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Abstract
With the emergence of an infrastructure that enables the

geo-positioning of on-line, mobile users, the management of
so-called moving objects has emerged as an active area of
research. Among the indexing techniques for efficiently an-
swering predictive queries on moving-object positions, the
recent Bx-tree is based on the B+-tree and is relatively easy
to integrate into an existing DBMS. However, the Bx-tree is
sensitive to data skew. This paper proposes a new query
processing algorithm for the Bx-tree that fully exploits the
available data statistics to reduce the query enlargement
that is needed to guarantee perfect recall, thus significantly
improving robustness. The new technique is empirically
evaluated and compared with four other approaches and
with the TPR-tree, a competitor that is based on the R*-tree.
The results indicate that the new index is indeed more robust
than its predecessor—it significantly reduces the number of
I/O operations per query for the workloads considered. In
many settings, the TPR-tree is outperformed as well.

1 Introduction

The increasing interest in mobile-location data has
served as motivation for the development of spatio-temporal
indexes for the current and near-future positions of moving
objects. Traditional spatial indexes designed for largely sta-
tic data fall short in supporting mobile data. For static data,
queries are much more frequent than updates. For mobile
data, both updates and queries are frequent. In addition,
such data represent continuous object movement. Velocity
vectors are often utilized for predicting the near-future po-
sitions of such objects.

Two classes of spatio-temporal indexes have been pro-
posed. A number of R*-tree-based [1] indexes store ob-
ject positions in their native 2- or 3-dimensional space.
Examples include the TPR-tree [10], the TPR*-tree [12],
the STAR-tree [8], and the REXP-tree [9]. Indexes in
the other class employ data and query transformations
to index object positions in “dual” spaces. Members of
this class include STRIPES [7], which is based on the

Quadtree [11], and the Bx-tree [2], which is based on the
B+-tree. STRIPES indexes n-dimensional positions in 2n-
dimensional space. The Bx-tree indexes n-dimensional po-
sitions in 1-dimensional space. Mokbel et al. [5] offer a
brief, but quite comprehensive, survey of spatio-temporal
indexes for the past, current, and near future positions of
moving objects.

To ensure widespread use of a new index, easy integra-
tion into existing DBMSs is desirable. However, this in-
cludes complex integration with core DBMS components
such as the query optimizer and the concurrency control and
recovery sub-systems, which renders the integration very
costly. Also, extensible technologies have so far proved in-
adequate for the integration of new indexes. It is thus attrac-
tive to be able to reuse an index that is already available in
DBMSs when creating a new index that meets new needs.
The B+-tree is available in most DBMSs and has proved
to be an efficient and versatile index with well-performing
concurrency control and recovery mechanisms [4].

Following this line of reasoning, this paper proposes a
B+-tree-based index, termed the Bx

r -tree, for the indexing
of the current and near-future positions of moving objects.
This index extends the Bx-tree, which is relatively easy to
integrate into a DBMS that already supports the B+-tree [2].
The new index removes the reliance of the Bx-tree query
transformation on global maximum and minimum object
velocities, which leads to substantially improved query per-
formance for settings with data skew, and thus results in a
more robust index.

The paper defines and studies a range of possible query
transformation algorithms, one of which minimally expands
an argument query region while guaranteeing perfect recall.
That is, all the objects that satisfy the query predicate are
in the query result. The expansion is minimal in the sense
that smaller expansions are not possible with the informa-
tion available to the algorithm. The Bx

r -tree, which employs
the optimal algorithm, represents a significant step toward
a practical and versatile moving-object index. The Bx

r -tree
is never worse than the Bx-tree, and experimental results
show that it significantly outperforms the Bx-tree in some
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settings.
The remainder of this paper is outlined as follows. Sec-

tion 2 briefly describes the Bx-tree. Section 3 concerns
query algorithms for the Bx-tree. Section 4 provides results
of empirical studies of the algorithms covered and covers
also the TPR-tree. Section 5 concludes and proposes direc-
tions for future research.

2 The Bx-Tree

The Bx-tree [2] adopts a transformation-based approach
to the indexing of moving objects. Each object posi-
tion, given as linear function from time to points in 2-
dimensional space, is subjected to a transformation that uses
a space-filling curve to map such functions to points in 1-
dimensional space. These resulting points are then indexed
using a B+-tree. To ensure that queries have both perfect
recall and are efficient, specific query transformations that
counter the data transformation are used.

The Bx-tree may use any space-filling curve (as sug-
gested by the “x” in the name). While the original exper-
iments reported for the Bx-tree [2] use both Hilbert and
Z-curves, this paper focuses on the Hilbert curve, as stud-
ies suggest that this curve has the better clustering proper-
ties [6].

2.1 Index Structure—Data Transformation

The data transformation in the Bx-tree is based on a par-
titioning of the time axis into equal-sized intervals. First, a
problem parameter ∆tmu, the maximum update interval, is
introduced. Most objects are expected to be updated within
the duration of ∆tmu. The time axis is first partitioned into
intervals of this length. Each of the resulting intervals is
then further partitioned into n equal-length intervals, called
phases. An index partition, or sub-tree of the B+-tree, is
subsequently created for each phase. At most n + 1 parti-
tions exist at any time. The reference time t ir of phase i is
the start time of the phase, i = 1, . . . , n + 1.

When an object issues an update at time tup, the old in-
dex key recorded for the object is removed, and a new one
is inserted. For the insertion, the partition that intersects
with tup is identified, and the position of the object as of
the reference time of that partition is used for the subse-
quent indexing in the B+-tree. The insertion is made into
the identified partition by prefixing the index value that will
be computed with the number of the partition.

As time passes and updates arrive, old index keys are re-
moved from old partitions and new ones are inserted into
new partitions. The lifetime of a partition is ∆tmu +
∆tmu/n, after which time it expires. Any index key that
might remain in a partition at the time of expiry is “rein-
serted” using the reference time t ir of the most recently cre-
ated partition i.

The data space is partitioned into a uniform grid that
specifies the granularity of the data space. Positions are
mapped to grid cells, and the cells are enumerated using
a space-filling curve. This way, a 2-dimensional point is
mapped to a 1-dimensional point. An important require-
ment to a space-filling curve is that it offers a high level
of clustering: cells close in 2-dimensional space should be
close in the 1-dimensional space to which they are mapped.

The space partitioning in the Bx-tree is illustrated in Fig-
ure 1, where the Hilbert curve is used.
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Figure 1. Space partitioning and query expan-
sion in the Bx-tree

2.2 Query Transformation

A timeslice query, which retrieves all objects that
are within a given rectangle at a given point in time,
must check each existing partition for qualifying ob-
jects. In one partition, the query region is first expanded
by a factor of the current maximum, �Vmax , and mini-
mum, �Vmin , projections of the velocities �v of all objects:
�Vmax = (max�v∈V {vx}, max�v∈V {vy}), �Vmin = (min�v∈V

{vx}, min�v∈V {vy}), where vx and vy are the projections of
velocity �v onto the x and y axes, and V is the set of veloc-
ities of the currently indexed objects. Next, the expanded
query rectangle may be reduced if the maximum and min-
imum velocities of the objects that fall into the expanded
query region are smaller than �Vmax or larger than �Vmin .
These velocities are stored for each cell and each partition
in a main-memory velocity histogram.

A filter-and-refinement procedure is used to guarantee a
correct query answer. The index returns all objects that may
qualify, upon which the linear functions of these are used for
refinement.

In Figure 1, the shaded region is the expanded query
region for the smaller rectangle inside the shaded region,
which is the original query rectangle. The filled circles de-
note object positions at the reference time of the phase, and
the empty circles are the positions at the query time. The
arrows denote the velocity vectors of the objects. Object o1
is inside the original query region and stays there until the
query time. Object o2 is first inside the query region, but



has moved out by the query time. Object o3 is first outside
the query region, but is inside by the query time. The query
result is {o1, o3}.

3 New Query Processing Algorithms

Being based on the B+-tree, the Bx-tree has potential for
being integrated into DBMSs that already support the the
B+-tree. However, the current query expansion algorithm
does not fully use the available information. We thus pro-
ceed to propose a solution that fully exploits the information
available in the index, the objective being to obtain a better-
performing and more robust index.

Three query types (defined in [10]) are analyzed. Let
tq, t1q , and t2q be time points and let qr, q1

r , and q2
r be 2-

dimensional rectangles.
Timeslice query Q = (qr, tq) returns the objects that inter-
sect with qr at time tq.
Window query Q = (qr, t

1
q, t

2
q) returns the objects that in-

tersect with qr at some time during time interval [t1q, t
2
q].

Moving window query Q = (q1
r , q2

r , t1q, t
2
q) returns the ob-

jects that intersect, at some time during [t1q, t
2
q], with the

trapezoid obtained by connecting rectangles q1
r and q2

r at
times t1q and t2q , respectively.

3.1 Query Expansion Approaches in the Bx-Tree

The Bx-tree uses an algorithm that reduces the initial,
expanded query region somewhat conservatively—the max-
imum and minimum velocities in the velocity histogram can
be used more aggressively.

The information available in main memory for the
query expansion algorithm consists of the global maximum
(�Vmax ) and minimum (�Vmin ) velocities, and the velocity
histogram. The latter stores, for each cell of the data space,
the maximum and minimum velocities of the objects that
fall inside the cell. When an update occurs, the velocity
histogram is also updated conservatively. In particular, the
cell within which a new position falls is updated, but the
cell from which the old position is removed is not updated.
Therefore, some cells may store expired values.

The maintenance cost of the velocity histogram depends
on the granularity of the data space. When a new index
partition is created, the cells of the velocity histogram for
this partition are initialized. This requires O(n) operations,
where n is the number of cells. An update of one (memory
resident) histogram cell requires only constant processing
time. If there is a need to reduce the histogram mainte-
nance cost, it is possible to modify its granularity so that one
histogram cell corresponds to a group of data space cells.
However, this may adversely affect query I/O performance.

To offer a better understanding of the possibilities for
query expansion, we define five approaches.
Naive Approach The original query region is simply ex-
panded according to the global maximum and minimum ve-
locities. The velocity histogram is not used.

Semi-Naive Approach This approach extends the naive
approach by using the velocity histogram once to find the
local maximum and minimum velocities within the naively
expanded query region, possibly reducing the query region.
This method is used in [2].

Iterative Approach First, the semi-naive approach is ap-
plied. Then the query region is reduced iteratively accord-
ing to the new maximum and minimum velocities from the
reduced query region until no reduction occurs.

Optimal Approach The information in the velocity his-
togram is utilized fully. Each histogram cell intersected by
the query following a naive expansion is examined sepa-
rately. If this cell may contain qualifying objects, the index
cell is retrieved from disk.

Ideal Approach Only those cells that actually contain ob-
jects that qualify for the query are selected. It is not possible
to implement this approach with the information available.
This approach reports the minimum number of cells that
must be covered by an expanded query and is included for
comparison purposes only. It enables us to determine how
close the practical approaches get to the ideal expansion.

The iterative approach for timeslice queries is detailed in
Algorithm 1. As the iterative approach extends the naive

Algorithm 1: Iterative query expansion
Input: Query rect. qr , query time tq , ref. time tr

1: eqr ← expand(qr, tq, tr , �Vmax , �Vmin)
2: repeat
3: (�vmax , �vmin)← getVelocities(eqr ,VH )
4: eqr ← expand(qr, tq, tr , �vmax , �vmin)
5: until (�vmax , �vmin) = getVelocities(eqr ,VH )
6: return eqr

and semi-naive approaches, these approaches are explained
as parts of the iterative approach. The naive approach ex-
ecutes only line 1 of Algorithm 1. The query region is ex-
panded by a factor of global maximum and minimum veloc-
ities. The semi-naive approach applies lines 3–4 only once.
The maximum and minimum velocities among all veloci-
ties in the initially expanded region are obtained from the
velocity histogram VH (line 3). Then, the query region is
expanded using these velocities (line 4). The iterative ap-
proach repeats lines 3 and 4 until it is not possible to further
reduce the expanded region.

As the dependency on the global parameters �Vmax and
�Vmin decrease, the query expansion becomes increasingly
robust to data skew. The numbers of cells selected by the
naive approach depend on the current maximum and mini-
mum velocities of the objects in the entire data space. The
numbers of cells selected by the semi-naive and iterative
approaches depend on the current maximum and minimum
velocities of the objects in and around the query region.



The numbers of cells selected by the optimal and ideal ap-
proaches are independent of the global maximum and min-
imum velocities. We proceed to explain the optimal ap-
proach in more detail.

3.2 Optimal Query Expansion

The optimal query expansion for timeslice queries is de-
fined in Algorithm 2. The algorithm takes a query rectangle
qr and a query time tq as input. The set of cells CS that

Algorithm 2: Optimal query expansion
Input: Query rect. qr , query time tq , ref. time tr
Output: Set of cells CS

1: CS ← ∅
2: eqr ← expand(qr, tq, tr , �Vmax , �Vmin)
3: for all cells c such that c ∩ eqr �= ∅ do
4: if canReach(c, qr, tq, tr ) then
5: CS ← CS ∪ {c}
6: end if
7: end for
8: return CS

the algorithm returns is initialized to an empty set (line 1).
The query is first expanded using the current maximum and
minimum velocities and the query time (line 2). Then each
cell c that overlaps with the expanded query region is ex-
amined (lines 3–7). Function canReach (line 4, defined in
Algorithm 4) checks whether an object in a cell c may qual-
ify for the query by checking for an overlap between the
expanded cell and the initial query region. If the condition
is true, the cell is included in the result, CS (line 5). The
cells in CS must be read from disk.

Function expand , defined in Algorithm 3, is used in the

Algorithm 3: function expand
Input: Query rect. [qpl , qpu ], query time tq , ref. time tr ,

velocities �vmax , �vmin

Output: Expanded query rectangle [eqpl, eqpu]
1: if tq ≥ tr then
2: eqpl ← qpl − �vmax (tq − tr )
3: eqpu ← qpu − �vmin(tq − tr )
4: else
5: eqpl ← qpl − �vmin(tq − tr )
6: eqpu ← qpu − �vmax (tq − tr )
7: end if
8: return [eqpl, eqpu]

naive, semi-naive, iterative, and optimal approaches. The
query region is defined by its lower left corner, qpl , and up-
per right corner, qpu . It is expanded in all directions by a
factor of the maximum and minimum velocities multiplied
by the difference between the query time and the partition
reference time. If the partition reference time is earlier than
the query time, the query region is expanded using the op-
posite directions of velocities, termed a backward expan-

sion (lines 1–3). Otherwise, a forward expansion using the
actual velocities is applied (lines 4–6).

Function canReach , in Algorithm 4, is only used in the
optimal approach. The naive algorithm stops after using
function expand . The semi-naive and iterative approaches
reduce the query further, but do not consider each cell sepa-
rately. In function canReach , the maximum and minimum

Algorithm 4: function canReach for timeslice queries
Input: Cell [cpl , cpu ], query rect. qr , query time tq , ref.

time tr
Output: canReach ∈ {true, false}

1: (�vmax , �vmin)← getVelocities(c,VH )
2: [ecpl, ecpu]← expandCell([cpl , cpu ], tq , tr , �vmax , �vmin)
3: return [ecpl, ecpu] ∩ qr �= ∅

velocities �vmax , �vmin for the cell are obtained from the ve-
locity histogram VH (line 1). A cell is defined by its lower
left corner cpl and upper right corner cpu . It is expanded ac-
cording to its maximum and minimum velocities by calling
function expandCell (line 2). If the expanded cell overlaps
with the query region (line 3), objects in the cell may be
able to reach the query region at the time of the query.

Function expandCell is given in Algorithm 5. Forward
(lines 1–3) or backward (lines 4–6) expansion are used, de-
pending on the query time. The maximum and minimum

Algorithm 5: function expandCell
Input: Cell [cpl , cpu ], query time tq , ref. time tr , velocities

�vmax , �vmin

Output: Expanded cell [epcl , epcu ]
1: if tq ≥ tr then
2: ecpl ← cpl + �vmin(tq − tr )
3: ecpu ← cpu + �vmax (tq − tr )
4: else
5: ecpl ← cpl + �vmax (tq − tr )
6: ecpu ← cpu + �vmin(tq − tr )
7: end if
8: return [epcl , epcu ]

velocities of a cell are multiplied by the difference between
the query time and the partition reference time.

The algorithms presented so far are for timeslice queries.
The algorithms for window and moving window queries are
similar. For these queries, functions expand and canReach
use a time interval [t1q, t

2
q] instead of a time point tq; and

for the moving window queries, two rectangles (q1
r , q2

r) are
used instead of qr.

Function canReach for window queries is given in Al-
gorithm 6. Query expansion is performed with the start and
end query times (lines 2 and 3). A union of both expanded
regions is taken (line 4). Function expand uses the same
principle.

For moving window queries, function expand must se-
lect all cells that overlap with the moving query. The rectan-



gle of the expanded query region is the minimum bounding
rectangle that includes query rectangles q1

r and q2
r .

Algorithm 6: function canReach for window queries

Input: Cell [cpl , cpu ], query rect. qr , query time [t1q, t
2
q], ref.

time tr
Output: canReach ∈ {true, false}

1: (�vmax , �vmin)← getVelocities(c,VH )
2: [ecp1

l , ecp
1
u]← expandCell([cpl , cpu ], t1q, tr , �vmax , �vmin)

3: [ecp2
l , ecp

2
u]← expandCell([cpl , cpu ], t2q, tr , �vmax , �vmin)

4: [ecpl, ecpu]← [ecp1
l , ecp

1
u] ∪ [ecp2

l , ecp
2
u]

5: return [ecpl, ecpu] ∩ qr �= ∅

Function canReach for moving window queries is more
complex. Query velocity vectors are defined for the lower
and upper corners of the query rectangle. The velocity val-
ues are chosen so that the corner points of query rectangle
q1
r move to the corresponding points of rectangle q2

r in time
t2q − t1q . If the query is moving, but the rectangle is not
changing its shape, the query velocity in time period [t1q, t

2
q]

is subtracted from the cell’s velocity. Otherwise, the lower
and upper corners of the query rectangle are considered sep-
arately in the inclusion test. The detailed algorithm is omit-
ted due to space limitations.

Figure 2 shows an example of the practical query expan-
sion approaches. The dark-shaded 2 × 2 rectangle is the
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Figure 2. Four query expansion approaches

original query region. Assume that, with velocity 1 in one
dimension, a distance of one cell width/height is traveled
until the query time. The maximum and minimum veloci-
ties of each cell are shown. The velocities that are not given
in the figure are equal to 0. The current maximum and mini-
mum velocities are: �Vmax = (2, 1), �Vmin = (−3,−2). The
naive approach expands the query to a 7 × 5 cell rectangle.
In the other approaches, this is the initial expansion of the
query, obtained by function expand .

The semi-naive approach calculates the maximum and
minimum velocities of the expanded query region, �vmax =
(2, 1), vmin = (−2,−2). The query region is then reduced
by the 5 rightmost cells. The iterative approach continues to
reduce the query region by calculating new maximum and
minimum velocities: �vmax = (1, 1) and vmin = (−2,−2).
As a result, the query region is further reduced by the 5

leftmost cells. After this, the query expansion cannot be
reduced, as the maximum and minimum velocities do not
change. The optimal approach considers each cell sepa-
rately. Only the lightly shaded cells and the cells that are
covered by the original query region must be read from disk
and checked for qualifying objects.

Lemma. With the available information, the optimal ap-
proach yields the minimum possible query enlargement.

Proof: A conceptual proof for timeslice queries follows.
The available information about an object’s position is a

cell with coordinates ((cpx
l , cpy

l ), (cpx
u , cpy

u )). The actual
position in the cell is unknown. At reference time tr , the
object’s position is given as follows:

(px, py) , cpx
l ≤ px ≤ cpx

u ∧ cpy
l ≤ py ≤ cpy

u (1)

We must determine whether the object may appear in the
query region at the query time.

The available information about the object’s velocity
is the maximum and minimum velocities of the cell, as
stored in the velocity histogram: �vmax = (vx

max , vy
max )

and �vmin = (vx
min , vy

min). Let time duration ∆tdiff be the
difference between the query time qt and the partition ref-
erence time tr as of which the object positions are stored.
Assume that tq > tr . The opposite case is symmetric. The
actual object velocity during time ∆tdiff is given by:

(vx, vy) , vx
min ≤ vx ≤ vx

max ∧ vy
min ≤ vy ≤ vy

max (2)

At query time tq, the object’s position is given by:

(px
q , py

q) = (px + ∆tdiff vx, py + ∆tdiff vy) (3)

By substituting velocities vx, vy by the inequalities in
expression (2) and positions px, py by the inequalities in
expression (1), the following inequalities are obtained:

cpx
l + ∆tdiff vx

min ≤ px + ∆tdiff vx ≤ cpx
u + ∆tdiff vx

max

cpy
l + ∆tdiff vy

min ≤ py + ∆tdiff vy ≤ cpy
u + ∆tdiff vy

max

At time tq, the point (px
q , py

q) belongs to the rectangle:

(ecpl , ecpu) = ((cpx
l + ∆tdiff vx

min , cpy
l + ∆tdiff vy

min),
(cpx

u + ∆tdiff vx
max , cpy

u+ ∆tdiff vy
max )).

Rectangle (ecpl, ecpu) is identical to the expanded cell
in Algorithm 4. The cell position and velocities utilize all
available information. The conservative maximum and min-
imum velocities allow the algorithm to achieve perfect re-
call. The actual velocity of an object is always bounded by
the maximum and minimum velocities of the corresponding
cell. If the expanded cell overlaps with the query rectangle,
this means that an object in the cell may be in the query
region at the query time. As a result, it is not possible to
eliminate cells selected by the optimal algorithm. �



The proofs for window and moving window queries are
similar. Query time tq becomes a time interval [t1q, t

2
q], and

∆tdiff ∈ [t1q − tr , t
2
q − tr ]. Thus, the object position be-

longs to the region of the union of cell expansions obtained
with t1q and t2q . For moving window queries, the cell ex-
pansion is different for each time point between the query
start and end times, as the query region is different as well.
A moving window query may be considered as a union of
timeslice queries in time interval [t1q, t

2
q] that have different

query regions for each time point.
The cells selected by the optimal algorithm are always

a subset of the cells selected by the naive, semi-naive, or
iterative approaches. As a result, the optimal algorithm will
never require more I/O than the other algorithms.

The improved query expansion is promising because
queries require significantly more I/O than do updates [2, 3]
and because the current Bx-tree query expansion algorithm
is not optimal. We note that the algorithm for the optimal
approach may also be used in other spatio-temporal indexes
that employ query expansion.

4 Empirical Study of the Query Expansion
Algorithms

This section reports on an empirical study with variants
of the Bx-tree that use the different query expansion ap-
proaches defined in Section 3.1. The index that employs the
optimal approach is denoted as the Bx

r -tree.

4.1 Experimental Settings

The indexes with the different query-expansion algo-
rithms are evaluated and compared using the COST bench-
mark [3] as well as additional experiments. Experimental
results for the TPR-tree [10] performance are provided for
comparison. The TPR-tree is a robust index that is also a
predecessor of a number of other spatio-temporal indexes.

The COST benchmark simulates moving-object scenar-
ios and is designed specially with the evaluation of moving-
object indexes in mind. The benchmark includes a work-
load generator that, based on settings for a number of pa-
rameters, generates workloads that intermix updates and
queries.

The generator, which extends the one used by Šaltenis
et al. [10], assumes that object movement is either random
or network-based. To accommodate the latter, a number of
“hubs” with random positions are generated connected with
line segments to produce a complete, bi-directional, spatial
graph. A constant number of objects then move between
hubs until the end of a simulation.

The maximum speed of an object is chosen at random
from a set of maximum speeds, and an object accelerates,
travels at constant speed, and then decelerates when moving
from one hub to another.

The workloads used in the experiments reported on here
are generated using the following default parameter set-
tings. A total of 500 randomly positioned hubs are used.
The total data space is 100×100 km. There are 100 K ob-
jects that receive a total of 200 K updates. Queries have an
average spatial extent of 5×5 km. Two queries are executed
for each 400 updates, meaning that a total of 1 K queries are
executed. The disk page size is 1 K. A main-memory LRU
buffer is used that has a capacity of 50 pages.

We have found it useful to customize the COST bench-
mark specification slightly. Specifically, each object is al-
ways updated within the maximum intervals of 120 s, in
contrast to the original unpredictable maximum update in-
terval used in the benchmark. The experiments thus use
a time-based update policy where the average time dura-
tion in-between updates to an object is 60 s. Experiments
are performed with partitionings of the data space into
512×512, 1024×1024, and 2048×2048 equal-sized cells
of sizes 1×1, 1/2×1/2, and 1/4×1/4 km.

The indexes used have 2 phases, meaning that at most
3 partitions coexist at a single point in time.

The experiments consider the query performance of the
five index variants. The average numbers of I/O operations
per query and the numbers of cells retrieved are reported.
When the queries are distributed uniformly in space and the
number of queries approaches infinity, the average number
of objects retrieved is proportional to the number of cells
retrieved.

Studies on indexes typically show that the CPU perfor-
mance, which we do not consider directly, is strongly corre-
lated with the I/O performance. The update performance is
not considered, as this does not differ among the variants.

4.2 Experimental Results

We proceed to consider selected results from the COST
benchmark and then consider results of additional experi-
ments designed specifically for this problem.

4.2.1 COST Benchmark Experiments

Figure 3 shows the results of COST benchmark Exper-
iment 3.1. Objects are assigned either speed 25 m/s or
200 m/s. A total of 11 workloads are generated so that the
fractions of objects with speed 200 m/s are: 0.02, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98. The figure shows the
average number of cells retrieved (in units of 1,000 cells)
and the average I/O per query for the three different space
granularities.

The naive approach selects a significantly higher number
of cells compared to the other approaches, as the expanded
query may overlap with the cells that are outside the space
in which the generated positions of objects appear. Only the
naive approach cannot eliminate these cells. The semi-naive
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Figure 3. Varying fast-moving objects

and iterative approaches perform similarly. The optimal ap-
proach is significantly better than the other implementable
approaches, and it is close to the ideal approach. Other ex-
periments show that the numbers of cells selected exhibit
little sensitivity to position and velocity skew.

The I/O performance of the naive, semi-naive, and iter-
ative approaches are similar to each other (the curves over-
lap). The average selectivity is 250 objects per query. With
2% of fast-moving objects, query result contains an aver-
age of 5 fast-moving objects. The expanded queries include
even more fast-moving objects and are unlikely to be re-
duced by the semi-naive and iterative approaches.

For low amounts of fast-moving objects, the I/O perfor-
mance of the Bx

r -tree is close to the ideal, but increases as
the percentage of fast-moving objects increases. This is be-
cause the expansions of cells that contain fast-moving ob-
jects are large.

The Bx
r -tree is the most sensitive to the cell size, com-

pared to the other approaches. As the cell size decreases,

yielding a more accurate velocity histogram, the perfor-
mance improves.

The TPR-tree is outperformed by the Bx
r -tree when the

amount of fast-moving objects is low, and especially when
the cell size is small. With a 1/4×1/4 km cell size, the per-
formance of the Bx

r -tree is close to the performance of the
TPR-tree, even for high amounts of fast-moving objects.
The naive, semi-naive, and iterative approaches, however,
require significantly more I/O than the TPR-tree.

Figure 4 reports on additional COST benchmark results.
The figure presents results of Experiments 1, varying the
number of objects from 100 to 1000 K in increments of
100 K; 2.2, varying the number of hubs from 20 to 200 in
increments of 20 hubs; 3.3, varying the maximum speeds
from 30 to 300 m/s in increments of 30 m/s; 5.3, varying
the average update interval from 2 to 20 min in increments
of 2 min; 7.2, varying the times of queries relative to the
current time from 0 to 120 s in increments of 20 s; and 8.1,
varying the spatial extents of queries from 0.05 to 0.95% of
the space in increments of 0.1%. I/O costs are reported for
the Bx-tree variants with cell sizes 1×1 and 1/4×1/4 km,
and for the TPR-tree.

As can be seen, the Bx
r -tree significantly outperforms the

three other implementable approaches. The improvements
over these are especially high when the space granularity is
coarse. The differences among the naive, semi-naive, and
iterative approaches are slight because all objects have sim-
ilar speeds. Only when there is a high number of objects,
the performance of the naive approach degrades more than
for others due to the larger index size and larger numbers of
objects selected.

The Bx
r -tree outperforms the TPR-tree in default set-

tings, when the future times of queries are large (over 60 s),
when the query regions are large (over 0.5% of the space),
and especially when there are large amounts of objects. In
the other cases, the query I/O performance of the Bx

r -tree
with cell sizes 1/4×1/4 km is comparable to that of the TPR-
tree.

4.2.2 Additional Experiments

Most of the benchmark experiments do not yield signifi-
cant differences in I/O performance among the naive, semi-
naive, and iterative approaches. We thus proceed to report
on additional experiments that elicit the settings when these
approaches exhibit performance differences.

The first experiment varies the percentage of fast-moving
objects from 0.1 to 1% in increments of 0.1%. The other
settings are as in Experiment 3.1. The experimental re-
sults of the TPR-tree are not reported, as these experiments
aimed to compare the different variants of the Bx-tree. Fig-
ure 5 reports the I/O performance for this and the next ex-
periment.

The second experiment involves 8 workloads. The set
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Figure 4. COST benchmark Experiments 1, 2.2, 3.3, 5.2, 7.2, and 8.1

{12.5, 25, 50, 100, 150, 200} of maximum speeds (in m/s)
is used. The probability of speed 12.5 m/s varies from 99.96
to 99.68% in decrements of 0.04%. The probabilities of
the other speeds vary from 0.01 to 0.08% in increments of
0.01%.

For 0.1–0.3% fast-moving objects in the first experi-
ment, the I/O performance of the naive approach is visibly
worse than for the semi-naive and iterative approaches. The
differences between the semi-naive and iterative approaches
remain slight.

Due to the very few fast-moving objects in the second
experiment, the differences between the naive and the other
approaches are substantial. The naive approach depends on
global maximum and minimum velocities, which deviate
substantially from the actual velocities.

The iterative approach in the second experiment slightly
outperforms the semi-naive approach. When the fraction
of fast-moving objects increases, these approaches exhibit
degrading performance. Only the Bx

r -tree is unaffected, and
its performance is almost equal to the ideal case.

The I/O performance is largely insensitive to different
space granularities and only improves slightly as the cell
size decreases.

5 Conclusions and Research Directions

Being relatively easy to integrate into existing DBMSs is
a desirable property of a new index. However, integrating an
index into a DBMS is a resource intensive and challenging
endeavor. This renders it particularly relevant to attempt to
reuse indexes that are already supported by DBMSs, e.g.,
the B+-tree, when designing a new spatio-temporal index.

Using advanced data and query transformations, the
Bx-tree exploits the B+-tree to enable the indexing of the
current and future positions of moving objects. This pa-
per observes that the query performance of the Bx-tree is
vulnerable to data skew and proposes an improved query
algorithm.

The paper defines and studies four query transforma-
tions that may be applied with the Bx-tree. These differ
in their use of an available velocity histogram. In addition,



0
50

100
150
200
250
300

10.80.60.40.2

Fast moving objects, %

1. Avg I/O (1x1)

0
50

100
150
200
250
300

87654321

Probability set id

2. Avg I/O (1x1)

0
50

100
150
200
250
300

10.80.60.40.2

Fast moving objects, %

1. Avg I/O (1/2x1/2)

0
50

100
150
200
250
300

87654321

Probability set id

2. Avg I/O (1/2x1/2)

0
50

100
150
200
250
300

10.80.60.40.2

Fast moving objects, %

1. Avg I/O (1/4x1/4)

0
50

100
150
200
250
300

87654321

Probability set id

2. Avg I/O (1/4x1/4)

Naive Bx Iterative Bx Idealr

Figure 5. Few fast-moving objects

an “ideal” transformation that uses more information than
what is available is included, the objective being to deter-
mine how close to the ideal the former transformations are.

One of the four transformations uses the velocity his-
togram optimally and offers a significant reduction of the
query region compared to the original Bx-tree transforma-
tion. In contrast to the other transformations, it is indepen-
dent of the global maximum and minimum velocities of the
objects. Further, because the cells selected for querying by
the Bx

r -tree, which employs the optimal transformation, is a
subset of the cells selected by the Bx-tree, the Bx-tree never
outperforms the Bx

r -tree.
For the workloads considered, the Bx

r -tree exhibits sub-
stantial query performance improvements over the Bx-tree,
and the experimental study also shows that the I/O perfor-
mance of the Bx

r -tree in many cases is close to the “ideal.”
The improvements are especially high for workloads with
few fast-moving objects. In many cases, the Bx

r -tree also
outperforms the TPR-tree.

This work may be continued in several directions. In

particular, it is highly relevant to try to reduce the reliances
of transformation-based indexes such as the Bx-tree on sta-
tic index parameters. First, it would be attractive to use a
dynamic maximum update interval instead of the currently
used static value. The performance of the Bx-tree may de-
grade when the maximum update interval is smaller than
the actual interval in-between consecutive updates of an ob-
ject. Second, it would be interesting to consider the use of
a number of phases that changes over time and adapts to
workloads that change across time (e.g., day versus night
behavior). The number of phases should adapt to the time
windows of queries and arrival rates of updates. Third, it
might be attractive to use a data space granularity that is dy-
namic and space-varying. The granularity should adapt to
changing workloads. Fourth, it may be attractive to store ad-
ditional information in the velocity histogram, as this may
further reduce the query expansion.
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