
Techniques for Efficient Road-Network-Based
Tracking of Moving Objects

Alminas �CCivilis, Christian S. Jensen, Senior Member, IEEE, and Stardas Pakalnis

Abstract—With the continued advances in wireless communications, geo-positioning, and consumer electronics, an infrastructure is

emerging that enables location-based services that rely on the tracking of the continuously changing positions of entire populations of

service users, termed moving objects. This scenario is characterized by large volumes of updates, for which reason location update

technologies become important. A setting is assumed in which a central database stores a representation of each moving object’s

current position. This position is to be maintained so that it deviates from the user’s real position by at most a given threshold. To do so,

each moving object stores locally the central representation of its position. Then, an object updates the database whenever the

deviation between its actual position (as obtained from a GPS device) and the database position exceeds the threshold. The main

issue considered is how to represent the location of a moving object in a database so that tracking can be done with as few updates as

possible. The paper proposes to use the road network within which the objects are assumed to move for predicting their future

positions. The paper presents algorithms that modify an initial road-network representation, so that it works better as a basis for

predicting an object’s position; it proposes to use known movement patterns of the object, in the form of routes; and, it proposes to use

acceleration profiles together with the routes. Using real GPS-data and a corresponding real road network, the paper offers empirical

evaluations and comparisons that include three existing approaches and all the proposed approaches.

Index Terms—Database management, distributed databases, query processing, temporal databases.

�

1 INTRODUCTION

INstep with the emergence of an infrastructure for mobile,
online location-based services (LBSs) for general con-

sumers, such services are attracting increasing attention in
industry and academia.

An LBS is a service that provides location-based
information to mobile users. The main idea is to provide
the service user with a service that is dependent on
positional information associated with the user, most
importantly, the user’s current location. The service may
also be dependent on other factors, such as personal
preferences and interests of the user [3].

Examples of LBSs abound. A service might inform its
users about traffic jams and weather situations that are
expected to be of relevance to each user. A friend monitor
may inform each user about the current whereabouts of
friends. Other services may track the positions of emer-
gency vehicles, police cars, security personnel, hazardous
materials, or public transport. A more advanced location-
based “catch the monster” game may allow a group of users
to work together to surround and catch a virtual, but geo-
positioned, monster.

Services such as these rely to varying degrees on the
tracking of the geographical positions of moving objects.
For example, traffic jams may be identified by monitoring
the movements of service users; and, the users that should

receive specific traffic-jam or weather information are
identified by tracking the users’ positions. Some services
require only fairly inaccurate tracking, e.g., the weather
service, while other services require much more accurate
tracking, e.g., location-based games.

We assume that users have wireless devices (e.g., mobile
phones) that are online via some form of wireless commu-
nication network. We also assume that the positions of the
users are available. Specifically, we rely on the Global
Positioning System for positioning. To accomplish tracking
with a certain accuracy, each wireless device monitors its
real position (its GPS position) and compares this with a
local copy of the position that the central database assumes.
When needed in order to maintain the required accuracy in
the database, the wireless device issues an update to the
server. The database may predict the future positions of a
device in different ways. In the general case, the database
explicitly informs the mobile device about how it predicts
the client’s position. The challenge is then how to represent,
and predict, the future positions of a mobile device in the
database so that the number of updates is minimized.
Reduction of updates reduces communication and server-
side update processing.

A detailed coverage of related work is given in Section 6.
In short, to the best of our knowledge the techniques for
update reduction proposed in this paper have not been
proposed or evaluated in past work. We share the general
setting with Wolfson et al. [16], [18], and our proposals take
the segment-based technique described by �CCivilis et al. [4],
which is similar to a technique presented by Wolfson and
Yin [18], as the starting point.

Section 2 describes the segment-based approach in some
detail. In this approach, the future movement of a mobile
device, termed a moving object, is represented by a road
segment drawn from the underlying road network and a
fixed speed. A road segment is a polyline, i.e., a sequence of

698 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

. A. �CCivilis is with the Department of Computer Science II, Vilnius
University, 24 Naugarduko Street, Vilnius LT-03225, Lithuania.
E-mail: alminas.civilis@maf.vu.it.

. C.S. Jensen and S. Pakalnis are with the Department of Computer Science,
Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg Øst,
Denmark. E-mail: {csj, stardas}@cs.aau.dk.

Manuscript received 28 Feb. 2004; revised 5 Aug. 2004; accepted 2 Dec. 2004;
published online 17 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0060-0204.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

augustas
©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

connected line segments. So, this representation assumes

that a moving object moves on a known road segment with

constant speed.
As explained above, a moving object is aware of the

server-side representation of its movement. The server uses

the presentation for predicting the current position of the

moving object. The client-side moving object uses the

representation for ensuring that the server’s predicted

position is within the predefined accuracy.
This paper presents techniques that aim to improve the

basic segment-based approach. We are basing our proposals
on the segment-based approach becausewe find this to be the
most promising outset for more advanced tracking techni-
ques. As an added benefit, by relating moving objects to the
underlying road network, we gain easy access to content that
is connected to the road network. Such contentmay be useful
in many LBSs. The paper presents the following techniques
that improve the segment-based approach:

. Modification of the road network. The number of
updates turns out to be closely related to the
segmentation of the road network. We present
techniques for modification of a road network with
the purpose of finding appropriate segmentations of
a road network.

. Use of anticipated routes for the moving objects.
Using routes in place of segments allows us to
reduce the number of updates caused by changes of
segments. Routes are represented as (long) polylines.

. Introduction of acceleration profiles. The basic
approach assumes that moving objects are moving
at constant speed in-between updates. In order to
reduce the number of updates caused by the speed
variations of the moving objects, we introduce more
accurate speed modeling.

In summary, the paper’s main contributions are 1) pro-
posals for three types of techniques that aim to reduce the
communication and update costs associated with the
tracking of moving objects with accuracy guarantees and
2) empirical evaluations of the best existing tracking
techniques and the new techniques based on real data.

The paper proceeds as follows: Section 2 summarizes
previously proposed update policies and offers motivation
for further investigation of the segment-based approach.
Section 3 covers improvements of segment-based approach
using road-network modifications. Sections 4 and 5 present
the techniques for update reduction using routes and
acceleration profiles, respectively. Section 6 offers an over-
view of related work. The final section summarizes,
provides concluding remarks, and offers suggestions for
future research.

2 BACKGROUND

In this section, we first describe the general tracking

scenario that we will use. A description of the position

data used for tracking follows. Then, we describe the

existing tracking approaches, including the segment-based

approach. Finally, we compare the approaches and moti-

vate the paper’s direction.

2.1 Tracking Scenario

We assume that moving objects are constrained by a road
network and that they are capable of obtaining their
positions from an associated GPS receiver. Moving objects,
also termed clients, send their location information to a
central database, also termed the server, via a wireless
communication network. We assume that disconnects
between client and server are dealt with by other mechan-
isms in the network than the tracking policies we consider.
When a disconnect occurs, these mechanisms notify the
server, which may then take appropriate action.

After each update from a moving object, the database
informs the moving object of the representation it will use
for the object’s position. The moving object is then always
aware of where the server thinks it is located. The moving
object issues an update when the predicted position
deviates by some threshold from the real position obtained
from the GPS receiver.

Fig. 1 presents a UML activity diagram for the update
scenario (activity diagrams model activities that change
object states).

The client initially obtains its location information from
the GPS receiver. It then establishes a connection with the
server and issues an update, sending its GPS information
and unique identifier to the server.

Having received this update, the server determines
which tracking approach and threshold to use for the client
(these are predefined), and it stores the information
received from the client in the database. If the tracking
approach is the segment-based one, the server also uses
map matching to determine on which road segment the
client is moving. The server then sends its representation of
the client’s current and future position to the client.

Having received this information from the server, the
client obtains its actual, current location information from
the GPS receiver. The client then calculates its predicted
position using the representation received from the server,
and it compares this to the GPS position. If the difference
between these two exceeds the given threshold, the client
issues an update to the server. If not, a new comparison is
made. This procedure continues until it is terminated by
the client. Although the server may also initiate and
terminate the tracking, we assume, for simplicity, that the
client is in control. This aspect has no impact on the
paper’s contribution.

2.2 Data Description

As mentioned, GPS is used for positioning of the moving
objects. In experiments that will be reported throughout the
paper, we use GPS-log data collected during an intelligent
speed adaptation project [9]. In this project, GPS receivers
and small custom made computers were installed in a
number of cars that were driving in the Aalborg area,
Denmark. This resulted in the collection of a GPS-log for
each car that contains position samples for approximately
every second during the periods when the car was being
operated during a period of approximately eight weeks.

For our experiments, we also use a digital road network
obtained from the same project. The road network is
composed of a set of segments, each of which corresponds
to some part of the road network that is in-between a pair of

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 699

consecutive intersections or an intersection and a dead end.

A segment is defined as a sequence of coordinates, i.e., as a

polyline. Further, the road network is partitioned into

streets and each segment belongs to precisely one street.

Each segment identifies its street by referring to a street

code. The top part of Fig. 5 offers a visual image of part of

the digital road network.

2.3 Existing Tracking Approaches

We proceed to describe three existing tracking approaches

[4]. With minor variations, the first and third of these were

previously proposed by Wolfson and Yin [18] (see Section 6

for additional discussion). These techniques follow the

scenario described in Section 2.1, but differ in how they

predict the future positions of a moving object.

2.3.1 Point-Based Tracking

Using this approach, the server represents a moving object’s

future positions as the most recently reported position. An

update is issued by a moving object when its distance to the

previously reported position deviates from its current GPS

position by the specified threshold. An example of point

tracking is presented in Fig. 2a. Here, the circles indicate the

threshold and (solid) points indicate (server-side) predicted

positions that result from an update being issued by the

object. The two bold lines indicate connected segments of

the road network and the thin line represents the actual

object movement.

2.3.2 Vector-Based Tracking

In vector tracking, the future positions of a moving object

are given by a linear function of time, i.e., by a start position

and a velocity vector. Point tracking corresponds to the

special case where the velocity vector is the zero-vector.
A GPS receiver computes both speed and heading for the

object it is associated with—the velocity vector used in this

representation is computed from these two. Using the same

notation as the previous figure, Fig. 2b shows also the

velocity vectors that are used for prediction. Solid points

again indicate predicted positions that result from updates,

while the remaining positions are simply predicted.

2.3.3 Segment-Based Tracking

Here, the main idea is to utilize knowledge of the road

network in which the clients are moving. A digital

representation of the road network is required to be

available. The server uses the GPS location information it

receives from a client to locate the client within the road

network. This is done by means of map matching, which is

a technique that positions an object on a road-network

segment, at some distance from the start of that segment,

based on location information from a GPS device.

700 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 2. Tracking policies: (a) Point-based, (b) vector-based, and (c) segment-based.

Fig. 1. Tracking scenario diagram.

In segment-based tracking, the future positions of a client
are given by a movement at constant speed along the
identified segment, which is represented as a polyline. The
speed used is the speed most recently reported by the client.
When or if the predicted position reaches the end of its
segment, the predicted position remains at the end from
then on. In effect, the segment-based tracking switches to
point-based tracking.

Segment-based tracking is sensitive to the fidelity of the
road network representation used. If for some reason, a
matching road segment cannot be found when a moving
object issues an update, the segment-based approach
switches temporarily to the vector-based approach, which
is always applicable. On the next update, the server will
again try to find a matching road segment in the database.

Map matching may fail to identify a segment for several
reasons. For example, the map available may be inaccurate,
or it may not cover the area in which the client is located.
The use of vector-based tracking within the segment-based
tracking renders segment-based tracking robust.

An example of segment-based tracking is shown in
Fig. 2c. Notice that all predicted positions are now located
on the road segment, not on the trajectory obtained via the
GPS receiver. The example next further explains segment-
based tracking.

Example 2.1. Consider a taxi moving in a road network. The
taxi starts a trip at 2:00 p.m. It starts at position ðx0; y0Þ,
and it travels at 50 km/h. The threshold is 100 m, i.e., we
need to know where the taxi is within 100 m. With point-
based tracking, an update is issued when the taxi gets to
be more than 100 m away from the previously reported
position. This situation is shown in Fig. 2a. Using the
vector-based approach, the taxi’s movement direction is
taken into account. This yields a better approximation of
the taxi’s movement, thus reducing the number of
updates—see Fig. 2b. If we have available a digital
representation of the road network in which the taxi is
moving, segment-based tracking is possible (see Fig. 2c).
Here, the updated point (Fig. 2a) occurs because the taxi
slows down so that its predicted position moves ahead of
the real position by more than 100 m. The updated point
(Fig. 2b) occurs because the taxi reaches the end of a
segment so that its predicted position stops, while the
taxi keeps moving. The updated point (Fig. 2b) places the
taxi on a new road segment.

2.4 Comparison of Update Policies

The tracking approaches described in Section 2.3 were
evaluated by �CCivilis et al. [4] using the INFATI data
described in Section 2.2. Approximately 458,000 GPS
positions collected from four cars were used, and thresh-
olds ranging from 40 to 1,000 m were investigated.

Experimental results are presented in Fig. 3. The results
were obtained by simulating the scenario described in
Section 2.1. Specifically, the movement of each car was
simulated using the log of GPS positions for the car. So, a
client program and a server program interact, and a simple
experiment management system is in charge of the book-
keeping needed in order to obtain the performance results.
Instead of obtaining GPS positions from a GPS device in

real time, the client program utilizes the GPS log, which, of
course, makes the simulation much faster than the reality
being simulated. The bookkeeping involves the counting of
updates sent from the client program to the server program
and keeping track of time.

All performance studies reported in this paper follow
this pattern. The studies differ in the specific GPS data and
road networks used, and in the tracking policies used.

In Fig. 3, accuracy threshold values in meters are on the x
axis. The client obtains a GPS position from the GPS device
every second and performs a comparison between the GPS
position and the predicted position. The y axis then gives
the average number of seconds in-between consecutive
updates sent from the client to the server in order to
maintain the required accuracy.

It is seen that the time in-between updates increases as
the accuracy threshold increases, i.e., as the required
accuracy decreases. The point policy shows the worst
performance. Notice that the largest improvement of the
segment-based and vector policies over the point policy is
for smaller thresholds, while for larger thresholds the
improvement is smaller. For thresholds below 200 m, the
segment-based and vector policies are more than two times
better than the point policy.

We find that segment-based tracking was outperformed
because the road segment in the underlying road network
were relatively short, having an average length of 174 m. It
may be that a relatively straight road is represented by
several segments. In this case, vector-based tracking may
need less updates. So, although vector-based tracking is
simpler and slightly better, we find it likely that it is
possible to improve the segment-based tracking to be the
best. In addition, segment-based tracking, by relating the
location of a moving object to the underlying road network,
offers additional advantages:

. Buildings, parking places, traffic jams, points of
interest, traffic signs, and other road-related infor-
mation that is mapped to the road network can be
associated with the location of a moving object.

. Road-network-based distances can be used in place
of Euclidean distances.

. Acceleration profiles, driver behavior on crossroads,
and other road-related data that increase the knowl-
edge about the future positions of moving objects
can be exploited.

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 701

Fig. 3. Comparison of update policies.

Consequently, we have chosen to base our proposals for
new and more efficient tracking techniques on the segment-
based tracking approach.

3 MODIFICATION OF THE ROAD NETWORK

Recall that with segment-based tracking, the predicted
position of an object moves at constant speed along a
segment until it reaches the end of the segment, at which
time the predicted position remains at the end of the
segment. The experimental study reported in the previous
section indicates that the numbers of updates in segment-
based tracking are closely correlated with the numbers of
changes of segments. This motivates modification of the
underlying road network representation that may lead to
less segment changes.

We proceed to present several road network modifica-
tions. The main idea is to connect the road segments in such
a way that moving objects would have to change segments
as few times as possible as they travel in the road network.
We first present a general segment connection algorithm
and road network modification approach. Then, three
subsequent algorithms are presented that reuse this algo-
rithm. At the end, the effects on tracking of the three
algorithms are compared experimentally, and city and
suburban driving are compared.

3.1 General Segment Connection Algorithm

The general segment connection algorithm GSC captures
the overall approach to road network modification.

The idea is to iterate through all segments in the road
network to be modified according to some specified
ordering. During each iteration, the algorithm thus orders
all available segments and then tries to extend the topmost,
or current, segment with other segments. To do this, the
algorithm identifies all existing segments that start or end at
the start or end of the current segment and extends the
current segment with the most attractive such segment(s)
according to some other specified ordering. A current
segment that has been extended is considered in the next
iteration, but the segment(s) that were used for the
extension are disregarded. A current segment that has not
been extended becomes part of the result and is not
considered any further.

The algorithm takes four parameters as input. The first is
a road network, denoted by rn, which is a set of segments.
Each segment is a polyline that represents a small, linear
part of the road network. Segments can have connections
with other segments only at their start and end points.
Further, each segment (initially) belongs to only one street
and has one street code assigned to it. Additional detail
about the concrete road network used in empirical evalua-
tions in this paper can be found elsewhere [9]. The second
parameter of GSC is a Boolean valued variable stc that
controls the segment connection procedure by allowing or
disallowing the connection of polylines with different street
codes. The third and fourth parameters, rnPrioritization
and candPrioritization, are sort order specifications that
specify how to sort sets of polylines. By supplying
algorithm GSC with different parameters, different trans-
formations of a road network result.

Algorithm GSC uses function first(set_of_segments, stc,
Prioritization). This function returns the segment in set_of_
segments that is first according to Prioritization, which is a
sort order specification. It consists of a list of segment

properties, e.g., length, speed limit, number of neighboring
segments, alongwith an indication ofwhether sorting should
be done in ascending or descending order.

A property of a segment can be calculated based on the
other segments available in the argument set of segments.
An example is the number of segments with which a
segment can be extended. When calculating such proper-
ties, if stc is set to true, segments with street codes that are
different from the street code of the current segment are not
considered; otherwise, all segments are considered.

A property such as the angle between two spatially
connected segments involves two segments. In this case,
function first(set_of_segments, stc, Prioritization, pl) takes an
additional parameter: segment pl. Then, each segment from
set_of_segments will have a property “angle” that is equal to
the angle between the segment and pl.

Algorithm GSC is defined next and explained in the
following.

Algorithm

GSCðrn; stc; rnPrioritization; candPrioritizationÞ
1. cn ;
2. while rn 6¼ ; do
3. pl firstðrn; stc; rnPrioritizationÞ
4. rn rn n fplg
5. epls ;
6. for each pd 2 fstartðplÞ; endðplÞg do
7. cand fplcjplc 2 rn ^

ðpd ¼ startðplcÞ _ pd ¼ endðplcÞÞ ^
ðplc:streetcode ¼ pl:streetcode _ :stcÞg

8. if cand 6¼ ; then
9. pl pl extended with

firstðcand; stc; candPrioritization; plÞ
10. epls epls [ffirstðcand; stc; candPrioritization; plÞg
11. if epls 6¼ ; then rn ðrn n eplsÞ [fplg
12. else cn cn [fplg
13. return cn

A variable cn that will accumulate the result of the
algorithm is first initialized. The algorithm then iterates
through the polylines of the argument road network in the
argument road network in prioritization order. During each
iteration, the algorithm will use up to two polylines of the
road network for extending polyline pl. Variable epls holds
these polylines.

Lines 7 to 10 are iterated through for the two delimiting
points of polyline pl. These points are returned by functions
startðplÞ and endðplÞ. Line 7 computes the set of candidate
extension polylines, cand, for a delimiting point. If stc is
true, extension polylines must have the same street code as
the polyline being extended.

If candidate extension polylines exist, the algorithm
proceeds with lines 9 and 10; otherwise, it proceeds with the
next delimiting point or maintenance of rn and cn. In line 9,
the first of the candidate polylines according to the
argument candidate prioritization sort order is identified
and used for extending polyline pl. The polyline used for
extending pl is added to set elps in line 10. Next, if extension
was successful, the polylines used for extension are
subtracted from rn, and the extended polyline is added to
rn. Otherwise, polyline pl is added to the result set.

The algorithm returns the modified road network. It
should be noted that the algorithm does not modify the
street codes of segments. If stc is true, a segment is extended
only with segments with identical street code, which

702 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

implies that the street codes on the resulting road network
are correct. If stc is false, the street codes on the resulting
road network are not meaningful. Subsequent algorithms
do not use street codes when this is the case.

The worst-case running time complexity of the algorithm
is Oðn3Þwhere n is the number of polylines in the argument
road network. The analysis is as follows: The main while
loop executes at most n times. Within this loop, line 7 may
involve iteration over all polylines in the road network.
However, the worst-case complexity is caused by the
presence of the first function calls. In the worst case, it
takes n iterations to determine the value for an attribute
specified in a sort ordering, and it takes another n iterations
to find the first element given the sort ordering attribute
values. It should be noted that the road-network modifica-
tion approaches based on this algorithm are executed only
once and in an initial, offline preprocessing step. The
running times of the modifications thus do not affect the
runtime performance of the tracking.

3.2 Street Code-Based Approach

The general idea is to give priority to connecting polylines
with the same street code. This way, longer road segments
are constructed that tend to correspond to parts of named
streets. In cases where there are several candidates with the
same street code, priority is given to the shortest polyline.
This strategy reduces the probability that unconnected
polylines will be short. The polyline connection algorithm
for the street code-based approach is defined as follows:

Algorithm NSCðrnÞ
1. rn GSCðrn; true; ½streetcodeasc; lengthasc�;

½sidesdesc; lengthdesc�Þ
2. rn GSCðrn; false; ½streetcodeasc; lengthasc�;

½sidesdesc; lengthdesc�Þ
3. return rn

Algorithm NSC makes two calls to algorithm GSC
using differing parameters. The first call uses the argument
road network rn and requires that polylines being con-
nected have identical street codes.

The sort order used for specifying the iteration over the
road network sorts polylines primarily according to
ascending street codes and secondarily according to their
ascending lengths. The algorithm thus processes segments
in street code order and gives priority to short segments.
Notice that a sorting order of streetcodedesc would also work
instead of streetcodeasc. Both ensure that the polylines with
the same street code are processes together, which is what
we want to achieve.

The sort order used when selecting the best candidate
polyline for extending a polyline first orders the candidate
polylines in descending order according to sides, which has
values 1 or 2 depending on how many sides to which the
polyline can be extended (as it is a candidate, the value is at
least 1). The secondary ordering is according to descending
length. As a result, candidate segments are preferred that
can be extended further, and among such candidates, the
longest are preferred.

The second call toGSC is applied to the result of the first
call. In contrast to the first call, street codes are not taken
into account when connecting polylines. The sort orderings
used are the same as those used in the first call to GSC.

3.3 Tail Disconnection Approach

The street code-based approach does not distinguish

between main roads and side streets. The underlying

observation that motivates the tail disconnection approach

is that moving object can be assumed to be moving on main

roads most of the time. In this approach, we thus first

connect polylines disregarding side streets, termed tails,

and we only subsequently take the tails into account.

Definition 3.1 (Tails). Let rn � PL be a set of polylines. A

polyline pl 2 rn is a tail if at least one delimiting point of pl is

not connected to any delimiting point of any other polyline on

rn. Tails are also termed first level tails. The ith level tails in

rn are those polylines that are tails in the set obtained by

subtracting all tails at lower levels than i from rn. We define

TailsðrnÞ of a road network rn as the set of pairs ðpl; levelÞ of
a polyline pl in rn and a level number level in IN such that pl

is a tail at level level.

A few comments are in order. If a road network has a

purely hierarchical structure, each polyline may be a tail at

some level. Polylines that belong to a circular structure in a

road network, i.e., a structure where each constituent

polyline is connected at both ends, are not tails. A highest

tail level is assigned to all non tail polylines (e.g.,

1þmaxðfleveljðpl; levelÞ 2 TailsðrnÞgÞ).
The polyline connection algorithm for this approach is

defined as follows:

Algorithm TSCðrnÞ
1. rn GSCðrn; true; ½streetcodeasc; tailleveldesc; lengthasc�;

½tailleveldesc; sidesdesc; lengthdesc�Þ
2. rn GSCðrn; false; ½streetcodeasc; tailleveldesc; lengthasc�;

½tailleveldesc; sidesdesc; lengthdesc�Þ
3. return rn

Algorithm TSC has the same structure asNSC. In line 1,

the first call to GSC requires that polylines being connected

have identical street codes.
The sort order used for specifying the iteration over the

road network sorts polylines according to ascending street

code, then according to descending tail level, and finally

according to ascending lengths. The sort order used when

selecting a candidate polyline for extending a polyline first

orders the candidate polylines in descending order accord-

ing to tail level, then in descending order according to sides,

and then according to descending length.
These sort orders ensure that nontail polylines are

connected first. Tails will be used only when no nontail

polylines are available. Using tails with the highest levels

first is also always beneficial, as a polyline with tail level n

can be extended with a polyline with tail level n� 1.
The second call toGSC is applied to the result of the first

call. Here, connections between polylines with different

street codes are allowed. The sort orderings used are the

same as those used in the first call to GSC.
It should be noted that because algorithm GSC does not

update tail levels, a segment being extended retains its tail

level. This is exactly as intended.

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 703

3.4 Direction-Based Approach

The last approach takes into account the directions of the

candidate polylines at the connection point. The idea is that

moving objects are expected to be moving as directly as

possible toward their destinations, which means that they

will tend to move as straight as possible and by making as

few turns as possible.
This approach thus gives preference to polylines that

continue in the same direction as much as possible when

extending a polyline. Put differently, preference is given to

polylines with a direction at the connection point that has a

small angle with respect to the direction of the polyline to

be extended, again at the connection point.
The polyline connection algorithm for the direction-

based approach is defined as follows:

Algorithm DSCðrnÞ
1. rn GSCðrn; true;

½streetcodeasc; tailleveldesc; angleAvgasc; lengthasc�;
½tailleveldesc; sidesdesc; angleasc; lengthdesc�Þ

2. rn GSCðrn; false;
½streetcodeasc; tailleveldesc; angleAvgasc; lengthasc�;
½tailleveldesc; sidesdesc; angleasc; lengthdesc�Þ

3. return rn

The algorithm extends the TSC algorithm by introducing

the new properties angle and angleAvg.

Property angle denotes the angle between a polyline

being extended and a candidate for use in the extension.

Specifically, the line segment at the connection point of the

polyline to be extended is itself extended toward the

candidate polyline. This extension corresponds to a straight

extension of the polyline’s line segment at the connection

point. Property angle is then the angle between the

extended line segment and the line segment of the

candidate polyline at the connection point. See Fig. 4. A

small angle is thus preferable.
Next, property angleAvg of a polyline being extended

denotes the average of the smallest angle values possible for

both ends of the polyline. If the polyline cannot be extended

to one side, an angle of 180 degrees is used for that side.

Thus, for a polyline that can be extended with three

polylines to one side with angles of 34, 22, and 90 degrees,

respectively, and that has no extensions on the other side,

angleAvg ¼ ð22þ 180Þ=2. The other parameters are the same

as in the TSC algorithm.

3.5 Comparison of Approaches

The goal of all the road modification approaches is to

connect the polylines of road segments into longer poly-

lines, so that moving objects travel on fewer polylines. In

doing this, we assume that objects in a road network move

mostly along the main roads. We proceed to evaluate the

results of the road network modifications in terms of how

well the constructed polylines correspond to the main

roads.
All policies succeeded in connecting short polylines into

longer ones. Before modification, the road network has

14,708 segments in total, and the average length of a

segment is 174 m. Application of each of the three

704 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 4. Angles beween polylines.

Fig. 5. Road network modifications.

modification approaches resulted in close to 5,800 polylines
and an average length of about 450 m.

Before presenting the results of general experiments with
the different modified networks, we use the examples in
Fig. 5 to offer the reader a feel for the approaches and their
differences. The figure displays part of the unmodified road
network at the top, with two smaller parts, labeled a1 and
b1, being identified for further consideration.

The polylines created by the street-code-based approach
were the worst in connecting the main roads. (In residential
and other areas, it is common for a main road and its side
streets to have the same street code.) Parts a2 and b2
exemplify how the street-code-based approach fails to
capture the main road as a single polyline, or segment, for
these two parts of the network. In Part a2, the main road is
vertical and straight; in Part b2, it is also fairly straight, but
horizontal. The number next to a short polyline is the
identifier (“id” for short) of the “long” polyline to which it
belongs. A bold line without an id represents an uncon-
nected polyline.

In Part a2, segment 6,303 makes a loop, and segment
5,961 starts on the side road, while the main road has a
single segment that was not extended by the modification
procedure. In Part b2, segment 6,473 “ends” because of a
turn to a side road.

The tail disconnection approach fixes some of the
problems. In Part b3 of the figure, a single segment now
represents the main road. This is in contrast to the situation
in Part b2, where two segments share the main road.
Specifically, we see that segment 6,850 represents the entire
main road on the map and that side roads are “eliminated.”
However, the tail disconnection approach does not improve
the situation in Part a2, where there are no tail polylines.

The direction-based approach is the best at assigning
main roads to few polylines. This approach solves problems
like those shown in Parts a2 and b2. Since priority is given
to straight extensions of polylines, a single polyline, with id
5,753, represents the straight part of the road—see Part a3.
With the direction-based approach, and unlike the two
other approaches, the main road is represented by one

polyline, and the side roads are represented by two
polylines.

In Fig. 6, we present a comparison of the update
performances for the segment-based policy using the
unmodified road network and the road networks resulting
from application of the street-code-based approach (algo-
rithm SSC), the tail disconnection approach (algorithm
TSC), and the direction-based approach (algorithm DSC).
The vector-based policy is also included.

In the comparison, 568,307 GPS records were used. The
curves to the right show experimental results using thresh-
olds ranging from 40 to 1,000 m, and the curves to the left
provide a better view of the results for thresholds in the
range of 40 to 200 m.

All three road network modifications increase the
performance of the segment-based policy and outperform
the vector-based policy. The segment-based policy has the
best performance when using the road network resulting
from the direction-based modification. The performance of
a theoretical, constant-speed optimal policy, to be explained
and discussed in the next section, is also included in Fig. 6.
This policy in effect assumes that a moving object always
stays on the same segment and moves at constant speed,
meaning that updates thus only occur due to speed
variations. Based on these experiments, we select the
direction-based approach as the best of the three road
network modification approaches.

3.6 Comparison of Suburban versus City Driving

Another round of experiments were conducted to see the
effects of city versus suburban driving. For these experi-
ments, we used GPS logs from 10 cars that total more than
one million GPS points. We divided these points into two
parts, .56 million points that are located within a rectan-
gular region enclosing the center of Aalborg were desig-
nated as city points, and .45 million points outside this
region were designated as suburban points. Fig. 7 shows
how different techniques perform for the city and suburban
data. Specifically, we consider the segment-based policy
with an unmodified road network and the network
resulting from application of the direction-based approach

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 705

Fig. 6. Comparison of road network modifications.

transformation (algorithm DSC), and we consider the
“optimal” policy. Thresholds range from 40 to 1000 m.

We expect smoother speed variations for suburban
driving than for city driving. The better performance of
the “optimal” policy (which is sensitive only to speed
variations) for suburban driving than for city driving
confirms this. It can also be observed that the experiments
with the unmodified road network differ little for city and
suburban driving. This suggests that using the unmodified
road network, the majority of updates happens due to
segment changes, not due to speed variation. It should also
be noticed that use of the transformed road network yields
better performance for city as well as suburban driving, in
comparison to use of the unmodified network. This
indicates that many updates caused by segment changes
were avoided. Finally, it is observed that, with the modified
network, the segment-based policy performs better for
suburban driving than for city driving. This may be due to
both the smoother suburban speed variations and longer
suburban road segments.

4 UPDATE REDUCTION USING ROUTES

The focus of this section is the use of the routes of moving
objects for update reduction. At first, we introduce a
theoretical, constant-speed optimal policy. Then, we con-
sider the use of a user’s routes, which are “long” segments,
in the segment-based policy instead of the use of road-
network segments.

4.1 Theoretical, Constant-Speed Optimal Policy

One may distinguish between the updates sent from client
to server based on the outcomes of the associated map
matching. Recall that in segment-based tracking, when the
server receives an update with a position pi, it attempts to
map match the position onto the road network, rn, to find
the most probable polyline mpl and point mp on it.

With MM being the map matching function then
ðmpl;mpÞ ¼MMðpi; rnÞ. If MMðpi; rnÞ ¼ ðnull; nullÞ, the
map matching is unsuccessful and tracking is done in
vector mode. Assuming that the map matching is success-
ful and expression

�
MMðpi; rnÞ

�
:mpl returns polyline mpl

to which a given point pi is map matched, then if�
MMðpi�1; rnÞ

�
:mpl ¼

�
MMðpi; rnÞ

�
:mpl, we say that the

update is caused by speed, while if
�
MMðpi�1; rnÞ

�
:

mpl 6¼
�
MMðpi; rnÞ

�
:mpl, we say that the update is caused

by a segment change (position pi�1 is that of the previous
update).

The theoretical, constant-speed optimal policy intro-
duced here indicates how few updates it is possible to
achieve with the segment-based policy in the best case that
occurs when a moving object travels on only one segment
and no updates occur due to segment change. The policy is
optimal under the assumption that the speed of a moving
object is modeled as being constant in-between updates.

This policy is included here because it gives a measure of
optimality under the assumption of constant-speed predic-
tion. The policy is used for comparison purposes only and is
not a practical policy. The policy is impractical because it
assumes that the entire polyline along which a vehicle will
ever move is known in advance. We are able to use this
policy here because we have the entire GPS logs for each
vehicle. Using these, we simply construct (very long)
polylines that precisely track each vehicle “ahead of time.”
In practice, we receive GPS positions in real time.

In Fig. 6, the curve for the constant-speed optimal policy
gives the lower bound for the number of updates needed by
the segment-based policy. The deviation of the segment-
based policy using the unmodified road network from the
optimal case is substantial. Using the modified road
networks, the performance is significantly closer to the
optimal case. For example, for a threshold of 200 m, the use
of the road network modified using the direction-based
approach increases the average time duration in-between
consecutive updates from 28 to 46 s in comparison to the
use of the unmodified road network.

4.2 Use of Routes

It seems reasonable to assume that individuals who travel
are traveling in order to reach a destination. Folklore also
has it that travelers frequently use the same routes to their
destinations. For example, a person going from home to
work may be expected to frequently use the same route.
This general type of behavior is confirmed by the GPS logs
we have available [9].

Taking advantage of knowledge of the routes used by a
moving object can reduce the number of updates caused by
segment changes. Since a route is a sequence of partial road
segments, a route is represented simply as a polyline.
Therefore, the segment-based policy, which is applicable to

706 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 8. Use of routes versus the theoretical approach.

Fig. 7. Segment-based and “optimal” tracking for city and suburban

driving.

any polylines, is also directly applicable to routes. All that is
needed is to collect the routes of each user [2].

When using the segment-based policy with routes, we
effectively assume that we know the future positions of an
object. This is like in the theoretical, constant-speed optimal
policy. The differences from that policy are that the
polylines that represent routes are created from the road
network, not from GPS logs, and that deviations from the
assumed route are handled. Specifically, if an object
deviates from its route, this is treated simply as a segment
change. This will most likely trigger an update, but it will
not lead to failure.

For experiments, we have extracted log data that
represents routes from home to work of drivers represented
in our GPS data. The data set contains 56,000 log entries.
Using this data, Fig. 8 reports the performance of the
segment-based policy when routes are used, as well as of
the theoretical approach based on the same data.

The policies have practically the same performance. The
small deviations between the two are only visible for higher
threshold values, which is due to the small numbers of
updates for these. For example, at a 50 m threshold, each
policy has more than 1,850 updates, which renders the
difference of 96 updates invisible. At a 950 m threshold,
each policy has just above 228 updates, rendering the

difference of 14 updates visible. The slight deviations
between the policies may be explained by the differences
between the routes used by the two policies. In particular,
the routes constructed from GPS points and used by the
theoretical policy are slightly more detailed and, thus,
longer than the ones used by the segment-based policy.

The conclusion is that knowing the route of an object in
advance can eliminate virtually all updates caused by
segment changes and thus significantly improves the
performance of the segment-based policy.

5 UPDATE REDUCTION USING ACCELERATION

PROFILE

Even if the future trajectory of an object is known precisely

and updates caused by segment changes thus are eliminated,

updates still occur due to variations in speed. The reason is

that the segment-based policy assumes that objects move at

constant speed—it takes an update to change the speed.
In this scenario, the modeled speed of an object moving

along a road is a stair function. Fig. 9 presents the variation
of a car’s speed along a part of its route from home to work.
The stepwise constant speed is the one used by the
segment-based policy with a 70 m threshold. Each new
step in the stair function is marked with a dashed line and

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 707

Fig. 9. Speed modeling using constant speed prediction.

Fig. 10. Speed pattern for 12 traversals of a partial route.

represents an update. The density of the steps depends on
the threshold—smaller thresholds yield more updates.

It is reasonable to expect that more accurate modeling of
the speed variation of an object along its route, e.g., using
averages of the speeds during past traversals of the route,
can help better predict the future position of the object as it
moves along the route. Fig. 10 illustrates the speed variation
of one car along part of its route from home to work. Here,
the thin lines represent the speeds for 12 different traversals
of the route, and the solid line represents the average speed
along the route.

The figure reveals a clear pattern in how fast the car
drives along the route during different traversals. The
geometry of the route, the driver’s habits, and the traffic
situation are probably the primary causes for this correla-
tion. Fig. 11 displays the geometry of our partial route. The
figure contains distance measures that allow the reader to
correlate the geometry with the patterns displayed in Fig. 10.
The first deceleration of the car happens in preparation for
negotiating a sharp 90 degree curve. Then, the car
accelerates, decelerates, makes a right turn, and decelerates
further as it reaches a traffic light. On green, the car
accelerates along a main road where it subsequently passes
through two large rotaries. It can be seen that the car
reaches its highest speed on the long, straight stretch of
main road and that the speed as it enters a rotary is on
average higher than the speed at the traffic light. It can also
be seen that the car decelerates more quickly than it
accelerates. We expect this type of behavior to be typical.

The clear pattern in Fig. 10 indicates that tracking with
better performance can be achieved by more accurate
modeling of the predicted, future speed of a moving object.

We consequently create an acceleration profile for
capturing the average speed variation of the movement
of an object along a route. It should be noted that a
profile is created for each combination of a route and
object using the route. Assigning profiles to the road
network that are to apply to all moving objects and for all
uses of the segments of the road network is expected to
be less useful. We assume the presence of a separate
software component that generates frequently used routes
for the moving objects being tracked [2]. Having this be a
separate component is reasonable, as routes are useful for
other tasks than tracking.

An acceleration profile consists of acceleration values
together with the distance intervals during which these
values apply. A profile is created by first dividing the
average speed variation along the route into intervals where
the acceleration changes sign (i.e., from positive to negative
or vice versa). Then, the average acceleration is calculated
for each interval. We define an acceleration profile apf as a
sequence of nþ 1 measures mi and n accelerations ai,
ðm0; a0; . . . ;mn�1; an�1;mnÞ. Acceleration ai is valid in
interval ½mi;miþ1Þ.

To see how an acceleration profile is used, assume an

object moves with speed v0 and that its current location

(“measure”) along the route is m0 distance units after the

start of the route, where m0 belongs to the interval

½mbegin;mendÞ in which the acceleration profile has accelera-

tion value a. Then, the predicted position mpred and speed

vpred of the object within interval ½mbegin;mendÞ at time t is

given by: mpred ¼ m0 þ v0tþ ða=2Þt2 ðvpred ¼ v0 þ atÞ.
Fig. 12 exemplifies speed modeling when using an

acceleration profile. The figure concerns the movement of
one moving object along a route. We assume that the
segment-based policy with a 70 m threshold is used. In this
figure, the light vertical dotted lines mark updates. To
provide better insight into the behavior of the policy used,
we include the deviation between the real position of the
moving object and its position as predicted by the policy.

The algorithm “Predict Positions with Segment policy
and Acceleration profile,” PPSA, extends a previously
proposed algorithm [4] with the ability to modify the speed
of an object according to an acceleration profile.

The algorithm takes two parameters as input,mopa and t,
where the first parameter is a structure with five elements:

1. a polyline, mopa:pl, that specifies the geometrical
representation of the moving object’s route,

2. an acceleration profile, mopa:apf , for speed predic-
tion along the route,

3. the location of the client,mopa:m, given as a measure
value on the route,

4. the speed, mopa:plspd, of the object, and
5. the time, mopa:t, when the location and speed were

acquired. Parameter t > mopa:t is the time point for
which the location of the object should be calculated.

708 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 11. Geometry of partial route with indications of traffic lights and rotaries.

The result is the coordinates of predicted location of the
object at time t.

Algorithm PPSAðmopa; tÞ
1. mpred mopa:m

2. vpred mopa:plspd

3. tpred t�mopa:t

4. while tpred > 0 do

5. accel getAccelerationðmpred;mopa:apfÞ
6. S accel:end�mpred

7. dt 0

8. if v2pred þ 2 � accel:a � S � 0 ^ accel:a 6¼ 0 then

9. dt1
�
� vpred þ

ffi
v2pred þ 2 � accel:a � S

q �
=accel:a

10. dt2
�
� vpred �

ffi
v2pred þ 2 � accel:a � S

q �
=accel:a

11. dt max
��

0;minðfdtjdt 2 fdt1; dt2g ^ dt > 0gÞ
��

12. if dt ¼ 0 then dt S=vpred
13. accel:a 0

14. if tpred < dt then dt tpred
15. mpred mpred þ vpred � dtþ accel:a � dt2=2
16. vpred vpred þ accel:a � dt
17. tpred tpred � dt

18. if mpred �M ðmopa:pl;mopa:pl:pendÞ then
return mopa:pl:pend

19. returnM�1ðmopa:pl;mpredÞ
The algorithm first initializes temporary variables:

Variables mpred and vpred are set to contain starting location
and speed of the moving object and variable tpred initially
holds the time elapsed since the time when the moving
object’s location was acquired. The object’s movement
should be predicted for this duration of time. In general,
several acceleration intervals are passed through during
this duration of time, meaning that different acceleration
values should be applied during the prediction. The
algorithm iteratively calculates the time required to pass
through each acceleration interval and reduces the predic-
tion time tpred with this time. When the prediction time is
exhausted (line 4), the loop stops, and the algorithm

calculates and returns the coordinates of the predicted
location.

In line 5, acceleration value a for the predicted location of
the object mpred and boundary point end of the acceleration
interval where acceleration value a applies are retrieved
and stored in accel; these are returned by function
getAcceleration. In the case where mpred is equal to
boundary point mi, the boundary point miþ1 of the next
acceleration interval is returned. If there are no more
acceleration intervals, an acceleration value of 0 is returned
and the boundary point is set to 1. Notice that mpred is
initially equal to the location of the object at the time of the
update (line 1).

In line 6, the distance S to the end of the acceleration
interval with acceleration accel:a is calculated.

The time dt required for the object to reach the end of
the acceleration interval (moving with acceleration accel:a)
is calculated in lines 9-11. This time is calculated using
the quadratic equation accel:a � dt2=2þ vpred � dt� S ¼ 0. It
has solutions only if v2pred þ 2 � accel:a � S � 0 (line 8), and
only positive solutions are valid, as the meaning of the
solution is time. If there are two positive solutions, the
solution with the smaller value is the valid one (line 11).
If the equation has no valid solution, the result dt is equal
to 0. In this case, prediction using constant speed is
performed (lines 12 and 13).

After the time required to reach the end of the
acceleration interval is calculated, this time is compared to
remaining prediction time tpred. If the time left for which
prediction should be done, tpred, is less than time required to
go distance S, then the algorithm does prediction only for
time tpred (line 14). Lines 15 and 16 then calculate the
predicted location mpred and speed vpred. The prediction
time is reduced in line 17 and the loop is repeated if
tpred > 0.

Finally, the coordinates corresponding to location mpred

are calculated and returned. This is done in lines 18 and 19.
If the predicted location mpred is beyond the end of the route
as described by polyline mopa:pl (line 18), the end point of

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 709

Fig. 12. Speed modeling using acceleration profile.

the polyline is returned. This is done by comparing the
predicted measure on the polyline with the measure of the
end point pl:pend of the polyline. FunctionM calculates the
measure value on a given polyline of a given coordinate
point. Otherwise, the coordinate point of mpred is calculated
with the inverse function M�1, which calculates the
coordinate point of a given measure value on a given
polyline.

Experimental results for the segment-based policy using
routes and acceleration profiles are presented in Fig. 13.

These experiments are based on data from the movement
of five cars along different routes. The GPS data set used
here consists of a total of 57,202 records. The experiments
shows that the use of acceleration profiles is able to improve
performance. This confirms that, when knowing the past
acceleration pattern of an object’s movement along a route,
it is possible to more accurately predict the future positions
of the object along the route. For example, using a threshold
of 250 m, the average time in-between updates is increased
from 72 to 98 s. We note that with acceleration profiles, we
outperform the previously introduced theoretical policy
that was optimal only under the assumption of constant-
speed prediction.

In closing, it is also worth considering a few speed
modeling alternatives and some implication of our choice.
In reality, the travel speed associated with a road segment
varies during the day, and different drivers may well
negotiate the same segment with different speeds. By
associating acceleration profiles with routes that are specific
to individual drivers, we capture the variation among
drivers. And, because the same route (e.g., from home to
work or from work to home) is typically used during the
same time of the day, the variation of speeds across during
the day is also taken into account fairly well. Next, if
significant variations exist within the observations based on
which the acceleration profile of a route is constructed, it is
possible to create several speed profiles, e.g., so that rush
hour and nonrush hour profiles are available. We did not
find a need for several acceleration profiles in the GPS data
we have used. Finally, we feel that the alternative of
associating acceleration profiles with the road network itself

leads to solutions that either will be more complex or will
be less accurate.

6 RELATED WORK

When predicting the future position of an object, the notion
of trajectory is typically used [10], [14], [15], [19], where a
trajectory is defined in 3-dimensional [14] or 4-dimensional
[15] space. The dimensions are a two-dimensional “geo-
graphical” space, a time dimension, and an uncertainty
thresholds dimension. A point in this space indicates when
an object is in a given location and what the uncertainty of
the representation of the location is. Such points may be
computed using speed limits and average speeds on
specific road segments belonging to a trajectory. Xu and
Wolfson [19] use average real-time speeds reported every
5 minutes by in-road sensors. In our techniques, the
prediction of an object’s movement is done using the speed
received from the object. For more accurate prediction, we
introduce acceleration profiles that allow for quite accurate
modeling of the speed variation along a route. An
acceleration profile is a property of the combination of a
physical road network and the habits of a concrete driver.

Wolfson et al. [16] propose two location update
policies, termed immediate linear and delayed linear.
These do not provide accuracy guarantees, as an object
does not update its location when the deviation reaches
some threshold. The occurrence of an update depends on
the overall behavior of the deviation, estimated using a
linear function, since the last update. Experiments on
simulated data show that these policies are inferior to
more recent policies, also by Wolfson et al. [17]. Like
ours, these offer accuracy guarantees. Unlike ours, they
assume that objects move on predefined routes already
known to the objects and route selection is done on the
client side. If an object changes its route, it sends a
position update with information about the new route to
the server. In contrast, we accommodate objects with
memory restrictions, and we consider the case where
routes are not known and where map matching may not
even succeed.

Lam et al. [11] present an adaptive monitoring method
(AMM) that takes into consideration not only update,
deviation, and uncertainty costs, but also the cost of
providing incorrect results to queries, during the process
of determining when to issue updates. In AMM, the moving
objects that fall into a query region need close monitoring,
and a small update threshold is used for them. Objects not
inside a query region may have big thresholds. Our
algorithm allows different objects to have different thresh-
olds and allows threshold to change dynamically.

Karimi and Liu [10] describe a technique for trajectory
prediction. This technique assigns probabilities to the roads
emanating from an intersection according to how likely it is
that an object entering the intersection will proceed on
them. The subroad network within a circular area around
an object is extracted and the most probable route within
this network is used for prediction. When the object leaves
the current subnetwork, a new subnetwork is extracted and
the procedure is repeated. The probabilities are not
individual to each object, but are used for all objects and
they do not take into account past choices during the trip of
an object. In contrast, we use complete routes. To calculate
routes, not only the trajectory of a moving object, but the

710 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

Fig. 13. Results using acceleration profile.

time of the trip and start and destination points are taken
into account. Moreover, we use speed profiles.

Wolfson et al. [19] have recently investigated how to
incorporate travel-speed prediction in a database. They
assume that sensors that can send up-to-date speed
information are installed in the roads. In contrast, we use
so-called GPS-based floating-car data and we predict
positions based on historical records and for each moving
object in isolation. This avoids the need for in-road sensors
and for gathering information from such sensors.

Next, Wolfson and Yin [18] consider tracking with
accuracy guarantees. Based on experiments with artificial
data generated to resemble real movement data, they
conclude that a version of the point-based tracking as
discussed in Section 2.3 is outperformed by a tracking
technique that resembles the segment-based tracking also
discussed in Section 2.3. For a small threshold of 80 m, the
latter is a bit more than twice as good as the former; for
larger thresholds, the difference decreases. Their metric is
numbers of updates per distance unit. They consider
neither road-network modification, the use of routes, nor
acceleration profiles. Their versions of point and segment-
based tracking assume that map-matching always works
and fail if this is not the case. This was possible because the
data used in experiments was generated to be perfectly map
matched. We believe that the techniques presented in
Section 2 are good representatives of the techniques
presented by Wolfson and Yin. It should also be noted that
Ding and Güting [5] have recently discussed the use of what
is essentially segment-based tracking within an envisioned
system based on their own proposal for a data model for the
management of road-network constrained moving objects.

Gowrisankar and Nittel [8] introduce a dead-reckoning
policy that uses angular and road deviations, so that an
update is issued whenever one of these deviations exceeds a
defined threshold.

When only low accuracy of predicted positions are
needed, cellular techniques [1], [12], [13] may be used. With
such techniques, the mobile network tracks the cells of the
mobile objects in real time in order to be able to deliver
messages or calls to the objects. In this approach, update is
handled in the mobile network. In contrast to these
techniques, we consider scenarios where higher accuracy,
well beyond those given by the cells associated with the
base stations in a cellular network, are needed and where
positioning with respect to a road network is attractive.

Assuming a network of geo-stationary “presence”
sensors, Goel and Imielinski [7] propose to use an MPEG-
based prediction model in order to determine the current
location of an object while using as little sensor battery
power as possible.

Next, Fox et al. [6] explore the use of statistical methods,
e.g., multiple hypothesis tracking, in a more abstract
location estimation context than the one we consider.
Integration of such methods into our setting may enable
more detailed analysis of the proposed tracking techniques.

In contrast to all related work, this paper uses a
substantial data set of real GPS logs for guiding the process
of designing practical techniques for the tracking of moving
objects.

7 SUMMARY, CONCLUSIONS, AND FUTURE WORK

The paper presents and empirically evaluates several
techniques for the segment-based tracking of moving
objects. These extend the basic segment-based tracking

previously proposed [4]. The proposed techniques are
robust generally applicable: They function even if no
underlying road network is available or if map matching
is not unsuccessful, and then apply to mobile objects with
even stringent memory restrictions.

The performance of basic segment-based tracking is
sensitive to the segmentation of the road-network
representation used and to the speed variations of the
moving objects. Based on these observations, the paper
presents several techniques that aim to reduce the
number of updates needed for segment-based tracking
with accuracy guarantees:

. Road network modification. The segment-based repre-
sentation of the underlying road network used in
segment-based tracking is modified with the goal of
arriving at a segmentation that enables objects to use
as few segments as possible as they move in the road
network. This then reduces the number of updates
caused by segment changes.

. Use of routes. A route is a polyline, constructed from
(partial) road-network segments, that captures an
object’s entire movement from a source to a
destination. As segments are themselves polylines,
segment-based tracking readily accommodates the
use of routes. Routes are specific to individual
moving objects and the use of routes is expected to
reduce the number of updates caused segment
changes.

. Use of acceleration profiles. An acceleration profile
divides a route into intervals with constant accel-
eration and thus enables quite accurate modeling of
the speed of an object as it travels along a route. The
idea underlying the use of acceleration profiles is to
reduce the number of updates incurred by speed
variations.

Experimental performance studies using real GPS logs

and a corresponding real road network representation leads

to the following main conclusions:

. It is possible to improve the performance of
segment-based tracking by automatic resegmenta-
tion of the underlying road-network representation.
Experiments with three resegmentation algorithms
demonstrate this as well as offer insight into which
types of modification are most effective in reducing
the number of updates. Experiments with city and
suburban driving indicate that segment-based track-
ing is more efficient for the latter.

. It is indeed very attractive to use precomputed
routes for the moving objects in segment-based
tracking, instead of using segments from the road-
network representation. The GPS logs used confirm
conventional wisdom, that mobile users are crea-
tures of habit (or efficiency) that frequently use the
same routes through the road network to reach their
destinations.

. The GPS data used also reveal distinctive speed
patterns for the mobile users. The experimental
results show that the use of acceleration profiles
increases the performance of segment-based track-
ing. With acceleration profiles, tracking with a 200 m
accuracy guarantee can be done with an average of
one update each 77 s. This is in contrast to one
update every 30 s for basic segment-based tracking.

�CCIVILIS ET AL.: TECHNIQUES FOR EFFICIENT ROAD-NETWORK-BASED TRACKING OF MOVING OBJECTS 711

Several promising directions for future work exist. First,
it would be of interest to evaluate the costs of data
transmission, in terms of actual phone-bill cost for a mobile
user. Such modeling should take into account the pricing
policies of mobile network operators. Second, it would be
interesting to study the creation and incremental main-
tenance of acceleration profiles further. Self-learning tech-
niques may be applicable. Third, a road network can be
modified according to the GPS data collected from all users.
This way, the connection of the road segments can be based
on the use of the road network by the users. This may lead
to longer segments for the majority of users, thus improving
the performance of the segment-based tracking.

ACKNOWLEDGMENTS

The authors wish to thank the handling editor for careful
and timely handling of the manuscript. This work was
supported in part by grants from ETRI, South Korea, from
the Danish National Center for IT Research, and from the
Nordic Academy for Advanced Study. In addition to his
primary affiliation with Aalborg University, C.S. Jensen is
an adjunct professor in the Department of Technology,
Agder University College, Norway.

REFERENCES

[1] I.F. Akyildiz and J.S. M. Ho, “A Mobile User Location Update and
Paging Mechanism under Delay Constraints,” ACM-Baltzer J.
Wireless Networks, vol. 1, pp. 244-255, 1995.

[2] A. Brilingait _ee, C.S. Jensen, and N. Zokait _ee, “Enabling Routes as
Context in Mobile Services,” Proc. ACM Int’l Workshop Geographic
Information Systems, pp. 127-136, 2004.

[3] J.D. Chung, O.H. Paek, J.W. Lee, and K.H. Ryu, “Temporal Pattern
Mining of Moving Objects for Location-Based Services,” Proc. Int’l
Conf. Database and Expert Systems Applications, pp. 331-340, 2002.

[4] A. �CCivilis, C.S. Jensen, J. Nenortaite, and S. Pakalnis, “Efficient
Tracking of Moving Objects with Precision Guarantees,” Proc. Int’l
Conf. Mobile and Ubiquitous Systems: Networking and Services,
pp. 164-173, 2004, extended version available as DB-TR-5, Dept.
of Computer Science, Aalborg Univ., Denmark, http://
www.cs.aau.dk/DBTR/DBPublications/DBTR-5.pdf.

[5] Z. Ding and R.H. Güting, “Managing Moving Objects on Dynamic
Transportation Networks,” Proc. Int’l Conf. Scientific and Statistical
Database Management, pp. 287-296, 2004.

[6] D. Fox, J. Hightower, L. Liao, D. Schultz, and G. Borriello,
“Bayesian Filters for Location Estimation,” IEEE Pervasive Comput-
ing, vol. 2, no. 3, pp. 24-33, 2003.

[7] S. Goel and T. Imielinski, “Prediction-Based Monitoring in Sensor
Networks: Taking Lessons from MPEG,” ACM Computer Comm.
Rev., vol. 31, no. 5, 2001.

[8] H. Gowrisankar and S. Nittel, “Reducing Uncertainty in Location
Prediction of Moving Objects in Road Networks,” Proc. Conf.
Geographic Information Science, 2002, http://www.spatial.maine.
edu/~nittel/publications/giscience02_hari.pdf.

[9] C.S. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge, “The INFATI
Data,” Aalborg Univ., TimeCenter TR-79, 2004, http://
www.cs.aau.dk/TimeCenter.

[10] H.A. Karimi and X. Liu, “A Predictive Location Model for
Location-Based Services,” Proc. ACM Int’l Symp. Advances in
Geographic Information Systems, pp. 126-133, 2003.

[11] K.Y. Lam, O. Ulusoy, T.S.H. Lee, E. Chan, and G. Li, “An Efficient
Method for Generating Location Updates for Processing of
Location-Dependent Continuous Queries,” Database Systems for
Advanced Applications, pp. 218-225, 2001.

[12] G. Li, K. Lam, and T. Kuo, “Location Update Generation in
Cellular Mobile Computing Systems,” Proc. Workshop Parallel &
Distributed Real-Time Systems, p. 96, 2001.

[13] Z. Naor and H. Levy, “Minimizing the Wireless Cost of Tracking
Mobile Users: An Adaptive Threshold Scheme,” Proc. IEEE
INFOCOM, pp. 720-727, 1998.

[14] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain, “The
Geometry of Uncertainty in Moving Objects Databases,” Proc. Int’l
Conf. Extending Database Technology, pp. 233-250, 2002.

[15] O. Wolfson, “The Opportunities and Challenges of Location
Information Management,” Proc. Intersections of Geospatial Informa-
tion and Information Technology Workshop, 2001.

[16] O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez,
“Cost and Imprecision in Modeling the Position of Moving
Objects,” Proc. Int’l Conf. Data Eng., pp. 588-596, 1998.

[17] O. Wolfson, A.P. Sistla, S. Camberlain, and Y. Yesha, “Updating
and Querying Databases that Track Mobile Units,” Distributed and
Parallel Databases, vol. 7, no. 3, pp. 257-287, 1999.

[18] O. Wolfson and H. Yin, “Accuracy and Resource Concumption in
Tracking and Location Prediction,” Proc. Symp. Spatial and
Temporal Databases, pp. 325-343, 2003.

[19] B. Xu and O. Wolfson, “Time-Series Prediction with Applications
to Traffic and Moving Objects Databases,” Proc. ACM Int’l
Workshop Data Eng. for Wireless and Mobile Access, pp. 56-60, 2003.

Alminas �CCivilis received the MS degree in
computer science from Aalborg University, Den-
mark, in 2003. He is currently a PhD candidate
in the Department of Computer Science II,
Vilnius University, Lithuania. His research inter-
ests include the management of moving objects
in location-based services, spatial data mining,
and geographic information systems.

Christian S. Jensen received the PhD and
DrTechn degrees from Aalborg University, Den-
mark, in 1991 and 2000, respectively. He is a
professor of computer science at Aalborg Uni-
versity, an honorary professor at Cardiff Uni-
versity, United Kingdom, and an adjunct
professor at Agder University College, Norway.
His research concerns data management tech-
nology and spans issues of semantics, model-
ing, and performance. With his colleagues, he

receives substantial national and international funding for his research
and he has authored or coauthored more than 150 scientific papers. He
is a member of the Danish Academy of Technical Sciences. He received
the Ib Henriksens Research Award 2001 for his research in mainly
temporal data management and Telenor’s Nordic Research Award 2002
for his research in mobile services. He is on the editorial board of ACM
Transactions on Database Systems, and he has served on the editorial
boards of IEEE Transactions on Knowledge and Data Engineering and
the IEEE Data Engineering Bulletin. He was the general chair of the
1995 International Workshop on Temporal Databases and a vice
program committee chair for the 1998 IEEE ICDE Conference. He
was coprogram committee chair for the Workshop on Spatio-Temporal
Database Management, held with VLDB ’99, and for the Eighth
International Symposium on Spatial and Temporal Databases, and he
was the program committee chair for the 2002 EDBT Conference. In
2005, he will be technical program chair of the VLDB conference. He
serves on the boards of directors and advisors for a small number of
companies. He serves regularly as a consultant and delivers lectures to
industrial audiences. He is a senior member of the IEEE and a member
of the IEEE Computer Society.

Stardas Pakalnis received the M.S. degree in
computer science from Aalborg University, Den-
mark, in 2003. He is currently a PhD candidate
in the Department of Computer Science and
Engineering, Aalborg University. His research
interests include mobile services and spatial and
temporal databases.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

712 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 5, MAY 2005

