
Multiple k Nearest Neighbor Query Processing in
Spatial Network Databases

Xuegang Huang, Christian S. Jensen, and Simonas Šaltenis

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst, Denmark

{xghuang, csj, simas}@cs.aau.dk

Abstract. This paper concerns the efficient processing of multiple k nearest
neighbor queries in a road-network setting. The assumed setting covers a range
of scenarios such as the one where a large population of mobile service users that
are constrained to a road network issue nearest-neighbor queries for points of in-
terest that are accessible via the road network. Given multiple k nearest neighbor
queries, the paper proposes progressive techniques that selectively cache query
results in main memory and subsequently reuse these for query processing. The
paper initially proposes techniques for the case where an upper bound on k is
known a priori and then extends the techniques to the case where this is not so.
Based on empirical studies with real-world data, the paper offers insight into the
circumstances under which the different proposed techniques can be used with
advantage for multiple k nearest neighbor query processing.

1 Introduction

A variety of location-based services for travelers such as tourists, visitors, and com-
muters are currently expected to be among the mobile services that have the highest
likelihood of being used widely as the use of data services takes off.

An infrastructure is emerging that enables such services. In particular, vehicles are
increasingly being equipped with general-purpose computing devices, e.g., in-board
devices and aftermarket PDAs and dedicated navigation devices, and cellular data con-
nections, e.g., GSM/GPRS and UMTS. Mobile users may thus request services from a
central server, and these services will involve the processing of spatial queries, among
which k nearest neighbor (kNN) queries are expected to be frequent.

This general scenario underlies a number of recent contributions to spatial query
processing. In particular, it is reasonable to assume that the service users are constrained
to a road network and that points of interest located in the road network are of interest
to the services. Contributions exist that consider a variety of spatial queries in this set-
ting, including range queries, closest-pair queries, distance joins, and also kNN queries.
However, existing contributions focus on efficient means of answering a single query.

In contrast, it is reasonable to expect that the central server will at times receive
many query requests, making it important to not simply consider the efficient process-
ing of each query in isolation, but to process multiple queries efficiently, thus obtaining
improved throughput. This paper does exactly that. The idea underlying multiple spa-
tial query processing is to re-use cached results of recently computed, nearby queries

Y. Manolopoulos, J. Pokorný, and T. Sellis (Eds.): ADBIS 2006, LNCS 4152, pp. 266–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

pikde
Text Box
LNCS 4152, pp 266-281, 2006.(URL: http://www.springerlink.com/Copyright © Springer-Verlag

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 267

for computing a location-dependent query. The restriction of the mobile users and the
points of interest to a road network contributes to making such re-use effective.

This paper thus considers the efficient processing of multiple kNN queries. More
specifically, it presents a range of approaches for the main-memory caching and re-
use of previously computed queries; and it reports on empirical studies of its proposals
that utilize real-world road network and points of interest data. The caching approaches
proposed are relatively easy to implement. Since it is also easy to switch from one
approach to another, it is possible to combine the approaches so that the currently best
approach is always utilized. The empirical studies suggest that the paper’s proposals
yield better performance than the existing single-query processing approach.

We believe that the contributions made by the paper are applicable to other kNN
algorithms than the one considered, and we believe that they are applicable also to
other types of spatial queries than kNN queries.

Query processing in the context of spatial networks as well as kNN query process-
ing have recently attracted significant attention, and several papers are available that
concern kNN and related queries for spatial networks [2,5,6,7,8,11]. One approach,
the INE algorithm [11], uses variation of Dijkstra’s algorithm for incremental network
expansion, in that way computing a kNN query. In contrast, other approaches [2,5,6,8]
pre-compute local distances to data objects or kNNs and store these on disk, so that sub-
sequent kNN queries can be processed more efficiently. These approaches all consider
the processing of queries one at a time, and they use disk-based structures. In contrast,
our focus is on the efficient processing of multiple kNN queries by using main-memory
caching strategies. This paper’s proposal uses a modified INE algorithm.

Past proposals have utilized different storage structures for spatial networks. This
paper adopts the data structures proposed along with the INE and Islands ap-
proaches [5,11], which are also similar to the CCAM [13] structure. Among the existing
spatial network models [4,12], we adopt the link-node representation of a road network.

Within spatial databases, existing papers [9,10,14] discuss the processing of multiple
queries by assuming that objects move in Euclidean space. Specifically, techniques [10]
have been proposed for processing multiple range queries with the idea of ordering the
queries so that “similar” queries are close and can be executed together. For contin-
uously answering a collection of concurrent continuous kNN queries, the SEA-CNN
approach [14] groups similar queries in a query table so that these continuous kNN
queries are reduced to a spatial join between the objects and queries. The conceptual
partitioning monitoring (CPM) algorithm [9] partitions the space around each query
with a 2-dimensional grid and improves the nearest neighbor search on the grid by or-
ganizing the cells into conceptual rectangles for each query. In contrast, we consider
the processing of multiple static k nearest neighbor queries in spatial networks. This
functionality is novel and also essential for continuous kNN query processing in spatial
networks where static kNN queries have to be computed several times during a single
continuous query.

The paper is outlined as follows. Section 2 presents the background of this paper.
Section 3 introduces the multiple query processing approaches and their extensions. The
performance of these approaches is studied in Section 4. Finally, Section 5 summarizes
the paper and offers directions for future research.

268 X. Huang, C.S. Jensen, and S. Šaltenis

2 Background

In the prototypical usage scenario for this paper’s contribution, a population of on-line
users move in a road network (e.g., by foot, bicycle, bus, or car) while issuing requests to
a central server for location-based services. The services involve kNN queries for points
of interest (e.g., gas stations or attractions) that are located within the road network. The
objective is now for the server to be able to process as many queries as possible. Terming
the users query points and the points of interest data points, we proceed to consider the
modeling of this scenario in more detail.

2.1 The Road Network Model

A road network is defined as a two-tuple RN = (G, coE), where G is a directed, labeled
graph and coE is a binary, so-called co-edge, relationship on edges. The graph G is itself
a two-tuple (V, E), where V is a set of vertices and E is a set of edges. Vertices model
intersections and starts and ends of roads. An edge e models the road in-between an
ordered pair of vertices and is a three-tuple e = (vs, ve, l), where vs, ve ∈ V are,
respectively, the start and end vertex of the edge. The edge can be traversed only from
vs to ve. The element l captures the travel length of the edge. A pair of edges (ei, ej)
belong to coE , if and only if they represent the same bi-directional part of a road and a
u-turn is allowed from ei to ej .

Next, a location loc in the road network is a two-tuple (e, pos) where e is the edge
where the location is located and pos represents the length from the start vertex of
the edge to loc. Then, a data point is modeled as a non-empty set of locations, i.e.,
dp = {loc1, · · · , lock}.

A query point qp is modeled as a two-tuple (e, pos) where e is the edge on which the
query point is located and pos represents the length from the start vertex of the edge to
qp. Given a query point and a value k, the kNN query returns k data points for which
no other data points are closer to the query point in terms of road-network distance. The
distance between a query point and a data point is the length of a shortest path between
the query point and the location of the data point that is closest to the query point.

An edge with start and end vertices vi and vj is denoted by ei,j . Figure 1 illustrates
the concepts defined above, e.g., edge e3,4 = (v3, v4, 6), data point dp1 = {(e3,4, 5),
(e4,3, 1)}, and query point qp = (e8,9, 2).

B
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
��

�
�
�

�
�
�
�

E

F

G

C

A

D

V �
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

V

V

V

dp

dp
14

1

2

4

10

12

321

119

13

15

5

2
2

6

7

7

3 2
3

13

3

2

7

1
12

4

5

4
1

2

3 1

1
21

qp
V

4

V8

6

7

5

6

V V

V

Vdp dp

V

3V dp

dp

V5
4V

dp

Fig. 1. Road Network Model

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 269

For the simplicity of our discussion, we assume that each edge in the road network
has a corresponding co-edge connecting the two vertices in the opposite direction. Each
data point then has two positions—one on each edge that models the road along which
the data point is located. Note that in figures (as in Figure 1) we draw the two co-edges
as one edge with two arrows.

2.2 INE Revisited

The INE algorithm is an adaptation of Dijkstra’s shortest-path algorithm to use a disk-
based network data structure [11]. It incrementally expands its search for data points
through a network, starting at a query point. At each step, it reads the closest vertex w
from a priority queue, Qv, which stores yet-to-be-visited vertices in the order of their
network distance from the query point. Then it puts all non-visited adjacent vertices of
w into Qv and inserts the data points found on the adjacent edges of w into a queue Qdp

that stores the data points found so far. Let dk denote the network distance from the
query point to the kth nearest neighbor in Qdp. The search terminates when k nearest
neighbors are found and the distance from the query point to the next vertex to be
explored is larger than dk. For the example road network in Figure 1, Figure 2 illustrates
the steps of the INE algorithm for a 3NN query at qp = (e8,9, 2).

Step Qv Qdp dk

1 〈(v8, 2), (v9, 2)〉 ∅ ∞
2 〈(v9, 2), (v7, 6), (v3, 7), (v13, 8)〉 〈(dp5, 3)〉 ∞
3 〈(v10, 5), (v7, 6), (v3, 7), (v11, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5)〉 ∞
4 〈(v4, 6), (v7, 6), (v3, 7), (v11, 7), (v5, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5)〉 ∞
5 〈(v7, 6), (v3, 7), (v11, 7), (v5, 7), (v13, 8)〉 〈(dp5, 3), (dp6, 5), (dp1, 7)〉 7

6 〈(v3, 7), (v11, 7), (v5, 7), (v13, 8), 〈(dp5, 3), (dp6, 5), (dp1, 7), 7
(v2, 9), (v6, 9), (v12, 11)〉 (dp2, 7), (dp4, 7)〉

Fig. 2. Steps for 3NN Using the INE Algorithm

2.3 System Architecture

We assume a client-server architecture: mobile users issue requests that involve kNN
queries from their mobile devices to a central server that perform the processing. If,
during a short time span, more queries arrive than the server can process, they are
queued. As answering a kNN query entails accessing a certain amount of road net-
work data, only some of which can be cached in main memory, the focus of this paper
is to minimize the number of disk accesses to the road network data needed for an-
swering multiple queries. Queries are put in a queue based on their arrival order. The
road network model and the points of interest are also managed by the server. In each
iteration, the query processor takes one query request from the queue and processes it
by accessing these data sets. We omit the description of the detailed structures used for
the network model and points of interest, as we simply re-use those described for the
INE and Islands approaches [5,11].

270 X. Huang, C.S. Jensen, and S. Šaltenis

3 Multiple kNN Processing Algorithms

By caching results of previously answered kNN queries in main memory, it becomes
possible for a new query to experience a reduction of accesses to disk-resident road
network data if it is able to re-use cached data. We denote the conventional algorithm
that simply processes the multiple queries as they arrive using the INE approach as
Conv kNN . We proceed to introduce three approaches that improve the multiple kNN
query processing when an upper-bound on k is known, and then we extend the algo-
rithms to the general case.

3.1 The Case of Known Upper Bound on k

We assume an upper bound kmax on the k in the multiple kNN queries, i.e., k ≤ kmax.
Such a bound may be realistic in real-world applications, as it can either be pre-defined
by LBS vendors or be obtained by observing historical records.

Basic Observation

Lemma 1. Let qp be a query point, v a network vertex, and dp a data point. If dp is one
of the k nearest neighbors of qp and the shortest path from qp to dp passes through v,
then dp is also one of the k nearest neighbor data points of v.

Based on this lemma, during the kNN expansion process from a query point qp, if a net-
work vertex v is visited and the k nearest neighbor data points of v are already known,
the expansion process reuses these k nearest neighbors of v and avoids visiting adja-
cent vertices of v. This is possible because the INE algorithm guarantees that when v is
visited (removed from the queue of vertices), the shortest path from qp to v has already
been found. This, combined with Lemma 1, guarantees that all qp’s k nearest neigh-
bors, which have the shortest paths from qp passing through v, can be found among the
k nearest neighbor data points of v.

With this observation, if we cache a certain amount of network vertices together with
their k nearest data points, a newly-started kNN expansion process will be able to re-use
the cached data and save computation.

We extend the INE algorithm with the capability of using the cached data. The ex-
tended algorithm, INE∗, takes three parameters: the query point qp, the value k, and a
list L of cached results. Entries in the list L have the form (v,QPv), where v is a vertex
and QPv is the set of the k nearest data points of v (including corresponding distance
values). Similar to the INE approach, during the network expansion process, the INE∗

algorithm uses two priority queues, Qdp and Qv, to record, respectively, data points
and vertices together with their distance to the query point, denoted as d(qp, dp) and
d(qp, v). Both queues sort elements by the distance value and do not allow duplicate
data points or vertices. The size of Qdp is limited to k elements. We introduce update
and deque operations for the two queues. The update(dp/v, dist) operation inserts a
new data point or vertex and the corresponding distance into the queue. If this data
point or vertex is already in the queue then, if dist is smaller than the distance stored
in the queue, the distance value in the queue is updated to dist. The deque operation
removes a vertex with the smallest distance and returns it. The pseudo code is listed
next. Queues Qv and Qdp are assumed to be empty initially.

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 271

(1) procedure INE ∗(qp, k, L)
(2) for each data point dp on edge qp.e: Qdp.update(dp, d(qp, dp))
(3) Qv.update(qp.e.vs, d(qp, qp.e.vs)), Qv.update(qp.e.ve, d(qp, qp.e.ve))
(4) if ∃a such that (a, qp.e) ∈ coE ,do lines (2)–(3) assuming qp = (a, a.l − qp.pos)
(5) Let dpk denote the k-th element in Qdp, or dpk = ⊥ if there is no such element
(6) dk ← d(qp, dpk) // dk ←∞ if dpk = ⊥
(7) vx ← Qv.deque, mark vx visited
(8) while d(qp, vx) < dk ∧Qv 	= ∅
(9) if (vx,QPvx) ∈ L
(10) for each dp ∈ QPvx : Qdp.update(dp, d(qp, vx) + d(vx, dp))
(11) else
(12) for each non-visited adjacent vertex vy of vx

(13) for each dp on edge ex,y (and edge ey,x if (ex,y, ey,x) ∈ coE)
(14) Qdp.update(dp, d(qp, vx) + d(vx, dp))
(15) Qv .update(vy, d(qp, vx) + ex,y.l)
(16) dk ← d(qp, dpk)
(17) vx ← Qv.deque, mark vx visited
(18) return Qdp

During the INE∗ expansion process, whenever a vertex vx in the list L is visited, the
algorithm updates the queue Qdp with the kNNs of vx (line 10) and proceeds to visit
the next vertex in the queue Qv (line 17). It can be observed that the algorithm still
works if the list L keeps more than k nearest neighbors to corresponding query points.
Then line 10 only uses the first k data points of vx. With this algorithm as a basis, we
introduce three approaches for multiple k nearest neighbor query processing.

The Sharing Approach. A basic approach to improving the efficiency of multiple
query processing is to re-use the results of finished kNN queries for new queries.
Since these finished query points can be treated as extra vertices on the road network,
Lemma 1 applies, and the INE∗ algorithm can be used. To control the size of the list
of cached query results (list L), we define a threshold D and add this threshold as an
additional parameter to the INE∗ algorithm. For a query started at qp, if a cached query
point qp′ is discovered in the network expansion process within a network distance D
from qp, the result of the query at qp is not saved in L. Otherwise, it is saved in the list
for future queries.

Assuming a sequence of queries S = 〈. . . , (qpi, ki), . . .〉, where qpi is a query point
and ki is the number of nearest neighbors (0 < ki ≤ kmax), we describe the sharing
approach in the following.

Approach 1. (The S kNN (S,D, kmax) algorithm)

1. Retrieve query request (qpi, ki) from S
2. Execute INE∗(qpi, ki, L,D); in the expansion process, if ki neighbors are found

within D while no cached query points are discovered, continue the expansion to
distance range D or until a cached query point is reached; If there are no cached
query points found within D, continue the expansion until kmax neighbors are
found and save the query result (qpi, QP qpi) in L

3. Go to step 1 until S = ∅ �

272 X. Huang, C.S. Jensen, and S. Šaltenis

Step 2 of the approach guarantees that no two cached queries are closer to each other
than D and that all of the cached results contain kmax neighbors. If k nearest neighbors
are found within the distance threshold D from the query, the algorithm continues the
expansion to distance D to check if the query has to be cached.

An alternative policy is to cache a query point if its k nearest neighbors are found
within D and no other cached query points are reached in the process. With this policy,
parts of the road network with a high density of data points will obtain many cached
queries. This, in turn, may result in queries from other areas of the road network being
purged from the cache due to its limited size. In this way, areas dense with data points
are favored in the cache, and this may not be desirable because, even without caching,
queries run fast in these areas due to small expansion ranges. Thus, we choose to enforce
the thresholdD strictly, which results in a uniform distribution of cached queries in the
road network.

The Clustering Approach. Intuitively, if a number of queries are clustered in a small
area of the road network, most of them will benefit from queries cached near the cluster.
In the following, we explore a approach that finds the clusters of queries in order to
obtain maximum reuse of cached query results within the clusters.

We divide the road network into “sub-networks” generated by the clusters of query
points (details will follow). Consider Figure 3. The network inside the big rectangle R
is a sub-network of the example road network in Figure 1. We denote this sub-network
R. A network vertex belongs to R if, based on coordinates of this vertex, it is inside the
rectangle R. We divide all vertices belonging to R into two types. First, those vertices
whose adjacent vertices also belong to R are called internal vertices of R. Second, those
vertices that have at least one adjacent vertices not belonging to R are defined as border
vertices. In Figure 3, vertex v10 is an internal vertex while vertices v4, v9, and v11 are

2

�
�
�
�

�
�
�
�

�
�
�
�

V

1
1 1

2

23

1

2

qp1
V11

4

dp6

V2
2

1

1

3

3

3

1

V
V

dp

qp

9

5

dp

10

RR

R R

R 4

Fig. 3. The Clustering Approach

border vertices. A network edge belongs to
R if both its vertices belong to R, e.g., edges
e4,5 and e9,11 belong to R in Figure 3. A
data point or a query point belongs to a
sub-network R if its edge belongs to R. As
shown in Figure 3, data point dp6 and query
point qp2 belong to R while dp1 and qp1 do
not.

The clustering approach is based on the
following observation. In Figure 3, suppose
a 3NN query is issued from query point qp2

in R. We can answer the query in two steps.
First, we run the INE∗ algorithm to find 3NNs to all border vertices of R: v4, v9, v11.
Second, we run the INE∗ at qp2, but during the incremental expansion process, when
a border vertex is visited, we treat it as a cached query—its corresponding 3NNs (com-
puted in the first step) are added into queue Qdp and the expansion process does not
proceed to the adjacent vertices. Since 3NNs of all border vertices are pre-computed,
the network expansion process is constrained inside R. The 3NNs of qp2 are data points
found either by the expansion process inside R or by reading nearest neighbors of bor-
der vertices. Based on Lemma 1, the result of such a two-step execution is correct.

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 273

Although this procedure restricts the expansion scope of a kNN query to a sub-
network, it is expensive to answer a single kNN query in such a way due to the cost of
pre-computing kNNs of border vertices. However, since the pre-computed data can be
used for all the query points inside the same sub-network, sharing of the pre-computed
border vertices may be beneficial if a substantial amount of queries are running in
the same sub-network. In addition, we “pre-compute” the border vertices in a lazy
fashion—a kNN query on a border vertex is run and the result is cached only when
we first encounter this vertex during the processing of some query.

To generate sub-networks, we assume that a spatio-temporal histogram H is avail-
able. It is a uniform two-dimensional m×m grid covering the MBR (Minimum Bound-
ing Rectangle) of the whole road network. Each histogram cell records the number of
query points located in this cell in a short history. We use the DBSCAN algorithm [3]
to cluster the histogram cells based on the recorded numbers of query points. A clus-
ter’s ID is then recorded with each cell of the cluster. Cells that are not assigned to any
cluster by DBSCAN are assigned to the “cluster” of outliers.

The modified INE∗ algorithm getsH as an extra parameter and uses the cluster IDs
of grid cells to determine border vertices in the network expansion process. When ex-
amining a vertex, the algorithm uses the coordinates of the vertex to find its histogram
cell and the corresponding cluster ID. By comparing the cluster IDs of the vertex and
all its adjacent vertices, the algorithm determines if the vertex is a border vertex. For
example, suppose the four small rectangles in Figure 3 are histogram cells and are as-
signed the same cluster ID while their neighboring rectangles (not shown in the figure)
have different cluster IDs. Vertex v9 is a border vertex because it is inside the cluster
while one of its adjacent vertex is in a cell of a different cluster.

The clustering approaches takes the following parameters: a sequence of queries S,
the histogram H = {c1, c2, . . . , cm}, the upper-bound kmax, and the DBSCAN para-
meters Eps and MinPts [3]. Briefly, Eps defines a distance scope for searching neigh-
borhood points and MinPts defines the minimum number of points in a neighborhood
to a “center” point. We proceed to consider the clustering approach in more detail.

Approach 2. (The C kNN (S,H, kmax,Eps ,MinPts) algorithm)

1. Execute DBSCAN (H,Eps ,MinPts) saving cluster IDs with each cell inH
2. Retrieve (qpi, ki) from S
3. Execute INE∗(qpi, ki, L,H); in the expansion process, if a border vertex v is vis-

ited, do not consider its adjacent vertices (lines 12–15 in INE∗). If v is in L, update
Qdp with kiNNs of v (line 10). If v is not in L, execute INE∗(v, kmax, L), placing
the result (v, QP v) into L and update Qdp.

4. Go to step 2 until S = ∅ �
As discussed, the cached list L, which is used to record border vertices of clusters and
their kNNs, is populated in a lazy fashion. When enough border vertices of a cluster are
computed, network expansions starting inside the cluster will have a reduced scope.

For an example of the running of this algorithm, consider the sub-network covered
by rectangle R in Figure 3 as a sub-network of the whole network in Figure 1. Assume
that a number of queries were already processed in this sub-network, so that 3NNs to the
border vertices are computed (shown in Figure 4(a)). Then, Figure 4(b) demonstrates
the running steps of INE∗(qp2, 3, L,H) at qp2 = (e9,10, 2).

274 X. Huang, C.S. Jensen, and S. Šaltenis

Border Vertex 3NNs
v4 〈(dp1, 1), (dp3, 3), (dp6, 6)〉
v9 〈(dp6, 3), (dp1, 5), (dp5, 5)〉
v11 〈(dp3, 1), (dp6, 2), (dp1, 5)〉

(a) List L

Step Qv Qdp dk

1 〈(v10, 1), (v9, 2)〉 ∅ ∞
2 〈(v9, 2), (v4, 2), (v5, 3), (v11, 4)〉 ∅ ∞
3 〈(v4, 2), (v5, 3), (v11, 4)〉 〈(dp6, 5), (dp1, 7), (dp5, 7)〉 7

4 〈(v5, 3), (v11, 4)〉 〈(dp1, 3), (dp3, 5), (dp6, 5)〉 5

5 〈(v11, 4)〉 〈(dp1, 3), (dp3, 4), (dp6, 5)〉 5

6 ∅ 〈(dp1, 3), (dp3, 4), (dp6, 5)〉 5
(b) Steps for 3NN from qp2

Fig. 4. Running Example of INE∗ in C kNN

The Combined Approach. In an attempt to combine the benefits of the sharing and
clustering approaches, we combine step 3 of the C kNN algorithm with step 2 of
the S kNN algorithm. The combined approach takes six parameters: the sequence of
queries S, the histogramH, the upper bound kmax, clustering parameters Eps , MinPts ,
and the thresholdD. We describe the approach in the following.

Approach 3. (The SC kNN (S,H, kmax,Eps ,MinPts ,D) algorithm)
Execute C kNN (S,H, kmax,Eps ,MinPts) with the following modifications: In

step 3, execute INE∗(qpi, ki, L,H); in the expansion process, if a border vertex v is
visited, do not consider its adjacent vertices (lines 12–15 in INE∗). If v is in L, up-
date Qdp with the kiNNs of v (line 10). If v is not in L, run INE∗(v, kmax, L), put
the result (v, QP v) into L, and update Qdp. If ki neighbors are found within D while
no cached query points are discovered, continue the expansion to distance range D or
until a cached query point is reached; if there are no cached query points found within
D, continue the expansion until kmax neighbors are found and save the query result
(qpi, QP qpi) in L. �

Here, list L contains two types of cached results—results of previous queries and for
border vertices. We assign equal weight to both types and use LRU cache-replacement.

3.2 The Case of Unknown Upper Bound on k

As described, the S kNN , C kNN , and SC kNN algorithms assume a have fixed
upper-bound on k. Such an assumption, although is applicable in real LBS applications,
limits the flexibility of these applications. Thus, we proceed to extend the algorithms to
process queries with arbitrary k values.

To see how the S kNN algorithm can be extended, suppose a k1NN query at query
point qp1 in Figure 5 is processed and cached. When the k2NN query at qp2 visits qp1,
if k2 ≤ k1, based on Lemma 1, the network expansion process can update the result
with the first k2 nearest data points of qp1 and stop visiting neighbor vertices of qp1. If

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 275

k2 > k1, the network expansion can also use the k1 nearest data points of qp1, but it has
to continue visiting adjacent vertices of qp1. The bigger the sizes (k’s) of the cached
query results, the better such a strategy works.

V

21
3

6

22

qp
1 (k)1

(k)33

V VV

qp (k)

V

qp

7

Fig. 5. Extension to LS kNN

To achieve high k’s of the cached query results,
we exchange a cached query point with a new query
point with a higher k, whenever such a new query is
issued on the same edge or co-edge. For example in
Figure 5, when another k3NN query at qp3 is issued
and qp3 is on the same edge as qp1, after process-
ing of qp3, if k3 > k1, we replace the cached qp1

with qp3 and corresponding nearest neighbors. This
way, the sizes (k’s) of the cached query results is in-
creased lazily, as queries with high k’s arrive.

We summarize the “lazy-update” sharing approach in the following. The parameters
for the algorithm are the same as for S kNN , except for the upper bound of k.

Approach 4. (The LS kNN (S,D) algorithm)
Execute the S kNN algorithm with the following modifications. In step 2, in the

expansion process of INE∗(qpi, ki, L,D), when a cached query point is encountered
and L is updated with its nearest neighbors, if its k value is smaller than ki, continue
visiting its adjacent vertices. Before step 3, if there is another query point on the same
edge as qpi with a smaller k value than ki, replace that query point and its corresponding
nearest neighbors with qpi and its nearest neighbors. �

With this “lazy-update” strategy, the LS kNN algorithm is able to process multiple
kNN queries without setting the upper bound of k. Notice that the efficiency of the
strategy largely depends on the distribution of k values in the query stream. The worst
case for the algorithm is when k values are small at the beginning of a query stream and
increase with time. Also notice that, by replacing cached query points with new ones
on the same edge, the enforcement of the precise thresholdD is compromised.

(k)
V

4

10

9

qp

2

(k)1

V 5V
qp

2 (k)

V11

11

V

Fig. 6. Extension to LC kNN

We can also apply the lazy-update strategy to the
C kNN algorithm. As shown in Figure 6, let the bor-
der vertices of the sub-network be v4, v5, v9, and v11.
Suppose also that after processing the k1NN query
at qp1, border vertex v9 is cached with k1 nearest
neighbors. Then, when a k2NN query at qp2 vis-
its the border vertex v9, if k2 ≤ k1, the expan-
sion process updates the query result with the first
k2NNs of v9 and avoids visiting its adjacent vertices.

If k2 > k1, the network expansion is paused and a new k2NN query is fired at v9 to find
k2 nearest neighbors. Then the query uses these NNs of v9 to update the query result
and continues expanding in other directions. The cached k1NNs of v9 are replaced with
its k2NNs.

The pseudo code for this lazy-update clustering approach follows. It uses the same
parameters as the C kNN algorithm, except from the upper bound of k.

276 X. Huang, C.S. Jensen, and S. Šaltenis

Approach 5. (The LC kNN (S,H,Eps ,MinPts) algorithm)
Execute the C kNN algorithm with the following modification. In step 3, in the

expansion process of INE∗(qpi, ki, L,H), when a border vertex v is visited, if v is in
L and has no less than ki cached NNs, update Qdp with the kiNNs of v. If v is not in L
or it has less than ki cached NNs, run INE∗(v, ki, L), place the result (v, QP v) in L,
and update Qdp. �

We can also extend the SC kNN algorithm by applying the above-described strategies.
We omit the presentation of the “Lazy-Combined Approach” (denoted as Approach 6)
and denote the algorithm as the LSC kNN algorithm. It has the same parameters as
the SC kNN algorithm, but is able to handle multiple nearest neighbor queries with
arbitrary k values.

3.3 Discussion

As pointed out in the coverage of the VN3 and Island approaches [5,8], for an online-
processing system, it is necessary to consider updates to the road network as well as
points of interest during query processing. For the algorithms proposed in this paper,
updates to both the network and data points will cause the cached list L to be truncated
and re-filled by new queries. In addition, since the Islands approach uses a similar net-
work expansion algorithm as the INE algorithm, the approaches proposed here can be
directly applied with the Islands approach. It will be an interesting direction to consider
how to accommodate updates to the network and points of interest data while, at the
same time, improve the efficiency of processing multiple queries.

As we have proposed a total of 6 approaches, we believe that, since the different
approaches may perform best in different situations, it is possible to design query ex-
ecution strategies that, based on given situations, automatically switch among these
approaches to always achieve the best performance. The switching among the six ap-
proaches is straightforward since one only needs to replace the network expansion strat-
egy in the INE∗ algorithm. In the next section, we focus on experimentally exploring
the settings for which each of the approaches excels.

4 Evaluation

We use two data sets for examining the performance properties of the caching ap-
proaches. The first consists of a real-world road network and associated points of in-
terest for Aalborg (AAL), Denmark, containing 11, 300 vertices, 13, 375 bi-directional
edges, and 279 data points. The second data set is a representation of the road network
of San Francisco (SF) [1]. It contains 175, 343 vertices as well as 223, 140 bi-directional
edges. The road network and points of interest data are arranged into disk pages based
on the data structures described for the INE and Islands approaches [5,11]. We set the
page size to 4k and use an LRU buffer for caching the disk pages read by the algo-
rithms. While the Conv kNN algorithm uses the whole main-memory buffer for the
LRU buffer of disk pages, the algorithms proposed in the paper also use an in-memory
list L that occupies part of the main-memory buffer. We also apply the LRU strategy to
L. The total size of the buffer is 15% of the network data. The AAL and SF datasets

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 277

contain 129 and 4, 023 pages. We study the performance of these approaches in terms
of the average disk accesses. The approaches are implemented in C++ (the DBSCAN
algorithm is based on the source code kindly provided to us by its authors [3]).

Values for parameters used in the experiments are listed in Figure 7 (the values in

Query Points 200, 500, 2000, 5000, 20000

Range of k [1, 5], [1, 10], [1, 20], [1, 50], [1, 80]

Size of List L 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4 of
the buffer size

Threshold D 0.001, 0.005, 0.01, 0.05, 0.1 of Dmax

Histogram Cells 5×5, 8×8, 10 × 10, 15×15, 20×20

Eps 2 ∗Cl

MinPts 0.5 ∗ Cave

Fig. 7. Parameter Values

bold are defaults). Briefly, they
are the number of query points,
the range of k, the size of
the cached list L, the distance
thresholdD, the number of his-
togram cells, and parameters
Eps and MinPts for the clus-
tering algorithm. We define the
maximum Euclidean distance
between any two vertices of
the road network as Dmax. The

distance threshold D is represented as a fraction of Dmax. The histogram is a uniform
m×m grid exactly covering the MBR of the whole road network. We define Cl as the
length of the diagonal of a histogram cell, and Cave as the average number of query
points inside an “occupied” cell, i.e., a cell containing at least one query point. The
parameter Eps is represented as a function of Cl, and MinPts as a function of Cave .

We use the real data points in the AAL data set and introduce synthetic data points
for the SF data set in our evaluations. The synthetic data points are generated randomly
at a density of 0.1%, where the density is defined as the number of data points versus the
number of bi-directional edges in the network. The query points and k values (within a
given range) are generated randomly.

In the experiments, we first explore the differences among the sharing, clustering,
and combined approaches. As described, updates to network data cause the cached list
L to be invalidated for all approaches. Depending on the frequency of such updates,
the average number of queries issued in-between two resettings of the cached list L
may vary. In the first set of experiments, we explore the average query performance for
varying amount of queries. The average number of disk accesses per query is measured,
and the experiments are run on both the AAL and SF data sets, for both cases with and
without a known upper bound on k. The parts of the curves to the right in Figure 8
describe the performance when updates are infrequent, while the parts of the curves
towards the left represent the performance when updates are increasingly frequent.

For the clustering approach, at the beginning of each experiment, all the query points
to be executed are clustered. Assuming that the query distribution does not change with
time, the resulting sub-networks should be similar to the sub-networks generated by
clustering a history of past queries as described in Section 3. Figure 8 shows that the
sharing approach is competitive with the conventional algorithm in the AAL network,
but has worse performance in the SF network. The results also demonstrate that the
clustering and the combined approaches have high costs for very small amounts of
query points. Thus, when the cached list L is invalidated too often, which happens
when updates occur, the approaches are worse than Conv kNN .

278 X. Huang, C.S. Jensen, and S. Šaltenis

(a) Average Performance with Upper Bound of k

(b) Average Performance without Upper Bound of k

Fig. 8. Accumulated Query Performance

To study in detail how the cached data influence query efficiency, we perform 5, 000
queries (on the AAL data set) and measure the average disk accesses for every 100
queries. We define the “steady state” for the cached list L as the first time it becomes
full. As illustrated in Figure 9, the performances of the sharing approaches are very
close to that of the conventional algorithm, but exhibit slightly better performance than
Conv kNN after the “steady state.”

The clustering and combined approaches both show substantially improved query
performance after the steady state. An interesting observation is that the clustering
algorithm with an upper bound of k (C kNN) has the worst performance of all (see
Figure 9(a)), while the variant without an upper bound of k, LC kNN , is the best one
(see Figure 9(b)). This is because the upper bound of k in the first case is used by
kNN queries at border vertices. Depending on the value of kmax, each such query has
a substantial cost and the corresponding cached result occupies substantial space in the
list L. On the other hand, the LC kNN algorithm incurs smaller cost for the queries at
border vertices and uses less caching space to save the results of these queries, which,
in turn, enables more items to be cached in L.

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 279

(a) Disk Accesses with Upper Bound of k

(b) Disk Accesses without Upper Bound of k

Fig. 9. Evolution of Performance on AAL Network

Figures 9(b) and 8(b)
show that the LC kNN
algorithm is slightly better
than LSC kNN for the
AAL data set, while the
same experiment on the
SF data set shows that
LSC kNN outperforms
LC kNN . To further study
the differences between
these two approaches, ex-
periments were performed
varying other parameters:
the size of the cached list
L, the amount of cells in a
histogram of queries, and
the distance threshold D
used by the LSC kNN
approach. Figure 10 shows
the results for the AAL data
set. It can be observed that
the LSC kNN algorithm
performs better than the
LC kNN algorithm when
the cache size is small,
but it is outperformed
by LC kNN when the
cache size grows. With

more histogram cells, the LC kNN algorithm seems to get worse and worse as the
number of border vertices becomes too large compared to the given cache size. As
expected, when the distance threshold D increases, less and less results of queries
from non-border vertices are saved in the cache, and the performance of LSC kNN
becomes closer to LC kNN . The difference between the LC kNN and LSC kNN
algorithms is also affected by the network topology, the density and distribution of data

Fig. 10. Comparison of LC kNN and LSC kNN on Other Parameters (AAL)

280 X. Huang, C.S. Jensen, and S. Šaltenis

Fig. 11. Comparison of Approaches With or Without kmax (AAL)

points (the AAL data set includes real data points with a density of 2% and the SF data
set has synthetic, uniformly distributed data points with a density of 0.1%), as well as
the effect of the clustering functions.

Based on the described experiments, we conclude that with a tight upper bound on k
that is not far from the average k value of the queries, the combined approach is the best
suited approach. For the case where there is no such upper bound, both the clustering
and the combined approaches have similar performance. The clustering approach may
then be preferable because it is simpler than the combined approach.

To explore further the difference among the approaches when the upper bound of
k is fixed or not, we execute 5, 000 queries for different ranges of k values. The para-
meter kmax is used in the S kNN ,C kNN , andSC kNN algorithms, while the “lazy”
variants of these algorithms use actual k values as described in Section 3. As shown
in Figure 11, the performances of the S kNN and LS kNN algorithms are quite close
even with a very big upper bound of k. The combined approaches exhibit similar be-
havior. In contrast, the difference between the performances of C kNN and LC kNN
is substantial. Comparing the performances of LC kNN and SC kNN , we conclude
that the “lazy” clustering approach (LC kNN) is the most suitable, independently of
whether the upper bound of k is known or not.

Experiments were also performed to check how the performance of these algorithms
is influenced by other parameters, i.e., density of data points and the clustering parame-
ters Eps and MinPts . The results of these experiments, not covered in detail here, are
quite consistent to those reported and thus provide a further validation of our findings.

Summarizing the performance evaluation, we can conclude that when the amount of
successive queries between adjacent updates in a workload exceeds one thousand, the
proposed approaches have better performance than the conventional approach, which
uses the main-memory buffer solely as a disk-page buffer. Next, the “lazy” clustering
approach (LC kNN) is the most competitive of the proposed approaches under a broad
variety of settings.

5 Summary and Research Directions

With focus on the use of main-memory caching strategies for improving the efficiency
of multiple k nearest neighbor query processing, this paper presents a total of six
caching algorithms. The paper first presents three basic approaches that assume that

Multiple k Nearest Neighbor Query Processing in Spatial Network Databases 281

an upper bound on k is known a priori. Then it extends these approaches to contend
with the general case where the upper bound is unknown.

Empirical performance studies demonstrate that the algorithms excel over the con-
ventional algorithm in a variety of circumstances. The algorithms termed the “lazy”
clustering approach is the best in most settings. In addition, these algorithms are easy
to implement and can be used in combination to achieve multiple k nearest neighbor
query processing that outperforms existing proposals.

Future work can be explored in several directions. First, as discussed in the paper,
it is relevant to consider updates to the network as well as the points of interest when
processing multiple queries. Second, it is of interest to conduct a theoretical analysis
of the relationships among parameters such as the cache size, the range of k, the query
throughput, the data point density, and the performance of multiple queries. Third, it is
of interest to investigate approaches that off-load the server side by delegating process-
ing to the mobile devices.

Acknowledgments. C. S. Jensen is also an adjunct professor in Department of Tech-
nology, Agder University College, Norway.

References

1. T. Brinkhoff. Network-based Generator of Moving Objects. http://www.fh-oldenburg.de/iapg
/personen/brinkhof/generator/

2. H. -J. Cho, C. -W. Chung. An Efficient and Scalable Approach to CNN Queries in a Road
Network. In Proc. VLDB, pp. 865–876, 2005.

3. M. Ester, H. P. Kriegel, J. Sander, X. Xu. A Density-Based Algorithm for Discovering Clus-
ters in Large Spatial Databases with Noise. In Proc. KDD, pp. 226–231, 1996.

4. R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and Querying Moving Objects in
Networks. In VLDB J., 2006, to appear.

5. X. Huang, C. S. Jensen, S. Šaltenis. The Islands Approach to Nearest Neighbor Querying in
Spatial Networks. In Proc. SSTD, pp. 73–90, 2005.

6. H. Hu, D. L. Lee, J. Xu. Fast Nearest Neighbor Search on Road Networks. In Proc. EDBT,
pp. 186–203, 2006.

7. C. S. Jensen, J. Kolář, T. B. Pedersen, I. Timko. Nearest Neighbor Queries in Road Networks.
In Proc. ACMGIS, pp. 1–8, 2003.

8. M. Kolahdouzan, C. Shahabi. Voronoi-Based Nearest Neighbor Search for Spatial Network
Databases. In Proc. VLDB, pp. 840–851, 2004.

9. K. Mouratidis, M. Hadjieleftheriou, D. Papadias. Conceptual Partitioning: An Efficient
Method for Continuous Nearest Neighbor Monitoring. In Proc. SIGMOD, pp. 634–645,
2005.

10. A. Papadopoulos, Y. Manolopoulos. Multiple Range Query Optimization in Spatial Data-
bases. In Proc. ADBIS, pp. 71–82, 1998.

11. D. Papadias, J. Zhang, N. Mamoulis, Y. Tao. Query Processing in Spatial Network Databases.
In Proc. VLDB, pp. 802–813, 2003.

12. L. Speičys, C. S. Jensen, A. Kligys. Computational Data Modeling for Network Constrained
Moving Objects. In Proc. ACMGIS, pp. 118–125, 2003.

13. S. Shekhar, D. Liu. CCAM: A Connectivity-Clustered Access Method for Networks and
Network Computations. In IEEE TKDE, 19(1): 102–119, 1997.

14. X. Xiong, M. F. Mokbel, W. G. Aref. SEA-CNN: Scalable Processing of Continuous K-
Nearest Neighbor Queries in Spatio-Temporal Databases. In Proc. ICDE, pp. 643–654, 2005.

	Introduction
	Background
	The Road Network Model
	INE Revisited
	System Architecture

	Multiple kNN Processing Algorithms
	The Case of Known Upper Bound on k
	The Case of Unknown Upper Bound on k
	Discussion

	Evaluation
	Summary and Research Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

