data remains constant unless it
is explicitly modified, no longer holds when considering
continuous data. To reduce the amount of updates needed
to maintain a certain precision of positions stored in the
database, moving point objects have been modeled as func-
tions of time rather than simply as static positions [36].
Studies of GPS logs from vehicles show that representing
positions as linear functions of time reduces the numbers
of updates needed to maintain a reasonable precision by as
much as a factor of three in comparison to using static posi-
tions [6].

We consider the computation of nearest neighbor (NN)
and reverse nearest neighbor (RNN) queries in this setting.
In the NN problem, which has been investigated extensively
in other settings (as will be discussed in Sect. 2.2), the ob-
jects in the database that are nearer to a given query object
than any other objects in the database have to be found.
In the RNN problem, which is relatively new and unex-
plored, objects that have the query object as their nearest
neighbor have to be found. In the example in Fig. 1, the
RNN query for point 1 returns points 2 and 5. Points 3 and
4 are not returned because they have each other as their
nearest neighbors. Note that even though point 2 is not a
nearest neighbor of point 1, point 2 is a reverse nearest
neighbor of point 1 because point 1 is the point closest to
point 2.

pikde
Text Box
The VLDB Journal, Volume 15, Number 3, pp 229-249, January 2006.URL: http://springerlink.metapress.com/link.asp?id=cn44l26qw10146m3The original publication is available at springerlink.comCopyright © Springer-Verlag

230 R. Benetis et al.

4

3

1

5

2

Fig. 1 Static points

A straightforward solution for computing reverse nearest
neighbor (RNN) queries is to check for each point whether
it has a given query point as its nearest neighbor. However,
this approach is unacceptable when the number of points is
large.

The situation is complicated further when the query and
data points are moving rather than static and we want to
know the reverse nearest neighbors during some time in-
terval. For example, if our points are moving as depicted
in Fig. 2 then after some time, point 4 becomes a reverse
nearest neighbor of point 1, and point 3 becomes a nearest
neighbor of point 5, meaning that point 5 is no longer a re-
verse nearest neighbor of point 1.

Reverse nearest neighbors can be useful in applications
where moving objects agree to provide some kind of service
to each other. Whenever a service is needed an object re-
quests it from its nearest neighbor. An object then may need
to know how many objects it is supposed to serve in the near
future and where those objects are. The examples of mov-
ing objects could be soldiers in a battlefield, tourists in dan-
gerous environments, or mobile communication devices in
wireless ad-hoc networks.

In a mixed-reality game like the one mentioned at the
beginning of the section, players may be “shooting” their
nearest neighbors. Then players may be interested to know
who their reverse nearest neighbors are in order to dodge
their fire.

Solutions have been proposed for efficiently answering
reverse nearest neighbor queries for non-moving points [16,
30, 35], but we are not aware of any algorithms for moving
points. While much work has been conducted on algorithms

4

3

1

5

2

Fig. 2 Moving points

for nearest neighbor queries, we are aware of only one study
that has explored algorithms for a moving query point and
moving data points [31].

This paper proposes an algorithm that efficiently com-
putes RNN queries for a query point during a specified time
interval, assuming the query and data points are continu-
ously moving in the plane and the query time interval starts
at or after the current time (i.e., we do not consider query-
ing of historical data). As a solution to a significant sub-
problem, an algorithm for answering NN queries for contin-
uously moving points is also proposed.

The paper is a substantially revised and extended version
of an earlier paper [3]. Main additions include support for
kNN and RkNN queries (where k > 1), and support for and
experimental evaluation of two kinds of index traversals and
two types of search metrics. Also included is support for
so-called persistent kNN and RkNN queries—incremental
update techniques are introduced for this purpose. Next,
support for so-called continuous current-time queries is in-
cluded. A new, expanded empirical performance study of
the presented types of queries is reported. Finally, mate-
rial on distance computation for moving points and time-
parameterized rectangles is included.

In the next section, the problem that this paper addresses
is defined, and related work is covered in further detail. In
Sect. 3 our algorithms are presented. In Sect. 4 the results
of the experiments are given, and Sect. 5 offers a summary
and directions for future research. An appendix offers detail
on the computation of distances between moving points and
time-parameterized rectangles.

2 Problem statement and related work

We first describe the data and queries that are considered in
this paper. Then we survey the existing solutions to the most
related problems.

2.1 Problem statement

We consider two-dimensional space and model the posi-
tions of two-dimensional moving points as linear functions
of time. That is, if at time t0 the position of a point is
(x, y) and its velocity vector is v̄ = (vx , vy), then it is
assumed that at any time t ≥ t0 the position of the point
will be (x + (t − t0)vx , y + (t − t0)vy), unless a new
(position, velocity) pair for the point is reported.

With this assumption, the nearest neighbor (NN) and
reverse nearest neighbor (RNN) query problems for con-
tinuously moving points in the plane can be formulated as
follows.

Assume (1) a set S of moving points, where each point
is specified by its position (x, y) and its velocity (vx , vy) at
some specific time; (2) a query point q; and (3) a query time
interval [t�; t�], where t� ≥ tcurrent, and tcurrent is the time
when the query is issued.

Nearest and reverse nearest neighbor queries for moving objects 231

Let NNj and RNNj denote sets of moving points and Tj
denote a time interval. Intuitively, we use NNj and RNNj
for containing the NN and RNN query results, respectively,
during the j-th time interval. More precisely, the NN query
returns the set {〈NNj, Tj 〉}, and the RNN query returns the
set {〈RNNj, Tj 〉}. These sets satisfy the conditions

⋃
j Tj =

[t�; t�] and i �= j ⇒ Ti ∩ Tj = ∅. In addition, each point in
NNj is a nearest neighbor to q at each time point during time
interval Tj , and RNNj is the set of the reverse nearest neigh-
bors to q at each time point during time interval Tj . That is,
∀ j ∀p ∈ NNj ∀r ∈ S\{p} (d(q, p) ≤ d(q, r)) and ∀ j ∀p ∈
RNNj ∀r ∈ S \ {p} (d(q, p) ≤ d(p, r) during all of Tj).
Here, d(p1, p2) is the distance between points p1 and p2
and symbol \ denotes set difference. Although any metric
distance function will work, we use Euclidean distance for
specificity.

We also consider the more general k nearest neighbor
(kNN) and reverse k nearest neighbor (RkNN) queries. The
answer to a kNN query has the same structure as the an-
swer to an NN query, but instead of sets NNj, each of which
usually contains one element, a kNN answer has ordered
lists NNj = (p j1, p j2, . . . , p jk), each containing exactly k
points (assuming |S| ≥ k). The points in each list are ordered
by their distance to q , so that p j1 is the closest point and
p jk is the k-th closest point to q during Tj . More formally,
∀ j (d(q, p j1) ≤ d(q, p j2) ≤ · · · ≤ d(q, p jk) ∧ ∀r ∈
S \ NNj (d(q, r) ≥ d(q, p jk) during all of Tj)). Note that
during Tj , there can be more than one point with a distance
to q that is exactly equal to d(q, p jk). For simplicity, an ar-
bitrary subset of such points of size k − |{p ∈ S | d(q, p) <
d(q, p jk)}| is included in NNj.

In the answer to an RkNN query, each set RNNj con-
tains all points such that each has query point q among its
k nearest neighbors. More formally, ∀ j ∀p ∈ RNNj (|{r ∈
S | (d(p, r) < d(p, q)}| < k during all of Tj). Note that if,
at some specific time point, point q is a k-th nearest neighbor
of point p, according to the definition of the kNN query, q
may still not be included in the answer set of kNN(p). This
may happen if there are more than k points with a distance
to p that is smaller than or equal to the distance from q to p.
Nevertheless, in such situations p will always be included in
the answer of the RkNN(q) query.

Next, observe that all the query answers are temporal,
i.e., the future time interval [t�; t�] is divided into disjoint
intervals Tj during which different answer sets (the NNj and
RNNj) are valid. Some of these answers may become invali-
dated if some of the points in the database are updated before
t�. The straightforward solution would call for recomputing
the answer each time the database is updated. In this paper,
we present a more efficient algorithm that maintains the an-
swer to a query when updates to the data set are performed.
According to the terminology introduced by Sistla et al. [27],
we use the term persistent for queries with answer sets that
are maintained under updates.

In practice, it may be useful to change the query time
interval in step with the continuously changing current time,
i.e., it may be useful to have [t�; t�] = [now, now + �],

where now is the continuously changing current time. The
answer to such a query should be maintained both because of
the updates and because of the continuously changing query
time interval. In particular, we investigate how to support
continuous (and persistent) current-time queries (� = 0).

2.2 Related work

Nearest neighbor queries and reverse nearest neighbor
queries are intimately related. In this section, we first
overview the existing proposals for answering nearest neigh-
bor queries, for both stationary and moving points. Then
we discuss the proposals related to reverse nearest neighbor
queries.

2.2.1 Nearest neighbor queries

A number of methods have been proposed for efficient pro-
cessing of nearest neighbor queries for stationary points. The
majority of the methods use index structures, and some pro-
posals rely on index structures built specifically for nearest
neighbor queries. As an example, Berchtold et al. [4] pro-
pose a method based on Voronoi cells [20].

Branch-and-bound methods work on index structures
originally designed for range queries. Perhaps the most in-
fluential method in this category is an algorithm, proposed
by Roussopoulos et al. [22], for finding the k nearest neigh-
bors. In this solution, an R-tree [9] indexes the points, and
depth-first traversal of the tree is used. During the traver-
sal, entries in the nodes of the tree are ordered and pruned
based on a number of heuristics. Cheung and Fu [5] sim-
plified this algorithm without reducing its efficiency. Other
methods that use branch-and-bound algorithms modify the
index structures to better suit the nearest neighbor problem,
especially when applied for high-dimensional data [14, 34].

Next, a number of incremental algorithms for similarity
ranking have been proposed that can efficiently compute the
(k + 1)-st nearest neighbor, after the k nearest neighbors are
returned [11, 12]. They use a global priority queue of the ob-
jects to be visited in an R-tree. More specifically, Hjaltason
and Samet [12] propose an incremental nearest neighbor al-
gorithm, which uses a priority queue of the objects to be vis-
ited in an R∗-tree [2]. They show that such a best-first traver-
sal is optimal for a given R-tree. A very similar algorithm
was proposed by Henrich [11], which employs two priority
queues. For high-dimensional data, multi-step nearest neigh-
bor query processing techniques are usually used [17, 25].

Kollios et al. [15] propose an elegant solution for an-
swering nearest neighbor queries for moving objects in one-
dimensional space. Their algorithm uses a duality trans-
formation, where the future trajectory of a moving point
x(t) = x0 + vx t is transformed into a point (x0, vx) in a
so-called dual space. The solution is generalized to the “1.5-
dimensional” case where the objects are moving in the plane,
but with their movements being restricted to a number of line
segments (e.g., corresponding to a road network). However,

232 R. Benetis et al.

a query with a time interval predicate returns the single ob-
ject that gets the closest to the query object during the spec-
ified time interval. It does not return the nearest neighbors
for each time point during that time interval (cf. the prob-
lem formulation in Sect. 2.1). Moreover, this solution cannot
be straightforwardly extended to the two-dimensional case,
where the trajectories of the points become lines in three-
dimensional space.

The work of Albers et al. [1], who investigate Voronoi
diagrams of continuously moving points, relates to the prob-
lem of nearest neighbor queries. Even though such diagrams
change continuously as points move, their topological struc-
tures change only when certain discrete events occur. The
authors show a non-trivial upper bound of the number of
such events. They also provide an algorithm to maintain such
continuously changing Voronoi diagrams.

Song and Roussopoulos [29] propose a solution for find-
ing the k nearest neighbors for a moving query point. How-
ever, the data points are assumed to be static. In addition,
and in contrast to our approach, time is not assumed to
be continuous—a periodical sampling technique is used in-
stead. The time period is divided into n equal-length inter-
vals. When computing the result set for some sample, the
algorithm tries to reuse the information contained in the re-
sult sets of the previous samples.

The two works most closely related to ours are by
Raptopoulou et al. [21] and by Tao et al. [31]. Both of these
works consider the nearest neighbor problem for a query
point moving on a line segment and for static or moving
data points. In a manner similar to what is described in
Sect. 2.1, the answer to a kNN query is temporal. In con-
trast to our work, both works do not consider the mainte-
nance of query answers under updates, and reverse nearest
neighbor queries are not considered. Also, compared to our
work, Raptopoulou et al. consider simplified and less effec-
tive heuristics for directing and pruning the search in the
TPR-tree.

In the above-mentioned study, Tao et al. also consider
the general concept of so-called time-parameterized queries.
The authors show how these queries can be processed us-
ing a tailored algorithm for nearest neighbor queries, such
as the algorithm of Roussopoulos et al. [22]. This framework
can be used to process time-parameterized nearest neighbor
queries for moving objects, but each answer would include
only the first time interval from the answer set as defined in
Sect. 2.1.

2.2.2 Reverse nearest neighbor queries

Several different solutions have been proposed for comput-
ing RNN queries for non-moving points in two and higher
dimensional spaces. Stanoi et al. [30] present a solution for
answering RNN queries in two-dimensional space. Their al-
gorithm is based on the following observations [28]. Let the
space around the query point q be divided into six equal re-
gions Si (1 ≤ i ≤ 6) by straight lines intersecting at q , as
shown in Fig. 3. Assume also that each region Si includes

S2

S1

S6

S5

S4

S3 q

Fig. 3 Division of the space around query point q

only one of its bordering half-lines. Then, there exists at
most six RNN points for q , and they are distributed so that
there exists at most one RNN point in each region Si .

The same kind of observation leads to the following
property. Let p be an NN point of q among the points in
Si . Then, either q is an NN point of p (and then p is an
RNN point of q), or q has no RNN point in Si . Stanoi et al.
prove this property [30].

These observations enable a reduction of the RNN prob-
lem to the NN problem. For each region Si , an NN point
of q in that region is found. We term it an RNN candidate.
If there are more than one NN point in some Si , they are
not RNN candidates. For each of the candidate points, it
is checked whether q is the nearest neighbor of that point.
The answer to the RNN(q) query consists of those candi-
date points that have q as their nearest neighbor.

In another solution for answering RNN queries, Korn
and Muthukrishnan [16] use two R-trees for the querying,
insertion, and deletion of points. In the first, the RNN-tree,
the minimum bounding rectangles of circles having a point
as their center and the distance to the nearest neighbor of that
point as their radius are stored. The second, the NN-tree, is
simply an R*-tree [2] that stores the data points. Yang and
Lin [35] improve the solution of Korn and Muthukrishnan by
introducing an Rdnn-tree, which makes it possible to answer
both RNN queries and NN queries using a single tree. Struc-
turally, the Rdnn-tree is an R∗-tree, where each leaf entry is
augmented with the distance to its nearest neighbor (dnn),
and where a non-leaf entry stores the maximum of its chil-
dren’s dnn’s. Maheshwari et al. [19] propose main memory
data structures for answering RNN queries in two dimen-
sions. For each point their structures maintain the distance
to its nearest neighbor.

In contrast to the approach of Stanoi et al., updates of the
database are problematic in the last three approaches men-
tioned. On the other hand, the approach of Stanoi et al. does
not easily scale up to more than two dimensions because
the number of regions where RNN candidates are found in-
creases exponentially with the dimensionality [26]. To alle-
viate this problem, Singh et al. [26] propose an algorithm
where RkNN candidates are found by performing a regular
kNN query. The disadvantage of such an approach is that it
does not always find all RkNN points. The recent approach
by Tao et al. [33] fixes this problem. Their so-called TPL
algorithm, similarly to the approach of Stanoi et al., works

Nearest and reverse nearest neighbor queries for moving objects 233

according to two phases—a filtering phase and a refinement
phase—but no subdivision of the underlying space into re-
gions is necessary in the refinement phase. Thus, the algo-
rithm gracefully scales to more than two dimensions.

None of the above-mentioned methods handle contin-
uously moving points and thus do not consider temporal
query answers. Persistent and continuous queries are also
not supported.

3 Algorithms

This section first briefly describes the main ideas of the
TPR-tree [24], which is used to index continuously moving
points. Then we briefly discuss the suitability of the meth-
ods described in Sect. 2.2.2 as the basis for our solution. The
algorithms for answering the kNN and RkNN queries using
the TPR-tree are presented in Sect. 3.3 and 3.4. For clarity,
the algorithms for k = 1 are presented first, followed by the
more general algorithms. Section 3.5 presents a simple ex-
ample that illustrates the computation of an RNN query. The
next two subsections describe the algorithms that maintain
the answer sets of kNN and RkNN queries under insertions
and deletions. Finally, Sect. 3.8 covers the strategy for effi-
ciently performing the continuous current-time query.

3.1 TPR-tree

We use the TPR-tree (Time Parameterized R-tree) [24], as
an underlying index structure. The TPR-tree indexes con-
tinuously moving points in one, two, or three dimensions.
It employs the basic structure of the R∗-tree [2], but both
the indexed points and the bounding rectangles are aug-
mented with velocity vectors. This way, bounding rectangles
are time parameterized—they can be computed for differ-
ent time points. Velocities are associated with the edges of
bounding rectangles so that the enclosed moving objects, be
they points or other rectangles, remain inside the bounding
rectangles at all times in the future. More specifically, if a
number of points pi are bounded at time t , the spatial and
velocity extents of a bounding rectangle along the x axis are
computed as follows:

x�(t) = mini {pi .x(t)}; x�(t) = maxi {pi .x(t)};
v�

x = mini {pi .vx }; v�
x = maxi {pi .vx }.

Figure 4 shows an example of the evolution of a bound-
ing rectangle in the TPR-tree computed at t = 0. Note that,
in contrast to R-trees, bounding rectangles in the TPR-tree
are not minimum at all times. In most cases, they are mini-
mum only at the time when they are computed. Other than
that, the TPR-tree can be interpreted as an R-tree for any
specific time, t . This suggests that the algorithms that are
based on the R-tree should be easily “portable” to the TPR-
tree. Similarly, all algorithms presented in this paper should
work without modifications for the TPR*-tree [32], which is

t = 0 t = 1

Fig. 4 Example time-parameterized bounding rectangle

an index that improves upon the TPR-tree, by the means of
more advanced insertion and deletion algorithms.

3.2 Preliminaries

Our RNN algorithm is based on the proposal of Stanoi
et al. [30], described in Sect. 2.2.2. This algorithm uses
the R-tree and requires no specialized index structures. The
proposals by Korn and Muthukrishnan [16] and Yang and
Lin [35] mentioned in Sect. 2.2.2 store, in one form or
another, information about the nearest neighbor(s) of each
point. With moving points, such information changes as time
passes, even if no updates of objects occur. By not stor-
ing such information in the index, we avoid the overhead
of its maintenance. Similar to the approach of Stanoi et al.,
the recently proposed TPL algorithm [33] also does not re-
quire specialized index structures. It is an interesting future
research topic to explore how the TPL algorithm can be
adapted to work with continuously moving points using the
techniques presented in this paper.

The idea of the algorithm is analogous to the one de-
scribed in Sect. 2.2.2. Our RNN algorithm first uses the NN
algorithm to find the NN point in each Si . For each of these
candidate points, the algorithm assigns a validity time in-
terval, which is part of the query time interval. Then, the
NN algorithm is used again, this time unconstrained by the
regions Si , to check when, during each of these intervals,
the candidate points have the query point as their nearest
neighbor.

3.3 Algorithms for finding nearest neighbors

First we present an algorithm for finding the nearest neigh-
bors of a query point. Then we show how the algorithm can
be adapted to find the k nearest neighbors.

3.3.1 FindNN algorithm

Our algorithm for finding the nearest neighbors for con-
tinuously moving points in the plane is based on the algo-
rithms proposed by Roussopoulos et al. [22] and Hjaltason
and Samet [12]. The former algorithm traverses the tree in

234 R. Benetis et al.

Fig. 5 Algorithm computing nearest neighbors for moving objects in the plane

depth-first order. Two metrics are used to direct and prune
the search. The order in which the children of a node are vis-
ited is determined using the function mindist(q, R), which
computes the minimum distance between the bounding rect-
angle R of a child node and the query point q . Another
function, minmaxdist(q, R), which gives an upper bound of
the smallest distance from q to points in R, assists in pruning
the search.

Cheung and Fu [5] and, later, Hjaltason and Samet [12]
prove that, given the mindist-based ordering of the tree
traversal, the pruning that is obtained by Roussopoulos et al.
can be achieved without the use of minmaxdist. This sug-
gests that minmaxdist can also be disregarded in our setting
without any effect on the pruning. However, the proofs do
not seem to be straightforwardly extendable to our setting,
where mindist is extended to take into account temporal evo-
lution. We nevertheless choose to disregard minmaxdist. The
reason is that this function is based on the assumption that
bounding rectangles are always minimum [22], which is not
true in the TPR-tree (cf. Fig. 4). This means that we cannot
straightforwardly adapt minmaxdist to our setting. Thus, as
described in the following, we construct and use a temporal
version of the mindist function, both for directing the tree
traversal and for the pruning.

In describing our algorithm, the following notation
is used. The function dq(p, t) denotes the square of the
Euclidean distance between query point q and point p at
time t . Similarly, function dq(R, t) indicates the square of
the distance between the query point q and the point on rect-
angle R that is the closest to point q at time t .

As will be seen in the following, our algorithms use
squared Euclidean-distance functions. Functions that ex-
press Euclidean distances between linearly moving points
are square roots of quadratic polynomials. As we are inter-
ested only in the relative orders of the values of these func-
tions, not the absolute values, we use the simpler, squared
functions.

Because the movements of points are described by lin-
ear functions, for any time interval [t�; t�], dq(p, t) =
at2 + bt + c, where t ∈ [t�; t�] and a, b, and c are con-
stants dependent upon the positions and velocity vectors of
p and q . Similarly, any time interval [t�; t�] can be parti-

tioned into a finite number of intervals Tj so that dq(R, t) =
akt2 + bkt + ck , where t ∈ Tj and ak , bk , and ck are con-
stants dependent upon the positions and velocity vectors of
R and q . Function dq(R, t) is zero for times when q is inside
R. The details of how the interval is subdivided and how
the constants ak , bk , and ck are computed can be found in
Appendix A

The algorithm maintains a list of intervals Tj as men-
tioned in Sect. 2.1. Let us call this list the answer list. Ini-
tially the list contains a single interval [t�; t�], which is
subdivided as the algorithm progresses. Each interval Tj
in the answer list has associated with it (i) a point p j ,
and possibly more points with the same distance from q
as p j , that is the nearest neighbor of q during this inter-
val among the points visited so far and (ii) the squared
distance dq(pj, t) of point p j to the query point expressed
by the three parameters a, b, and c. In the description of
the algorithm, we represent this list by two functions. For
each t ∈ [t�; t�], function minq(t) denotes the points that
are the closest to q at time t (typically, there will only be
one such point), and dminq(t) indicates the squared dis-
tance between q and minq(t) at time t . The distance minq(t)
is used to prune nodes with a bounding rectangle further
away from q than minq(t) during the whole query time
interval.

The algorithm is presented in Fig. 5. The order of the
tree traversal is determined by the min-priority queue Q
that has two main operations: pop(), which returns an entry
with the smallest key, and push(e, M, level), which inserts
e into the queue with a key that is constructed from met-
ric M and tree level level of e. (Metric M , to be covered in
detail shortly, intuitively computes a representative distance
between its two arguments during the query time interval.)
If only metric M is used as the key, the algorithm performs
a best-first traversal, which, in each step, visits an entry with
the smallest metric (as done by Hjaltason and Samet [12]).
If the key is a concatenation of level and M , with the level
number increasing when going from the leaves of the tree to-
wards the root, the algorithm performs a depth-first traversal
with entries in each node of the tree being visited in the or-
der of increasing metric M (as done by Roussopoulos et al.
[22]).

Nearest and reverse nearest neighbor queries for moving objects 235

Fig. 6 Integral and min metrics

As noted earlier, we use a temporal version of mindist
as the metric M that directs the traversal. Given a time
interval [t�; t�] and a bounding rectangle R, there are two
natural ways to compute a temporal version of mindist. One
approach is to compute the integral of dq(R, t):

M(R, q) =
∫ t�

t�
dq(R, t) dt

This metric, termed the integral metric, corresponds to
the average of the squared distance between R and q (multi-
plied by the length of [t�; t�]). The other approach is to use
the minimum of the squared distance dq(R, t):

M(R, q) = min
t∈[t�;t�]

dq(R, t)

This metric, termed the min metric, can be computed by
comparing the values of the squared distances at the end-
points of the interval and at the point where the time
derivative of dq(R, t) is zero. If for two rectangles R1 and
R2, dq(R1, t) and dq(R2, t) are zero for some times during
[t�; t�] then if dq(R1, t) is zero for a longer time period than
dq(R2, t), we say that the min metric of R1 is smaller than
the min metric of R2.

Figure 6 plots the squared distance between a query
point and two bounding rectangles. If the min metric is used,
R1 will have the smallest metric, if the integral metric is
used, R2 will have the smallest metric. As the figure shows,
the min metric favors, when it is used for guiding the traver-
sal, bounding rectangles that may contain nearest neighbors
during some time points, while the integral metric favors
bounding rectangles that contain points which are likely to
reduce the pruning distance dminq(t) during large parts of
the interval [t�; t�].

The two types of tree traversals combined with the two
types of metrics yield four variants of the FindNN algo-
rithm. We explore these variants in the performance experi-
ments reported in Sect. 4.

3.3.2 Constructing the answer list

Steps 3.2, 3.4.1, and 3.4.2 of algorithm FindNN con-
struct the answer list as the tree is traversed and use

the answer list for pruning. The steps are presented
in a declarative way in Fig. 5. In this section we
discuss in greater detail the implementation of these
steps, which involve scanning through a list (or two) of
time intervals and solving quadratic inequalities for each
interval.

More specifically, in step 3.2, the algorithm described
in Appendix 5 is executed. This algorithm divides the orig-
inal query interval into at most five (for two-dimensional
data) subintervals, as indicated by the numbers in Fig. 33.
Note that this subdivision has no relation to the subdivision
recorded in the answer list. Each of the produced subinter-
vals has the three parameters (aR, bR, cR) that define the
quadratic function that expresses the distance from the query
point to R.

After this step, there are two subdivisions of the query
interval: the one just produced and the answer list. They are
combined into one subdivision by sorting together the time
points in both subdivisions. For example, if the query time
interval was [0, 10), the answer list was [0, 6), [6, 10), and
the subdivision produced by R was [0, 3), [3, 10), we get
the new subdivision [0, 3), [3, 6), [6, 10). Associated with
each of the intervals in this subdivision are both the original
quadratic function dminq(t) (expressed by the parameters a,
b, and c) and the quadratic function of the distance to R (ex-
pressed by the parameters aR , bR , and cR). For each interval
I in this combined subdivision, the quadratic inequality
aRt2 + bRt + cR < at2 + bt + c is solved to compare the
distance from the query point q to R and the distance from
q to point(s) in the answer list. The inequality can have at
most two roots, which can be inside or outside of the interval
I . This indicates whether some part of I exists where R gets
closer to the query than point(s) in the answer list. If this is
so for at least one interval I , we go deeper into the subtree
rooted at the entry with R (step 3.3). Thus, the rectangle is
pruned if there is no chance that it will contain a point that
at some time during the query interval is closer to the query
point q than the currently known closest point to q at that
time.

At the leaf level, in steps 3.4.1 and 3.4.2, we simi-
larly solve quadratic inequalities for each interval in the
answer list. In this case, two subdivisions do not have to
be combined. This is so because the distance between the
query point q and the data point p can be described by
a single quadratic function (expressed by the parameters
ap, bp, and cp). For each interval I in the answer list, the
solution of the quadratic inequality dq(p, t) < dminq(t)
may again produce at most two roots, which may result
in subdivision of I into at most three subintervals. Dur-
ing the intervals in I , when the inequality holds, we re-
place the original parameters a, b, and c with the new
parameters ap, bp, and cp. This way, new intervals are
introduced in the answer list in step 3.4.2. Processing
all intervals I produces the new version of the answer
list.

After the traversal of the tree, the following holds for
each Tj in the answer list: ∀t ∈ Tj (NNj = minq(t)).

236 R. Benetis et al.

Fig. 7 Algorithm computing k nearest neighbors for moving objects in the plane

3.3.3 FindkNN algorithm

The algorithm presented in the previous section can be ex-
tended to find k nearest neighbors. As described in Sect. 2.1,
the result of such an algorithm, which we term FindkNN,
is a set {〈NNj, Tj 〉}, where each NNj is an ordered list of
k points that are closest to the query point during time
interval Tj .

The overall structure of algorithm FindkNN is the same
as that of FindNN. The answer list representing the sub-
division of the query time interval is built as the algo-
rithm traverses the tree. Each interval Tj in the answer list
has associated with it an ordered list of points minq =
(p1, p2, . . . , pl), where p1 is the nearest neighbor of q
and pl is the l-th nearest neighbor of q during this inter-
val among the points visited so far. At the beginning of
the tree traversal, l is equal to the number of visited data
points, but it stops at k when k data points have been vis-
ited. The squared distance function dq(pi, t)—in the form of
the three parameters ai , bi , and ci —is stored with each point
pi (i = 1, . . . , l).

We define minq(t) to be the list minq associated with
the answer list interval to which t belongs. We use the no-
tation minq(t)[i] to access the point pi in the list minq(t).
We also define dminq(t) = dq(minq(t)[k], t), if l = k, and
dminq(t) = ∞, if l < k.

With this notation in place, the pseudo code of algo-
rithm FindkNN is shown in Fig. 7. Note that steps 3.2
and 3.4.1 involve solving quadratic inequalities as de-
scribed in Sect. 3.3.2. In step 3.4.2, those time intervals
from the answer set for which the inequality dq(p, t) <
dminq(t) holds during only part of the interval are divided
into two or three intervals, copying the corresponding list
minq and changing the k-th (or (l + 1)-st) element of it
where necessary. Similarly, in CorrectOrder, the inter-
vals from the answer set are subdivided further, and points
minq(t)[i] and minq(t)[i − 1] are exchanged only for the
subintervals during which the ordering of these points is
wrong.

Figure 8 demonstrates how an answer list of two inter-
vals (T1 and T2) is modified when visiting a data point p.

Here k = 4 and for each of the four points in the answer
list, as well as p, the squared distance to the query point is
plotted against time. Subintervals T ′

1 and T ′
8 are introduced

in step 3.4.2.2 of the algorithm. The remaining parts of T1
and T2 are passed to CorrectOrder, which subdivides T1
further. The top of the figure demonstrates the different val-
ues of T and i parameters passed to the recursive invocations
of CorrectOrder.

3.4 Algorithms for finding reverse nearest neighbors

In this section, we present the algorithms for finding the re-
verse nearest neighbors and the reverse k nearest neighbors
of a query point.

3.4.1 FindRNN algorithm

Algorithm FindRNN computes the reverse nearest neigh-
bors for a continuously moving point in the plane. The nota-
tion used is the same as in the previous sections. The algo-
rithm, shown in Fig. 9, produces a list LRNN = {〈p j , Tj 〉},
where p j is the reverse nearest neighbor of q during time in-
terval Tj . Note that the format of LRNN differs from the for-

t

p p

8T'7T'6T'2T'

2T

i=2

i=4
i=3

3T' 4T' 5T'1T'

1T

qd
i=4

Fig. 8 Subdivision of the answer list intervals when visiting point p

Nearest and reverse nearest neighbor queries for moving objects 237

Fig. 9 Algorithm computing reverse nearest neighbors for moving objects in the plane

mat of the answer to the RNN query, as defined in Sect. 2.1,
where intervals Tj do not overlap and have sets of points
associated with them. To simplify the description of algo-
rithms we use this format in the rest of the paper. Having
LRNN, it is quite straightforward to transform it into the for-
mat described in Sect. 2.1 by sorting end points of time in-
tervals in LRNN, and performing a “time sweep” to collect
points for each of the time intervals formed.

To reduce the disk I/O incurred by the algorithm, all
the six sets of candidate RNN points (the answer lists Bi)
are found in a single index traversal. In steps 3.2 and 3.4.1
of the FindNN algorithm (cf. Fig. 5) called from step 1 of
FindRNN, a rectangle or a point is pruned only if the con-
dition is satisfied for the answer sets of all six regions. In
addition, the computation of the squared distance between a
bounding rectangle and a query is modified, so that only the
part of the rectangle that is inside the region under consider-
ation is taken into account.

Note that if, at some time, there is more than one near-
est neighbor in some Si , those nearest neighbors are nearer
to each other than to the query point, meaning that Si will
hold no RNN points for that time. We thus assume in the
following that in sets Bi , each interval Tij is associated with
a single nearest neighbor point, nnij.

All the RNN candidates nnij found in the first traver-
sal are verified also in one traversal. To make this possible,
we use either

∑
i, j M(R, nnij) (for the integral metric) or

mini, j M(R, nnij) (for the min metric) as the aggregate met-
ric in step 3.3 of FindNN. In addition, a point or a rectangle
is pruned only if it can be pruned for each of the query points
nnij.

Thus, the index is traversed twice in total.
When analyzing the I/O complexity of FindRNN, we

observe that in the worst case, all nodes of the tree are vis-
ited to find the nearest neighbors using FindNN, which is
performed twice. As noted by Hjaltason and Samet [12], this
is even the case for static points (t� = t�), where the size of
the result set is constant. For points with linear movement,
the worst case size of the result set of the NN query is O(N)
(where N is the database size). The size of the result set of
FindNN is important because if the combined size of the

sets Bi is too large, the Bi will not fit in main memory to-
gether. In our performance studies in Sect. 4, we investigate
the observed average number of I/Os and the average sizes
of result sets.

3.4.2 FindRkNN algorithm

By using algorithm FindkNN, algorithm FindRNN can be
extended easily to find the reverse k nearest neighbors. Sim-
ilarly to the case of k = 1, it is easy to show that a point
that has the query point among its k nearest neighbors can
only be one of the k nearest neighbors of q in one of the
six regions Si . Figure 10 captures the differences between
FindRNN and FindRkNN.

Note that in the algorithm FindkNN used from step 1 of
FindRkNN, the lists minq of the answer list may have differ-
ent lengths. In a stand-alone version of FindkNN, whenever
the l-th data point is visited in the initial stages of tree traver-
sal (when l < k), it contributes to all lists minq in the answer
list. In the modified version of FindkNN, a visited data point
can contribute to a list minq(t) only if the point is inside the
searched region Si at time t .

Note also that when compared with the elements of the
LRNN list returned by FindRNN, the elements of LRNN re-
turned by FindRkNN have an additional element—the rank
of the reverse nearest neighbor. A reverse nearest neighbor
has rank r , if q is its r -th nearest neighbor. While the ranks
are not required by the definition of the RkNN query given
in Sect. 2.1, they are helpful for efficiently maintaining the
results of the query, as will be described in Sect. 3.7.

3.5 Query example

To illustrate how an RNN query is performed, Fig. 11 de-
picts 11 points, with point 1 being the query point. The ve-
locity of point 1 has been subtracted from the velocities of all
the points, and the positions of the points are shown at time
t = 0. The lowest-level bounding rectangles of the index on
the points, R1 to R5, are shown. Each node in the TPR-tree
has from 2 to 3 entries. As examples, some distances from
point 1 are shown: dP1(P8, t) is the distance between point

238 R. Benetis et al.

Fig. 10 Algorithm computing reverse k nearest neighbors for moving objects in the plane

S5

R4

R5

S1

S6
S4

S3

56

4

2

1

7
8

S2

9

10

3

R1
11

R3

2

d (P ,t)P 81
dP1

1
dP(R ,t)1

(R ,t)2

R

Fig. 11 Example query

1 and point 8, dP1(R1, t) is the distance between point 1 and
rectangle 1, dP1(R2, t) is the distance between point 1 and
rectangle 2.

If an RNN query for the time interval [0; 2] is issued,
dminP1(t) for region S1 is set to dP1(P3, t) after visiting
rectangle 2, and because dP1(R4, t) > dP1(P3, t) for all
t ∈ [0; 2], rectangle R4 is pruned.

With the purpose of taking a closer look at how the RNN
query is performed in regions S2 and S3, Fig. 12 shows the
positions of the points in regions S2 and S3 at time points
t = 0, t = 1, and t = 2. Point 7 crosses the line delimiting
regions S2 and S3 at time t = 1.5.

After the first tree-traversal, the NN points in region S2
are B2 = {〈P4, [0; 1.5]〉, 〈P7, [1.5; 2]〉}, and in region S3,
they are B3 = {〈P7, [0; 1.5]〉, 〈P8, [1.5; 2]〉}. However, the

q

8

S

S2

3

9

10

4

7

t = 0 t = 1 t = 2

Fig. 12 Simplified example query

list of RNN points, LRNN, which is constructed during the
second traversal of the TPR-tree while verifying candidate
points 4, 7, and 8, is only {〈P7, [0; 1.5]〉, 〈P7, [1.5; 2]〉}. This
is because during time interval [0; 1.5], point 10, but not
point 1, is the point closest to point 4, and, similarly, during
time interval [1.5; 2], point 7, but not point 1, is the point
closest to point 8.

3.6 Updating the answers to the NN algorithms

In the following two sections, we present algorithms that
render the NN and RNN queries persistent. The algorithms
incrementally update the answer set of a query when a point
is inserted into or deleted from the database without re-
calculating the answer set from scratch. We start with the
algorithms for maintaining the result of an NN query.

Inserting a new point is the same as visiting a new point
in a leaf node of the tree. Thus, to maintain the query result
when point p is inserted, it suffices to perform step 3.4 of
FindNN or FindkNN. If the beginning of the query time
interval is already in the past, only the remaining part of it

Nearest and reverse nearest neighbor queries for moving objects 239

that starts from the current time is maintained, i.e., [t�; t�]
is replaced by [max{tinsert, t�}, t�].

To maintain the result of an NN query when a point p is
deleted is also simple. If p is not in any of the sets associ-
ated with time intervals of the query result, then nothing has
to be done. Otherwise, for the elements of the answer list
〈Tj , NNj〉 such that NNj = {p}, FindNN(q, Tj) has to be
performed. We call such time intervals of the result set the
affected time intervals. When the result of the kNN query
is maintained, step 1 of FindkNN(q, Tj , k) is skipped, and
{〈Tj , NNj〉}, with point p removed, is used as the initial re-
sult list for affected time interval Tj .

Observe that only deletion involves accessing the index
to maintain a query result; and this happens only when the
deleted point is in the result. Also, the tree traversals asso-
ciated with different, affected time intervals Tj can be com-
bined into one traversal—in the same way as for the second
traversal of the FindRNN algorithm (see Sect. 3.4.1).

3.7 Updating the answers of the RNN algorithms

Maintaining the results of RNN (and RkNN) queries is more
difficult than maintaining the results of NN queries. We
proceed to describe separately how insertions and deletions
are processed. In each case, we first consider the simpler
case of the RNN query, then describe the algorithms for the
more complex RkNN query.

3.7.1 Insertion of a point

The algorithm for updating the answer to a query when a
new point is inserted consists of two parts. First, we have
to check whether the newly inserted point becomes an RNN
point of q . Then, we have to check whether the new point
invalidates some of the existing RNN points, which occurs
if the new point is closer to these points than is q .

Suppose that point p is inserted at time tinsert, where
tcurrent ≤ tinsert ≤ t�. Recall that the query is assumed to
be issued at time tcurrent and that the query interval ends at
t�.

The algorithm for maintaining the result of an RNN
query when insertion is performed is shown in Fig. 13. To
understand the notation used in step 2 of the algorithm, ob-
serve that for each i , there is at most one non-empty time
interval during which point p is in Si . Interval Ti denotes
the intersection of this possibly empty interval with the time
during which to update the answer. For each region Si with
a non-empty Ti , this step checks if point p becomes an NN
point of q in that region. If it does, the corresponding Bi
list is updated and it is checked for the inclusion of p into
LRNN In step 3, those points that have p as their new NN
point at some time during [t0; t�] are deleted from LRNN
for the corresponding time intervals.

The corresponding algorithm for maintaining the result
of an RkNN query has the same structure (see Fig. 14). In
step 2, for each region Si with a non-empty Ti , the algo-
rithm checks if there are times when p becomes closer to q

than the furthest of the k nearest neighbors in that region. If
so, the corresponding Bi list is updated, and it is checked for
the inclusion of p into LRNN. Step 3 differs from the cor-
responding step in Fig. 13 in that reverse nearest neighbors
are not always removed from the answer list for time peri-
ods when p gets closer to them than q . In such cases, only
their rank is incremented by one for the corresponding time
intervals. Only when the rank of an RNN point gets larger
than k during some time interval, the RNN point is removed
from the answer for the corresponding time interval.

Observe that the lists of nearest neighbors Bi are used
and updated in both algorithms. Thus, if persistent queries
have to be efficiently supported, these lists must be retained
after the completion of algorithm FindRNN. In addition, the
squared-distance functions (expressed by the three param-
eters described in Sect. 3.3.1) associated with each of the
elements in the Bi and LRNN must be retained.

The algorithms described involve one index traversal in
step 2.1, although this traversal should occur only rarely. It
is performed only when the inserted point is closer to q than
the current nearest neighbors at some time during [t0; t�].
We investigate the amortized cost of the algorithm in empir-
ical performance experiments.

3.7.2 Deletion of a point

Three computations are involved when maintaining the an-
swer set LRNN of a query when a point p is deleted. First,
if p was in the answer set, it should be removed. Second,
to correctly maintain the lists Bi of nearest neighbors, these
must be searched for p, which is removed if found. For the
time intervals during which p was a nearest neighbor, new
NN points should be found and checked for inclusion into
LRNN. Third, those RNN candidates from the lists Bi that
are not included in LRNN (or are included with reduced
time intervals) should be rechecked by the algorithm; this
is so because some of them may not have been included into
LRNN due to p being their nearest neighbor (with q possibly
being their second-nearest neighbor).

We use LRNN to denote the list of the above-mentioned
candidate points with associated time intervals during which
they are not reverse nearest neighbors. More formally:

LRNN =
{〈pl , Tl〉 | ∃ i, j (〈nnij, Tij〉 ∈ Bi ∧ pl = nnij ∧

Tl ⊆ Tij) ∧
� 〈p′, T ′〉 ∈ LRNN (pl = p′ ∧ Tl ∩ T ′ �= ∅)}

List LRNN can be computed by sorting the start and end
times of the time intervals in LRNN and the Bi lists, then
performing a “time sweep.” A binary search tree can be used
to store the IDs of all points that have their corresponding
time intervals intersect the sweep line. This way, all time
intervals from the Bi lists can be subtracted efficiently from
the corresponding intersecting time intervals from LRNN.

Suppose a data point p (i.e., p �= q) is deleted at time
tdelete (tcurrent ≤ tdelete ≤ t�). The algorithm for maintaining
the result of an RNN query is given in Fig. 15.

240 R. Benetis et al.

Fig. 13 Incremental maintenance of RNN query answers during insertions of data points

Fig. 14 Incremental maintenance of RkNN query answers during insertions of data points

Fig. 15 Incremental maintenance of RNN query answers during deletions of data points

In step 2 of the algorithm, p is removed from LRNN.
In step 3, for each region Si , p is removed from the list of
the nearest neighbors of q in that region for the time period
when p is no longer in the set of data points. Also, for each
entry removed, new NN points of q are found in that region
during the time interval when p was the nearest neighbor of
q in that region.

In step 4, the points that had p as their nearest neigh-
bor, and q as their second nearest neighbor, are included into
LRNN. Note that in this step, all new RNN candidate points
added to the Bi lists in step 3 are also checked for inclusion
into LRNN. This happens because such points are included
in LRNN (by definition) and, for each such point pl , the in-
equality d(pl , p) < d(pl , q) holds during the corresponding
time interval.

Figure 16 shows the a modified version of the algorithm
that is able to maintain the result of an RkNN query. The
first major modification is the additional step 3 in Fig. 16,
which is not present in Fig. 15. This step updates the ranks of

those reverse nearest neighbors that, during some intervals
of time, are closer to p than to q . When p is removed from
in-between such an RNN point and q , the rank of the RNN
point should be decreased by one for the corresponding time
interval.

Another difference between the two algorithms is that in
step 4.2 in Fig. 16, the algorithm FindkNN does not have to
start from scratch—the k − 1 nearest neighbors of q remain
the same during Ti j .

Although step 5 in Fig. 16 is the same as step 4 in Fig. 15,
the definition of LRNN has to be modified to account for
lists of points, instead of single points, associated with time
intervals in the Bi result lists. More formally:

LRNN =
{〈pl , Tl〉 | ∃ i, j, s (〈(p1, p2, . . . , pk), Ti j 〉 ∈ Bi ∧

pl = ps ∧ Tl ⊆ Ti j) ∧
� 〈p′, r ′, T ′〉 ∈ LRNN (pl = p′ ∧ Tl ∩ T ′ �= ∅)}

Nearest and reverse nearest neighbor queries for moving objects 241

Fig. 16 Incremental maintenance of RkNN query answers during deletions of data points

The same procedure as described for the case of k = 1 is
used to compute the list LRNN. Ranks are ignored in this
computation.

In contrast to algorithm Insert, algorithm Delete re-
quires two index traversals in the worst case. One in step 3.2
and another in step 4 (Fig. 15). Note that no tree traversals
are performed if the deleted point is not in the Bi lists and
is further away from the points in the Bi lists than the query
point. We investigate the amortized cost of the algorithm in
our performance experiments.

3.8 Continuous queries

As stated in Sect. 2.1, continuous queries are queries with
time intervals that advance in step with the continuously
progressing current time. In this section, we discuss how to
support continuous current-time queries, i.e., those that have
t� = t� = now.

A continuous current time query issued at time tissue can
be supported by computing a persistent query ql with time
interval [tissue; tissue + l]. The start and end times of the time
intervals in the answer to this query are then the times of
scheduled events that update the answer to the continuous
query. These event times change as the answer to ql is main-
tained under updates. At tissue + l, a new persistent query
with time interval of length l is computed.

The choice of an optimal l value involves a trade-off
between the cost of the computation of ql and the cost
of maintaining its result. On the one hand, it involves a
substantial I/O cost to compute even a query with l = 0, so
we want to avoid frequent recomputations of queries with
small l. On the other hand, although computing one or a few
queries with large l is cost effective in itself, we must also
take into account the cost of maintaining the larger answer
set of ql , which generates substantial additional I/O on each
update. So, using queries with large l is also not likely to be
efficient.

Let N be the number of moving points and U be the av-
erage time duration between two updates of a point. Assume
also that we want to maintain the answer to a continuous
query from the current time and for a large period of L time
units into the future. Then, we want to find a value of l that
minimizes function C(l), defined next, that denotes the total

cost of maintaining the continuous query.

C(l) = L

l

(

Q(l) + l

U
N M(l)

)

Here, Q(l) is the cost of computing the persistent query ql
with time interval of length l and M(l) is the amortized cost
of a single update (a deletion followed by an insertion) that
is required to maintain the answer to ql . The ratio l/U ex-
presses how many times a point is updated during the life-
time of a persistent query and (l/U)N M(l) gives the total
cost of maintenance, when updating all N points. Let both
Q(l) and M(l) be linear functions (we verify this assump-
tion in our performance experiments). Then,

C(l) = L

l

(

Q0 + Q f l + l

U
N (M0 + M f l)

)

= L

l
Q0 + L Q f + L

N

U
M0 + L

N

U
M f l.

To minimize C(l), we differentiate C and solve the equa-
tion C ′(l) = 0:

C ′(l) = L

(
N M f

U
− Q0

l2

)

= 0 ⇒ l =
√

Q0U

M f N

Observe that Q0 is the cost of computing ql , when l = 0.
The coefficient M f specifies how fast the cost of one update
grows when the length of the maintained persistent query
grows. The result obtained is quite intuitive. Ratio U/N is
the average time between two updates to the whole database.
The larger it is (the smaller the frequency of updates), the
cheaper the maintenance of the query result is and the larger
l can be. Also, the larger the base cost (Q0) involved in com-
puting ql is, the less frequently we want to compute ql—
making a larger l is desirable. Finally, the faster the cost of
maintaining ql grows with the growing l (the rate of growth
expressed by M f), the smaller an l we want.

Parameters Q0 and M f are dependent on N and other
specifics of the data set, and approximate values for them
could be maintained automatically by the query proces-
sor. This could be done by monitoring the performance of
queries issued by users or by periodically performing a pre-
defined suite of sample queries. Similarly, the value of U
could be maintained automatically by monitoring the fre-
quency of updates.

242 R. Benetis et al.

The presented cost model should be applicable to both
nearest neighbor and reverse nearest neighbor continuous
current-time queries. Our performance experiments, de-
scribed in the next section (in Sect. 4.6, in particular), in-
vestigate and verify the applicability of this cost model.

4 Performance experiments

This section presents results of experiments with the algo-
rithms presented in the previous section. Following a de-
scription of the experimental setup, Sects. 4.2 and 4.3 study
properties of the NN algorithms, with the second of these
focusing on persistent NN queries. Then two sections con-
sider the RNN algorithms. Finally, Sect. 4.6 considers the
continuous versions of both NN and RNN queries.

4.1 Experimental setting

All algorithms presented in the previous section were imple-
mented in C++, using a TPR-tree implementation based on
GiST [10]. Specifically, the TPR-tree implementation with
self-tuning time horizon was used [23]. We investigate the
performance of the different algorithms in terms of the num-
bers of I/O operations they perform. The disk page size (and
the size of a TPR-tree node) is set to 4 k bytes, which results
in 204 entries per leaf node in trees. An LRU page buffer of
50 pages is used [18], with the root of a tree always being
pinned in the buffer. The nodes changed during an index op-
eration are marked as “dirty” in the buffer and are written to
disk at the end of the operation or when they otherwise have
to be removed from the buffer.

In addition to the LRU page buffer, we use a main-
memory resident storage area that accommodates 30, 000
entries, each entry consisting of a moving point, a time in-
terval, and a distance function expressed by three parameter
values (cf. Sect. 3.3.1). This storage is used to record the
answer sets and intermediary answer sets (the Bi lists) of
persistent queries. The storage is large enough so that these
sets always fit in main memory.

If the answer sets or intermediary answer sets were larger
than the available main memory, they would need to be
maintained on disk. However, this would result in very sub-
stantial I/O because access to the entries in these sets is very
non-local. In the worst case, each time a point or a bound-
ing rectangle is examined, the whole answer set would have
to be read from the disk. Thus, our algorithms are not well
suited for query answers that do not fit in main memory.

The performance studies are based on synthetically
generated workloads that intermix update operations and
queries. To generate the workloads, we simulate N ob-
jects moving in a region of space with dimensions 1000 ×
1000 km. Whenever an object reports its movement, the old
information pertaining to the object is deleted from the index
(assuming this is not the first reported movement from this
object), and the new information is inserted into the index.

Two types of workloads were used in the experiments. In
some of the experiments, we use uniform workloads, where

point positions and velocities are distributed uniformly. The
speeds of objects vary from 0 to 3 km per time unit (minute).
In most of the experiments, more realistic workloads are
used, where simulated objects move in a fully connected
network of two-way routes, interconnecting a number of
destinations uniformly distributed in the plane. Points start
at random positions on routes and are assigned with equal
probability to one of three groups of points with maxi-
mum speeds of 0.75, 1.5, and 3 km/min. Whenever an ob-
ject reaches a destination, it chooses the next target destina-
tion at random. Unless specified otherwise, the experiments
use workloads from simulations with 20 destinations. The
network-based workload generation used in these experi-
ments is described in more detail elsewhere [24].

In both types of workloads, the average interval in-
between successive updates of an object is equal to 60
time units. Unless noted otherwise, the number of points is
100, 000. Workloads are run for 120 time units to populate
the index. Then, the workloads are run for additional 60 time
units with queries intermixed with the updates. Unless noted
otherwise, 600 queries are issued—ten for each time unit.

Note that the update rate implied by this setting may be
expected to be in the low end of what may be expected in
real-life scenarios. Since our experiments explore the perfor-
mance of queries, the setting is conservative—for scenarios
with higher update rates, queries would be more efficient.
This is due to the specifics of the TPR-tree, in which time-
parameterized bounding rectangles are “tighter” when more
updates happen, leading to better query performance.

For the experiments with the NN queries, a query point is
generated in the same way as a new data point is generated.
For the experiments with the RNN queries, each query corre-
sponds to a randomly selected point from the currently active
data set. Unless noted otherwise, k = 1, and the query time
interval is a random interval contained in [tissue, tissue + 30],
where tissue is the time when the query is issued.

Our performance graphs report average numbers of I/O
operations per query. When query selectivity is given as
an average numbers of time intervals in a result, the re-
ported numbers of time intervals in a result is minimal, i.e.,
the implementations of the algorithms ensure that results
are coalesced. For kNN queries, this means that for any
two consecutive time intervals in the result, the associated
NN points are different or their orderings are different. For
RkNN queries this means that in the LRNN answer set, no
two elements with the same data point and rank have adja-
cent time intervals that can be merged into a single interval.

4.2 Properties of the NN algorithms

In the first round of experiments, we explore the four vari-
ations of the NN algorithm mentioned in Sect. 3.3.1: best-
first traversal using the min metric, best-first traversal using
the integral metric, depth-first traversal using the min metric,
and depth-first traversal using the integral metric.

Figure 17 shows how the average number of I/O opera-
tions per query changes when the number of indexed points
increases. The numbers of I/O operations for all four variants

Nearest and reverse nearest neighbor queries for moving objects 243

 30

 40

 50

 60

 70

 1100 900 700 500 300 100

S
ea

rc
h

I/O

Points, in 1000s

Min metrics/best-first
Min metrics/depth-first
Integral metr./best-first

Integral metr./depth-first

Fig. 17 NN query performance for varying number of points

of the algorithm grow as the number of points increases. The
results of the experiments show that this increase is propor-
tional to the increase in the average selectivity of queries.

Figure 18 shows the average number of I/O operations
per query when the number of destinations in the simu-
lated network of routes is varied. “Uniform” indicates the
case where the points and their velocities are distributed uni-
formly, which, intuitively, corresponds to a very large num-
ber of destinations.

Not considering the two extreme workloads—the simu-
lation with two destinations and the uniform workload—the
number of I/O operations tends to increase with the num-
ber of destinations, i.e., as the workloads get more “uni-
form.” The results are consistent with those reported for
range queries on the TPR-tree [24], although they are less
pronounced.

Figure 19 explains why the cost of queries in the uni-
form workload is less than the cost of queries in the work-
loads with 40 and 160 destinations. In this graph, the average
number of time intervals and the average number of distinct
points in the query results are plotted. The graph shows that
query results are smaller for the uniform workload; hence,
less I/O operations are needed to retrieve these results. The
smaller results for the uniform workload are most probably
due to the specifics of the workload generation—more ob-
jects move at the maximum speed of 3 km/min in the non-
uniform workloads. This means that temporal query results
record more changes in these workloads.

On the other hand, the very small query results for work-
loads with two destinations does not decrease the cost of
queries in these workloads. On the contrary, queries in these
workloads are more expensive than those in the workloads
with ten destinations (cf. Fig. 18). This is explained by the
fact that objects in a two-destination simulation move on
one one-dimensional road and that the TPR-tree is not well
suited for such one-dimensional datasets. For example, in
our experiments, the overlaps among the bounding boxes
of the TPR-tree at the end of the two-destination workload

 0

 10

 20

 30

 40

 50

 60

 70

 80

Uniform1604020102

S
ea

rc
h

I/O

Number of destinations

Min metrics/best-first
Min metrics/depth-first
Integral metr./best-first

Integral metr./depth-first

Fig. 18 NN query performance for varying number of destinations

 0

 5

 10

 15

 20

Uniform1604020102

A
ve

ra
ge

 s
el

ec
tiv

ity

Number of destinations

Time intervals
Distinct points

Fig. 19 NN query selectivity for varying number of destinations

is 2.8 times larger than the overlaps at the end of the ten-
destination workload.

Figures 17 and 18 show that the best performance is
achieved by the variants of the NN algorithm that use the
best-first tree traversal. It can also be observed that the per-
formance differences among the four variants of the algo-
rithm are quite small. To understand why this is so, and to
learn whether the NN algorithm could possibly be signifi-
cantly improved, we explored how many of the performed
I/O operations corresponded to the reading of tree nodes
with bounding rectangles that actually contained the query
point at some time point during the corresponding query
time interval. Such tree nodes, which we term covering,
must necessarily be visited by any NN algorithm to pro-
duce the correct answer. Thus, given a specific TPR-tree, the
number of I/O operations corresponding to the covering tree
nodes gives the lower performance bound for a correspond-
ing nearest neighbor query.

For the uniform workload, 45.4 out of 46.5 I/O opera-
tions corresponded to the covering tree nodes. For the 20-
destination workload, the two numbers were 23 and 24.1.
This demonstrates that to improve the performance of the
NN algorithms, the underlying index structure has to be im-
proved, not the query algorithms. The notable exception was

244 R. Benetis et al.

30

32

34

36

38

40

42

44

1 2 4 8 16

S
ea

rc
h

I/O

k

Min metrics/best-first
Min metrics/depth-first
Integral metr./best-first

Integral metr./depth-first

Fig. 20 NN query performance for varying k

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

S
ea

rc
h

I/O

Query interval length

Min metrics/best-first
Min metrics/depth-first
Integral metr./best-first

Integral metr./depth-first

Fig. 21 NN query performance for varying query interval length

the two-destination workload, where, in our experiments,
only 16.4 out of 23.6 I/O operations corresponded to the
covering tree nodes.

Figures 20 and 21 show how different variants of the
NN algorithm perform when varying k and the length of
the query time interval. For the experiment with the varying
query time interval, all query intervals in a workload are of
the same length and start at the time when the corresponding
query is issued.

The graphs show results that are consistent with the re-
sults shown in Fig. 18. Note that the performance of the kNN
queries decreases only slightly with an increasing k. This is
in spite of the increase of the average size of the returned
query results—from 20.6 distinct points per result for k = 1
to 109 distinct points per result for k = 16.

The graph in Fig. 21 validates the assumption from
Sect. 3.8, that the cost of queries grows approximately lin-
early with the increasing query interval length.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 10 20 30 40 50 60

Q
ue

ry
 r

es
ul

t d
el

et
e

I/O

Query interval length

Min metrics/best-first
Min metrics/depth-first
Integral metr./best-first

Integral metr./depth-first

Fig. 22 The cost of maintaining NN queries of different length

4.3 Persistent NN queries

To evaluate the cost of maintaining the results of persistent
NN queries, a round of workloads was run where the results
of queries were maintained during insertions and deletions.
Each workload contains 60 queries, one per time unit, start-
ing at 120 time units after the start of the workload. The time
interval of each query starts when the query is issued and all
queries in a workload have the same query interval length.
As described in Sect. 3.6, maintaining query results under
insertions does not cost any I/O. Figure 22 shows the aver-
age cost of maintaining one query result when a deletion is
performed.

The graphs show that the cost is low and, consistent with
the other results, best-first that traversal slightly outperforms
depth-first traversal. The average cost is low mainly because
no I/O is necessary for most of the query result updates. For
example, only 77 out of 853,228 query result deletions re-
quired I/O for the query interval length of 10 units. For the
minimum metrics and best-first traversal, considering only
these 77 deletions with non-zero I/O, the average cost of
query result deletion is 15.3, which has to be compared to
25.4 I/Os on average for performing a query (see Fig. 21).

Finally, note that when ignoring large query interval
lengths, the average cost of query maintenance grows almost
linearly, as assumed in Sect. 3.8.

4.4 Properties of the RNN algorithm

Another batch of experiments aims to explore a variety
of the properties of the algorithms computing the reverse
nearest neighbors. Based on the results of the experiments
with the different variants of the NN algorithm, the RNN
algorithms use the NN algorithm with the best-first traversal
and the min metric.

To test the scalability of the RNN algorithm, the number
of points in the database was varied. Figure 23 shows the
average number of I/O operations per RNN query for work-
loads with varying database size.

Nearest and reverse nearest neighbor queries for moving objects 245

0

20

40

60

80

100

120

100 300 500 700 900 1100

S
ea

rc
h

I/O

Points, in 1000s

Total
First traversal

Second traversal

Fig. 23 RNN query performance for varying number of points

0

50

100

150

200

250

100 300 500 700 900 1100

A
ve

ra
ge

 s
el

ec
tiv

ity

Points, in 1000s

candidate RNN time intervals
distinct candidate RNN points

final RNN time intervals
distinct final RNN points

Fig. 24 Average selectivity of RNN queries for varying number of
points

The number of I/O operations increases with the num-
ber of data points. The increase is most probably due to two
factors. First, as the size of the database increases, differ-
ent queries are more likely to “touch” different parts of the
dataset, and the probability that one query will benefit from
the disk pages left in the buffer from the execution of an-
other query is reduced. Second, increasing numbers of RNN
candidates are retrieved and checked. Figure 24 plots the
sizes of the Bi lists, which store the candidate RNN points,
and the LRNN set, which stores the final result, in terms of
both the number of time intervals and the number of distinct
points. The graph shows that while the average size of the
final result remains almost the same as the database size in-
creases, the number of RNN candidates increases. The graph
also shows that only every sixth RNN candidate point be-
comes an RNN point (for the workload of 100,000 points).
This ratio, of course, depends on the workload. In our exper-
iments with the uniform workloads of 100,000 points, the
ratio is about 3.3.

Theoretically, the number of distinct RNN candidate
points may be as large as the size of the dataset (see
Sect. 3.4.1). However, for our workloads, the maximum
sizes of the answer sets (both in terms of intervals and dis-
tinct points) are larger than the average answer set sizes by
about a factor of 10, which makes them between two and
three orders of magnitude smaller than the dataset size. For
example, for the dataset of 1,100,000 points, the query with
the largest number of candidate RNN time intervals required
storing 2,165 time intervals with associated RNN candidates
in the Bi lists.

Returning to Fig. 23, observe that the second traversal
of the tree, in which the candidates produced by the first
traversal are verified, is cheaper than the first traversal, in
which these candidates are found. This is as expected. Be-
cause although the second traversal involves multiple query
points, all these query points are close to the original query
point, making it very likely that the disk pages brought into
the buffer by the first traversal can be reused in the second
traversal, thus reducing the number of I/O operations.

Another factor also contributes to making the second tra-
versal cheaper. During the first traversal, there is no initial
upper bound for the distance between the query point q and
the RNN candidate point, i.e., dminq(t) is initially set to ∞
in the FindNN algorithm. The second traversal only needs
to determine whether the point q is an NN point of the can-
didate points; and for each candidate point, there is an initial
upper bound for dminnnij(t), namely the distance between
the point q and that candidate point, nnij. Further, since nnij
is the NN point of q in some region Si at some time, the
distance between q and nnij is typically small. This enables
more aggressive pruning of tree nodes during the second
traversal of the TPR-tree.

Figure 25 shows the average number of I/O operations
per RNN query when the number of destinations in the sim-
ulated network of routes is varied and for the uniform work-
load. Both the performance of the first traversal and the
performance of the second traversal follow the same trends
as observed for the NN queries in Sect. 4.2.

 0

 20

 40

 60

 80

 100

 120

Uniform1604020102

S
ea

rc
h

I/O

Number of destinations

Total
First traversal

Second traversal

Fig. 25 RNN query performance for varying number of destinations

246 R. Benetis et al.

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16

S
ea

rc
h

I/O

k

Total
First traversal

Second traversal

Fig. 26 RNN query performance for varying k

0

100

200

300

400

500

600

700

800

1 2 4 8 16

A
ve

ra
ge

 s
el

ec
tiv

ity

k

candidate RNN time intervals
distinct candidate RNN points

final RNN time intervals
distinct final RNN points

Fig. 27 RNN query selectivity for varying k

Figure 26 shows the performance of the RkNN queries
for different values of k. As for the kNN queries, the perfor-
mance decreases only slightly as k increases. Next, Fig. 27
plots the average selectivity of the two traversals of the
RkNN queries. Note that for k = 16, the average number
of time intervals in the final answer surpasses the number
of time intervals in the Bi lists of RNN candidates. This is
possible because one time interval in a Bi list is associated
with k RkNN candidates, each of which may turn into sev-
eral RkNN points that are then associated with different time
intervals. In the experiment with k = 16, we observed the
largest combined size of the Bi lists for an RkNN query,
namely 6, 272 time intervals (which exceeds the average by
a factor of about 10).

Figure 28 shows the average number of I/O operations
per query for varying query interval lengths.

The setup of the experiment is the same as that of the cor-
responding experiment for NN queries (cf. Sect. 4.2). The
graph shows that for small query interval lengths, the sec-
ond traversal incurs almost no I/O, which confirms the im-

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

S
ea

rc
h

I/O

Query interval length

Total
First traversal

Second traversal

Fig. 28 RNN query performance for varying query interval length

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 10 20 30 40 50 60

Q
ue

ry
 r

es
ul

t u
pd

at
e

I/O

Query interval length

Deletion, total
Deletion, first traversal

Deletion, second traversal
Insertion

Fig. 29 The cost of maintaining RNN queries of different lengths

portance of a buffer. The number of I/O operations increases
approximately linearly with the query interval length. The
experiment also shows that the number of query results also
increases approximately linearly.

4.5 Persistent RNN queries

To investigate the cost of maintaining persistent RNN
queries, we varied the query interval lengths in an exper-
iment with a setup that is the same as for the analogous
experiment with the persistent NN queries (cf. Sect. 4.3).
Figure 29 shows the average, amortized cost per single in-
sertion or deletion of maintaining one query result set.

The graph demonstrates that maintaining RNN query
results under insertions incurs very little amortized I/O. As
mentioned at the end of Sect. 3.7.1, this is because traversals
of the tree in algorithm Insert are quite rare. Interestingly,
deletions are much more costly. Algorithm Delete involves
two tree traversals—one to find new candidate RNN points,
if one was deleted, and another to check whether some of the

Nearest and reverse nearest neighbor queries for moving objects 247

RNN candidates become actual RNN points, when a point
close to these candidates is deleted. As the graph shows,
contrary to the RNN query algorithm, the two traversals
have similar amortized cost. A possible reason for this
behavior is that the probability that some RNN candidate is
deleted is lower than the probability that a point is deleted
that at some time during the query interval gets close to
some RNN candidate. The latter condition requires recheck-
ing of such RNN candidates (step 4 in Fig. 15). Thus, the
second traversal is performed more often than the first
traversal.

Comparison of the absolute numbers in Figs. 22 and 29
shows that maintaining the results of RNN queries is more
expensive than maintaining the results of NN queries, and is
so by more than an order of magnitude. This is mainly so
because a larger number of RNN query result updates incur
non-zero I/O than NN query result updates do. For example,
for query interval length 10,2,013 out of 874,983 RNN query
result deletions incurred I/O, while only 77 out of the sim-
ilar number of NN query result deletions incurred I/O (see
Sect. 4.3). On the other hand, each non-zero-I/O query result
deletion costs less for RNN queries than for NN queries (4.2
I/Os vs. 15.3 I/Os for the same settings).

Figure 29 also shows that the amortized cost per update
increases approximately linearly with the length of the main-
tained query interval. This is as could be expected.

4.6 Continuous queries

Section 3.8 describes a cost model for choosing the opti-
mum query re-computation interval length l when maintain-
ing a continuous current-time query. Recall that a continu-
ous query is maintained by means of a persistent query that
extends from the time it is issued and l time units into the
future. With a small l, a new persistent query must be com-
puted frequently, which is expensive. But each query result
is also relatively small and thus cheap to maintain as up-
dates to the underlying data occur. With a large l, few per-
sistent queries need to be computed, but the ones that are
computed have large results that are expensive to maintain.
So a small l is expected to result in high recomputation cost
and low maintenance cost, while the opposite is expected for
a large l.

To empirically understand the effect of different l values,
we performed a series of experiments where we varied the
length of the query re-computation interval. For each l value
used, 20 queries were issued at time 120 and then maintained
for 60 time units.

Figures 30 and 31 show the amortized cost per single
update operation (insertion or deletion) while maintaining,
respectively, one NN and one RNN continuous query for
workloads of 100, 000 and 500, 000 points. Observe that
the amortized cost per single update is lower for the larger
dataset. This is so because a larger number of points leads
to a lower probability that a specific update will have an ef-
fect on a specific query result. In spite of this, when the total
cost of query maintenance is computed by adding the main-
tenance costs for all updates, the 500, 000 points workload

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

2 4 6 8 10 12 14 16 18 20

Q
ue

ry
 r

es
ul

t u
pd

at
e

I/O

Query recomputation interval length

100,000 points
500,000 points

Fig. 30 The cost of maintaining continuous current time NN queries

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

2 4 6 8 10 12 14 16

Q
ue

ry
 r

es
ul

t u
pd

at
e

I/O

Query recomputation interval length

100,000 points
500,000 points

Fig. 31 The cost of maintaining continuous current time RNN queries

has the larger total query maintenance cost than the 100, 000
points workload, although the increase is by less than a fac-
tor of 5.

For the nearest neighbor queries, the best l for the work-
load with 100, 000 points seems to be approximately 10. For
the workload with 500, 000 points, the best l value is ap-
proximately 6. For the reverse nearest neighbors, the best l
for both workloads seems to be approximately 4.

The performance experiments with varying query inter-
val lengths (cf. Sects. 4.2–4.5) validated the assumptions
that functions Q(l) and M(l) from the cost model presented
in Sect. 3.8 are approximately linear. To compare the empir-
ically observed optimal values of l with the ones computed
using the cost model presented in Sect. 3.8, we estimated
the values of parameters Q0 and M f from the performance
experiments with varying query interval length.

For the NN queries (see Figs. 21 and 22), Q0 ≈ 15.8 and
M f ≈ 0.00015. According to our workload generation pa-
rameters, U = 60. For 100, 000 points, the cost model gives
l ≈ 7.9, which is quite close to the empirically observed
value of 10. For the RNN queries (see Figs. 28 and 29),

248 R. Benetis et al.

Q0 ≈ 16.3 and M f ≈ 0.00063. This gives l ≈ 3.9, which
agrees very well with the empirically observed value of 4.
These results indicate that the mathematical cost model is
practical.

5 Summary and future work

Rapid technological advances promise to enable the track-
ing of the positions of large populations of continuously
moving objects. Consequently, efficient algorithms for an-
swering various queries about continuously moving objects
are of interest. Algorithms have previously been suggested
for answering nearest neighbor and reverse nearest neighbor
queries for non-moving objects, but no solutions have been
proposed for efficiently answering these queries for large
populations of continuously moving objects.

This paper proposed algorithms that enable the compu-
tation of nearest and k nearest neighbor queries as well as
reverse and reverse k nearest neighbor queries for this set-
ting. Each such query takes as parameter a time interval that
extend from some time not preceding the current time and
until some later time, and the algorithm computing the query
produces a result that contains the nearest or reverse nearest
neighbors for each point in time during this interval. Three
variants of these types of queries are supported: A standard
(one-time) variant that simply returns its result; a persistent
variant, where the result is updated incrementally to account
for updates of the underlying data; and a continuous variant,
where the result as of the changing current time is main-
tained for a duration of time.

The algorithms utilize the standard TPR-tree [24] as an
index on the argument moving objects. This means that a
single index structure, be it the TPR-tree, the TPR*-tree, or
a similar index, can be used for range queries, nearest neigh-
bor queries, and reverse nearest neighbor queries. Variants of
the algorithms were developed that use depth-first and best-
first search in the index structure. A comprehensive empir-
ical performance study was conducted that offered insight
into a range of performance-related properties of all the dif-
ferent algorithms. Key findings include that best-first search
is slightly better than depth-first search; that performance
decreases linearly with growing query-interval length, but is
relatively unaffected by increases in k; and that the amor-
tized cost of an update for persistent-query maintenance is
very low, particularly for nearest neighbor queries.

The presented reverse nearest neighbor algorithms are
suitable for the monochromatic case [16] only—all the
points are assumed to be of the same category. In the bichro-
matic case, there are two kinds of points (i.e., “clients” and
“servers,” corresponding to, e.g., tourists and rescue work-
ers), and a reverse nearest neighbor query asks for points
that belong to the opposite category than the query point
and that have the query point as the closest from all the
points that are in the same category as the query point.
The approach of dividing the plane into six regions does
not work for the bichromatic case—a point can have more

than six reverse (first) nearest neighbor points at a single
point in time. An interesting future research direction is to
develop algorithms for efficiently answering reverse near-
est neighbor queries for continuously moving bichromatic
points.

Next, we have only considered metric distance functions
in this paper. But settings exist where other notions of dis-
tance are also meaningful. For example, the objects consid-
ered may be assumed to move along some underlying trans-
portation network structure—they may be vehicles in a road
network. Or the objects may move more freely, with dif-
ferent types of infrastructure, such as lakes, mountains, or
farmland, prohibiting movement in some areas. While Eu-
clidean distance may be relevant in such settings, it is also
highly relevant to study how to handle the complexities aris-
ing from the non-Euclidean and non-metric distance func-
tions that exist in such settings.

Acknowledgements This research was supported in part by grants
from the Danish National Centre for IT research, the Nordic Academy
for Advanced Study, and the Nykredit Corporation.

Appendix A: Distance computation for moving points
and time-parameterized rectangles

First, we provide the formula for the squared distance dq (p, t) between
two d-dimensional moving points:

q = (x1, x2, . . . , xd , v1, v2, . . . , vd)

p = (y1, y2, . . . , yd , w1, w2, . . . , wd)

Here, the xi and yi , when not used as functions, are coordinates at time
t = 0. The squared distance is then given as follows:

dq (p, t) =
d∑

i=1

(xi (t) − yi (t))
2 =

d∑

i=1

(xi + vi t − yi − wi t)
2

= t2
d∑

i=1

(vi − wi)
2 + 2t

d∑

i=1

(xi − yi)(vi − wi)

+
d∑

i=1

(xi − yi)
2

Next, let a time-parameterized rectangle be given as follows:

R = ([x�
1 ; x�

1], [x�
2 ; x�

2], . . . , [x�
d ; x�

d],
[v�

1 ; v�
1], [v�

2 ; v�
2], . . . , [v�

d ; v�
d])

The shortest squared distance dq (R, t) between moving point q and
time-parameterized rectangle R during time interval [t�; t�] is a piece-
wise quadratic function. The algorithm computing this function is
given in Fig. 32.

In step 2, the algorithm computes the times when the moving point
q crosses the moving hyper-planes xi = x�

i (t) and xi = x�
i (t)—the

extensions of those two of R’s opposite sides that are perpendicular to
the xi axis (see Fig. 33, which also enumerates the 2d + 1 possible
subdivisions).

Note that here, t�i is not necessarily less than t�i . In step 3, during
each of the Tj , q does not cross any of the above-mentioned hyper-
planes. From the formulas in step 3, it is quite straightforward to obtain
the parameters a, b, and c mentioned in Sect. 3.3.1.

Observe that for the time periods where q is inside R,
dq (R, t) = 0.

Nearest and reverse nearest neighbor queries for moving objects 249

Distance(q, R, [t�; t�]):
1 Set E ← ∅.
2 For each dimension i = 1, . . . , d , do:

If vi �= v�
i and t�i = (xi − x�

i)/(v�
i − vi) ∈ [t�; t�], add t�i to E .

If vi �= v�
i and t�i = (xi − x�

i)/(v�
i − vi) ∈ [t�; t�], add t�i to E .

3 Sort E . The elements of E divide [t�; t�] into at most 2d + 1 intervals.
For each such interval Tj :

dq (R, t) =
d∑

i=1

dq,i (R, t), where

dq,i (R, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

t2(v�
i − vi)

2+
2t (x�

i − xi)(v
�
i − vi)+

(x�
i − xi)

2 if ∀t ∈ Tj (xi + vi t ≤ x�
i + v�

i t)
t2(v�

i − vi)
2+

2t (x�
i − xi)(v

�
i − vi)+

(x�
i − xi)

2 if ∀t ∈ Tj (xi + vi t ≥ x�
i + v�

i t)
0 otherwise

Fig. 32 Distance computation

q

(t)

q
x =

1
x =

R
4

2

3
q

5

i i ii (t)

d (R,t)

x

(R,t)=0

x

d

Fig. 33 Distance between a moving point q and a time-parameterized
rectangle R

References

1. Albers, G., Guibas, L.J., Mitchell J.S.B, Roos, T.: Voronoi dia-
grams of moving points. Int. J. Comput. Geom. Appl. 8(3), 365–
380 (1998)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-
tree: An efficient and robust access method for points and rectan-
gles. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 322–331 (1990)

3. Benetis, R., Jensen, C.S., Karciauskas, G., Šaltenis, S.: Nearest
neighbor and reverse nearest neighbor queries for moving objects.
In: Proceedings of the International Data Engineering and Appli-
cations Symposium, pp. 44–53 (2002)

4. Berchtold, S., Ertl, B., Keim, D.A., Kriegel, H.P., Seidl, T.:
Fast nearest neighbor search in high-dimensional space. In: Pro-
ceedings of the International Conference on Data Engineering,
pp. 209–218 (1998)

5. Cheung, K.L., Fu, A.W.-C.: Enhanced nearest neighbour search
on the R-tree. ACM SIGMOD Record 27(3), 16–21 (1998)

6. Čivilis, A., Jensen, C.S., Pakalnis S.: Techniques for Efficient
tracking of road-network-based moving objects. IEEE Trans.
Knowledge Data Eng. 17(5), 15 (to appear)

7. Elliott, J.: Text messages turn towns into giant computer game.
Sunday Times, April 29 (2001)

8. Federal Communications Commission: Enhanced 911. URL:
http://www.fcc.gov/911/enhanced/. Current as of June 1, 2003.

9. Guttman, A.: R-trees: A dynamic index structure for spatial
searching. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 47–57 (1984)

10. Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search
trees for database systems. In: Proceedings of the VLDB Confer-
ence, pp. 562–573 (1995)

11. Henrich, A.: A distance scan algorithm for spatial access struc-
tures. In: Proceedings of the Second ACM Workshop on Geo-
graphic Information Systems, pp. 136–143 (1994)

12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial
databases. ACM Trans. Database Sys. 24(2), 265–318 (1999)

13. Jensen, C.S. (ed): Indexing of Moving Objects. Special issue of
the IEEE Data Eng. Bull. 25(2) (2002)

14. Katayama, N., Satoh, S.: The SR-tree: An index structure for
high-dimensional nearest neighbor queries. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data, pp. 369–380 (1997)

15. Kollios, G., Gunopulos, D., Tsotras, V.J.: Nearest neighbor queries
in a mobile environment. In: Proceedings of the International
Workshop on Spatio-Temporal Database Management, pp. 119–
134 (1999)

16. Korn, F., Muthukrishnan, S.: Influence sets based on reverse near-
est neighbor queries. In: Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, pp. 201–212
(2000)

17. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas,
Z.: Fast nearest neighbor search in medical image databases. In:
Proceedings of the VLDB Conference, pp. 215–226 (1996)

18. Leutenegger, S.T., Lopez, M.A.: The effect of buffering on the
performance of R-trees. In: Proceedings of the International Con-
ference on Data Engineering, pp. 164–171 (1998)

19. Maheshwari, A., Vahrenhold, J., Zeh, N.: On reverse nearest
neighbor queries. In: Proceedings of the Canadian Conference on
Computational Geometry, pp. 128–132 (2002)

20. Preparata, F.P., Shamos, M.I.: Computational geometry: An in-
troduction (texts and monographs in computer science), 5th edn.
Springer, Berlin, Heidelberg, New York (1993)

21. Raptopoulou, K., Papadopoulos, A., Manolopoulos, Y.: Fast
nearest-neighbor query processing in moving-object databases.
GeoInformatica 7(2), 113–137 (2003)

22. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor
queries. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 71–79 (1995)

250 R. Benetis et al.

23. Šaltenis, S., Jensen, C.S.: Indexing of moving objects for location-
based services. In: Proceedings of the International Conference on
Data Engineering, pp. 463–472 (2002)

24. Šaltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Index-
ing the positions of continuously moving objects. In: Proceedings
of the ACM SIGMOD International Conference on Management
of Data, pp. 331–342 (2000)

25. Seidl, T., Kriegel, H.P.: Optimal multi-step k-nearest neighbor
search. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, pp. 154–165 (1998)

26. Singh, A., Ferhatosmanoglu, H., Tosun, A.: High dimensional re-
verse nearest neighbor queries. In: Proceedings of ACM CIKM
International Conference on Information and Knowledge Manage-
ment, pp. 91–98 (2003)

27. Sistla, A.P., Wolfson, O., Chamberlain, S., Dao, S.: Modeling
and querying moving objects. In: Proceedings of the International
Conference on Data Engineering, pp. 422–432 (1997)

28. Smid, M.: Closest point problems in computational geometry. In:
Sack J.R., Urrutia J. (eds.) Handbook on computational geometry.
Elsevier Science Publishing, pp. 877–935 (1997)

29. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving
query point. In: Proceedings of the International Symposium on
Spatial and Temporal Databases, pp. 79–96 (2001)

30. Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest neighbor
queries for dynamic databases. In: Proceedings of the ACM SIG-
MOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery, pp. 44–53 (2000)

31. Tao, Y., Papadias, D.: Spatial queries in dynamic environments.
ACM TODS 28(2), 101–139 (2003)

32. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-
temporal access method for predictive queries In: Proceedings of
the VLDB Conference, pp. 790–801 (2003)

33. Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbi-
trary dimensionality In: Proceedings of the VLDB Conference,
pp. 744–755 (2004)

34. White, D.A., Jain, R.: Similarity indexing with the SS-tree. In:
Proceedings of the International Conference on Data Engineering,
pp. 516–523 (1996)

35. Yang, C., Lin, K.-Ip.: An index structure for efficient reverse near-
est neighbor queries. In: Proceedings of the International Confer-
ence on Data Engineering, pp. 485–492 (2001)

36. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects
databases: Issues and solutions. In: Proceedings of the Interna-
tional Conference on Scientific and Statistical Database Manage-
ment, pp. 111–122 (1998)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

