
Enabling Routes as Context in Mobile Services

Agnė Brilingaiṫe, Christian S. Jensen, and Nora Zokaitė

April 19, 2005

TR-9

A DB Technical Report

Title Enabling Routes as Context in Mobile Services

Copyright c© 2005 Agnė Brilingaitė, Christian S. Jensen, and Nora
Zokaitė. All rights reserved.

Author(s) Agnė Brilingaitė, Christian S. Jensen, and Nora Zokaitė

Publication History Extended version of:
Brilingaitė, A., C. S. Jensen, and N. Zokaitė, “Enabling Routes as Con-
text in Mobile Services,” inProceedings of the Twelfth ACM International
Symposium on Advances in Geographic Information Systems, Washington
DC, USA, November 12–13, 2004, pp. 127–136.

For additional information, see the DB TECH REPORTShomepage:〈www.cs.auc.dk/DBTR〉.

Any software made available viaDB TECH REPORTS is provided “as is” and without any express or
implied warranties, including, without limitation, the implied warranty of merchantability and fitness for a
particular purpose.

The DB TECH REPORTS icon is made from two letters in an early version of the Rune alphabet, which
was used by the Vikings, among others. Runes have angular shapes and lack horizontal lines because the
primary storage medium was wood, although they may also be found on jewelry, tools, and weapons. Runes
were perceived as having magic, hidden powers. The first letter in the logo is “Dagaz,” the rune for day
or daylight and the phonetic equivalent of “d.” Its meaningsinclude happiness, activity, and satisfaction.
The second letter is “Berkano,” which is associated with thebirch tree. Its divinatory meanings include
health, new beginnings, growth, plenty, and clearance. It is associated with Idun, goddess of Spring, and
with fertility. It is the phonetic equivalent of “b.”

Abstract

With the continuing advances in wireless communications, geo-positioning, and portable electronics, an
infrastructure is emerging that enables the delivery of on-line, location-enabled services to very large
numbers of mobile users. A typical usage situation for mobile services is one characterized by a small
screen and no keyboard, and by the service being only a secondary focus of the user. Under such
circumstances, it is particularly important to deliver the“right” information and service at the right time,
with as little user interaction as possible. This may be achieved by making services context aware.

Mobile users frequently follow the same route to a destination as they did during previous trips to
the destination, and the route and destination constitute important aspects of the context for a range of
services. This paper presents key concepts underlying a software component that identifies and accumu-
lates the routes of a user along with their usage patterns andthat makes the routes available to services.
Experiences from using the component on logs of GPS positions acquired from vehicles traveling within
a real road network are reported.

1 Introduction

The global adoption rate of mobile phones is very large, and while mobile phones are currently being used
mostly for voice communication, the volume of data communication is increasing. With technologies such
as GPRS, 2.5G (EDGE), and 3G (CDMA, UMTS), the user can be always on at no extra cost, and band-
width is increasing. Next, the advent of the global navigation satellite system Galileo as well as regulatory
developments, such as the US E911 Mandate [13] and similar developments in Asia and Europe, contribute
to the increasing availability of positioning capabilities. An infrastructure is thus emerging that supports a
range of location-enabled on-line mobile services [23].

However, mobile services are delivered to devices that are typically without (qwerty) keyboards and
that have only small screens. Further, the services may be expected to be delivered in situations where the
user’s main focus of attention is not the service, but ratherthat of, e.g., navigating safely in traffic. For
these reasons, it is much more important than in a desktop computing situation that the user receives only
the relevant information and service, with as little interaction with the system as possible. One approach to
obtaining these qualities is to make the mobile services aware of the user’s context.

The user’s current location is one possible context, and theuser’s destination is another. Yet another is
the route that takes the user from the current location to thedestination. This paper’s focus is on the latter.

Routes are interesting for two reasons. First, folklore as well as common sense has it that mobile users
typically travel towards a destination (rather than movingaround, aimlessly) and that a user often or typically
follows the same route when going from one location to another. For example, a user typically travels on
the same route from home to work. Second, routes are significant as context for a range of services. For
example, a service that knows the route of a user may alert theuser about road conditions, e.g., congestion,
construction, and accidents, on the route ahead, while not bothering the user with conditions that do not
relate to the user’s route. As another example, routes may beused when a user requests the locations of
“nearby” points of interest. More specifically, a service may suggest restaurants or gas stations to the user
that are near to the user’s route, rather than merely to the user’s current location [16]. Information about
routes followed by mobile users can also be used in tracking services to accomplish more efficient tracking
of the users [9, 10].

This paper describes key techniques underlying a software component that builds routes for individual
users based on traces of GPS coordinates. In the proposed system architecture, client-side devices perform
information filtering and prepare information for sending to the server. The server side uses linear refer-
encing for the capture of the underlying transportation infrastructure and for the capture of routes, which
are sequences of road parts that connect start and end destination objects. Aggregated usage information
for each route is also maintained. The component is implemented using Java, Oracle’s PL/SQL, and Oracle

1

Spatial. Proof of concept experiments that use GPS logs obtained from vehicles traveling in the Aalborg
area and use a road network for this area are reported.

The paper is structured as follows. The system architectureand the route recording component is de-
scribed in Section 2. Data structures necessary for the capture of routes are given in Section 3, and key
algorithms used by the component are covered in Section 4. Insights from an experimental validation are
reported in Section 5. Finally, Section 6 covers related work, and Section 7 summarizes and offers directions
for future work. Four appendices present algorithms used inthe techniques presented in the main body of
the paper.

2 System Architecture

Following an overview of the client and server sides, this section describes how the two sides collaborate
during route recording.

2.1 Client and Server Sides

We assume that a client device has a GPS receiver, a data connection to the server, and the computing and
storage capabilities of a typical modern mobile phone. A current example is a Nokia 3650 with a GPRS
connection and an Emtac Bluetooth GPS. GPS receivers transmit NMEA sentences [11, 20], which include
location/time/date information, but also additional information that is less important for our purposes.

Client devices store four data blocks, which are described in Figure 1 in XML format. The first block
contains personal information about each user. The second block records each user’s destination objects.
Each object has global/local IDs, a location given by a circular area, and a description. The description is a
name that is meaningful to the user, e.g., “home” or “work.” The third block captures the destination objects
of routes. The fourth block of data records the usage times ofeach route. The time is approximated to week
days, hours, and quarters of an hour.

The user inputs personal information and names for destination objects when this is requested by the
client.

The server side uses the Oracle Application Server. The server records and analyzes the information
received from the clients. Everything about each route, i.e., its constituent road-network parts and its usage,
as well as each user’s personal information are stored on theserver. This is done to avoid information loss—
users who switch to a new device can obtain all relevant information from the server. While not discussed
further in this paper, we believe that encryption may be employed to counter privacy concerns.

2.2 Route Recording Functionality

We cover the interaction between client and server first and then cover route recording on the client and
server sides.

2.2.1 Client and Server Interaction

The user activates and deactivates the process of route recording. When active, the client device filters and
buffers location/time information obtained from the GPS receiver. This information is eventually transmit-
ted to the server along with information about the user and the user’s destination objects. The transmission
frequency depends on the route length, the technical abilities of the client device, and the connection quality.
When it has the necessary information, the server performs route construction, records the usage time, and
assigns an ID to the route. The result is stored in the database and is also sent to the client.

2

USER_ID

PERSONAL_INFO

USER_INFORMATION

(a) Users

LOCATION

X_COORDINATE

*

GLOBAL_ID

OBJECTS

OBJECT

Y_COORDINATE

DESCRIPTIONLOCAL_ID

RADIUS

(b) Destination Objects

LOCAL_ID OBJECTSGLOBAL_ID

*

ROUTES

END_OBJECTSTART_OBJECT

ROUTE

(c) Routes

USAGE_INFORMATION

TIME

*
USAGE

ROUTE_ID FREQUENCY

QUARTERHOURWEEKDAY

(d) Usages

Figure 1: Client-Side Data

The data sent to the server by the client has three parts: user, object, and standard information. The data
format depends on which data is already available.

User information. If the user is already registered, this data block includes an ID. For new users, a user
description is included. Thus, we have[userId] or [undefined: description] in this block.

Object information. Routes start and end at destination objects. The destination objects of a new route
can have been used already to define the start or end of other routes, in which case the server can itself
identify the objects according to their GPS coordinates. Ifboth objects are known, this data block is empty,
[,]. If one object is undefined, the data block contains a start description,[undefined: description,], or an
end description,[,undefined: description]. If the start and end objects are yet to be defined, the block has
descriptions for both of them:[undefined: description, undefined: description].

Standard information. Date, time, and GPS location information are always included. This block in-
cludes three elements,[date, time, GPS].

When the server sends data to a client, it always returns the ID for a newly recorded route. If any of
the route parameters are undefined, the client assumes that the data stream from the server will include the
missing information. The server generates IDs for users andthe users’ destination objects. These IDs are
returned to the client.

The server also returns a center location for a newly recorded destination object if the center location
of the object differs from the first/last GPS coordinate pairin the GPS stream after location approximation.
The server returns a radius together with the center location only if the server selects a radius that differs
from the default value.

3

Thus, the format of the data from the server is[userId, startObjectId, endObjectId, routeId, (xStart,
yStart; radiusStart), (xEnd, yEnd; radiusEnd)] , whererouteId is the only parameter that is always
included. The client receives the data stream from the server, analyzes it, and records its data.

2.2.2 Client-Side Route Recording

The client takes part in the route recording by preparing thedata stream, described in the previous section,
to be sent to the server. The blocks of user and object information in the data stream are constructed using
data stored locally (see Section 2.1). The standard data block is constructed by analyzing the information
from the GPS receiver.

The order of the steps for route recording on the client device is presented in Figure 2. When the

(10)
NO

(11)
YESaddUserIdToStream

noteEndCoo
(9)

YES

NO

fixedStart?

(13)

YES

NO

YES

NO (18)
fixedEnd?

YES

NO

(7)

(12)

(1) (2)

addGPSToStream noteStartCoo
(3)

getTime
(4) (5)

addTimeToStream

getGPSCoo
(6)(8)

(37)

recRoute

(15)
(16)

(17)
(20)

(21)(22)

(23) (24)

(25)

(26)

(27)

(28)

(33) (34)

(29)

(32)

(30)

(31)

(35)

(36)

sendStreamToServer

askStartDesc

setEndUndefined

addEndDescToStream

askEndDesc
setStartUndefined

addStartDescToStream

recObjectLocalID

recObjectCoorecObjectDefRadius

recObjectDesc

setUserUndefined
(14)

addUserDescToStream

askObjectsDesc

(19)

addObjectsDescToStream

setObjectsUndefined

recObjectsDefRadius

recObjectsLocalID

recObjectsCoo

recObjectsDesc

newUser?
askUserDesc

getGPSCoo

addGPSToStreamlastGPS?

recUserDesc

fixedEnd?

Figure 2: Client-Side Route Recording

user activates route recording, the client starts obtaining GPS information from the GPS receiver. Having
received the first pair of coordinates, the client records the time to be associated with the usage of the
route being recorded (1–5 in Figure 2). The client keeps extracting coordinates from the GPS stream until
recording is deactivated (6–8). Upon deactivation, the endof the route is noted (9) for further analysis. The
result is the standard information block for the data streamto be sent to the server.

If the user is already registered in the system, the user’s IDis added to the stream (11 in Figure 2);
otherwise, the client requests a user description. The device records the description locally, sets the user as
undefined in the data stream, and adds the description to the data stream (12–15).

The last task is to build the destination object block. If thestart and end objects are undefined (16,18)
or the user is new, the device obtains descriptions of the destination objects (19). The objects are set as

4

undefined in the stream and their descriptions are added to the data stream (20–21). The device records
descriptions, default radiuses, and locations locally together with the local ID (22–25). If only one object is
undefined, the same steps are done for only one object. If bothobjects are defined, the block is empty.

When all three data blocks have been constructed, the route is recorded (36) locally using the local
parameters and leaving the global parameters undefined. Thestream is finally sent to the server (37).

2.2.3 Server-Side Route Recording

The server performs the main route recording—that of transforming the data from a client into a route given
by a sequence of road network parts. Also, an ID is generated for a route; and any data received from the
client that describes destination objects and the user is recorded.

The server-side route recording is presented in Figure 3. Having obtained data from the client, the server

(1) (3) (4)
NO YES

takeUserDescgenerateUserId

addUserIdToStream

findRouteFromGPS

takeObjectsDescgenerateObjectsIds

(25)

NO

YES

recNewObjects addObjectsIdsToStream

addObjectIdToStream

NO

generateObjectId

NO

YES

YES

(2)
getStreamFromDevice

(27)

(23)

(24)

(10)(11)

(8)

(20)

(19)

(22)

(16)

recUsage SendStreamToDevice

addRadiusToStream
YES

NO
NO

(30)

(31)

(32)

(33)

(34)

(35) (36)

(37) (38)

(21)

addObjectIdToStream

generateRouteId
(26)

addCooToStream

(28)

recRoute

YES

NO

addRadiusToStream

YES

addCooToStream

YES

NO

(29)

(5)(6)

(7)

(9)

(12) (13)

(14) (15)

(17)

(18)

takeStartDesc

recNewObject

findObjects

findEnd

findStart

takeEndDesc

recNewObject

generateObjectId

addRouteIdToStream

fixedEnd?

newUser? fixedStart? fixedEnd?

recNewUser

diffStartRadius? diffStartCoo?

diffEndCoo?

diffEndRadius?

Figure 3: Server-Side Route Recording

checks if the user is new. If so, the server obtains the user’sdescription from the stream, assigns an ID to
the user, stores this information, and includes the user’s ID in the stream for the client.

Next, the server considers the destination objects. If bothdestination objects are undefined (which is
the case if the user is new) the server extracts destination object information from the stream (10), generates
IDs (11), records the new objects (12), and adds the IDs to thestream for the client (13). If only one object
is undefined, the steps are done for one object. If the start isundefined (3, 9), data about it is prepared (14,
15) and recorded (16, 17). Then the end object is identified using knowledge about the user’s objects (18).
Similar steps are taken if only the end object is undefined. Ifboth objects are defined, they are identified
using stored data (24).

Finally, the server analyses the third part of the stream that includes the standard data. The server detects
the route from the GPS information (25), generates an ID for the route (26), adds this ID to the data stream
for the client (27), and records the route in the database (28). The server also adds center coordinates of

5

destination objects (30, 34) and/or their radiuses (32, 35)if the coordinates differ (29, 33) from the first/last
GPS point in the GPS stream, and/or if the radiuses are not thedefault values (31, 35). Then the server
records the first usage time of the route (37). The constructed stream is sent to the client to end the route
recording (38).

3 Road Networks and Routes

We proceed to define the key data structures used for the capture of routes.
We project the real road network into 2D space and represent the result as a set of polylines, each of

which is given by a sequence ofbasepointsB ⊂ R2. Different choices of base points lead to different
road-network representations. Using many base points generally results in a higher-fidelity representation.
A polyline is defined asPL = {(b1, ..., bN) | bi ∈ B ∧N ≥ 2}, whereb1 andbN is the start and end base
point of the polyline, respectively.

Example 3.1 Figure 4 illustrates two intersecting polylines:PL1 = (b1, b2, b3, b4) andPL2 = (b5, b6, b7).
The start point ofPL1 is b1 and the end point isb4. �

b

PL1

2SPL b

2PL

b

b

b
l

b

l
b

1

76

5

2

43

Figure 4: Example of Polylines and a Subpolyline

In our road network model, each polyline represents a bidirectional road. Without reference to the traffic
directions of the roads, polylines have “directions” goingfrom the start base points to the end base points.

We also reference the points on a road by their distance from the start of the road. Although a road’s ge-
ographical extent is approximated by a polyline, computingdistances by simply summing up the Euclidean
distances of segments is too inaccurate [7, 14, 22]. Rather,we assume that we have accurate distances for all
or some of the base points in the polyline approximation of a road. This decouples the polyline representa-
tion of a road from the capture of distances along the road andis in keeping with current road-management
practice. Using real road distances makes calculations more precise.

The measure of a base pointbi is given asli. The measure associated with the last base point of the
polyline indicates the road length of the polyline.

If a measure is absent for a base pointbk of the polyline, we identify the base pointsbi andbj that are
the nearest base points with measures before and afterbk, respectively, and we approximate the measure of
bk as follows:

lk = li +
(lj − li)

∑k−1

n=i |bnbn+1|
∑j−1

m=i |bmbm+1|

If no bj exists, we use the Euclidean distance starting frombi and onwards.

Example 3.2 Figure 5 exemplifies length calculation for base points of polyline PL1 = (b1, b2, b3, b4). The
numbers above the line segments indicate the Euclidean distances between base point pairs. The numbers
below base points hold the more accurate measures supplied by the road information provider.

6

10.4

4

13

2

5

3

0

b

b

bb
PL1

4

3

21

(a)

11

9

4

2

5

3

0

b

b

bb
PL1

4

3

21

(b)

Figure 5: Length Calculations

Consider Figure 5(a). When computing the measurel3 for b3, i = 2 andj = 4. It may be verified that
application of the formula yieldsl3 = 10.4.

Figure 5(b) lacks measures for the last two base points,b3 andb4. The measure forb3 is calculated by
adding the Euclidean distance betweenb2 andb3, i.e.,5, to the measure ofb2, i.e.,4. For the base pointb4,
we add the Euclidean distance betweenb3 andb4. �

Definition 3.1 (Length) FunctionL : PL× B → R takes as arguments a polylinepl = (b1, ..., bN) and a
base pointbi, 1 ≤ i ≤ N , and it returns the road distance from the start of the polyline to the base point.�

Here,L(pl, b1) = 0, andL(pl, bN) is the length of the polyline. For1 ≤ i < j ≤ N , L(pl, bj)− L(pl, bi)
is at least the Euclidean distance betweenbi andbj . Next, asubpolylinemodels a part of a road.

Definition 3.2 (Subpolyline)Let SPL ⊂ PL × R2 be a finite set ofsubpolylines. A subpolylinespl =
(pl, l⊢, l⊣), where0 ≤ l⊢ < l⊣ ≤ L(pl, bN), is the part of polylinepl that starts at measurel⊢ and ends at
measurel⊣. �

In Figure 4, the accentuated part of polylinePL2 is a subpolyline,SPL2. We proceed to capture the
connectivity among the roads.

Definition 3.3 (Connection)Let C ⊂ { {(pl1, l
⊢
1), . . . ,(plN , l⊢N)} | (pli, l

⊢

i) ∈ PL× R ∧N ≥ 2}. Thus,
C is a set of finite sets ofconnections. �

Consider Figure 6(a), where polylinesPL1 andPL2 each has a connection point at their intersection.
There is a connection point at distancel⊢1 from the start ofPL1, and there is one at distancel⊢2 from the start
of PL2. We thus havec = {(PL1, l

⊢
1), (PL2, l

⊢
2)} ∈ C. The connection points in Figures 6(b) and 6(c) are

analogous, but illustrate situations where connection points coincide with base points. Note that when we
capture the connections, we in effect obtain a graph representation of the road network.

As mentioned previously, our service users travel from and to destinations via the road network. These
destinations, we termuser objects.

Definition 3.4 (User Object) Let UO be a finite set ofuser objects. Each user objectuo is a 3-tuple
(u, circle , spls), where

1) u belongs toU , the set of service users.

2) circle = (x0, y0, rd) ∈ R2 × R denotes the circle defined by(x− x0)
2 + (y − y0)

2 = rd2.

3) spls = {(pl, l⊢, l⊣) | ∃pl ∈ PL ((pl, l⊢, l⊣) ∈ getSpls(pl, circle))}, where functiongetSpls returns
the set consisting of all maximum subpolylines ofspls that are insidecircle. �

7

l 2

1

2PL

1PL

b

bb

b

b b

l

2 3

4

1

5 6

(a)

b
b

b

1PL

2PL
b b

b

b

21

5

7

4

6
3

(b)

b

PL

b

PL2

b

b
b

1

3
5

4
2

1

(c)

Figure 6: Connections Among Polylines

We say that user objectuo belongs to useru and is located in the circular area with center(x0, y0) and
radiusrd .

Note that while it is simpler to model user objects as points than as circular areas, this is not appropriate.
For example, each day a user may park in a different parking space in the same parking lot or even in
a different parking lot close to the building where the user works. Thus, the same destination may have
different route end and start locations on different days. Destination objects can be given different radiuses
that depend on the usage patterns and the number of polylinesaround them.

Next, we associate usage times with routes. To be able to capture regularities in route uses, we capture
the year, month, day, hour, minute, and second of each use separately. (Recall that the usage time of a route
is the time when the use is initiated.)

Definition 3.5 (Usage Time)Let ausage timeT be a finite set of 6-tuples(y,m, d, h,mn, s), wherey, m,
d, h, mn, ands denoteyear, month, day, hour, minute, andsecond, respectively. �

With the preceding definitions in place, we can define the notion of a routeroute.

Definition 3.6 (Route)Let R be a finite set ofroutes. Each route is a 4-tuple(RE,uos, uoe, ST), where

1) RE = ((spl1, dir1), . . . , (splN , dirN)) is the sequence of subpolylines that makes up the route. For
(spli, diri), wherespli = (pli, l

⊢

i , l⊣i) ∈ SPL, diri is the motion direction alongpli used:

diri =







1 if the motion direction on subpolylinespli
coincides with the direction of polylinepli

−1 otherwise

2) uos = (u, circles, splss) ∈ UO is the start object of the route, and∃(pl, l⊢, l⊣) ∈ splss (pl =
pl1 ∧ (l⊢ ≤ l⊢1 ≤ l⊣ ∧ dir1 = 1) ∨ (l⊢ ≤ l⊣1 ≤ l⊣ ∧ dir1 = −1)).

3) uoe = (u, circlee, splse) ∈ UO is the end object of the route, and∃(pl, l⊢, l⊣) ∈ splse(pl = plN ∧
(l⊢ ≤ l⊣N ≤ l⊣ ∧ dirN = 1) ∨ (l⊢ ≤ l⊢N ≤ l⊣ ∧ dirN = −1)).

8

4) ∀spli = (pli, l
⊢

i , l⊣i), spli+1 = (pli+1, l
⊢

i+1
, l⊣i+1

), 1 ≤ i ≤ N − 1 ((pli 6= pli+1 ∧ ∃c ∈ C ((pli, l1) ∈
c ∧ (pli+1, l2) ∈ c)) ∨ (pli = pli+1 ∧ l1 = l2)) wherel1 = l⊣i if diri = 1, andl1 = l⊢i if diri = −1;
l2 = l⊢i+1 if diri+1 = 1, andl2 = l⊣i+1 if diri+1 = −1.

5) ST ⊂ T denotes the times when the route was used by useru. �

Thus, a route is a sequence of subpolylines with directions (item 1 in the definition), where the first/last
subpolyline must intersect with the circle of the start/enddestination objects (items 2 and 3) and where the
sequence of subpolylines must form a (continuous) polyline(item 4).

3

PL2

PL1

uo

uo
b

l

b
b

b b

b
bb

b

b

b b

PL 5

12

6 3

8

2

10

9

s

e

11

1

7

4

Figure 7: Example Route

Example 3.3 Figure 7 illustrates a road network with three polylines—PL1 = (b11, b8, b4, b12), PL2 =
(b1, b2, b3, b4, b5), andPL3 = (b6, b2, b7, b8, b9, b10). The highlighted router = (RE,uos, uoe, ST) uses
parts of all three polylines. Specifically,RE is a sequence of four route elements. The subpolyline of the
first route element is given by(PL3, l,L(PL3, b2)), wherel is a measure along subpolyline specifying a
point that is in the circular area of user objectuos. The movement direction of the subpolyline coincides
with the direction of polylinePL3. �

4 Route Construction Techniques

Techniques are first presented that identify the polylines on which a user travels. Then Sections 4.2 and 4.3
in turn cover algorithms that identify the subpolyline thatare the elements of a route, and that combine such
elements into entire routes.

We distinguish between GPS positions and points. Thus, “GPSposition” refers to the NMEA sentences
generated by a typical GPS receiver, and “GPS point” refers to the coordinate pair(x, y) that is part of the
GPS position. The algorithms in this section only use point information; thus, they use GPS points.

4.1 Polyline Identification

The first step in creating a route from the data received from aclient is to identify the polylines on which
the client is moving and the client’s positions on the polylines.

We assume that GPS positions are imprecise; specifically, weassume that GPS positions are within
distanceD of the true position.

9

Point Projection onto Line Segment. Subsequent algorithms need to project a GPS position onto a line
segment of a polyline. The projection must be expressed as a measure along the polyline, and the distance
between the GPS position and its projection must be computed.

Figure 8 illustrates three cases for this projection. The line segment isbibi+1. Small circles indicate a
sequence of GPS points, of whichg, g1, andg2 are of interest. The large circles indicate the imprecision
of the GPS points. A GPS point can be “during” the line segment, as isg in Figure 8(a). Its projection is
positiono, and the Euclidean distance between positionso andg is d < D . The coordinate can also be

d

D

o
i+1bbi

g

(a) During

i+1bi

D
d

1 1g d

2
g

2

b

(b) Before and After

Figure 8: Projection of a GPS Position onto a Segment

before or after the polyline segment, as areg1 andg2 in Figure 8(b). In these cases, the projections of the
GPS points are the end pointsbi andbi+1 of the segment.

We need the distanced from a GPS point to its projection—this is used to determine the projection of
a GPS point into the road network. Further, we need the distance l⊢ from the start of the polyline to the
projection.

Distanced is calculated using vector algebra. A line segmentbibi+1 is part of a polyline(b1, . . . , bN).
The segment inherits the direction of the polyline. Withbi being the start point, we construct two vectors
that emanate frombi. One vector ends atbi+1; the other ends at the GPS pointg (see Figure 9). The angle

i+1

i

d
α

b

g

b

(a) Obtuse

i+1b

i

d

g’

g

α
b

(b) Acute—I

g’
i+1

i

d

b
b

g

α

(c) Acute—II

Figure 9: Anglesα and Projections

α between these vectors is used in the calculation of distanced. It is calculated using scalar multiplication:

bibi+1 · big = |bibi+1||big| cos α

If the angle is obtuse (Figure 9(a)), distanced is the Euclidean distance from the GPS point to the start
of the segment. The measure of the projected point is that of the segment’s start point:

If 90◦ < α < 270◦ then d = |gbi|, l
⊢ = L(pl, bi)

10

If the angle is acute, there are two possibilities, as shown in Figures 9(b) and 9(c)). If the length of the
projection ofbig onto bibi+1, |big′| exceeds|bibi+1| (see Figure 9(b)), distanced is the distance between
the end pointbi+1 of the segment and the GPS pointg. The measure of the projected point is that of the
segment’s end point:

If − 90◦ ≤ α ≤ 90◦ ∧ |big′| ≥ (L(pl, bi+1)− L(pl, bi)) then D = |gbi+1|, l
⊢ = L(pl, bi+1)

If the projection length|big′| is less than the length of the segment (Figure 9(c)), distance d is the
perpendicular distance between the GPS coordinate to the polyline segment. The measure of the projected
point is the sum of the projection length and the measure ofbi:

If − 90◦ ≤ α ≤ 90◦ ∧ |big′| < (L(pl, bi+1)− L(pl, bi)) then d = |gg′|, l⊢ = L(pl, bi) + |big′|

We encapsulate the computations described above in a functioncalcParam (see Algorithm 4.1). It takes
a triple (g, pl, pls) as argument and returns a pair(d, l⊢), whered is the distance from GPS pointg to line
segmentpls on polylinepl, andl⊢ is the measure alongpl of the projection ofg ontopls .

Algorithm 4.1 Calculation of Projection Parameters (functioncalcParam)

Require: INPUT: g = (x, y) ∈ R2, pl ∈ PL, pls = ((x1, y1), (x2, y2)), where (xi, yi) ∈ pl
OUTPUT: (d, l⊢) ∈ R× R

1: ~v1 = (vx1, vy1)← (x2 − x1, y2 − y1); ~v2 = (vx2, vy2)← (x− x1, y − y1)
2: |~v1| ←

√

vx2
1
+ vy2

1
; |~v2| ←

√

vx2
2
+ vy2

2

3: α← arccos((vx1 vx2 + vy1 vy2)/(|~v1| |~v2|))
4: if 90◦ < α < 270◦ then
5: d← |~v2|
6: l⊢ ← L(pl, (x1, y1))
7: else
8: projection ← |~v2| cos α
9: length ← L(pl, (x2, y2))− L(pl, (x1, y1))

10: if length ≤ projection then
11: d←

√

(x− x2)2 + (y − y2)2

12: l⊢ ← L(pl, (x2, y2))
13: else
14: d← |~v2| sinα
15: l⊢ ← L(pl, (x1, y1)) + projection

16: end if
17: end if
18: return (d, l⊢)

We do better than mapping GPS positions to the nearest polyline with the lowest value ofd. For example,
when a GPS position is near a crossroads, the true polyline may be the one that crosses the nearest polyline.
Another example occurs when roads are close. Figure 10(a) illustrates how two GPS pointsg1 andg2 are
nearest to an incorrect road. To handle such cases correctly, we consider the mapping of the previous GPS
positions for subsequent GPS positions.

Initial GPS Position. For the initial GPS position, there is no collected data to consider while mapping
it to a polyline. The initial GPS position is mapped to a polyline if exactly one polyline exists that has a
segment with projection distanced ≤ D. If there are several polylines that satisfy this requirement, the
position cannot be mapped until some later position has beenmapped correctly. FunctionpolyCand (see

11

g
2

g
1

pl

pl2

1

pl3

(a) Incorrect Mappings to Nearest
Polylines

g
1

pl1

pl2
pl3

g
2

(b) Correct Mapping to Polyline

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������g

1

pl1

pl2
pl3

g
2

(c) Elimination of Candidate Poly-
lines

Figure 10: Polyline Identification

Algorithm 4.2) takes a GPS pointg as argument and returns a set of candidate polylines with measures of
the projection ofg onto the polyline segments. The function uses functioncalcParam .

Algorithm 4.2 Finding Candidate Polylines (functionpolyCand)

Require: INPUT: g ∈ R2

OUTPUT: Cand = {(pl, l⊢)|(pl, l⊢) ∈ PL× R}
1: Cand ← ∅
2: for all pli = (bi1 , ..., bini

) ∈ PL do
3: d←∞, l ←∞
4: for all pls ij

= (bij , bij+1
) such that1 ≤ j ≤ ni − 1 do

5: (cD , cL)← calcParam(g, pli, pls ij
)

6: if cD ≤ D ∧ cD < d then
7: (d, l)← (cD , cL)
8: end if
9: end for

10: if d ≤ D then
11: Cand ← Cand ∪ (pli, l)
12: end if
13: end for
14: return Cand

All line segments of each polyline are analyzed, but only theline segment of a polyline that is nearest
to the pointg is considered as a candidate. The function uses two temporary variables,d andl. Variabled
stores the distance to the nearest line segment of the polyline. Variablel stores the distance from the start of
the polyline to the projected point on the nearest line segment.

In line 5, the parameters(cD , cL) for each line segmentspl ij are calculated. If the distancecD to
the current line segment is less than or equal to the imprecision valueD and less than the distanced to
some previous line segment of the same polyline, the currentdistancecD along withcL, the measure of the
projection, are stored (lines 6–8). The polyline that has line segments in the imprecision distance from the
point g is included into the list of candidate polylines,Cand , (see lines 10–11).

Subsequent GPS Positions. For subsequent positions, to obtain a result consistent with the correct map-
ping exemplified in Figure 10(b), we map a GPS pointgj to a polyline considering the mapping of the
previous GPS pointgj−1. Point gj should be mapped to the same polyline asgj−1 or to a polyline that

12

shares a connection point with the previous polyline.
Considering again Figure 10(a), we see that polylinepl3 cannot be a candidate for the mapping ofg2

because it is not connected withpl2. To avoid wrong mappings at connections, e.g., the mapping of g1 to
pl1, we introduce so-called connections areas and do not map GPSpositions inside these areas. This is
illustrated in Figure 10(c).

FunctionpolyId (see Algorithm 4.3) identifies the polylinepl for the GPS pointg according to the
polyline pPl that the previous GPS point is mapped to. The function returns the polyline and the distance
from the start of the polyline to the projection. In lines 2–7, we check if the current GPS point is on the same

Algorithm 4.3 Polyline Identification (functionpolyId)

Require: INPUT: g ∈ R2, pPl = (b1, . . . , bn) ∈ PL
OUTPUT: (pl, l⊢) ∈ PL×R

1: (pl, l⊢)← (pPl ,∞), d←∞
2: for all plj = (bj , bj+1) such that1 ≤ j ≤ n− 1 do
3: (cD , cL)← calcParam(g, pPl , plj)
4: if cD < d ∧ cD ≤ D then
5: l⊢ ← cL; d← cD

6: end if
7: end for
8: if d =∞ then
9: for all pli = (bi1 , ..., bini

) such that∃ c = (..., (pli, li), ..., (pPl , pL), ...) ∈ C do
10: for all plij = (bij , bij+1

) such that1 ≤ j ≤ ni − 1 do
11: (cD , cL)← calcParam(g, pli, plij)
12: if d =∞∧ cD ≤ D then
13: (pl, l⊢)← (pli, cL); d← cD

14: else ifpli = pl ∧ cD < d then
15: l⊢ ← cL; d← cD

16: else ifpl 6= pli ∧ d ≤ D ∧ cD ≤ D then
17: (pl, l⊢)← (⊥,∞)
18: return (pl, l⊢)
19: end if
20: end for
21: end for
22: end if
23: return (pl, l⊢)

polyline as the previous GPS point. The distancecD to every segment of the polylinepPl is calculated, and
the shortest one is chosen. But the distance also has to be less thanD, the imprecision value. If this search
yields an empty result (line 8), we assume that the GPS point should be mapped to a polyline that connects
with the previous polyline. Thus, in lines 9–21 the functionsearches for polylines that are in distanceD
from the GPS point and intersect withpPl . If there are more than one (lines 16–18) or no such polylines,
the function returns an undefined polyline and an infinite distance. The second case means that there is a
gap in the GPS data, which then has to be filled in. If two segments of the polyline that intersects withpPl

are within distanceD of the GPS point (the second condition in line 14) then the nearest segment is chosen.
To determine whether a GPS point is in a connection area, we first need the result of functionpolyId ,

namely the polyline the GPS point is projected onto and the distance of the projection from the start of the
polyline. Connections are given by their distance from the start of a polyline (see Definition 3.3). Thus, if
the projection is within distanceD from a connection on its polyline, the GPS point is in a connection area.

13

Later, we ignore projections of such positions.
FunctionpossibleConnection (see Algorithm 4.4) determines whether an argument GPS point is in a

connection area. All connections related to the polyline are analyzed, and the distance from the projection

Algorithm 4.4 Connection Area (functionpossibleConnection)

Require: INPUT: (pl, l⊢) ∈ PL× R
OUTPUT: conn ∈ {true, false}

1: conn ← false
2: for all ci = {cc1, ..., ccn} ∈ C such that∃ ccij = (pl, l⊢ij) ∈ ci do

3: for all ccij ∈ ci, such thatccij = (pl, l⊢ij) do

4: if −D ≤ l⊢ij − l⊢ ≤ D then
5: conn ← true
6: return conn

7: end if
8: end for
9: end for

10: return conn

to each connection is calculated. A distance less than imprecision D makes the resulttrue; otherwise, the
function returnsfalse.

4.2 Formation of a Route Element

Recall that a route is a sequence of connected subpolylines,which thus combine to form a single polyline.
We proceed to describe how subpolylines are constructed.

Routes are formed by four main kinds of subpolylines, as illustrated in Figure 11 and explained in the
following. As in previous illustrations, the unfilled circles in the figure denote GPS points. There are three
polylines in the figure:(b1, b2, b3, b4), (b6, b2), and(b3, b5); and a route is emphasized.

Figure 11(a) illustrates the simplest case of a route, one that consists of only a single subpolyline.
According to our model, we never approximate the start and end of a route, but always fix the exact positions
of these. This means that when we form such a subpolyline, we consider the first and the last GPS points
that can be mapped correctly, i.e.,g0 andgN in Figure11(a). The distances from the start of the polyline
identify the part of the polyline that constitutes the route, and the movement direction defines the start and
end.

Figure 11(b) illustrates how a first subpolyline is formed. For such a subpolyline, the measure that
corresponds to the start of the route is exactly the measure of the projection of the first correctly mapped
GPS point (g0).

The other measure of the subpolyline usually has to be modified slightly so that it becomes equal to
the measure of the connection where the route switches to a different polyline. To illustrate this, GPS
pointsgi, 0 ≤ i ≤ j, in the figure are projected onto the same polyline, but pointgj+1 is projected onto
another polyline. However, the route can only switch to the new polyline atb3; thus, the measure of the
projection ofgj is approximated as the measure of the nearest intersection with the other polyline, i.e.,
L((b1, b2, b3, b4), b3).

Next, Figure 11(c) illustrates how the last subpolyline of aroute is formed. This case is similar, but
opposite, to the case of the first subpolyline. If the movement direction is the same as the direction of
the polyline, the start of the last subpolyline is approximated, as forgj+1 in the figure. The end of the
subpolyline is determined by the last correctly mapped position of the route, i.e.,gN . If the direction is
opposite, the measures are formed in the opposite way.

14

b

b

b
3 4

5
b6

b1

gN

g0 b2

(a) Only One Subpolyline

g
g

b

b

b

b

2

3 4

j
j+1

5
b6

b1

0
g

(b) First Subpolyline

b

b

b
3 4

5

j+1

6

b1

b2

gN

ggj

b

(c) Last Subpolyline

g
g

b

b

b
3

2

j
j+1

5
b6

b1

gk+1
gk

b

4

(d) Intermediate Subpolyline

Figure 11: Kinds of Subpolylines

Finally, Figure 11(d) shows how an intermediate subpolyline is formed. This case occurs if the GPS
points of the route are mapped to more than two polylines. Thestart and the end measures for such a
subpolyline are not those of projections, but must be approximated to the measures of the connections at
which the route changes polyline. In the figure, GPS pointsgk+1 andgj are the first and last GPS points
that are projected onto the intermediate polyline. Their distance values from the start of the polyline are
approximated to values of the connectionsb2 andb3, i.e.,L((b1, b2, b3, b4), b2) andL((b1, b2, b3, b4), b3).

If no neighboring subpolylines exist that belong to the samepolyline, only these four cases exist. How-
ever, it is possible for a route to have neighboring subpolylines that belong to the same polyline, but have
opposite directions. This happens if the user makes a u-turn. Figure 12(a) demonstrates this. In this case,

b

b2bb

b

1

5

34

(a) Movement

5

1

4

5

2

3

b3
1b

1b
3b

4
3

21

(b) Formation

Figure 12: Subpolylines on the Same Polyline

the end of one subpolyline is the start of the next. Figure 12(b) offers additional detail. GPS points are

15

numbered to indicate their order. The last point that is in the same direction as the current subpolyline is
the start of the new subpolyline. This GPS point can be still on the same side of the polyline (before turning
around), or it can be on the other side (after turning around).

We use a functiondefineDirection (see Algorithm 4.5) that determines the movement directionalong a
polyline for two consecutive projections. The function takes the measures of the projections of the previous
and current GPS points as arguments. It also considers the movement direction on the polyline until the
previous GPS point. If the previous measurepDst is less than the current onecDst , the direction coincides
with the polyline’s direction and is set to1. If the previous measure is greater than the current one, the
direction is the opposite and is set to−1. If the two measures are equal, the direction is set to the previous
direction. This last situation happens if, e.g., the user isstuck in a traffic jam and moves so slowly that
consecutive GPS points are the same.

Algorithm 4.5 Direction Identification (functiondefineDirection)
Require: INPUT: pDst , cDst ∈ R, pDir ∈ {−1, 0, 1}

OUTPUT: direction ∈ {−1, 0, 1}
1: direction ← 0
2: if pDst < cDst then
3: direction ← 1
4: else ifpDst > cDst then
5: direction ← −1
6: else
7: direction ← pDir

8: end if
9: return direction

Movement directions are used to approximate measures when we construct “uninterruptible” routes
from sequences of subpolylines. FunctionfindEnd (see Algorithm 4.6) finds the measureendDst along
polyline pPl of the connection where it and the current polylinecPl intersect. The function uses the
measurepDst of the projection of the previous GPS point and also the direction pDir on polylinepPl .
The function chooses the nearest connection if there are more than one connection where the polylines
intersect. Temporary variabledistToConn stores the measure of the nearest connection found so far. All
connectionsci wherepPl and cPl intersect are considered (line 2). VariablecDistToConn is used for

Algorithm 4.6 End Identification for a Subpolyline (functionfindEnd)
Require: INPUT: pPl , cPl ∈ PL, pDst ∈ R, pDir ∈ {−1, 0, 1}

OUTPUT: endDst ∈ R
1: distToConn, endDst ←∞
2: for all ci = {cc1, ..., ccn} ∈ C such that∃ccij ∧ ccik ∈ ci (ccij = (pPl , l⊢ij) ∧ ccik = (cPl , l⊢ik)) do

3: cDistToConn ← (l⊢ij − pDst)

4: if ((pDir = 1∧cDistToConn ≥ −2D)∨(pDir = −1∧cDistToConn ≤ 2D))∧|cDistToConn| <
distToConn then

5: endDst ← l⊢ij ; distToConn ← |cDistToConn|

6: else ifpDir = 0 ∧ |cDistToConn| < distToConn then
7: endDst ← l⊢ij ; distToConn ← |cDistToConn|
8: end if
9: end for

10: return endDst

16

calculating the distancepDst from the previously projected point to each suitable connection. A connection
is suitable in two cases.

• If it is ahead of the projected point or behind with distance2D, when the direction coincides with the
polyline’s direction.

• If it is behind the projected point or ahead with distance2D, when the direction is the opposite
(line 4).

Note thatcDistToConn will be negative when movement directionpDir is 1, but the connection is in
the direction opposite ofpDst (behindpDst), as well as when the movement direction is−1 and the
connection is in the same direction (ahead ofpDst). We use notation|cDistToConn| to obtain a positive
value for the distance to the connection. If the distance to the connection is less than the distance to the
previous connection then the new connection’s measure is the candidate end measure for the subpolyline.
The distance to it is noted in variablecDistToConn . If the direction on the subpolyline is undefined, the
nearest connection is simply chosen as a candidate.

FunctionfindStart (see Algorithm 4.7) is closely related to functionfindEnd . The next subpolyline
starts where the previous subpolyline ends, so functionfindStart defines where the next subpolyline starts
on the polylinecPl according to the previous subpolyline that was on polylinepPl and ended at measure
pDst . The function returns thestartDst that is the distance at which the current subpolyline starts.

Algorithm 4.7 Start Identification for a Subpolyline (functionfindStart)
Require: INPUT: pPl , cPl ∈ PL, pDst ∈ R

OUTPUT: startDst ∈ R
1: for c = {cc1, ..., ccn} ∈ C such that∃cck, ccm(cck = (pPl , pDst) ∧ ccm = (cPl , l⊢m)) do
2: startDst ← l⊢m
3: end for
4: return startDst

Finally, functionformSubPoly (see Algorithm 4.8) creates a subpolyline that satisfies therequirements
for a subpolyline. Specifically, the start measure of a subpolyline must be less than its end measure. While
making calculations, it may happen that the start measure exceeds the end measure. FunctionformSubPoly

solves this problem. The function takes polyline apl and temporary start and end measures,ls and le,
as input parameters. The function returns a correctly created subpolylinespl = (pl, l⊢, l⊣) along with
a movement directiondir . If the input movement direction does not coincide with the direction of the
polyline, i.e.,dir = −1, the start measure is greater than the end measure, and they are exchanged (lines 1–
2). If the movement direction coincides with the direction of the polyline, i.e.,dir = 1, the start and end
measures are final (lines 3–4). If the movement direction is unknown, i.e.,dir = 0, the direction is set
according to the start and end measures, and the subpolylineis constructed (lines 5–10).

4.3 Route Construction

In Section 2.2, we provided an overview of the context of the essential construction of routes that occurs on
the server side. here, we proceed to describe route construction in some detail.

The state of the algorithm is captured by the data structurecState = ((pPl , pDst , pDir), l⊢,RE),
wherepPl is the polyline that the most recent, previous GPS point was mapped to,pDst is the distance
from the start of that polyline to the position on the polyline this point was mapped,pDir is the direction of
movement along the polyline of the GPS sequence,l⊢ is the distance from the start of the polyline at which
the current subpolyline starts, andRE is a sequence of route elements (see Figure 13).

17

Algorithm 4.8 Subpolyline Formation (functionformSubPoly)
Require: INPUT: pl ∈ PL, ls, le ∈ R, dir ∈ {−1, 0, 1}

OUTPUT: spl = (pl, l⊢, l⊣) ∈ SPL, dir ∈ {−1, 0, 1}
1: if dir = −1 then
2: spl = (pl, l⊢, l⊣)← (pl, le, ls)
3: else ifdir = 1 then
4: spl = (pl, l⊢, l⊣)← (pl, ls, le)
5: else
6: if ls < le then
7: spl = (pl, l⊢, l⊣)← (pl, ls, le); dir ← 1
8: else
9: spl = (pl, l⊢, l⊣)← (pl, le, ls); dir ← −1

10: end if
11: end if
12: return (spl , dir)

pDir

?

pDstl

pPl

Figure 13: Current State of the Algorithm

The algorithm also uses a few additional structures. Specifically, (cPl , cDst) stores the polyline to
which the current GPS point is mapped and the distance from the start of the polyline to the point on
the polyline to where it was mapped. Next,dir is the current direction on the polyline. We also use the
well-known primitive functionshead, tail , andappendon sequences of elements of the same type.

Next, the algorithm employs a number of additional functions. First, functiongetStartValues(see Al-
gorithm 4.9) scans the GPS sequence for the first position forwhich there is only one polyline in the road
network that is within the distance of imprecision (lines 2–9). So, if the first point has more than one can-
didate polyline, the function considers the second one; if the second position has more than one candidate,
the function considers the third one; etc. The function usesa data structureundG = (g1, . . . , gk), where
the firstk − 1 elements are undefined GPS points andgk is the first GPS point that is mapped correctly.
Next,Cand is a set of pairs(cPli , cDsti) of a polyline and a distance from the start of the polyline. This set
records candidate polylines for a particular GPS position (line 4). Finally,cList = (Cand1 , . . . ,Cand k)
is a list of candidate sets whereCand i contains the candidates for mapping GPS pointgi.

For each pointg from the GPS sequence, algorithmgetStartValues finds candidate polylinesCand

using functionpolyCand (line 4). If more than one candidate exists (line 5), the algorithm adds the GPS
point to listundG and also adds the candidatesCand to list cList . If the first point with only one candidate
is not the first GPS point in the stream (line 10), the algorithm uses functionbacktrack (see Algorithm A.2
in Appendix A.2) to map the previous points correctly, if possible, and to get the current state. If the first
GPS point has only one candidate (line 12), the current statebecomes this candidate. If all point in the GPS
stream have more than one candidate polyline or no candidates (line 16), the algorithms exits. The function
returns the current state of the algorithm and a part of the GPS stream that was not analyzed yet.

18

Algorithm 4.9 FunctiongetStartValues

Require: INPUT: G = (g1, . . . , gn), gi ∈ R2

OUTPUT: (cState , G) = (((pPl , pDst , pDir), l⊢, RE), G)
1: Cand ← ∅; cList ← nil;undG ← nil
2: while G not empty∧|Cand | 6= 1 do
3: g ← head(G); G← tail (G)
4: Cand ← polyCand (g)
5: if |Cand | > 0 then
6: cList ← append(cList ,Cand)
7: undG ← append(undG , g)
8: end if
9: end while

10: if |cList | > 1 then
11: cState ← backtrack (cList , undG)
12: else if|cList | = 1 then
13: (pPl , pDst)← head(Cand)
14: pDir ← 0; l⊢ ← pDst ;RE ← nil
15: else
16: EXIT
17: end if
18: return (cState , G)

FunctionfillGap (for details, see Algorithm A.4 in Appendix A.3) fills the gapbetween two projections
based on shortest-path search in the road network representation. This function constructs missing route
elements. The function takes the current state of the algorithm, the current undefined GPS coordinate, and
the remaining GPS sequence as input parameters. The function returns the new state of the algorithm and
the remaining part of the GPS sequence for further analysis.

FunctionnewSubOtherPoly (see Algorithm 4.10) constructs a route element when the current GPS
point is mapped to a polyline that differs from the one the previous GPS point was mapped to. The end of
the subpolyline for the route element being generated is modified so that it becomes equal to the measure of
the connection where the object departed from the previous polyline to reach its new polyline.

Algorithm 4.10 Subpolyline Construction for Different Polylines (function newSubOtherPoly)

Require: INPUT: cState = ((pPl , pDst , pDir), l⊢,RE), cPl ∈ PL

OUTPUT: cState

1: l⊣ ← findEnd(pPl , cPl , pDst , pDir)
2: (spl, dir)← formSubPoly(pP l, l⊢, l⊣, pDir)
3: RE ←append(RE, (spl, dir))
4: l⊢ ← findStart (pPl , cPl , l⊣)
5: (pPl , pDst , pDir)← (cPl , l⊢, 0)
6: return cState

The input parameters of the function are the current statecState of the algorithm and the polylinecPl ,
to which the current GPS point was mapped. The function returns a new statecState . The function creates
a subpolyline for the GPS points mapped to the previous polyline pPl . The end of the subpolyline is found
first (line 1). Then a subpolyline is created (line 2) and added to the sequence of route elements (line 3). The
function prepares values for the construction of the new subpolyline. It finds a start distance value (line 4)

19

and changes the elements of the current state of the algorithm (line 5), i.e.,pPl , pDst , andpDir , that are
the polyline, the previously mapped point, and movement direction for the next route element.

Next, functionnewSubSamePoly (see Algorithm 4.11) constructs a new route element in the case
where the movement is along the same polyline, but the movement direction from the previous position to
the current is opposite to the direction until the previous position. The end of the previous route element is
the start of the new one. The input parameters of the functionare the current statecState and the distance

Algorithm 4.11 Subpolyline Construction—Same Polyline (functionnewSubSamePoly)

Require: INPUT: cState = ((pPl , pDst , pDir), l⊢, RE), cDst ∈ R
OUTPUT: cState

1: l⊣ ← pDst

2: (spl, dir)← formSubPoly(pPl , l⊢, l⊣, pDir)
3: RE ←append(RE, (spl, pDir))
4: l⊢ ← pDst

5: (pDst , pDir)← (cDst , (−1)dir)
6: return cState

valuecDst along the polyline where the current GPS point was mapped to.The function returns a new state
of the algorithm. The function creates a new route subpolyline. As the movement is on the same polyline,
only the movement direction is different, the distance along the polyline where the previous GPS point was
mapped to becomes the end distance for the constructed subpolyline (line 1). The route element is created
(line 2) and added to the sequence of route elements (line 3).The end distance of the subpolyline is the
start distance for the next subpolyline (line 4) because themovement direction was changed at that position.
For the algorithm state,cDst becomes the previous distance, and the direction is changedto the opposite
(line 5).

One last function is needed by the overall route finding algorithm. Specifically, functionproceedEnd

constructs the last element of a route. All last route elements that belong to the last polyline are approxi-
mated by one element if they are in the area of the same destination object. Thus, all the last route elements
constructed so far that belong to the last polyline to which GPS points were mapped are approximated to one
element if these route elements are in the area of the destination object. In Figure 14, the final point of the
route isE and all subpolylines belong to the same polyline. They are inside the destination area shown by
the circle. Each valuexi denotes a distance from the start of the polyline. FunctionproceedEnd(for details,
see Algorithm A.1 in Appendix A.1) starts with the end position (E in the figure) and searches backwards
for the start position that is the “oldest” position on the polyline. Each element inside the destination circle
is considered in turn. If an element exceeds the circle, the approximation process stops. In the figure, we
start with(x1, E) and consider(x1, x2). This yields(x2, E). We then consider(x3, x2), obtaining(x3, E).
Next, we obtain(E, x4). The final result of the approximation is element(S,E).

We now have the elements needed by the main route construction algorithm. Taking a sequenceG of
GPS points as input, this algorithm (Algorithm 4.12, below)constructs a route consisting of a sequenceRE
of route subpolylines. Note that this algorithm employs mapmatching as part of its solution to a larger
problem; other map matching techniques may be used in place of the specific technique employed by the
algorithm.

With the functions presented earlier in this section at its disposal, Algorithm 4.12 first uses function
getStartValues to obtain a correct start state. While the GPS sequence is notempty, the next point is
extracted and processed. The polyline that corresponds to the point is identified using functionpolyId . If
this function returns an undefined polyline, a gap exists in the GPS sequence, which has to be filled. If the
function returns a polyline, it is checked if the projectionis in a connection area. If the point projection is
not in the connection area, the subsequent calculations canbe done.

20

the start
from

distance

x6

x7

S (x8)

x5
x4

x3

of poly

x2
x1

E

Figure 14: Approximation of the Route End

If the current polyline is not the same (line 10) as for the previous GPS point, a new subpolyline is
formed. If the polyline is the same (line 12) as for the previous GPS point, the algorithm checks if the
movement direction is the same as for the previous point. If the previous direction was undefined, its
value is set to a value of the current direction. If the direction is the same, no calculations are done—only
temporary variablepDst is set to the distance of the current GPS point. If the direction is not the same, we
have to form a new subpolyline, and functionnewSubSamePoly is called.

When the GPS sequence is empty, the final route element is computed by functionproceedEnd.

5 Experimental Validation

To validate the data structures and algorithms described inthe previous two sections, these were imple-
mented using generally available, state-of-the-art technologies, including Java, Oracle PL/SQL, and Oracle
Spatial. We describe this implementation and lessons learned from testing the implementation using a real-
world, digital representation of a real road network together with GPS log data obtained from vehicles.

5.1 Database Schema

Figure 15 contains a relational schema capable of capturingthe data structures described in Section 3. Pri-
mary and foreign keys are indicated. TableLINEAR ELEMENTS stores the main elements representing
roads of the road network, namely polylines. Each tuple in this table contains the unique ID of a polyline
and the length of the polyline.

TableCONNECTIONS captures the intersections among polylines. A tuple in thistable records that
a polyline (POLID) intersects at a distance (POLFROM) from its start with one or several polylines at a
connection (CONNID).

Recall from Section 3 that a polyline is given by a sequences of base points—these are recorded in
tablePOLYLINE ELEMENTS . A tuple records a base point of a polyline (POLID). The number of the
base point in the sequence of the base points of the polyline (SEQUENCENR) and its distance from the

21

Algorithm 4.12 Route Finding

Require: INPUT: G = (g1, ..., gn), gi ∈ R2, n > 1
OUTPUT: RE = ((spl 1, dir 1), ..., (splm, dirm)), spl i = (pli, l

⊢

i , l⊣i) ∈ SPL

1: let cState = ((pPl , pDst , pDir), l⊢,RE)
2: (cState, G)← getStartValues(G)
3: while G is not emptydo
4: g ← head(G); G← tail (G)
5: (cPl , cDst)← polyId(g, pPl)
6: if cPl = ⊥ then
7: (cState , G)← fillGap(cState , g ,G)
8: else
9: if possibleConnection(cPl , cDst) = false then

10: if cPl 6= pPl then
11: cState ← newSubOtherPoly(cState, cPl)
12: else
13: dir ← defineDirection(pDst , cDst , pDir)
14: if pDir = 0 then
15: pDir ← dir

16: else ifpDir = dir then
17: pDst ← cDst

18: else
19: cState ← newSubSamePoly(cState, cDst)
20: end if
21: end if
22: end if
23: end if
24: end while
25: RE ← proceedEnd(cState, cDst)
26: return RE

start of the polyline (POLFROM) are recorded, in addition to the geographical coordinates (XCOORD
and Y COORD) of the base point.

TableSDO POLYLINE ELEMENTS is created to be able to use facilities in Oracle Spatial [19]. The
attributes in this table are similar to those in tablePOLYLINE ELEMENTS . The exception is attribute
ELEMENT, which does not capture the geo-information about asingle base point, but captures an entire
line segment with its start and end points.

A tuple in tableUSERScontains the unique ID of a mobile service user and additional information
about the user.

Next, a tuple in tableDESTINATION OBJECTS contains the ID of a destination object, the ID of the
user to whom the object belongs, a description of the object,and attributes that specify the circular area of
the object. TableSDO DESTINATION OBJECTS is created to be able to use Oracle Spatial. It has an
attribute CIRCLE instead of coordinates.

Three tables and a view are used for capturing routes. First,tableROUTES records the routes of the
mobile service users. Routes start and end at destination objects. A tuple thus records the ID of a route and
the start and end objects.

Second, tableROUTE ELEMENTS describes routes in terms of their elements. Each tuple thusde-
scribes a subpolyline. Attribute POLFROM records the start measure of the subpolyline and attribute

22

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

789

789

D_ID

A

789

789

789

A

789

X_COORD

USER_ID

RADIUS

Y_COORD

D_ID

DESCRIPTION DESCRIPTION

789

789

A

RADIUS

CIRCLE

USER_ID

SDO

DESTINATION_OBJECTS SDO_DESTINATION_OBJECTS

A

POL_FROM

POL_ID

SEQUENCE_NR

POL_TO

789

789

789

789

SDO

POL_FROM

POL_ID

SEQUENCE_NR

Y_COORD

X_COORD

789ELEMENT

789

789

789

POLYLINE_ELEMENTSSDO_POLYLINE_ELEMENTS

789

POL_LENGTH

789

789

LINEAR_ELEMENTSUSERS

789 USER_ID

A USER_INFO

POL_ID

789

789

CONNECTIONS

POL_FROM

POL_ID789

CONN_ID

POL_TO

SEQUENCE_NR

DIRECTION

ROUTE_ELEMENTS

SPEED

ROUTE_ID

POL_ID

POL_FROM

789

789

789

789

789

789

ROUTES

START_OBJECT

ROUTE_ID

789

789

A

A

− primary key

− charactersA

− null values allowed

− not null value

D

END_OBJECT

− numeric values789

POL_ID_FK

USER_ID_FK

POL_ID_FK POL_ID_FK

ROUTE_ID_FK

ROUTE_ID_FK

END_OBJECT_FK

START_OBJECT_FK

INFO

789 ROUTE_ID

VIEW_INFO

D

ROUTE_ID

USAGE

DATETIME
HOUR

WEEKDAY

789

A

QUARTER789

− date

Figure 15: Relational Database Schema

POL TO captures the end measure of the subpolyline. The number ofthe subpolyline in the sequence of
subpolylines that make up the route it is part of is recorded by attribute SEQUENCENR. Attribute DI-
RECTION indicates whether the direction of the polyline coincides with the direction of the route on that
polyline. Attribute SPEED captures the average speed of theuser on the subpolyline.

Third, tableINFO captures the usages of routes. A tuple in this table corresponds to an individual usage
of a route and thus captures the ID of a route and the time of theuse. A viewVIEW INFO is included that
contains the attributes ROUTEID, WEEKDAY, HOUR, QUARTER, and USAGE. This view approximates
the exact route usage times down to quarters of an hour. Attribute USAGE records the sum of uses of a
route during a particular quarter on a particular day of the week.

5.2 Implementation Overview

Based on the database schema just described, the algorithmsdescribed in the previous section were imple-
mented using facilities available in Oracle Spatial [19]. Segments of polylines are spatial data objects (SDO
elements in Figure 15), and Oracle Spatial operators and geometry functions are used. Polyline segments
are also linear referencing system (LRS) elements, which enables the use of LRS functions. To use the Ora-
cle Spatial functions, we create an index on the spatial attribute. A spatial attribute is constructed according
to the syntax of the object MDSYS.SDOGEOMETRY.

The route finding algorithm implemented with Oracle Spatialdiffers a bit from the one described in
Section 4. The implementation is in Java, and JDBC is used to execute SQL queries enhanced with Oracle
Spatial functionality.

The built-in Java classLinkedList is used for storing the sequences of subpolylines that form routes.
This class comes with standard list manipulation operations. The implementation uses a separate class that
is responsible for the execution of SQL queries. The class that is responsible for route finding includes an
instance of this class, to be able to obtain the results of SQLqueries.

To identify polylines for subsequent GPS positions, we use aPL/SQL functionpolyId. This function first
considers the polyline that the previous GPS position was mapped to. If the distance to that polyline exceeds

23

the imprecision, the function searches for the nearest, connected polyline. Two Oracle Spatial operator are
used. Operator SDONN finds the nearest spatial objects (polylines), and operator SDONN DISTANCE
returns the distances to these objects. We used 30 meters as the imprecision value for GPS positions and as
the imprecision value of connection areas.

5.3 Map and GPS Log Data

The proposals presented in the previous sections representthe results of repeated cycles of testing and
improvement of the route-recording prototype.

The testing was done using the INFATI data [17]. This data includes a digital representation of the road
network of the municipality of Aalborg, Denmark. This data is quite typical of road network representations.
The data is captured in a database with the schema just described. The INFATI data also includes GPS
logs from twenty-some vehicles that participated in an intelligent speed adaptation project. Briefly, the
position of a vehicle was logged every second when the vehicle was moving. Positions were logged for
approximately six weeks.

5.4 Experimental Insights

In general, the experimental validation of the prototype component led to a more consolidated formalization
of the concepts underlying the component and led to a more mature component that is able to handle
the complex situations that occur in real-world applications. Here, we discuss insights gained from the
validation that would be hard to gain using generated data orobtain based on purely theoretical studies.

The first insights relate to what a route really is. Typically, users use some routes frequently, e.g., routes
between home and work. However, even if a user drives from home to work along the same streets each day,
the resulting routes turn out to all be different. This happens because a vehicle is likely to be parked in a
different location at work every day, even if it is in the sameparking lot. Should it happen that the vehicle is
parked in the exactly same location at the end (or start), theproblem remains because the positions produced
by the GPS receiver are imprecise.

In Figure 16, several routes that have the same destination are shown. The circles represent the end of
each route. This destination is accessible from different roads. Figure 17(a) shows how routes end if the
destination is reached from the North-East. Figure 17(b) shows how routes end if the destination is accessed
from the South. Because of the GPS imprecision and the varying availability of parking, the end of the route
varies.

We address this problem by first modeling destination objects as circular regions of variable size. Routes
then start from the same destination object if they start within the same circular region. Second, we approx-
imate the last elements of a route if these elements belong tothe same polyline and if they are inside the
destination object’s circular region. Thus, we consolidate the number of route elements in cases similar to
that in Figure 18(a), where a vehicle drives around at its destination to find an empty parking space.

The representation of rotaries in the map can also cause problems relating to the equivalence among
routes. This occurs when a rotary happens to be represented as a regular crossroads. Consider Figure 18(b)
that shows a regular crossroads that represents a rotary andsequences of GPS points corresponding to two
traversals. When the lower sequence is mapped to the road network, subpolylines are created that use only
the horizontal road. However, when the upper sequence is mapped to the road network, the road part that
extends upwards from the crossroads is also used, corresponding to the vehicle moving from the right to
the crossroads, then traveling upwards a short distance, then making a u-turn and traveling down to the
crossroads, and then continuing towards the left. In general, different traversals make u-turns at different
locations.

24

 6.3194e+06

 6.31945e+06

 6.3195e+06

 6.31955e+06

 6.3196e+06

 6.31965e+06

 6.3197e+06

 559900 559950 560000 560050 560100 560150

y
co

or
di

na
te

x coordinate

End positions

Figure 16: One End Destination Object

 6.31955e+06

 6.3196e+06

 6.31965e+06

 6.3197e+06

 559900 559950 560000 560050 560100 560150

y
co

or
di

na
te

x coordinate

(a)

 6.3194e+06

 6.31945e+06

 6.3195e+06

 6.31955e+06

 6.3196e+06

 559900 559950 560000 560050 560100 560150

y
co

or
di

na
te

x coordinate

(b)

Figure 17: Different Access Types of the Destination

25

2070

2080

2090

2100

2110

2120

2130

2140

330 340 350 360 370 380 390 400 410

y
co

or
di

na
te

x coordinate

GPS coordinates

(a) End of a Route

180

190

200

210

220

230

240

100 120 140 160 180 200

y
co

or
di

na
te

x coordinate

RouteWithoutAdditionalElements
RouteWithAdditionalElements

(b) Mapping at a Rotary

Figure 18: Special Cases

In this case, the standard imprecision value of 30 meters is too small due to the large radius of the rotary,
and the algorithm will produce two different routes. One solution is to increase the imprecision value; an
alternative is to obtain and use information about rotaries.

In the above discussion, theimprecisionof map and GPS data were central sources of complications.
The next insights concern in large part theabsenceof map or GPS data. Figure 19(a) illustrates a situation
where a vehicle drives where the map has no road. This case occurs if the map is missing a road, e.g., the
map data is outdated, or if the vehicle actually does not drive on a road (but, e.g., in a parking area or on a
bike path).

1400

1500

1600

1700

1800

1900

100 200 300 400 500 600 700 800

y
co

or
di

na
te

x coordinate

(a) Gap in the Map Data

950

1000

1050

1100

1150

1200

100 150 200 250 300 350 400 450 500 550 600

y
co

or
di

na
te

x coordinate

(b) Gap in the GPS Data

Figure 19: Filling of Gaps

In order to make the component resilient towards this type ofsituation, an algorithmfillGap is used that
finds the shortest path from one known point to another. If thepath found is much longer than the distance

26

traveled by the vehicle according to the GPS coordinates, the algorithm is unable to find a reasonable
solution and returns an error.

Next, Figure 19(b) shows a situation with a gap in the GPS sequence. This may occur for a number
of reasons. For example, the GPS coverage may be incomplete due to buildings, trees, or a tunnel. The
component also handles this case by usingfillGap. If a gap exceeds a certain distance threshold, the
component returns error.

Further, functionfillGap is used if there are GPS positions without any polyline candidates in the middle
of the route, but the gap starts and ends on the same polyline (see more details in Section A.3). Figure 20(a)
represents such a situation. In the figure, the bold line represents a road in the map, and the thin line
represents the movement of a car. The car moved along the roadfrom South to North, then turned into some

 6.32379e+06

 6.3238e+06

 6.3238e+06

 6.3238e+06

 6.32381e+06

 6.32382e+06

 6.32382e+06

 6.32382e+06

 6.32383e+06

 6.32384e+06

 555470 555480 555490 555500 555510 555520 555530 555540

y
co

or
di

na
te

x coordinate

(a) Unmapped Positions

 6.3238e+06

 6.32385e+06

 6.3239e+06

 6.32395e+06

 6.324e+06

 555350 555400 555450 555500

y
co

or
di

na
te

x coordinate

(b) The Whole End of the Same Route

Figure 20: Unmapped GPS Positions Inside the Route

area not covered by the map used. The car drove for some time inthis area, then made a u-turn, and returned
to the road. Some of the positions inside the uncovered area (small black squares in the figure) were not
mapped to any polyline, as they are too far from the nearest polyline. Figure 20(b) shows the whole end of
the same route. This area is in the city center; thus, perhapsthe driver was looking for parking, but did not
find any empty parking at the first attempt, and moved on to another parking area.

Functionbacktrack is used for finding a good start of a route. As the initial positions along a route
can be imprecise for a few minutes, the start of the route can be difficult to detect. Figure 21 shows such a
situation. Figure 21(a) represents the movement of the userat the beginning of the route (black squares are
GPS positions). Figure 21(b) shows how the sequence of GPS positions look on the road network.

In the experiments, visual inspection was used to determinethe component’s ability to accurately find
routes. We found that the component works well under “normal” circumstances, but found also that the
accuracy is highly dependent on the fidelity of the availablerepresentation of the road network and on the
quality of the GPS positions.

The amount of the space needed to store the routes on the device was not analyzed experimentally, as
it depends only on the number of routes and destinations. Theroutes, destinations, personal information,
and usage information are stored as character strings that have a predefined schema. The space need for
temporary storage of GPS positions in the NMEA [11, 20] format depends on the number of positions to
be stored. The maximum NMEA sentence length is 80 characters, and each GPS position can consist of
4–6 sentences.

27

 6.3238e+06

 6.32385e+06

 6.3239e+06

 6.32395e+06

 6.324e+06

 6.32405e+06

 6.3241e+06

 6.32415e+06

 6.3242e+06

 555150 555200 555250 555300 555350 555400 555450 555500 555550 555600

y
co

or
di

na
te

x coordinate

(a) (b)

Figure 21: Complex Route Start

6 Related Work

We are not aware of any previous work on components that generate routes from GPS data. But our work
is related to a few lines of research in mobile services, and we reuse some existing techniques.

Road network modeling is a central aspect of the paper. It is standard in industry to use linear ref-
erencing for road-network representation [1, 7, 19, 22]. Consistent with this, our data model uses linear
referencing for capturing road network a as well as routes, and our data model can easily be integrated with
existing linear referencing models. Using linear referencing, Hage et al. [14] describe a data model that inte-
grates representations of transportation infrastructures and geo-referenced content. We build on this model,
extending it in order to capture routes. Brakatsoulos et al.[5, 6] have recently proposed a conceptual model
for trajectories in road networks. Their approach to the storage of map-matched data is slightly different,
and their focus is not on routes. We also note that it is possible to model a road network as a conventional,
mathematical (directed) graph (e.g., [12, 25]), in which case a route becomes a sequence of edges.

We apply several existing techniques in our setting. Shortest-path computation is used to fill gaps when
we construct routes. This relates to works that consider shortest paths in graphs. Barrett et al. [3] study a
generalized Dijkstra’s algorithm for shortest paths in graphs on large transportation networks to do route
planning.

During route construction, we map match GPS positions onto aroad network. Bernstein and Korn-
hauser [4] explore map matching algorithms, e.g., “point-to-curve” and “curve-to-curve,” that can be used
to reconcile inaccurate position data with an inaccurate map. Yin and Wolfson [26] propose a weight-based
off-line map matching algorithm that finds a sequence of map arcs that is similar to a trajectory given by
a sequence of GPS positions. Cao and Wolfson [8] project a trajectory into the 2D(x, y) plane and then
snap the resulting projection into the road network based ontolerance values. The resulting, so-called
non-materialized view of the snapped trajectory is a sequence of tuples that include street names, linear ref-
erencing coordinates, and time. They use linear interpolation to infer positions in-between those recorded in
tuples. When creating routes, we map match GPS positions onto the polylines that represent the geographic
locations of the roads. In doing so, we use the geographic locations of the roads together with the topology
of the road network, i.e., we use the connections among the polylines. Although we apply map matching
in a specific data model, existing map matching techniques, such as those just mentioned, can be integrated

28

into our work.
Our map matching involves searching for nearest neighbors.We use the allowed imprecision to control

the range within which candidate polylines are to be found. This relates to the work of Roussopoulos et
al. [21], in which they consider minimum and maximum distances from the query object during search. We
also choose a polyline according to how the previous GPS position was map matched. The nearest neighbors
for the previous positions of the moving object are considered by Song and Roussopoulos [24]. Put briefly,
our use of nearest neighbor search differs from those of existing works. We search for nearest neighbors to
define the movement of a user in a road network. We construct a sequence of connected polyline elements,
not a set of nearest objects for every step.

Ashbrook and Starner [2] study the behaviors of people in terms of their start and end destinations, the
objective being to predict future movements. They discard the GPS positions of routes that are not relevant
to destinations (locations), and they build a Markov model for each location with transitions to every other
location. While we, too, are interested in the start and end destinations, we also consider the specific parts
of the road network that are traveled to reach one destination from another. Liao et al. [18] produce a
Markov model that learns and infers daily movements of a user, again to predict future movements. A route
is not specified through a deterministic sequence of edges, but through transition probabilities on the graph
(road network). In contrast, we model a route as a sequence ofroad parts with movement direction, and a
route does not itself contain spatial information. We believe that this approach is most appropriate for our
purposes.

The proposed route component makes routes available to services and may be considered as a part
of a more general context-aware system. For example, Harrington and Cahill [15] present a prototype
implementation of a route profiling application that aims togenerate information on traffic flow. They
associate dynamic, contextual information—covering aspects such as weather, road-surface conditions, and
road-maintenance operations—with journey (trip) information. A prototype with limited functionality is
reported. A more general coverage of the notion of “context”is beyond the scope of this paper.

7 Summary and Future Work

Based on the observation that the route of a mobile user is an interesting and important context for a range
of mobile services, this paper describes a system architecture along with a detailed design and a tested,
relational implementation of a route component that constructs and accumulates routes and associated usage
information for a mobile user based on data received from a GPS receiver that follows the user.

A route is expressed in terms of the underlying road network,as a sequence of parts of roads, or,
more precisely, as a sequence of connected, linear elements, here termed subpolylines, each with a travel
direction. A route connects a source and a destination object. The solution presented addresses the real-
world problems that occur when attempting to derive a user’sroutes based on real map data and actual GPS
input.

There are several possible directions in which to extend this work. We have assumed that the user
controls the process of route recording. One extension is toenable the system to detect ends of routes. For
example, if a user is at a particular position for some time without moving, the system may assume that the
end of a route has been reached and may end the process of routerecording.

Another possible extension is to enable the system to detectif a route is already recorded or to divide a
long route into smaller ones when smaller parts of the route are used. Other possible extensions include the
use of additional information about road networks that is available in some cases, such as allowed driving
directions and turn restrictions.

29

8 Acknowledgments

We would like to thank the company Euman A/S for sharing theirinsights into road data management with
us, and for constructive comments. This work was supported in part by grants 216 and 333 from the Danish
National Center for IT Research. In addition to his primary affiliation, the second author is an adjunct
professor at Agder University College, Norway.

References

[1] American National Standards Institute.Geographic Information Framework—Data Content Standards
For Transportation: Roads, 2003.

[2] D. Ashbrook and T. Starner. Using GPS to learn significantlocations and predict movement across
multiple users.Personal and Ubiquitous Computing, 7(5):275–286, October 2003.

[3] C. Barrett, K. Bisset, R. Jacob, G. Konjevod, and M. Marathe. Classical and Contemporary Shortest
Path Problems in Road Networks: Implementation and Experimental Analysis of the TRANSIMS
Router. InProc. of European Symposium on Algorithms, pp. 126–138, 2002.

[4] D. Bernstein and A. Kornhauser. An Introduction to Map Matching for Personal Navigation Assistants.
New Jersey TIDE Center, 1996.

[5] S. Brakatsoulas, D. Pfoser, and N. Tryfona. Modeling, Storing, and Mining Moving Object Databases.
In Proc. of IDEAS, pp. 68–77, 2004.

[6] S. Brakatsoulas, D. Pfoser, and N. Tryfona. Practical Data Management Techniques for Vehicle Track-
ing Data. InProc. of ICDE, 2005. To appear.

[7] J. A. Butler and K. J. Dueker. Implementing the Enterprise GIS in Transportation Database Design.
Journal of the Urban and Regional Information Systems Association, 13(1):17–28, 2001.

[8] H. Cao and O. Wolfson. Nonmaterialized Motion Information in Transport Networks. InProc. of
ICDT, pp. 173–188, 2005.

[9] A. Čivilis, C. S. Jensen, J. Nenortaitė, and S. Pakalnis. Efficient Tracking of Moving Objects with
Precision Guarantees. InProc. of MobiQuitous, pp. 164–173, 2004.

[10] A. Čivilis, C. S. Jensen, and S. Pakalnis. Techniques for Efficient Road-Network-Based Tracking of
Moving Objects.IEEE Transactions on Knowledge and Data Engineering, 17(5):698–712, May 2005.

[11] CommLinx Solutions Pty Ltd.Common NMEA Sentence Types, 2002. http://www.commlinx.com.au/.

[12] Z. Ding and R. H. Güting. Modeling Temporally VariableTransportation Networks. InProc. of
DASFAA, pp. 154–168, 2004.

[13] Federal Communications Commission.Enhanced 911 - Wireless Services. http://www.fcc.gov/911/
enhanced/.

[14] C. Hage, C. S. Jensen, T. B. Pedersen, L. Speicys, and I. Timko. Integrated Data Management for
Mobile Services in the Real World. InProc. of VLDB, pp. 1019–1030, 2003.

[15] A. Harrington and V. Cahill. Route Profiling - Putting Context To Work. InProc. of SAC, pp. 1567–
1573, 2004.

30

[16] X. Huang and C. S. Jensen. In-Route Skyline Querying forLocation-Based Services. InProc. of the
Fourth International Workshop on Web and Wireless Geographic Information Systems, pp. 223–238,
2004. (Also pp. 120–135 in the Lecture Notes in Computer Science, Volume 3428, 2005.)

[17] C. S. Jensen, H. Lahrmann, S. Pakalnis, and J. Runge. TheInfati Data. TIMECENTER Technical
Report TR-79, July 2004, 10 pages. Also CoRR cs.DB/0410001,http://arxiv.org/abs/cs.DB/0410001.

[18] L. Liao, D. Fox, and H. A. Kautz. Learning and Inferring Transportation Routines. InProc. of AAAI,
pp. 348–353, 2004.

[19] C. Murray. Oracle Spatial User Guide and Reference, Release 9.2. Oracle Corporation, 2002.

[20] NMEA. NMEA 0183 Standard, 2002. http://www.nmea.org/pub/0183/.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest Neighbor Queries. InProc. of ACM SIGMOD,
pp. 71–79, 1995.

[22] P. Scarponcini. Generalized Model for Linear Referencing. In Proc. of ACM-GIS, pp. 53–59, 1999.

[23] J. Schiller and A. Voisard.Location-Based Services. Morgan Kaufmann Publishers, 2004.

[24] Z. Song and N. Roussopoulos.K-Nearest Neighbor Search for Moving Query Point. InProc. of
SSTD, pp. 79–96, 2001.

[25] M. Vazirgiannis and O. Wolfson. A Spatiotemporal Modeland Language for Moving Objects on Road
Networks. InProc. of SSTD, pp. 20–35, 2001.

[26] H. Yin and O. Wolfson. A Weight-based Map Matching Algorithm in Moving Objects Databases.
Proc. of SSDBM, pp. 437–438, 2004.

31

A Algorithms

The following appendices give the details about the algorithms presented, but not fully described, in Sec-
tion 4. Section A.1 describes the approximation of the ends of routes. Section A.2 covers the detection of
the starts of route. Section A.3 covers the filling of information gaps. Section A.4 describes how to find a
path between two projections on the road.

A.1 Approximation of the End of the Route

As already mentioned in Section 4, functionproceedEnd (see Algorithm A.1) constructs the end of a route
and approximates the last subpolylines to one subpolyline if they are on the same polyline.

The function takes as arguments the state of the main algorithm at the end of the analysis of the GPS
stream and the distance from the start of the polyline to the projection of the last correctly mapped GPS
point, i.e.,cState andcDst , respectively. The function returns a sequenceRE that contains all constructed
route elements.

FunctionproceedEnd analyses the sequence of constructed route elements (line 1). In the state of the
algorithm,RE contains all constructed route elements, except the last one. The state stores the information
about the last route element, i.e.,pPl is the polyline andl⊢ is the start distance of the subpolyline for the
route element. The second input parametercDst provides the end distance of the subpolyline for the last
route element. The function looks for the earliest distancemeasure on the same last polylinepPl , so that
it is possible to approximate the end of the route to one subpolyline. The variablesS andE are used to
represent the earliest (start) and latest (end) positions (line 2). A visual explanation is given in Figure 14
(see Section 4). The latest positionE on the polyline is the distance of the last correctly mapped GPS point,
cDst . This value does not change throughout the algorithm. The earliest distance value should be found.
At the beginning of the analysis,S is equal tol⊢ that is the start of the subpolyline for the last route element
(it is not added to the sequenceRE). Then the function checks route elements to approximate the end of
the route. The variablechecked (line 3) is used to indicate whether the elements are alreadychecked (true)
or not (false).

The route elements are analyzed starting from the last to thefirst (line 5). If the last subpolyline in the
sequenceRE belongs to the same polylinepPl (line 6), the subpolyline is checked to determine whether
the earliest positionS can be approximated to the earliest position on the subpolyline: if the movement
direction is−1, the earliest position is the end distancel⊣; otherwise, it is the start distancel⊢. The part of
the subpolyline that disappears when approximated should be inside the circular area of the end destination.
For example, in Figure 14 when subpolyline (x3, x4) is analyzed,S is approximated tox4, but (x3, E)
should be inside the circular area. Then the subpolyline is removed from the sequence of route elements
(lines 7–10).

If the disappearing part of the subpolyline does not belong to the circular destination area, the checking
process should stop, i.e.,checked becomes equal totrue (lines 11–12). If the currently last subpolyline
does not belong to the last polylinepPl , the check process should also be stopped (lines 14–15).

When the last subpolylines are checked, the earliest and latest positions on the last polyline are known.
The last route element is constructed (line 18) and appendedto the sequence of route elements (line 19).

A.2 Detection of the Start of the Route

In most cases during route recording, the first GPS positionscannot be mapped to polylines correctly at
once. FunctiongetStartValues (described in Section 4) analyses the stream of GPS points. The function
collects all the candidate polylines for each GPS point until a point with one candidate polyline is found.

32

Algorithm A.1 Approximation of the End of the Route (functionproceedEnd)

Require: INPUT: cState = ((pPl , pDst , pDir), l⊢, RE), cDst ∈ R
OUTPUT: RE

1: let RE = ((spl1, dir1), . . . , (spln, dirn)), wherespli = (pli, l
⊢

i , l⊣i)
2: E ← cDst ;S ← l⊢

3: checked ← false
4: while RE is not empty∧ not checked do
5: ((pl, l⊢, l⊣), dir)← getLast(RE)
6: if pl = pPl then
7: if dir = −1 ∧ ((E ≤ l⊢ < l⊣)

∨(l⊢ < E < l⊣ ∧ insideCircle(l⊢, E))
∨(l⊢ < l⊣ ≤ E ∧ insideCircle(l⊢, l⊣))) then

8: S ← l⊣;RE ← removeLast(RE)
9: else ifdir = 1 ∧ ((l⊢ < l⊣ ≤ E)

∨(l⊢ < E < l⊣ ∧ insideCircle(E, l⊣))
∨(E ≤ l⊢ < l⊣ ∧ insideCircle(l⊢, l⊣))) then

10: S ← l⊢;RE ← removeLast(RE)
11: else
12: checked ← true
13: end if
14: else
15: checked ← true
16: end if
17: end while
18: (spl, dir)← formSubPoly(pPl , S,E, 0)
19: RE ←append(RE, (spl, dir))
20: return RE

Functionbacktrack (see Algorithm A.2) determines the start of the route, looking back through the candi-
date polylines for each GPS point, and it constructs route elements for the unmapped GPS points if possible.
Functionbacktrack takes a sequence of candidate setscList together with a list of unmapped GPS points
undG as its arguments. The function returns the current state of the algorithmcState .

When the function receives the list of candidatescList , the last set in this sequence (line 1) contains
only one element. The last set has only one candidate polyline because it is the set for the first correctly
mapped GPS point. The candidates are analyzed from the last set to the first. Thus, the sequence of route
elements is constructed in reverse order; this is changed atthe end of the algorithm.

The function uses temporary variables to store values. The set Cand contains candidate polylines with
distances from the start of the polyline to the projection for a particular GPS point. VariablepPl stores the
polyline of the route element that is being constructed. Next, l⊢ andl⊣ are the start and end of the current
subpolyline (route element) on the polyline, andpDir is the direction on the polyline in the current route
element. Variablechecked indicates whether the analysis of the candidates should be finished. Ifchecked is
false, the analysis should continue; otherwise, it should be stopped. Throughout the algorithm, the elements
of the sequenceundG are removed. This sequence is used for determining the user object. The currently
last element represents the point for which candidates are currently analyzed.

For each GPS point, the set of candidate polylines is taken from the sequencecList (line 4). If there
exists a candidate(pl, l) such thatpl equalspPl (line 5) then the movement direction is checked (line 6).

33

Algorithm A.2 Determination of the Start of the Route (functionbacktrack)
Require: INPUT: cList = (Cand1, . . . ,Candn), whereCand i = {(pl, l)|(pl, l) ∈ PL× R},

undG = (g1, . . . , gn), wheregi ∈ R2

OUTPUT: cState = ((pPl , pDst , pDir), l⊢, RE)
1: Cand = {(pP l, l⊢)} ← getLast(cList); cList ← removeLast(cList)
2: l⊣ ← l⊢; pDir ← 0;RE ← nil; checked ← false; (undG ← removeLast(undG))
3: while cList is not empty∧ not checked do
4: Cand ←getLast(cList); cList ← removeLast(cList)
5: if ∃(pl, l) ∈ Cand such thatpl = pPl then
6: dir ← defineDirection(l⊣, l); (undG ← removeLast(undG))
7: if pDir = 0 then
8: pDir ← dir ; l⊣ ← l
9: else ifpDir = dir then

10: l⊣ ← l
11: else
12: ((pPl , l⊣, pDir), l⊢, RE)← newSubSamePoly(((pP l, l⊣, pDir), l⊢, RE), l)
13: end if
14: else
15: polys ← {(pl, l)|pl ∈ PL, l ∈ R,∃c ∈ C((pPl , l1) ∈ c ∧ (pl, l) ∈ c ∧ pPl 6= pl∧

∄c1 ∈ C(c 6= c1 ∧ (pPl , l2) ∈ c1 ∧ |l1 − l⊣| > |l2 − l⊣|∧
((pDir = 1 ∧ l1 − l⊣ ≤ D ∧ l2 − l⊣ ≤ D)∨
(pDir = −1∧ l1− l⊣ ≥ −D∧ l2− l⊣ ≥ −D))))}

16: if ∃(plk, l
′

k) ∈ polys ∧ ∃(plk, lk) ∈ Cand ∧ ∄(plh, l′h) ∈ polys ∧ ∃(plh, lh) ∈ Cand then
17: ((pP l, l⊣, pDir), l⊢, RE)← newSubOtherPoly(((pP l, l⊣, pDir), l⊢, RE), plk)
18: (undG ← removeLast(undG))
19: else if∄(plk, lk) ∈ Cand((plk, l

′

k) ∈ polys) then
20: checked ← true
21: end if
22: end if
23: end while
24: (spl, dir)← formSubPoly(pPl , l⊢, l⊣, pDir); RE ← append(RE, (spl, dir))
25: cState ← updateState(RE)
26: return cState

1. If the movement direction was unknown up till now, the current direction is stored (lines 7–8).

2. If the direction is the same as until the previous point, the current point is stored (lines 9–10) for the
end distance of the subpolyline.

3. If the direction is the opposite of the previous direction, a new route element is constructed (lines 11–
12).

If the same polyline is not among the candidates for the particular GPS point (line 14), all the polylines
that intersect with the current polyline at the nearest connection are found (line 15). Temporary variable
polys stores these intersecting polylines with their distances from the start of the polyline to the connection.
The connection is ahead no further than distanceD or behind on the polylinepPl .

If there is only one candidate polyline inCand that is also inpolys (line 16), this polyline is chosen and
a new subpolyline is constructed (line 17). If there is no candidate polyline inCand that is also inpolys ,

34

the value ofchecked becomestrue (lines 19–20), and the analysis of the candidates is stopped. If there is
more than one candidate that is also inpolys , the algorithm does not select any of them, and continues the
analysis of the candidates.

When the analysis of the candidates is finished, the last route element is constructed and added to the
sequence of route elements (line 24). As mentioned earlier,the function analyses the unmapped GPS points
from the last one to the first one and constructs route elements in reverse order and with opposite directions.

Thus, functionupdateState (see Algorithm A.3), which reverses a sequence of route elements, is ap-
plied. The function takes a sequence of route elementsRE∗ as its input and returns the current statecState

of the algorithm. Initially, the functionupdateState takes the first element from the sequenceRE∗ (line 1).

Algorithm A.3 Update the Current State of the Algorithm (functionupdateState)
Require: INPUT: RE∗ = ((spl1, dir1), . . . , (spln, dirn))

OUTPUT: cState = ((pPl , pDst , pDir), l⊢, RE)
1: ((pP l, ls, le), dir)←head(RE∗), RE∗ ←tail (RE∗)
2: if dir = 1 then
3: pDst ← ls; l

⊢ ← le; pDir ← −1
4: else
5: pDst ← le; l

⊢ ← ls; pDir ← 1
6: end if
7: RE ← nil
8: while RE∗ is not emptydo
9: (spl, dir)← getLast (RE∗);RE∗ ← removeLast(RE∗)

10: RE ← append(RE, (spl, (−1) dir))
11: end while
12: return cState

This element should be the last element in the sequence of route elements. But it cannot be constructed
because some further GPS points, yet to be analyzed, may belong to the same subpolyline. Thus, this ele-
ment represents the current state of the algorithm (lines 2–6). All other elements are constructed with the
opposite direction and in the opposite order (lines 8–11).

A.3 Filling of Gaps

For various reasons, gaps may occur in a GPS stream or in the digital representation of a road network.
The route finding algorithm (see Algorithm 4.12 in Section 4)also needs gap filling when the current GPS
point cannot be mapped correctly based on information aboutprevious, correctly mapped GPS points. This
happens when the current point cannot be mapped to the polyline of the previous GPS point and either more
than one or no candidate polylines exist that intersect withthe polyline of the previous point.

FunctionFillGap (see Algorithm A.4) takes the current statecState of the main algorithmfindRoute

(see Algorithm 4.12), the GPS pointg that could not be mapped correctly using algorithmpolyId (see
Algorithm 4.3), and the GPS streamG as arguments. The function returns a new state for the algorithm and
the GPS stream without the points that are used in the gap filling.

At the beginning of the gap filling (lines 1–6), the algorithmsearches for a GPS point that can be mapped
correctly to the polyline, i.e., has only one candidate polyline. A temporary variableCand is used for two-
tuples of candidate polylines together with distances fromthe start of the polyline to the projection on the
polyline. Cand is calculated by functionpolyCand (see Algorithm 4.2). A temporary variableundG is
used to collect points that have either more than one or no candidate polyline.

35

Algorithm A.4 Filling the GPS Gap (functionFillGap)

Require: INPUT: cState = ((pP l, pDst, pDir), l⊢, RE), g ∈ R2, G = (g1, . . . , gn) wheregi ∈ R2

OUTPUT: cState , G
1: Cand ← polyCand (g); undG ← nil
2: while ((∀(pl, l) ∈ Cand ∃(pl′, l′) ∈ Cand(pl 6= pl′)) ∨Cand is empty) ∧G is not emptydo
3: undG ← append(undG, g)
4: g ← head(G);G← tail(G)
5: Cand ← polyCand (g)
6: end while
7: if ∀(pl, l) ∈ Cand ∄(pl′, l′) ∈ Cand(pl 6= pl′) then
8: if pl = pPl then
9: dir ← defineDirection(pDst , l, 0)

10: if dir = pDir then
11: pDst ← l
12: else
13: cState ← newSubSamePoly(cState , l)
14: end if
15: else
16: gpsLength ← findGpsLength(undG)
17: Path ← findPath(pPl , pDst , pl , l , gpsLength)
18: (pP l, pC)← head(Path);Path ← tail(Path)
19: dir ← defineDirection(pDst , l⋆, 0), where(pl⋆, l⋆) ∈ pC, pl⋆ = pPl

20: if dir = pDir ∨ pDir = 0 then
21: (spl , dir)← formSubPoly(pPl , l⊢, l⋆, dir);RE ← append(RE, (spl , dir))
22: else
23: (spl , dir)← formSubPoly(pPl , l⊢, pDst , pDir);RE ← append(RE, (spl , dir))
24: (spl , dir)← formSubPoly(pPl , pDst , l⋆ , dir);RE ← append(RE, (spl , dir))
25: end if
26: while Path is not emptydo
27: (cP l, cC)← head(Path);Path ← tail(Path)
28: (spl , dir)← formSubPoly(cP l, ls, le, 0), (cP l, ls) ∈ pC, (cP l, le) ∈ cC
29: RE ← append(RE, (spl , dir))
30: pC ← cC
31: end while
32: dir ← defineDirection(l⋆, l, 0), where(pl⋆, l⋆) ∈ cC, pl⋆ = pl
33: cState = ((pP l, pDst, pDir); l⊢, RE)← ((pl, l, dir), l⋆, RE)
34: end if
35: else
36: EXIT
37: end if
38: return cState

36

First of all, the candidates for the input GPS pointg are found, and a setundG is empty (line 1). Then
the GPS points are analyzed until a point with one candidate polyline is found, or until the GPS stream
becomes empty (lines 2–6). Points with no unique candidate polyline are added toundG (line 3). If the
GPS stream becomes empty, but no point with a unique candidate polyline is found, the algorithm exits the
whole route finding algorithm (lines 35–36).

When a GPS point with one candidate polylinepl is found (line 7), candidate(pl, l) is checked. If this
polyline is the same as the polyline for the previous, correctly mapped point, i.e., it is the same polyline as
pPl in cState (line 8) then the movement direction from the previous position pDst to l is also calculated
(line 9). If the direction is the same, only the positionpDst in the current state is modified (lines 10–11). If
the direction is the opposite, a new route element is constructed based on statecState, and the construction
of a new subpolyline is started (lines 12–13).

If the candidate polylinepl is different from polylinepPl of the previous, correctly mapped position, the
path from the previous projection to the current projectionis found. Before that, lengthgpsLength of the
stream of the undefined GPS points inundG is calculated. FunctionfindGpsLength (see Algorithm A.5)
takes a sequence of GPS pointsG and returns the length of the polyline constructed from streamG. While
calculating the distance between two neighboring points, the algorithm checks that this distance is no greater
thanD⋆, which is the maximum allowed distance between points. If the distance is greater than this, the
algorithm exits the route finding algorithm. The length of the GPS stream is used to decide whether the

Algorithm A.5 Finding GPS Length (functionfindGpsLength)

Require: INPUT: G = (g1, . . . , gn), n > 2 wheregi ∈ R2

OUTPUT: length ∈ R
1: length ← 0
2: g1 ←head(G);G←tail(G)
3: while G is not emptydo
4: g2 ←head(G);G← tail(G)
5: if |g1g2| > D⋆ then
6: EXIT
7: end if
8: length ← length + |g1g2|
9: g1 ← g2

10: end while
11: return length

path found can be consistent with the GPS stream in terms of length (more about paths in Section A.4).
The information gap starts at distancepDst on polylinepPl and ends at distancel on polylinepl. Function
findPath finds the path that fills this gap (line 17).

The returned pathPath represents the sequence of nodes to pass through to move fromthe start of the
gap to the end of the gap:Path = (node1, . . . ,nodem), wherenode i = (pli, ci) ∈ PL × C, 1 ≤ i < m
represents the part of the path from connectionci−1 to connectionci on polylinepli.

The information about the start and end of the gap is already stored in variablespPl , pDst , pl, and l.
Then the elements inPath represent the path from polylinepPl to polyline pl. The current statecState

captures the previously constructed subpolyline on polyline pPl : from distancel⊢ to distancepDst . The
first element inPath indicates whether this subpolyline should be extended to the distance at connection
c1, or whether there should be two subpolylines onpPl . The first element of the path is considered as
(pP l, pC), and is removed from the sequence of path nodes (line 18). Themovement direction frompDst

to connectionpC on pPl is defined in line 19, wherel⋆ is the distance from the start of polylinepPl to
connectionpC along the polyline.

37

If the movement direction is the same as it was until positionpDst (or the previous direction was
unknown), there is only one subpolyline froml⊢ to l⋆ on pPl (lines 20–21), and one route element is
constructed. If the movement direction is the opposite, there should be two subpolylines onpPl , one from
l⊢ to pDst , and another frompDst to l⋆ (at connectionpC) (lines 22–24).

Now the remaining nodes of the path are analyzed (lines 26–31). The currently first node in the path is
taken and removed from the path (line 27). The node consists of polyline cPl and connectioncC (line 27).
The subpolyline for a new route element is on polylinecPl from connectionpC to connectioncC (line 28).
This route element is appended toRE . The current connection then becomes the previous connection for
the next node (line 30).

When all the nodes of the path have been analyzed, the gap is filled all the way to the polylinepl on
which the end of the gap is. The movement directiondir from the final connection (distancel⋆) to the end of
the gapl is defined (line 32). The current state to return is the polylinepl, the start for the new subpolyline
l⋆, the current end for the new subpolylinel, the directiondir , and all the route elementsRE (line 33).

A.4 Calculating the Shortest Path Between Two Projections

As part of filling information gaps, it is necessary to find a path between two projections located on different
polylines.

FunctionfindPath takes five arguments, namely two polylines, two distances, and the maximum al-
lowed length for the path. PolylinepPl with distancepDst is the start of the gap. PolylinecPl with
distancecDst is the end of the gap. ArgumentgpsLength is the maximum allowed length for the path. The
function returns a pathPath0 that is the shortest path from positionpDst on polylinepPl to positioncDst

on polylinecPl .
Throughout the algorithm, temporary pathsPath andPath0 represent a sequence of nodes to pass

through from the required position:Path = (node0, . . . ,nodem), wherenode0 is the position where
all analyzed paths start, i.e.,node0 = (pPl , pDst), andnode i = (pli, ci) ∈ PL × C, 1 ≤ i ≤ m is
a polyline and one of its connections. The last element of thefound pathPath0 contains an artificial
nodenodem = (cPl , {(cPl , cDst)}) that represents the end of the information gap. The first and the last
elements are removed from the path before returning the path(line 34). The polyline of each node is also
contained in the previous connection, i.e.,∀node i = (pli, ci), 1 < i ≤ m,∃(pli, li) ∈ ci, (pli, l

′

i) ∈ ci−1.
For example, assuming the path((pl1, c1), (pl2, c2), (pl3, c3)) is returned by functionfindPath , the

necessary subpolylines are constructed using nodes to fill the gap: frompDst to c1 along polylinepPl

(pPl = pl1), from c1 to c2 alongpl2, from c2 to c3 alongpl3 (c3 is a connection with polylinecPl), and
from c3 to cDst alongcPl .

The algorithm also uses other temporary variables. A setusedCon contains all the connectionsci that
are already analyzed while constructing paths. A setconns contains connections of a particular polyline.
A sequencePaths contains paths in ascending order of their lengths. Path length is defined as follows:
|Path | =

∑m
i=2
|li − l′i|+ |pDst − l1|, where(pPl , l1) ∈ c1, (cPl ,Path = (node0, . . . ,nodem), node i =

(pli, ci),∀i, 1 < i ≤ m (∃(pli, li) ∈ ci ((pli, l
′

i) ∈ ci−1)). Thus,Paths = (Path1, . . . ,Pathn), where
|Path i| ≤ |Path i+1|, 1 ≤ i < n.

At the beginning of functionfindPath , the shortest available pathPath0 is constructed from the first
node that should be in the path, i.e.,node0 that represents the start of the gap (line 2). Then all the connec-
tions on polylinepPl are found (line 3). The connections represent all possible ways to reach other polylines
from the start of the gap. For each of the connections, a path is constructed (lines 4–7). A node with polyline
pPl and a particular connectionci is created (line 5) and added toPath0 by functionmodifyPaths (line 6).
FunctionmodifyPaths (see Algorithm A.7) takes the sequence of pathsPaths , the currently analyzed path
Path0, a new nodenode , and the maximum allowed path lengthgpsLength as arguments. A new path is
constructed by adding a new node to the currently analyzed path (line 2). If the length of the path does not

38

Algorithm A.6 Finding the Shortest Path (functionfindPath)
Require: INPUT: pPl , pDst , cPl , cDst , gpsLength , wherepPl , cPl ∈ PL, pPl 6= cPl ,

pDst , cDst , gpsLength ∈ R
OUTPUT: Path0 = (node1, . . . ,nodem), wherenode i = (pli, ci) ∈ PL× C, 1 ≤ i ≤ m

1: usedCon ← ∅;Path ← nil;Paths ← nil
2: node0 ← (pPl , pDst);Path0 ←append(node

0
)

3: conns ← {c1, . . . , cn}, whereci ∈ C∧ (∀ci ∈ conns ∃(pl, l) ∈ ci(pl = pP l))∧
(∄c′ ∈ C((pP l, l′) ∈ c′ ∧ c′ /∈ conns))

4: for all ci ∈ conns do
5: node ← (pP l, ci),
6: Paths ← modifyPaths(Paths ,Path0,node , gpsLength)
7: end for
8: found ← false
9: while not found ∧ Paths not emptydo

10: Path0 ←head(Paths);Paths ← tail(Paths)
11: (pl, c)← getLast(Path0)
12: if (cPl , cDst) ∈ c then
13: found ← true
14: else
15: if c /∈ usedCon then
16: if ∃(pl′, l′) ∈ c(pl′ = cP l) then
17: node ← (cPl , {(cPl , cDst)})
18: Paths ← modifyPaths(Paths ,Path0,node , gpsLength)
19: end if
20: usedCon ←add(usedCon , c)
21: for all (pl′, l′) ∈ c(pl′ 6= pl) do
22: conns ← {c1, . . . , cn}, whereci ∈ C∧ (∀ci ∈ conns ∃(pl⋆, l⋆) ∈ ci(pl⋆ = pl′))

∧(∄ck ∈ C((pl′, l′′) ∈ ck ∧ ck /∈ conns ∧ ck /∈ usedCon))
23: for all ci ∈ conns do
24: node ← (pl′, ci)
25: Paths ← modifyPaths(Paths ,Path0,node , gpsLength)
26: end for
27: end for
28: end if
29: end if
30: end while
31: if not found then
32: EXIT
33: end if
34: Path0 ← tail(Path0);Path0 ← removeLast(Path 0)
35: return Path0

exceed the maximum allowed length, the path is inserted intothe sequence of all paths (lines 3–5) based
on the rules discussed in the previous paragraph. Thus, non-competitive paths are pruned. A constantF is
introduced to allow a variation of path lengths. The function returns the sequence of paths.

Then functionfindPath searches for the shortest path to the end of the gap represented by(cPl , {(cPl , cDst)}).
This is a greedy algorithm that chooses the currently shortest path to search for the end of the gap. Tempo-

39

Algorithm A.7 Modification of Paths (functionmodifyPaths)
Require: INPUT: Paths ,Path0,node , gpsLength

OUTPUT: Paths

1: Path ← Path0

2: Path ← append(Path,node)
3: if |Path | ≤ F gpsLength then
4: Paths ← insert(Paths,Path)
5: end if
6: return Paths

rary variablefound represents the state for the search. At the beginning it isfalse (line 8) as the path has yet
to be found. Variablefound becomestrue when the node of the gap end is found at the end of the currently
analyzed path. During the search, the first (current shortest) path is taken and removed from the sequence
of paths (line 10). The last node of the path is analyzed (line11). If the connection in the last node is the
required end of the gap,found becomestrue and the search stops (lines 12–13).

If the current connection is not the end of the gap, it should be checked that it is not in the set of analyzed
connections (line 15). If it is not in this set, the possible ways from this connection to other polylines are
detected.

If the connection is not the end of the gap, but relates to the required polylinecPl , the current path
is duplicated. The end node is created and added to the path (lines 16–18). The path is inserted into the
sequence of paths based on the length (line 18) by functionmodifyPaths .

The current connection is added to the set of used connections (line 20). Connections are detected on all
polylinespl′ that intersect at the current connection, except for the current polylinepl. A connection is not
considered if it is already inusedCon . New paths are created by adding a new connection to the duplicated,
currently analyzed path (lines 23–26).

40

