
How Would You Like to Aggregate Your Temporal Data?

Michael H. B̈ohlen Johann Gamper
Faculty of Computer Science

Free University of Bozen-Bolzano, Italy
{boehlen, gamper}@inf.unibz.it

Christian S. Jensen
Department of Computer Science

Aalborg University, Denmark
csj@cs.aau.dk

Abstract

Real-world data management applications generally
manage temporal data, i.e., they manage multiple states of
time-varying data. Many contributions have been made by
the research community for how to better model, store, and
query temporal data. In particular, several dozen temporal
data models and query languages have been proposed.

Motivated in part by the emergence of non-traditional
data management applications and the increasing prolifer-
ation of temporal data, this paper puts focus on the aggre-
gation of temporal data. In particular, it provides a gen-
eral framework of temporal aggregation concepts, and it
discusses the abilities of five approaches to the design of
temporal query languages with respect to temporal aggre-
gation. Rather than providing focused, polished results, the
paper’s aim is to explore the inherent support for tempo-
ral aggregation in an informal manner that may serve as a
foundation for further exploration.

1 Introduction

Most applications of database technology are temporal
in nature. Examples include financial applications such as
accounting, and banking; a broad range of record-keeping
applications such as personnel, medical-record, and inven-
tory management; scheduling applications such as airline,
train, and hotel reservations and project management; and
scientific applications such as weather monitoring. Appli-
cations such as these rely ontemporal databases, which
record time-referenced data.

A database models and records information about a part
of reality, termed either themodeled realityor the mini-
world. Aspects of the mini-world are represented in the
database using a variety of structures or database entities—
in the relational model, tuples are used. We will generally
use the termfact for the logical statements about the mini-
world that are recorded in the database.

Different temporal aspects may be associated with the

facts stored in the database [12, 29]. Most importantly, the
valid timeof a fact is the collected times—possibly span-
ning the past, present, and future—when the fact is true in
the mini-world. Valid time thus is used when capturing the
time-varying states of the mini-world. All facts have a valid
time by definition. However, the valid time of a fact may not
necessarily be recorded in the database, for any of a number
of reasons. For example, the valid time may not be known,
or recording it may not be relevant.

Next, thetransaction timeof a database entity is the time
when the entity is current in the database. Like valid time,
this is an important temporal aspect. Transaction time is
the basis for supporting accountability and “traceability” re-
quirements, which exist in many applications, e.g., financial
and medical applications.

The valid and transaction time values of database entities
are drawn from some appropriate time domain. There is no
single answer to how to perceive time in reality and how to
represent time in a database. For example, the time domain
may or may not stretch infinitely into the past and future;
and time may be perceived as discrete, dense, or continu-
ous. In databases, a finite, discrete, and totally ordered time
domain is typically assumed, e.g., in the SQL standards.

Temporal data management can be very difficult using
conventional (non-temporal) data models and query lan-
guages [24, 30, 33]. These provide little built-in support for
managing such data, thus unnecessarily complicating data-
base application development and leading to ineffective and
inefficient ad-hoc solutions that must be reinvented each
time a new application is developed. As a result, data man-
agement is currently an overly involved and error-prone ac-
tivity. Temporal database research [3, 9, 10, 12, 37, 40] has
produced several dozen proposals for temporal data models
[31, 38] and query languages [4, 21, 22, 34, 39] that aim to
remedy this situation.

This paper focuses on an increasingly important area
of temporal data management, namely aggregation (e.g.,
[2, 6, 14, 23, 36, 41]). Aggregation gains in prominence in
step with the increasing proliferation of temporal data and
diffusion of business intelligence applications. In aggrega-

pikde
Text Box
©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

tion, an argument relation is transformed into a summary re-
sult relation. This is traditionally done by first partitioning
the argument relation into groups of tuples with identical
values for one or more attributes, then applying an aggre-
gate function, e.g., count, to each group in turn.

We advocate a framework that generalizes traditional ag-
gregation and offers orthogonal support for two aspects of
aggregation [1, 2]: a) the definition of result groups for
which to report one or more aggregate values and b) the
definition of aggregation groups, i.e., collections of argu-
ment tuples that are associated with the result groups and
over which the aggregate functions are computed. When
aggregating temporal data, the time intervals to be associ-
ated with result tuples can depend on the actual data and are
not known in advance.

Taking its outset in this framework, the paper explores
the support for temporal aggregation in existing SQL-
based temporal query languages that are based on tuple-
timestamped valid-time data models. In particular, the pa-
per considers five approaches to temporal query languages.
As a vehicle for exploring each approach and for illustrating
aspects of its inherent support, or lack thereof, for tempo-
ral aggregation, the paper considers the formulation of four
aggregation queries in an SQL-based temporal query lan-
guage that is prototypical for the approach. The findings
for each approach are highlighted as observations that may
serve as a basis for further study. To cover as many con-
cepts as possible, the paper omits formal detail and is kept
relatively informal.

Section 2 introduces an example, which is used through-
out the paper and motivates the need for extensions of the
SQL language to support temporal aggregation. Section 3
covers the notions of point-based and interval-based tempo-
ral data models. Section 4 then describes the paper’s frame-
work of temporal aggregation concepts. Section 5 proceeds
to cover the different query language approaches. Finally,
Section 6 summarizes, and Section 7 offers an outlook for
temporal aggregation research.

2 Motivating Example

As a vehicle for illustration throughout the paper, con-
sider the employee database in Figure 1. Relation EMPL

captures work contracts with employees, recording for each
contract the name of the employee who holds the contract
(N), an identifier for the contract (CID), the department to
which the employee is assigned for the duration of the con-
tract, the monthly salary for the contract period (S), and the
valid time of the contract (T).

The upper part of Figure 1 graphically illustrates relation
EMPL, which contains four tuples. The valid time periods
of the tuples are indicated by horizontal lines. For example,
the first tuple states thatJoe has a contract with the data-

base department; the contract ID is140, andJoe ’s monthly
salary is1200.

(AI , 1)

(DB, 2)(DB, 2) (DB, 1)

(Tim, 143, AI , 2000)

2003/04 2003/07 2003/10 2004/012003/01

(Dan, 141, DB, 700)

(Joe, 140, DB, 1200)

(Dan, 150, DB, 700)

Instantaneous count aggregation

Argument relation

Figure 1. Temporal Aggregation

Given the prevalence of relational data management ap-
plications that manage time-varying data, one might ques-
tion the need for a temporal query language. Is the exis-
tence of these applications not proof that SQL is sufficient
for writing such applications? Put briefly, the reality is that
in conventional query languages like SQL, temporal aggre-
gation queriescan be expressed, but in many cases only
with great difficulty.

To illustrate the issue, consider the following aggrega-
tion query over relation EMPL that expresses the total num-
ber of contracts:

select count(*) as Cnt,
[min(Ts),max(Te)] as T

from Empl

Here,Ts andTe denote the start and end point of a time-
stampT , respectively, andmin andmax are well-known
SQL aggregate functions. As we are in a temporal context,
we choose to return a temporal relation, even if this query
might also be interpreted as a non-temporal query. Hence,
we assign the interval that lasts from the earliest start point
to the latest end point of any argument tuple to the result.

The temporal generalization of this query, asking now
for the time-varying count of contracts, as recorded in rela-
tion EMPL, is non-trivial to formulate. The intended result
is shown in the lower part of Figure 1. Although possible,
expressing this query in SQL is difficult. Although the two
first tuples of theDB department have the same values for
the non-temporal attributes, we do not combine them into
one, since they have different lineage: different sets of con-
tracts are responsible for these two result tuples. Reporting
these two tuples instead of one yields a more informative
result.

The point is that conceptually quite reasonable queries
on temporal relations can be difficult to express using a
query language such as SQL. Even SQL experts would be
hard pressed to express the example temporal query in SQL.

2

Given also the ubiquitous nature of temporal data, this indi-
cates a strong need for temporal support beyond what SQL
offers today.

We proceed to explore in more detail the meaning of the
association of a time interval with a tuple.

3 Point-Based and Interval-Based Models

The data model underlying a query language specifies
the data structures that the query language manipulates. The
numerous proposals for data models may be characterized
according to a variety of criteria.

Within our scope of tuple-timestamped data models that
capture valid time, we proceed to describe two types of
data models, namely point-based and interval-based mod-
els. The former type of model inherently associates facts
with time points, while the latter inherently associates facts
with intervals.

3.1 Point-Based Temporal Data Models

The perhaps most basic type of temporal data model is
capable of associating a fact with a set of time instants, or
points.

This association may be achieved by timestamping each
tuple with a single time point. Thus, if a fact is valid at
several points in time, several so-called value-equivalent tu-
ples (tuples that only differ in their timestamp) are used for
capturing it, one for each time point.

As an illustration, part of the EMPL relation together
with the result of the instantaneous temporal aggregation
query [16, 23] from the previous section is shown in Fig-
ure 2, where timestamp attributeT stores valid time points
at the granularity of months.

With point timestamping, syntactically different rela-
tions have different information content. Next, timestamps
are atomic values that are easy to compare and manipulate.
Assuming a totally ordered time domain, a standard set of
comparison predicates, e.g.,=, 6=, <, >, ≤, and≥, is suffi-
cient to conveniently compare timestamps.

Point timestamping is often considered only as a basis
for the design of query languages and is not meant for phys-
ical representation. Indeed, for all but the most trivial time
domains and facts, the space needed when using the point
model is prohibitive. Point timestamps are also rarely a
user-friendly format for the display of temporal relations.

Due to their simplicity, point timestamped temporal data
models have been popular in theoretical studies, including
constraint databases (cf., e.g., [7, 13, 25, 26, 27]).

Another approach to associating facts with time points
is to timestamp tuples withsets of time pointsor with so-
calledtemporal elements, which are finite unions of time in-
tervals. With these representations, a relation does not con-

N CID D S T

Joe 140 DB 1200 2003/01
· · ·

Joe 140 DB 1200 2003/12
Dan 141 DB 700 2003/01
Dan 141 DB 700 2003/02
Dan 141 DB 700 2003/03
Dan 141 DB 700 2003/04
Dan 141 DB 700 2003/05
Dan 150 DB 700 2003/06
Dan 150 DB 700 2003/07
Dan 150 DB 700 2003/08
Dan 150 DB 700 2003/09
Dan 150 DB 700 2003/10
Dan 150 DB 700 2003/11
Dan 150 DB 700 2003/12
Dan 150 DB 700 2004/01
Dan 150 DB 700 2004/02
Dan 150 DB 700 2004/03
Tim 153 AI 1800 2003/04

· · ·

Tim 153 AI 1800 2003/09

(a) Relation EMPL

D Cnt T

DB 2 2003/01
DB 2 2003/02
DB 2 2003/03
DB 2 2003/04
DB 2 2003/05
DB 2 2003/06
DB 2 2003/07
DB 2 2003/08
DB 2 2003/09
DB 2 2003/10
DB 2 2003/11
DB 2 2003/12
DB 1 2004/01
DB 1 2004/02
DB 1 2004/02
AI 1 2003/04
AI 1 2003/05
AI 1 2003/06
AI 1 2003/07
AI 1 2003/08
AI 1 2003/09

(b) Instantaneous Ag-
gregation

Figure 2. Point Timestamping

tain value-equivalent tuples—all value-equivalent tuplesin
the corresponding point timestamped relation are combined
into one tuple, with a timestamp that captures all the time
points of those tuples.

Yet another approach to associating facts with time
points is to timestamp tuples withintervals. Multiple tu-
ples are then needed if a fact is valid over a non-convex set
of time points.

Figure 3(a) illustrates the approach, where the timestamp
attributeT = [Ts,Te] stores a valid time interval repre-
sented by its inclusive start and end point, respectively.

When employing intervals rather than time points as
timestamps, two timestamps satisfy precisely one of the
following thirteen relationships, first enumerated by James
Allen: before, meets, overlaps, during, starts, finishes, and
equal, in addition to the inverses of the first six of these.
Allen’s pioneering work in this area has inspired designs
of many of the collections of interval predicates available
in temporal query languages. While well-chosen interval
predicates are more convenient to use than relationships
over interval start and end points, such predicates alone turn
out to not be sufficient to provide comprehensive and easy-
to-use support for temporal data management in general and
the point-based view in particular.

As we will see in Section 5, using interval timestamps as
compact representations of sets of time points has the effect
of making some conceptually simple queries cumbersome

3

to formulate.
The notion ofsnapshot equivalence, which reflects a

point-based view of data, establishes a correspondence be-
tween interval timestamped relations. Consider the two in-
stances of the result relation in Figure 3. The relations are
different, but snapshot equivalent, meaning that they con-
tain the same snapshots. Specifically, the relation in Fig-
ure 3(c) is a coalesced version of the relation in Figure 3(b).
In coalescing, value-equivalent tuples with adjacent or over-
lapping time intervals are merged.

N CID D S T

Joe 140 DB 1200 [2003/01,2003/12]
Dan 141 DB 700 [2003/01,2003/05]
Dan 150 DB 700 [2003/06,2004/03]
Tim 143 AI 2000 [2003/04,2003/10]

(a) Relation EMPL

D Cnt T

DB 2 [2003/01,2003/05]
DB 2 [2003/06,2003/12]
DB 1 [2004/01,2004/03]
AI 1 [2004/04,2004/09]

(b) Result Relation: Instance 1

D Cnt T

DB 2 [2003/01,2003/12]
DB 1 [2004/01,2004/03]
AI 1 [2004/04,2004/09]

(c) Result Relation: Instance 2

Figure 3. Interval Timestamping

3.2 Interval-Based Temporal Data Models

Interval-based temporal data models associate facts with
intervals. In such models, intervals are not just compact
representations of time points.

While several different types of timestamps may be used
in point-based temporal data models, it is most natural to
use interval timestamps for interval-based models (although
timestamps that are sets of intervals could also be consid-
ered).

To illustrate the difference between point- and interval-
based models, recall the query result displayed in the lower
part of Figure 1. This result contains more information than
what is given in the point-timestamped result displayed in
Figure 2(b). Put differently, this result cannot be recon-
structed from the result in Figure 2(b). (An additional at-
tribute, such asCID in relation EMPL, may perhaps be used
for this purpose. The next section will return to this issue.)

As yet another manifestation of the extra information
captured by interval-based models, snapshot equivalent re-
lations may have different information content in such mod-
els, as is the case in Figures 3(b) and 3(c). The two relations
are different, also from a semantic point of view. Further, it
is not appropriate to require relations in interval-based mod-
els to be coalesced. This would imply that it is not possible
to distinguish between two consecutive contracts with the

same values, unless an additional attribute such as a con-
tract identifier is introduced. For example, in Figure 3(a),
attributeCID allows us to separate tuples two and three,
for which all other non-timestamp attributes have the same
value.

So in the interval-based models that we will use as our
outset, intervals are not merely representational devices—
they carry meaning beyond denoting sets of points. Return-
ing to the example, two consecutive contracts with the same
values are clearly different from a single contract over the
whole period. They require no additional attribute to iden-
tify the contracts, and the instance in Figure 3(b) is the ap-
propriate representation of our result relation.

4 Temporal Aggregation

We proceed to describe a general framework for tempo-
ral aggregation and then consider four examples of temporal
aggregation.

4.1 Temporal Aggregation Framework

As an outset for the temporal aggregation framework,
recall that Klug’s (and SQL’s) conventional framework for
non-temporal aggregation performs aggregation on an argu-
ment relation according to two parameters [17]:

1. a set of attributes drawn from the argument relation,
termed grouping attributes; and

2. a set of pairs of a new attribute name and an aggrega-
tion function.

The tuples in the argument relation are partitioned accord-
ing to their values for the grouping attributes. Then for each
partition, each aggregate function given in the second pa-
rameter is computed on the tuples in the partition, and the
result is stored as a value of the associated attribute for each
tuple in the partition. Finally, the non-grouping attributes of
the argument relation may be eliminated from the result by
means of a projection using relational algebra.

We propose a temporal aggregation framework that gen-
eralizes the non-temporal one in two important respects. In-
stead of partitioning the tuples in the argument relation ac-
cording to their values for certain of their attributes, we in-
troduce a separategrouping tablethat contains a tuple for
each group to be represented in the query result. This table
generally has as attributes a subset of the attributes of the
input relation, the timestamp attribute being one of them.
Additional, new attributes may also be included.

Second, we introduce a parameter that maps tuples from
the input relation to tuples in the grouping table. Thismap-
ping functionmay assign the same argument tuple to zero,
one, or many groups. This differs from the conventional

4

framework, where each input tuple is mapped to exactly one
group.

The new framework retains the second parameter from
the conventional framework.

The resulting framework generalizes the specification of
result groups, it generalizes the mapping of input tuples
to result groups, and it decouples the specification of re-
sult groups from the mapping of input tuples to the result
groups.

An important aspect of the framework is that the values
for the timestamp attribute in the tuples in the grouping re-
lation may be either fixed or inferred from the data in the in-
put relation. The case of fixed intervals corresponds to how
the non-timestamp attribute values are treated: they must be
provided explicitly.

The case of inferred intervals is specific to the timestamp
attribute. An inferred interval is calculated as the intersec-
tion of the intervals associated with the argument tuples that
contribute to the aggregate results to be associated with the
group, or grouping tuple, that the inferred intervals applies
to. These inferred intervals are termedconstantbecause
there are no changes in the argument relation during these
intervals. Constant intervals are non-overlapping and maxi-
mal.

4.2 Example Queries

The following queries together with their intended re-
sults build on the employee database. They serve to illus-
trate the concepts in the aggregation framework and will
also be used for illustration in the rest of the paper. The re-
sult relations of the queries are illustrated in graphical form
in Figure 4.

Query Qci (constant intervals): For each department,
what is the time-varying number of contracts?

D Cnt T

DB 2 [2003/01,2003/05]
DB 2 [2003/06,2003/12]
DB 1 [2004/01,2004/03]
AI 1 [2003/04,2003/09]

QueryQci is an example of an instantaneous aggregation
[16, 23] that must be applied to each database state. To
compute the result at a specific time point, all tuples that
are valid at that time point are considered.

The attributes of the grouping table for this query are the
department attributeD and timestamp attributeT . The ta-
ble has two tuples, namely one withDB and one withAI

as itsD value. These tuples have unspecified timestamps,
as these are inferred as the constant intervals from the argu-
ment relation.

Thus, for each group, the result contains a tuple for each
aggregate value and each constant interval associated with
that value. For example, the group for departmentDB has
two aggregate values (1 and 2), and aggregate value 2 holds
for two constant intervals.

Query Qfi (fixed intervals): For each department, how
many contracts were in effect during each half-year?

D Cnt T

DB 3 [2003/01,2003/06]
DB 2 [2003/07,2003/12]
DB 1 [2004/01,2004/06]
AI 1 [2003/01,2003/06]
AI 1 [2003/07,2003/12]
AI 0 [2004/01,2004/06]

QueryQfi has the same non-temporal part asQci, but
here the query explicitly specifiesfixed time intervals[2]
over which to evaluate the non-temporal aggregation.

As in the previous example, the grouping table has the
department and the timestamp as its attributes. However,
now the timestamp attribute values are specified explicitly.
For each department, there are three half-year intervals dur-
ing which contracts are in effect. The grouping table there-
fore contains six tuples.

For each of the resulting six groups, a count of con-
tracts is computed by considering all contracts that match
the department value for the group and have a timestamp
that overlaps the six-month period of the group.

Query Qcum (cumulative aggregation): At each time,
what is the number of contracts within the last three
months?

Cnt T

2 [2003/01,2003/03]
3 [2003/04,2003/05]
4 [2003/06,2003/07]
3 [2003/08,2003/11]
2 [2003/12,2004/02]
1 [2004/03,2004/05]

Query Qcum is a cumulative aggregationquery, also
termed a moving-window query [41, 42]. It slides along the
time line, computing at each time point an aggregate that
takes into consideration all tuples that were valid at some
point during the past three month. In general, the value of a
cumulative aggregate at time pointt is computed over all tu-
ples whose valid intervals overlap with the interval[t−w, t],
wherew is the window offset.

In the result relation, tuples over consecutive time points
that have the same aggregate value and identical lineage in-
formation are coalesced. In this query, the grouping table

5

(2) (2)(4)
(3) (1)(3)Result ofQ

cum

2003/01

(DB, 2)
(DB, 2)

(Tim, 143, AI , 2000)

2003/04 2003/07 2003/10 2004/01

(AI , 1)

(DB, 1)

(Dan, 150, DB, 700)
(Dan, 141, DB, 700)

(Joe, 140, DB, 1200)

(DB, 1)

(AI , 1)
(AI , 1)

(DB, 2)
(DB, 3)

Result ofQ
fi

Result ofQ
ci

(4)Result ofQ
nt

Argument relation

Figure 4. Temporal Aggregation Results

has only one attribute, the timestamp, which is inferred from
the argument tuples. The argument tuples associated with a
group are all those tuples that were valid within the past
three months.

Query Qnt (non-temporal aggregation): What is the
number of contracts in total?

Cnt

4

In Query Qnt, the aggregation is to be applied to the
entire relation independently of any temporal information,
producing one result tuple that contains the total number of
contracts in the database. Thus, the grouping table is empty.

In the following, we discuss the support for temporal ag-
gregation inherent in different approaches to temporal query
language design, using these four queries as examples.

5 Analysis of Temporal Query Languages

This section discusses the support for temporal aggrega-
tion inherent in five distinct approaches to temporal query
language design. To be specific, the section bases its dis-
cussion of each approach on a specific temporal extension
to the SQL query language that is prototypical to the ap-
proach.

Because the focus is on the inherent properties of the
approaches, we gloss over semantic variations among tem-
poral constants and predicates (e.g., overlaps), and we in-
troduce additional functions (e.g., duration) into the proto-
typical languages as needed. We even permit ourselves to
be liberal with respect to available language constructs, to
the extent that this is helpful in better representing the ap-
proaches.

We proceed to first discuss building blocks that will
prove helpful in formulating temporal aggregation queries
in several of the approaches covered. Then each approach
is covered in turn.

5.1 General Building Blocks

There are a few concepts that are fundamental when ex-
pressing temporal aggregation queries and that are either
not supported or barely supported in current temporal query
languages. These concepts concern the computation of the
timestamps for the result tuples that depend on the data in
the argument relation and possibly also on the query. We
present these concepts next and use them in the subsequent
analysis of query languages.

Computation of Constant Intervals. QueryQci requires
the computation of constant intervals, i.e., the intervalsover
which the sets of argument tuples do not change. Express-
ing these intervals in SQL is possible, but unreasonably
complicated, as illustrated by the following solution that

6

uses two views.

create view EndPoints (D,TP) as
select distinct D, Ts as TP from Empl
union
select distinct D, Te as TP from Empl

create view CI (D,T) as
select a.D, [a.TP,b.TP] as T
from EndPoints as a, EndPoints as b
where a.D = b.D
and a.TP < b.TP
and not exists(

select *
from EndPoints as c
where a.TP < c.TP < b.TP)

and exists(
select *
from Empl as d
where overlaps(d.T,[a.TP,b.TP]))

The viewEndPoints(D,TP) is defined by the argument
relation and determines all distinct start and end points of
the argument tuples grouped by department. These time
points are the end points of the constant intervals. The
view CI(D,T) is defined over these end points and ex-
tracts those combinations of end points that form the valid
constant intervals over which the result tuples are defined.
Two end pointst andt′ of the argument relation form a con-
stant interval[t, t′] if there are no end points in-between and
there is an argument tuple that overlaps with the time inter-
val [t, t′].

Note that the computation of the constant intervals needs
to take into consideration the non-temporal grouping at-
tributes, and hence, the above SQL statement depends on
the query. Moreover, the expression is not only syntacti-
cally complicated, but also expensive to compute.

Chron Relation. An abstract unaryChron relation has
been proposed that has a single temporal attribute that stores
all possible chronons (time points) of the temporal uni-
verse [39]. Such aChron relation is helpful when ex-
pressing a broad range of queries. For the use of this re-
lation to be practical, implementation level solutions have
to be developed that do not require the materialization of
theChron relation.

Consider queryQfi, which explicitly involves the periods
during which a result tuple is expected, i.e., every semester
where a tuple is valid. Using theChron relation, we can
construct these semesters as follows:

create view FI (D,T) as
select distinct D, sem(a.T) as T
from Chron as a, Empl as b
where overlaps(sem(a.T),b.T)

The functionsem(T) takes as argument a chronon and re-
turns the semester to which this chronon belongs. For exam-
ple,sem(2003/01) returns the first semester in 2003 repre-
sented as an interval:[2003/01, 2003/06].

Again, note that the non-temporal grouping attributes of
the specific query have to be considered, which precludes a
general solution for all queries with fixed intervals.

Timestamp Generation. Another non-standard feature
that facilitates the formulation of temporal statements isthe
availability of generative constructs: general functionsthat
return sets of values that are then further processed. Exam-
ples include functions that generate all time points included
in an interval or all semesters covered by an interval.

Being more precise, we assume a user-defined function
f that takes as input a timestampT and returns a set of
intervals, i.e.,

f(T) = {I1, . . . , Im}

This function can then be used in the query language and
has the following semantics:

SQL(f(T)) ≡ SQL(I1) ∪ · · · ∪ SQL(Im)

That is, we evaluate the SQL query for each of the intervals
returned byf and take the union of the result tuples.

5.2 Approach I: Abstract Data Types

The earliest and, from a language design perspective,
simplest approach to improving the temporal data manage-
ment capabilities of a query language is to introduce time
data types and associated predicates and functions.

Observation 1 Adding a new ADT to SQL is attractive be-
cause it has limited impact on SQL and because the exten-
sion of SQL with new data types with accompanying predi-
cates and functions is fairly well understood.

Formulations of predicates on time-interval data types
have been influenced by Allen’s 13 interval relationships.
With reference to these, different sets of practical propos-
als for predicates have been proposed. To illustrate this ap-
proach, we assume that the employee relation is represented
by the interval-timestamped relation in Figure 3.

QSQL
ci : As mentioned in Section 2, expressing a time-

varying aggregation as inQci is possible, but there exists no
reasonable SQL solution. Using the views discussed above,
we can expressQci as follows:

select a.D, count(*) as Cnt, a.T
from CI as a, Empl as b
where a.D = b.D and overlaps(a.T,b.T)
group by a.D, a.T

7

It is evident from this example that the computation of the
constant intervals is the hard part, while the computation of
the aggregate function is quite straightforward and needs
just a Boolean function to test the overlapping of time-
stamps.

Observation 2 Instantaneous temporal queries are com-
plex to formulate with standard SQL extended with an
interval-based ADT.

QSQL
fi : Query Qfi explicitly specifies the periods for

which a result tuple is expected, i.e., for every semester
where data are present. We use theChron relation and
the sem function introduced above and express the query
as follows:

select b.D, count(*) as Cnt, a.T
from FI as a, Empl as b
where a.D = b.D and overlaps(a.T,b.T)
group by b.D, a.T

The only difference toQci is in the computation of the time-
stamps of the result tuples.

QSQL
cum : QueryQcum is similar to QueryQci in that the ag-

gregate function is computed for each time point, and con-
secutive time points with the same result value and identical
lineage are coalesced. The timestamps of the result tuples
can be computed from the argument tuples similar to how it
was done for the constant intervals. However, the length of
the moving window has to be considered. The timestamps
of the result tuples extend beyond the timestamps of the ar-
gument tuples. The following view computes the possible
end points of the result tuples.

create view EndPoints (TP) as
select distinct Ts as TP from Empl
union
select distinct Te+2 as TP from Empl

We must extend all end points of the argument tuples by
the value2. Based on the end points, a viewCumI can be
defined that is identical toCI for constant intervals, except
that for this query, there are no non-temporal grouping at-
tributes.

With the view CumI in place, we can formulate
QueryQcum as follows:

select count(*) as Cnt, a.T
from CumI as a, Empl as b
where overlaps([a.Ts-2,a.Te],b.T)
group by a.T

As for the computation of the timestamps, we have to con-
sider again the length of the moving window and to aggre-
gate over all argument tuples that overlap an interval that
starts two chronons before the timestamp of the result tu-
ple.

QSQL
nt : Counting the total number of contracts in the data-

base is straightforward:

select count(*) as Cnt
from Empl

In summary, the availability of appropriate time data
types aids only little in the formulation of temporal aggre-
gation queries. We identify two core problems that make
temporal queries complex. First, the calculation of the time-
stamps for queries with constant intervals as well as cumu-
lative aggregates is complex. Second, the calculation of the
timestamps for QueryQfi refers to theChron relation. This
relation cannot be materialized.

5.3 Approach II: Fold/Unfold

Being of fixed size, interval timestamps are very con-
venient when capturing the temporal aspects of informa-
tion. In some respects, the most straightforward and sim-
plest means of capturing temporal aspects is to include an
extra interval-valued time attribute in each relation. How-
ever, one might also suspect that the difficulty in formulat-
ing temporal queries in the previous section is caused by the
intervals. SQL comes unprepared to support something (an
interval) that represent something (a set of consecutive time
points) that it is not.

In response to this, it has been proposed to equip SQL
with the ability to normalizetimestamps. The idea is to
split or merge interval timestamps so that they arealigned
(identical or disjoint) and can be treated as atomic entities.

Advanced most prominently by Lorentzos and his col-
leagues [18, 19, 20, 21], the earliest and most radical ap-
proach is to introduce the two functionsunfold and fold.
The unfold function decomposes an interval timestamped
tuple into a set of point timestamped tuples, one for each
point in the original interval. The fold function “collapses”
a set of point timestamped tuples into value-equivalent tu-
ples timestamped with maximum intervals.

Observation 3 Extending SQL with functions fold and un-
fold is attractive because of its conceptual simplicity.

The idea is to use the interval-based representation of
temporal information while being able to manipulate it as
if the point-based representation was used, thus obtaining
the representational benefits of intervals while avoiding the
problems they seem to pose in query formulation.

The general pattern for queries using unfold and fold is
to:

1. explicitly construct the point-based representation by
unfolding the argument relation(s);

2. compute the query on interval-free representation; and

8

3. fold the result to end up with an interval-based repre-
sentation.

Observation 4 Transitioning from the interval to the point
representation puts a load on the database system that is
exponential in the length of the intervals.

The fold and unfold functions have been integrated into
IXSQL [18, 21], which we use for illustration. IXSQL in-
herits and extends the semantics of SQL. Thus, each SQL
query is also an IXSQL query. In the discussion below we
assume the EMPL relation in Figure 3.

QIXSQL
ci : QueryQci that expresses the time-varying num-

ber of contracts per department can be formulated as fol-
lows:

select D, count(*) as Cnt, T
from (select *

from Empl
reformat as unfold T)

group by D, T
reformat as fold T

The inner query unfolds the argument relation yielding the
point-based representation shown in Figure 2(a). Then the
aggregation is computed on this relation and with thefold
function transformed back into a interval-stamped relation.
Note that the obtained result is different from the intended
result in Figure 3(b). The normalization step does not carry
over any lineage information, and the unfold operation cre-
ates maximal intervals of snapshot equivalent tuples inde-
pendently of the argument tuples that produce the result. In
particular, the first two intended result tuples are merged
into a single tuple, and we get the result shown in Fig-
ure 3(c).

Observation 5 When transitioning from intervals to points
any semantics associated with the intervals is lost.

QIXSQL
fi : To express QueryQfi, we unfold the argument

relation and determine all semesters for which data are
available:

select D, count(*) as Cnt, S as T
from (select distinct D, sem(T) as S

from Empl
reformat as unfold T) as a,

Empl as b
where a.D = b.D and a.S cp b.T
group by D, a.S
reformat as fold T

Again, theunfold function first transforms the interval-
timestamped relation into a point-timestamped relation,
from which the different pairs of departments and semesters

are extracted. The IXSQL predicatecp corresponds to the
overlaps function and tests for common time points of the
two arguments.

QIXSQL
cum : The cumulative aggregation query follows the

pattern of the previous two queries: we unfold the EMPL

relation so we can work with time points, and use a join to
match it with tuples within the specified window.

select count(*) as Cnt, a.T
from (select *

from Empl
reformat as unfold T) as a,

(select *
from Empl
reformat as unfold T) as b

where b.T >= a.T-2 and b.T <= a.T
group by T
reformat as fold T

Note that the two time points after the very last argument
tuple (cf. Figure 4) are missing. This can be fixed by ex-
tending the inner SQL statement with a union statement that
explicitly adds these points.

As in the case with constant intervals, the transformation
into interval-timestamped result tuples by thefold oper-
ation yields the coalesced relation in Figure 3(c), which is
not the intended result.

QIXSQL
nt : The standard SQL solution can be used to count

the total number of contracts:

select count(*) as Cnt
from Empl

In summary, a language enriched with folding and un-
folding offers some support for expressing instantaneous
aggregation with constant intervals as in QueryQci. How-
ever, the final fold function, coalescing snapshot equivalent
tuples of the point model into tuples over maximal intervals,
might lead to wrong results.

Regarding fixed intervals, IXSQL provide no generic
support. Although the language offers a window function
to generate windows of a specific size with a determined
offset, it is not expressive enough to formulate sliding win-
dows or an arbitrary number of consecutive timestamps.

The efficient evaluation of queries formulated using fold
and unfold has yet to be resolved. Unfolding has a worst
case space complexity that is exponential (anm bit binary
integer encodes up to2m − 1 database states); and for the
time domains available in current systems, unfolded rela-
tions are so large that storing them is impractical.

A more subtle observation is that IXSQL adopts a view
on relation instances that is neither purely point-based nor
interval-based. It is not purely point-based because it is sen-
sitive to the specific interval representation chosen for the

9

data. Thus, when different, but snapshot-equivalent, rela-
tions are used, the same query generally returns different
results. In contrast, the fold and unfold functions only pre-
serve the information content in a relation up to that cap-
tured by the point-based view. For example, unfolding and
then folding the relation instance in Figure 3(b) yields the
instance in Figure 3(c).

Finally, it may be noted that the three-step procedure for
using fold and unfold is exactly a procedure and thus adds
a slight procedural element to SQL, the core of which may
be seen as being declarative.

5.4 Approach III: Point Timestamps

A more radical approach to designing a temporal query
language is to simply assume that temporal relations use
point timestamps—fold and unfold are then not needed.
The temporal query language SQL/TP advanced by Toman
takes this approach to generalizing queries on non-temporal
relations to apply to temporal relations [5, 39]. The seman-
tics of SQL/TP is defined with respect to the point-based
representation, and we thus assume the EMPL relation in-
stance in Figure 2 in the following. The restriction to point
timestamps yields a simple and unambiguous semantics that
avoids many of the pitfalls that can be attributed to interval
timestamps.

Observation 6 SQL/TP does not permit the association of
information with intervals.

The strength of SQL/TP is in its generalization of queries
on snapshot relations to corresponding queries on corre-
sponding temporal relations. The general principle is to
extend the snapshot query with equality constraints on the
timestamp attribute of the temporal relation, to separate dif-
ferent database snapshots during query evaluation.

Q
SQL/TP

ci : Query Qci is straightforward to express in
SQL/TP, as the argument tuples are first grouped by depart-
ment and time points, upon which the aggregate function is
computed.

select D, count(*) as Cnt, T
from Empl
group by D, T

The grouping takes care of isolating the database states
from one another. This query is restricted to finite (discrete
and bounded) time domains, to avoid infinite relations and
counts.

Observation 7 The semantics of SQL/TP statements is de-
fined with respect to the point representation, which is dif-
ferent from the presentation of a temporal relation.

Q
SQL/TP

fi : The computation ofQfi is more complicated.
We have to group the time points into semesters, and each
time point of a semester must produce the same aggregate
value.

select a.D, count(*) as Cnt, a.T
from Empl as a, Empl as b
where a.D = b.D
and a.T-1 div 6 = b.T-1 div 6
group by a.D, a.T

The condition in the where clause groups the argument tu-
ples by department and semester. The aggregate function is
computed over these groups and assigned to each time point
in the semester. For example, the result of the first semester
in 2003 is as follows:

D Cnt T

DB 3 2003/01
DB 3 2003/02
DB 3 2003/03
DB 3 2003/04
DB 3 2003/05
DB 3 2003/06
AI 1 2003/01
AI 1 2003/02
AI 1 2003/03
AI 1 2003/04
AI 1 2003/05
AI 1 2003/06

Q
SQL/TP
cum : SQL/TP does not provide any natural support

for the formulation of cumulative queries, i.e., a mechanism
to move a window of fixed size over the time line and to
produce a result at each time point. Hence, QueryQcum is
more complex:

select count(distinct CID) as Cnt, a.T
from (select distinct T

from Empl) as a,
Empl as b

where a.T-2 <= b.T < a.T
group by a.T
union
select count(distinct CID), max(a.T)+1
from (select distinct T

from Empl) as a,
Empl as b

where max(a.T)-1 <= b.T < max(a.T)+1
group by a.T
union
select count(distinct CID), max(a.T)+2
from (select distinct T

from Empl) as a,
Empl as b

where max(a.T) <= b.T < max(a.T)+2
group by a.T

10

Note that the query is a union of three almost identical parts.
The last two parts take care of the two very last time points
(cf. Figure 4) that are not part of the timestamps of the orig-
inal relation.

Q
SQL/TP
nt : Since SQL/TP counts the number of tuples in

the abstract relation, it is necessary to project the time at-
tribute and eliminate duplicates. This yields the intended
result if the tuples are distinguishable. In our case, the con-
tract ID ensures this.

select count(distinct CID) as Cnt
from Empl

This query again requires the use of a contract identifier in
order to be able to distinguish between different contracts.
The timestamps alone do not provide any information about
this.

Observation 8 Aggregates in SQL/TP compute the aggre-
gate with respect to the abstract temporal relation. Oper-
ations such as counting the numbers of rows in a concrete
representation are not possible.

In one sense, SQL/TP and SQL are opposites when it
comes to the handling of temporal information. In SQL, in-
tervals have no special meaning—they are treated as atomic
entities. In contrast, SQL/TP effectively decomposes inter-
vals into sets of points. This difference becomes clear when
considering aggregate queries. In SQL, time-varying aggre-
gation (Qci) is poorly supported, while SQL/TP needs to re-
sort to auxiliary attributes for “time-invariant” aggregation
(Qnt).

In several of the examples, we have used relations with
contract IDs in order to be able to capture the intended in-
formation and express the desired queries. While the re-
liance on contract identifiers appears to be a minor issue, it
is worth noting that such identifiers do not offer a systematic
approach to obtaining point-based semanticsand a seman-
tics that preserves the intervals of the argument relations.

The problem is that set operations as well as aggrega-
tion are sensitive to any additional attributes and essentially
do not permit the presence of such attributes. This issue is
not germane to SQL/TP, but seems to apply equally to any
approach that uses a point-based data model.

In summary, the strength of SQL/TP is its restriction to
time points that ensures a simple and well-defined seman-
tics. As intervals are still to be used in the physical repre-
sentation of the temporal information as well as when pre-
senting the results of queries to the users, one may think of
SQL/TP as a variant of IXSQL where, conceptually, queries
must always apply unfold as the first operation and fold as
the last. A compilation technique has been supplied for
SQL/TP that avoids this unfolding, thus offering hope that
SQL/TP queries can be evaluated efficiently in practice [].

5.5 Approach IV: Syntactic Defaults

Along with the introduction of temporal abstract data
types, what may be termedsyntactic defaultshave been
introduced that make the formulation of common tempo-
ral queries more convenient. The most common defaults
concern access to the current state of a temporal database
and for handling temporal generalizations of non-temporal
queries, e.g., joins. The most comprehensive approach
based on syntactic defaults is the TSQL2 language [32, 35],
which we use for exemplification. We assume the EMPL

instance in Figure 3.
In TSQL2, a default valid clause, placed after the se-

lect clause, computes the intersection of the valid times of
the tuples in the argument relations mentioned in the from
clause, which is then returned in the result. For example, the
timestamp of a tuple that results from joining two relations
is the intersection of the timestamps of the two argument
tuples that produce the tuple. With only one relation in the
from clause, this yields the original timestamps.

In order to compute an instantaneous temporal aggrega-
tion, the timestamps of overlapping argument tuples that be-
long to the same group must be intersected. This computa-
tion of constant intervals cannot be expressed easily in SQL
(cf. Section 5.1). Moreover the interaction with the default
valid clause described above is not clear to the authors. This
is taken to be evidence of the complexity of a language that
provides comprehensive syntactic defaults. It also implies
that the queries described in this section may not be correct.
We rely on the description of temporal aggregates by Kline
et al. [15].

Observation 9 Well-chosen syntactic defaults yield a lan-
guage that allows to succinctly formulate common temporal
queries.

QTSQL2
ci : To formulate an instantaneous aggregation, it is

possible to extend the group by clause with a valid clause.
In the query below, the termusing instant is in fact
the default and could be omitted. We added it for clarity
sincevalid(Empl) denotes the original timestamps and
we want to group according to constant intervals, not the
original timestamps.

select D, count(*) as Cnt
from Empl
group by D, valid(Empl) using instant

QTSQL2
fi : Grouping into periods is supported through the

using clause. In this case, we specify a grouping of 6
months (i.e., one semester). In passing, we mention that we
are uncertain whether this indeed yields January–June and
July–December or whether shifted semesters might result.

11

select D, count(*) as Cnt
from Empl
group by D, valid(Empl) using 6 month

QTSQL2
cum : TSQL2 provides native support for cumulative

(moving-window) aggregates. Specifically, the group by
clause allows specification of a leading and trailing time in-
terval for a moving window. Hence,Qcum can be expressed
as follows:

select count(*)
from Empl
group by D, valid(Empl) leading 2 month

QTSQL2
nt : The default behavior of TSQL2 is to return tem-

poral relations. Thesnapshot keyword is used for re-
trieving non-temporal relations. Thus, to retrieve the total
number of contracts, we can use the following non-temporal
aggregation:

select snapshot count(*) as Cnt
from Empl

TSQL2 is a large language with many parts and an in-
formally specified semantics. It provides syntactic defaults
that serve as shorthands and thus simplify the formulation of
temporal queries over point-based temporal databases. The
problem with syntactic defaults relates to lack of the “scala-
bility” over language constructs. When defining a language
that uses syntactic defaults, one must explicitly specify a
large number of defaults. When extending a large and non-
orthogonal language such as SQL, it becomes challenging
to be comprehensive and systematic in the specification of
such defaults, and to ensure that the defaults do not inter-
act with one another in unanticipated and undesirable ways.
We therefore believe that this approach tends to yield a lan-
guage where, although it may be possible to formulate com-
mon queries concisely, the language itself is complex and
therefore difficult to understand and use.

Observation 10 Defining a temporal language in terms of
syntactic defaults is difficult since the non-temporal con-
structs do not offer a systematic and easy way to express
the defaults.

5.6 Approach V: Semantic Defaults

ATSQL introduces temporal statement modifiers to add
temporal support to SQL [8, 4]. In contrast to syntactic de-
faults, statement modifiers aresemantic defaultsthat indi-
cate the intended semantics without specifying how to com-
pute it.

The basic idea in statement modifiers is to offer a sys-
tematic means of constructing temporal queries from non-
temporal queries, the motivation being that queries that

are easily formulated in SQL on non-temporal relations
are very difficult to formulate on temporal relations. With
statement modifiers, one thus formulates a temporal query
by first formulating the corresponding non-temporal query
(i.e., assuming that there are no timestamp attributes on the
argument relations) and then applies a statement modifier to
this query.

For example, to formulate a temporal join the first step
is to formulate the corresponding non-temporal join. Next,
a modifier is prepended to express that temporal semantics
are to be used. The modifier ensures that the argument time-
stamps overlap and that the resulting timestamp is the inter-
section of the argument intervals. If the enclosed query is
simply a selection, the timestamps do not have to be trans-
formed, and the only task of the modifier is to ensure that the
original timestamps are returned as the timestamps of the re-
sult. If the enclosed statement is a difference, the modifier
ensures that the intervals are appropriately subtracted.

Observation 11 Statement modifiers are orthogonal to the
SQL language and adding them to SQL is less understood
than adding a new ADT.

Unlike the languages that consider intervals as compact
representations of sets of points, the use of statement modi-
fiers makes it possible to give more meaning to the intervals.
Thus, relations in ATSQL consist of interval timestamped
tuples, and value-equivalent tuples with adjacent or over-
lapping intervals are permitted. Relation EMPL as given in
Figure 3 is assumed in the following.

QATSQL
ci : QueryQci is a temporal generalization of a non-

temporal query. Thus, it can be formulated by prepending
the non-temporal SQL query by theseq vt modifier:

seq vt
select D, count(*) as Cnt
from Empl
group by D

QATSQL
fi : By default, theseq vt clause operates at the

lowest granularity and computes constant intervals. This
behavior can be extended by allowing the user to specify
different granularities or, in the general case, fixed inter-
vals. Below we show an extended modifier that specifies
the periods for which a result tuple is to be produced.

seq vt
for semesters(vtime(Empl))

select D, count(*)
from Empl
group by D

In this query, thesemesters function is a generative
function that returns all semesters that a given interval
timestamps spans, e.g.,semesters([2005/2, 2006/5]) =
{[2005/1, 2005/6], [2005/7, 2005/12], [2006/1, 2006/6]}.

12

QATSQL
cum : Moving-window aggregation is an extension of

regular instantaneous aggregation. Various syntactic con-
structs have been proposed for moving-window aggrega-
tion. We use the syntax of the Oracle OLAP extensions []
to illustrate how such aggregates can be incorporated into
modifiers.

seq vt
with range

between interval ‘3’ months preceding
and current

select count(*)
from Empl
group by D

QATSQL
nt : The last query must be evaluated independently

of the timestamps of the argument tuples. This is achieved
by using anseq vt modifier (short for “non-sequenced
valid time”), which indicates that what follows should be
treated as a regular SQL query.

nseq vt
select count(*) as Cnt
from Empl

In summary, semantic defaults offer systematic support
for writing temporal queries that can be evaluated on all sets
of concurrent states of the argument relations in isolation.
This language mechanism is independent of the syntactic
complexity of the queries that the modifiers are applied to,
which renders semantic defaults scalable across the con-
structs of the language being extended.

Observation 12 Statement modifiers by and large separate
the temporal and non-temporal parts of a query expression.

While statement modifiers offer attractive means of for-
mulating the example queries, it should be noted that ex-
tending a language with statement modifiers represents a
much more fundamental change to the language than, e.g.,
extending the language with temporal abstract data types.

6 Summary

The temporal database research community has been
quite prolific with respect to the design of new temporal
query languages—a body of several dozen such languages
exists. Based on the observation that many of these lan-
guages can be categorized according to the approach they
take to providing temporal support, this paper investigates
the support for temporal aggregation inherent to five such
approaches.

More specifically, the paper initially characterizes tem-
poral query languages according to whether they are point-
or interval-based, noting that certain aggregation queries

may be more difficult to formulate in point-based models.
It then presents a general framework of temporal aggre-
gation concepts. Building on this foundation and four ex-
ample aggregation queries, the paper explores the aggrega-
tion capabilities of five distinct categories of temporal query
languages. To make the coverage concrete, a prototypical
query language serves as a representative for each approach.

The main findings are formulated in a number of obser-
vations. The paper affords an informal coverage of its sub-
ject in order to cover a wide range of concepts as well as to
offer a foundation for further research.

The abstract data type approach is simple, but also very
limited in the support offered. Its main strength is that
adding ADTs to SQL is well understood, e.g., there exist
ADTs for images, text, multimedia, etc. The main disad-
vantage is that advanced and systematic support for time-
varying applications seems to require solutions that cannot
be offered by extending SQL with new functions and pred-
icates.

The fold/unfold approach enables easy conversion be-
tween point and interval timestamped representation of a re-
lation. Using point timestamped relations makes the formu-
lation of some queries easier, while interval timestamps are
convenient for other queries, as well as for physical repre-
sentation of relations and user display of query results. The
fold/unfold approach is limited by being inherently point-
based. The main strength is the conceptual simplicity of
fold/unfold. On the downside the (syntactic) complexity of
temporal queries remain fairly high and an efficient imple-
mentation of fold/unfold has yet to emerge.

The approach that solely uses point timestamps assumes
that physical representation and display of relations are be-
yond the scope of the query language. This leads to a clean,
point-based query language. Working solely with points
greatly simplifies the formulation of instantaneous tempo-
ral queries. A possible drawback is that the user must fre-
quently map between intervals and points since relations are
represented in their compact form whereas statements are
formulated against abstract databases. Also, some state-
ments become system dependent. For example a count
without duplicate elimination (e.g.,select count(X)
from R) returns the number of tuples in the abstract rela-
tion R. This number depends on the base granularity, which
may differ among systems.

Next, with syntactic defaults, typical queries may be
given very short formulations. However, it is challenging,
if not impossible, to design a query language that systemat-
ically and comprehensively offers convenient syntactic de-
faults and that is also easy to understand. Syntactic defaults
tend to not scale well since a complex syntactic default must
be specified for a large number of constructs of the original
language.

The notion of statement modifiers offers what may be

13

termed semantic defaults: modifiers are introduced that
control the semantics of any query language statements.
The strong point is the support for intervals and the system-
atic support for temporal queries that generalize snapshot
queries. The approach by and large decouples the temporal
and non-temporal parts in a statement. Thus, the presence
of time-varying information does not change the formula-
tion of the core query. A drawback is that this approach is
new and that there are no experiences with such extensions
to SQL.

7 Outlook

In step with the increasing digitization throughout soci-
ety, the increasing networking of information systems, and
the ability to store increasing amounts of data, increasing
volumes of time-varying data are being accumulated and
made available to users. Trends such as automatic data gath-
ering using web-server logs in e-business applications and
using sensors in a range of applications contribute to this
development.

We are also witnessing an increase in analytical applica-
tions, often referred to as business intelligence applications,
that extract useful information from large volumes of data,
e.g., by means of aggregation. Thus, effective support for
the formulation of aggregation queries is increasingly im-
portant.

In contrast, this paper’s study indicates that the support
for temporal aggregation in query languages is still lack-
ing. In fact, the existing temporal query languages were
largely designed with traditional record-keeping applica-
tions in mind, i.e., the kind of application found in banking
where account-balances are kept for customers. In banking,
a (constant) account balance is valid during a time interval,
and it is valid for any subset of this time interval.

New applications that do not fit this rigid template are
becoming increasingly important. This applies to applica-
tions that monitor or track continuous variables, e.g., posi-
tions of moving objects using GPS, the flow of water from
a river into the sea, or temperature and humidity in different
geographical locations. These applications typically rely on
sampling, so they record values that are valid only for a sin-
gle point in time. Values beyond these times must be inter-
polated or extrapolated. This type of scenario is also char-
acterized by data uncertainty—values beyond the samples
are not accurate, and even the samples may not be accurate.

Next, consider an attribute that records the accumulated
rainfall in a certain location over a certain time interval.
Unlike in the case of the account balance, a value of this
attribute does not hold for any subset of the interval associ-
ated with it, as the accumulated rainfall in smaller interval
is likely to be smaller. This type of attribute is a good exam-
ple of attributes that carry semantics that differ from what

is assumed by existing query languages.
These examples, which go beyond the setting assumed in

this paper, illustrate that existing temporal query languages
may be extended to offer much better support for temporal
aggregation.

Finally, the increasing prominence of business intelli-
gence has also brought new prominence to temporal aggre-
gation. W. H. Inmon, known as the founder of data ware-
housing, mentions time variance as one of four salient char-
acteristics of a data warehouse, and there is general con-
sensus that a data warehouse is likely to exhibit a strong
temporal orientation.

Being temporal, data warehouses are thus prime candi-
dates to benefit from the advances in temporal aggregation.
But cross-fertilization between temporal databases and data
warehousing is lacking. In fact, some of the original impe-
tus for a separate data model and query language for data
warehouses arose from a perceived lack of temporal sup-
port in the relational model and SQL. Few attempts have
been made to exploit the advances in temporal databases in
the context of data warehousing, although notable excep-
tions do exist. The special dimensional data models used in
data warehouses and the emphasis on supporting advanced
query functionality bring novel challenges to temporal data-
base research. For example, few attempts have been made
at integrating temporal query languages with multidimen-
sional query languages.

Acknowledgments

The work was partially funded by the Free University
of Bolzano through the TTDBT project and the Munici-
pality of Bozen-Bolzano through the eBZ-2015 initiative.
C. S. Jensen is also an adjunct professor in Department of
Technology, Agder University College, Norway.

References

[1] M. H. Böhlen, J. Gamper, and C. S. Jensen. An Alge-
braic Framework for Temporal Attribute Characteris-
tics. Journal of Annals of Mathematics and Artificial
Intelligence, 26 pages, to appear.

[2] M. H. Böhlen, J. Gamper, and C. S. Jensen. Multi-
dimensional Aggregation for Temporal Data. InProc.
EDBT, pp. 257–275, 2006.

[3] M. H. Böhlen and C. S. Jensen. Temporal Data
Model and Query Language Concepts.Encyclopedia
of Information Systems, 4: 437–453, 2003, Academic
Press.

14

[4] M. H. Böhlen, C. S. Jensen, and R. T. Snodgrass. Tem-
poral Statement Modifiers.ACM TODS, 25(4): 407–
456, 2000.

[5] I. T. Bowman and D. Toman. Optimizing Temporal
Queries: Efficient Handling of Duplicates.Data and
Knowledge Engineering, 44(2): 143–164, 2003.

[6] Y. Chen and P. Z. Revesz. Max-Count Aggregation Es-
timation for Moving Points. InProc. TIME, pp. 103–
108, 2004.

[7] J. Chomicki and P. Z. Revesz. Constraint-based Inter-
operability of Spatiotemporal Databases.GeoInfor-
matica, 3(3): 211–243, 1999.

[8] J. Chomicki, D. Toman, and M. H. B̈ohlen. Querying
ATSQL Databases with Temporal Logic.ACM TODS,
26(2): 145–178, 2001.

[9] J. Clifford and A. Tuzhilin (eds.).Recent Advances
in Temporal Databases: Proceedings of the Interna-
tional Workshop on Temporal Databases. Workshops
in Computing Series. Springer-Verlag 1995.

[10] O. Etzion, S. Jajodia, and S. Sripada (eds.).Tempo-
ral Databases: Research and Practice. LNCS 1399,
Springer-Verlag 1998.

[11] C. S. Jensen and C. E. Dyreson (eds.). A Consensus
Glossary of Temporal Database Concepts—February
1998 Version. [10, pp. 367–405].

[12] C. S. Jensen, and R. T. Snodgrass. Semantics
of Time-Varying Information. Information Systems,
21(4): 311–352, 1996.

[13] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz.
Constraint Query Languages.J. Comput. Syst. Sci.,
51(1): 26–52, 1995.

[14] N. Kline and R. T. Snodgrass. Computing Temporal
Aggregates. InProc. ICDE, pp. 222–231, 1995.

[15] N. Kline, R. T. Snodgrass, and T. Y. C. Leung. Aggre-
gates. In R. T. Snodgrass, editor,The TSQL2 Temporal
Query Language, Chapter 21, pp. 395–425. Kluwer
Academic Publishers, 1995.

[16] N. Kline and M. D. Soo. TIME-IT: The TIME

Integrated Testbed, pre-beta version 0.1 available
via anonymous ftp fromftp.cs.arizona.edu,
1995.

[17] A. C. Klug. Equivalence of Relational Algebra and
Relational Calculus Query Languages Having Aggre-
gate Functions.JACM29(3): 699–717, 1982.

[18] N. A. Lorentzos. The Interval-extended Relational
Model and Its Application to Valid-time Databases.
[37, pp. 67–91].

[19] N. A. Lorentzos and R. Johnson. Extending Relational
Algebra to Manipulate Temporal Data.Information
Systems, 13(3): 289–296, 1988.

[20] N. A. Lorentzos and Y. Mitsopoulos. Functional Re-
quirements for Historical and Interval Extensions to
the Relational Model.Data and Knowledge Engineer-
ing, 17(1): 59–86, 1995.

[21] N. A. Lorentzos and Y. G. Mitsopoulos. SQL Exten-
sion for Interval Data. IEEE TKDE, 9(3): 480–499,
1997.

[22] L. E. McKenzie Jr. and R. T. Snodgrass. Evalua-
tion of Relational Algebras Incorporating the Time
Dimension in Databases.ACM Computing Surveys,
23(4): 501–543, 1991.

[23] B. Moon, I. F. Vega Lopez, and V. Immanuel. Effi-
cient Algorithms for Large-Scale Temporal Aggrega-
tion. IEEE TKDE, 15(3): 744–759, 2003.

[24] G. Özsoyǒglu and R. T. Snodgrass. Temporal and
Real-Time Databases: A Survey. IEEE TKDE,
7(4): 513–532, 1995.

[25] P. Z. Revesz.Introduction to Constraint Databases.
Springer, 2002.

[26] P. Z. Revesz. Efficient Rectangle Indexing Algorithms
Based on Point Dominance. InProc. TIME, pp. 210–
212, 2005.

[27] P. Z. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu,
and Y. Wang. The MLPQ/GIS Constraint Database
System. InProc. SIGMOD, p. 601, 2000.

[28] P. Z. Revesz and Y. Chen. Efficient Aggregation over
Moving Objects. InProc. TIME, pp. 118–127, 2003.

[29] J. F. Roddick and J. D. Patrick. Temporal Semantics in
Information Systems—a Survey.Information Systems,
17(3): 249–267, 1992.

[30] R. T. Snodgrass (ed.).Proceedings of the International
Workshop on an Infrastructure for Temporal Data-
bases, 1993.

[31] R. T. Snodgrass. Temporal Object Oriented Data-
bases: A Critical Comparison. Ch. 19, pp. 386–408,
of W. Kim, Modern Database Systems: The Ob-
ject Model, Interoperability and Beyond. Addison-
Wesley/ACM Press 1995.

15

[32] R. T Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory,
J. Clifford, C. E. Dyreson, R. Elmasri, F. Grandi,
C. S. Jensen, W. K̈afer, N. Kline, K. Kulkarni,
T. Y. Leung, N. Lorentzos, J. F. Roddick, A. Segev,
M. D. Soo, and S. M. Sripada.The TSQL2 Temporal
Query Language. Kluwer Academic Publishers 1995.

[33] R. T. Snodgrass. Temporal Databases. Part II of
C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass,
V. S. Subrahmanian, and R. Zicari.Advanced Data-
base Systems. Morgan Kaufmann Publishers 1997.

[34] R. T. Snodgrass.Developing Time-Oriented Database
Applications in SQL. Morgan Kaufmann Publishers
2000.

[35] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory,
J. Clifford, C. E. Dyreson, R. Elmasri, F. Grandi,
C. S. Jensen, W. K̈afer, N. Kline, K. Kulkarni,
T. Y. C. Leung, N. Lorentzos, J. F. Roddick, A. Segev,
M. D. Soo, and S. M. Sripada. TSQL2 Language
Specification.ACM SIGMOD Record, 23(1): 65–86,
1994.

[36] R. T. Snodgrass, S. Gomez, and E. McKenzie. Aggre-
gates in the Temporal Query Language TQuel.IEEE
TKDE, 5(5): 826–842, 1993.

[37] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev,
and R. T. Snodgrass (eds.). Temporal Data-
bases: Theory, Design, and Implementation. Ben-
jamin/Cummings Publishers 1994.

[38] C. I. Theodoulidis and P. Loucopoulos. The Time Di-
mension in Conceptual Modelling.Information Sys-
tems, 16(3): 273–300, 1991.

[39] D. Toman. Point-Based Temporal Extensions of SQL
and Their Efficient Implementation. [10, pp. 211–
237].

[40] Y. Wu, S. Jajodia, and X. S. Wang. Temporal Database
Bibliography Update. [10, pp. 338–366].

[41] J. Yang and J. Widom. Incremental Computation and
Maintenance of Temporal Aggregates.The VLDB
Journal, 12(3): 262–283, 2003.

[42] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopou-
los, and B. Seeger. Efficient Computation of Temporal
Aggregates with Range Predicates. InProc. PODS,
pp. 237–245, 2001.

16

