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Abstract

With the continuing advances in wireless communicatioas;gositioning, and portable electronics, an
infrastructure is emerging that enables the delivery ofio@; location-enabled services to very large
numbers of mobile users. A typical usage situation for mebdrvices is one characterized by a small
screen and no keyboard, and by the service being only a sagofmtus of the user. Under such
circumstances, it is particularly important to deliver thght” information and service at the right time,
with as little user interaction as possible. This may beaad by making services context aware.

Mobile users frequently follow the same route to a destimadis they did during previous trips to
the destination, and the route and destination constitjp®itant aspects of the context for a range of
services. This paper presents key concepts underlyingwarefcomponent that identifies and accumu-
lates the routes of a user along with their usage patternghamdhakes the routes available to services.
Experiences from using the component on logs of GPS positioquired from vehicles traveling within
a real road network are reported.

1 Introduction

The global adoption rate of mobile phones is very large, ahitewnobile phones are currently being used
mostly for voice communication, the volume of data commatian is increasing. With technologies such
as GPRS, 2.5G (EDGE), and 3G (CDMA, UMTS), the user can beyshwa at no extra cost, and band-
width is increasing. Next, the advent of the global navijasatellite system Galileo as well as regulatory
developments, such as the US E911 Mandate [13]and simiaiaments in Asia and Europe, contribute
to the increasing availability of positioning capabilgieAn infrastructure is thus emerging that supports a
range of location-enabled on-line mobile services [23].

However, mobile services are delivered to devices thatygiedlly without (qwerty) keyboards and
that have only small screens. Further, the services mayected to be delivered in situations where the
user’s main focus of attention is not the service, but rathat of, e.g., navigating safely in traffic. For
these reasons, it is much more important than in a desktopwatimg situation that the user receives only
the relevant information and service, with as little intgi@n with the system as possible. One approach to
obtaining these qualities is to make the mobile services@wfkthe user’s context.

The user’s current location is one possible context, andisieg’s destination is another. Yet another is
the route that takes the user from the current location taéséination. This paper’s focus is on the latter.

Routes are interesting for two reasons. First, folklore ab & common sense has it that mobile users
typically travel towards a destination (rather than movangund, aimlessly) and that a user often or typically
follows the same route when going from one location to anotRer example, a user typically travels on
the same route from home to work. Second, routes are sigmifasacontext for a range of services. For
example, a service that knows the route of a user may aleustreabout road conditions, e.g., congestion,
construction, and accidents, on the route ahead, while otbiebing the user with conditions that do not
relate to the user’s route. As another example, routes mayséeé when a user requests the locations of
“nearby” points of interest. More specifically, a serviceynsaggest restaurants or gas stations to the user
that are near to the user’s route, rather than merely to teesusurrent location [16]. Information about
routes followed by mobile users can also be used in traclengees to accomplish more efficient tracking
of the users [9, 10].

This paper describes key techniques underlying a softwargonent that builds routes for individual
users based on traces of GPS coordinates. In the propogsechsychitecture, client-side devices perform
information filtering and prepare information for sendimgthe server. The server side uses linear refer-
encing for the capture of the underlying transportatiomastiructure and for the capture of routes, which
are sequences of road parts that connect start and endatiestinbjects. Aggregated usage information
for each route is also maintained. The component is implésdensing Java, Oracle’s PL/SQL, and Oracle



Spatial. Proof of concept experiments that use GPS logsneloskdrom vehicles traveling in the Aalborg
area and use a road network for this area are reported.

The paper is structured as follows. The system archite@ndethe route recording component is de-
scribed in Section 2. Data structures necessary for theiepf routes are given in Section 3, and key
algorithms used by the component are covered in Sectionsights from an experimental validation are
reported in Section 5. Finally, Section 6 covers relatedkwand Section 7 summarizes and offers directions
for future work. Four appendices present algorithms usdbartechniques presented in the main body of
the paper.

2 System Architecture

Following an overview of the client and server sides, thitisa describes how the two sides collaborate
during route recording.

2.1 Client and Server Sides

We assume that a client device has a GPS receiver, a datactionni® the server, and the computing and
storage capabilities of a typical modern mobile phone. Aentrexample is a Nokia 3650 with a GPRS
connection and an Emtac Bluetooth GPS. GPS receivers tiaN$fiE A sentences [11, 20], which include
location/time/date information, but also additional imf@tion that is less important for our purposes.

Client devices store four data blocks, which are describdeigure 1 in XML format. The first block
contains personal information about each user. The sedocll kecords each user’s destination objects.
Each object has global/local IDs, a location given by a ¢acarea, and a description. The description is a
name that is meaningful to the user, e.g., “home” or “workieThird block captures the destination objects
of routes. The fourth block of data records the usage timeacif route. The time is approximated to week
days, hours, and quarters of an hour.

The user inputs personal information and names for degtmabjects when this is requested by the
client.

The server side uses the Oracle Application Server. Theeseeeords and analyzes the information
received from the clients. Everything about each route,itseconstituent road-network parts and its usage,
as well as each user’s personal information are stored etiver. This is done to avoid information loss—
users who switch to a new device can obtain all relevant médion from the server. While not discussed
further in this paper, we believe that encryption may be eygd to counter privacy concerns.

2.2 Route Recording Functionality

We cover the interaction between client and server first Bed tover route recording on the client and
server sides.

2.2.1 Client and Server Interaction

The user activates and deactivates the process of routeliegoWhen active, the client device filters and
buffers location/time information obtained from the GP&eiger. This information is eventually transmit-
ted to the server along with information about the user ardutfer’s destination objects. The transmission
frequency depends on the route length, the technicaliabiliff the client device, and the connection quality.
When it has the necessary information, the server perfoout® rconstruction, records the usage time, and
assigns an ID to the route. The result is stored in the datadnad is also sent to the client.
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Figure 1: Client-Side Data

The data sent to the server by the client has three parts:algect, and standard information. The data
format depends on which data is already available.

User information. If the user is already registered, this data block includetba For new users, a user
description is included. Thus, we hajeserld] or [undefined: description] in this block.

Object information. Routes start and end at destination objects. The destinakiects of a new route
can have been used already to define the start or end of otliesyan which case the server can itself
identify the objects according to their GPS coordinateboth objects are known, this data block is empty,
[,]. If one object is undefined, the data block contains a statrgetion, [undefined: description,], or an
end descriptionf,undefined: description]. If the start and end objects are yet to be defined, the blosk ha
descriptions for both of thenjundefined: description, undefined: description]

Standard information. Date, time, and GPS location information are always inaiud€his block in-
cludes three elementgate, time, GPS]

When the server sends data to a client, it always returnsOiferl a newly recorded route. If any of
the route parameters are undefined, the client assume$ié¢hdata stream from the server will include the
missing information. The server generates IDs for userstiadisers’ destination objects. These IDs are
returned to the client.

The server also returns a center location for a newly recbdgstination object if the center location
of the object differs from the first/last GPS coordinate jpathe GPS stream after location approximation.
The server returns a radius together with the center latatidy if the server selects a radius that differs
from the default value.



Thus, the format of the data from the servejuserld, startObjectld, endObjectld, routeld, (xStart,
yStart; radiusStart), (XEnd, yEnd; radiusénd)], whererouteld is the only parameter that is always
included. The client receives the data stream from the saamalyzes it, and records its data.

2.2.2 Client-Side Route Recording

The client takes part in the route recording by preparingdiita stream, described in the previous section,
to be sent to the server. The blocks of user and object infitomin the data stream are constructed using
data stored locally (see Section 2.1). The standard datk idcconstructed by analyzing the information
from the GPS receiver.

The order of the steps for route recording on the client descpresented in Figure 2. When the

1) 2) (3) 4) (5)
getGPSCocf—» addGPSToStrea|11—>| noteStart getTime|—>| addTimeToStream|
© vEs (8 7) (6)
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(1) (10 NO +
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| askEndDes 28) * 23) 24)
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| setEndUndefine{j 32)* (35 25)
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recObjectDefRadilrs#{ recObjectCop
37)
sendStreamToServer

Figure 2: Client-Side Route Recording

user activates route recording, the client starts obtgi@®S information from the GPS receiver. Having
received the first pair of coordinates, the client recorasttime to be associated with the usage of the
route being recorded (1-5 in Figure 2). The client keepsaetitrg coordinates from the GPS stream until
recording is deactivated (6—8). Upon deactivation, theddritie route is noted (9) for further analysis. The
result is the standard information block for the data stréaibre sent to the server.

If the user is already registered in the system, the user's [&ded to the stream (11 in Figure 2);
otherwise, the client requests a user description. Thedeeicords the description locally, sets the user as
undefined in the data stream, and adds the description t@athestteam (12-15).

The last task is to build the destination object block. If st@t and end objects are undefined (16,18)
or the user is new, the device obtains descriptions of théndgisn objects (19). The objects are set as
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undefined in the stream and their descriptions are addecetddta stream (20-21). The device records
descriptions, default radiuses, and locations locallgtiogr with the local ID (22—-25). If only one object is
undefined, the same steps are done for only one object. Ifdipéets are defined, the block is empty.
When all three data blocks have been constructed, the reutxorded (36) locally using the local
parameters and leaving the global parameters undefinedstiigaan is finally sent to the server (37).

2.2.3 Server-Side Route Recording

The server performs the main route recording—that of tamsihg the data from a client into a route given
by a sequence of road network parts. Also, an ID is generated foute; and any data received from the
client that describes destination objects and the usecdsaded.

The server-side route recording is presented in Figure gingabtained data from the client, the server
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|getStreamFromDevic

6)

generateUserld<€—]

(0 ) VES
recNewUser _|—p»{addUserldToStreath (14) (15)
10) |takeStartDes¢>| generateObjectlb
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, . 17) (16)
generateObJectsldQ—takeObJectsDe c -
I SI |addObjectIdToStrear{ﬂ—‘ recNewObject] -
(12) 13) * | addObjectIdToStrear*l
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32) (27) (26)
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T (31 (28)
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g & . < (31) (39
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34 diffEndRadius (ES addRadiusToStreain
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Figure 3: Server-Side Route Recording

checks if the user is new. If so, the server obtains the udessription from the stream, assigns an ID to
the user, stores this information, and includes the usBris the stream for the client.

Next, the server considers the destination objects. If estination objects are undefined (which is
the case if the user is new) the server extracts destinabj@etanformation from the stream (10), generates
IDs (11), records the new objects (12), and adds the IDs tettkam for the client (13). If only one object
is undefined, the steps are done for one object. If the startdefined (3, 9), data about it is prepared (14,
15) and recorded (16, 17). Then the end object is identifiathusrowledge about the user’s objects (18).
Similar steps are taken if only the end object is undefinedoth objects are defined, they are identified
using stored data (24).

Finally, the server analyses the third part of the strearnitictudes the standard data. The server detects
the route from the GPS information (25), generates an IDHerbute (26), adds this ID to the data stream
for the client (27), and records the route in the databasg (PBe server also adds center coordinates of
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destination objects (30, 34) and/or their radiuses (32if3bg coordinates differ (29, 33) from the first/last

GPS point in the GPS stream, and/or if the radiuses are naldfsailt values (31, 35). Then the server
records the first usage time of the route (37). The consulustieam is sent to the client to end the route
recording (38).

3 Road Networks and Routes

We proceed to define the key data structures used for thereagitroutes.

We project the real road network into 2D space and reprebentesult as a set of polylines, each of
which is given by a sequence bésepoints B ¢ R2. Different choices of base points lead to different
road-network representations. Using many base pointsginessults in a higher-fidelity representation.
A polyline is defined a’L = {(b1,...,bn) | b; € B AN > 2}, whereb; andby is the start and end base
point of the polyline, respectively.

Example 3.1 Figure 4 illustrates two intersecting polylineB:L; = (b1, by, b3, bs) and P Ly = (bs, bg, b7).
The start point ofP L, is b; and the end point i8;. O

Figure 4. Example of Polylines and a Subpolyline

In our road network model, each polyline represents a litoral road. Without reference to the traffic
directions of the roads, polylines have “directions” gofrgm the start base points to the end base points.

We also reference the points on a road by their distance fnenstart of the road. Although a road’s ge-
ographical extent is approximated by a polyline, computlisgances by simply summing up the Euclidean
distances of segments is too inaccurate [7, 14, 22]. Ratlesissume that we have accurate distances for all
or some of the base points in the polyline approximation afealr This decouples the polyline representa-
tion of a road from the capture of distances along the roadsaimkeeping with current road-management
practice. Using real road distances makes calculationg precise.

The measure of a base potintis given asl;. The measure associated with the last base point of the
polyline indicates the road length of the polyline.

If a measure is absent for a base padinbf the polyline, we identify the base poirisandb; that are
the nearest base points with measures before andbgaftexspectively, and we approximate the measure of
b as follows:

(L = 1) Son=i [bubosr]
Efﬂ_zlz |bmbm+1|
If no b; exists, we use the Euclidean distance starting fbpand onwards.

lp,=10; +

Example 3.2 Figure 5 exemplifies length calculation for base points dflpte PL; = (b1, be, b3, bs). The
numbers above the line segments indicate the Euclideaandist between base point pairs. The numbers
below base points hold the more accurate measures supplibe boad information provider.



Figure 5: Length Calculations

Consider Figure 5(a). When computing the measyfer b3, i = 2 andj = 4. It may be verified that
application of the formula yields, = 10.4.

Figure 5(b) lacks measures for the last two base pobptandb,. The measure fabs is calculated by
adding the Euclidean distance betwégrandbs, i.e.,5, to the measure dk, i.e.,4. For the base poiriy,
we add the Euclidean distance betweégmandb,. O

Definition 3.1 (Length) Function( : PL x B — R takes as arguments a polylipé= (b4, ...,by) and a
base poinb;, 1 < i < N, and it returns the road distance from the start of the pwylo the base point]

Here,L(pl,b1) = 0, andL(pl, by ) is the length of the polyline. Far <i < j < N, L(pl,b;) — L(pl, b;)
is at least the Euclidean distance betwégandb;. Next, asubpolylinemodels a part of a road.

Definition 3.2 (Subpolyline)Let SPL C PL x R? be a finite set obubpolylines A subpolylinespl =
(pl,17,17), whered < 1" < 1™ < L(pl,by), is the part of polylinel that starts at measute and ends at
measuré . O

In Figure 4, the accentuated part of polylifd - is a subpolyline,SP L. We proceed to capture the
connectivity among the roads.

Definition 3.3 (Connection)Let C C { {(ply,1}),...,(pln, )} | (pli,15) € PL x RA N > 2}. Thus,
C'is a set of finite sets afonnections O

Consider Figure 6(a), where polylinés.; and P L, each has a connection point at their intersection.
There is a connection point at distarigeérom the start of? L, and there is one at distantiefrom the start
of PLy. We thus have = {(PLy,1%),(PLs,15)} € C. The connection points in Figures 6(b) and 6(c) are
analogous, but illustrate situations where connectiomtpaioincide with base points. Note that when we
capture the connections, we in effect obtain a graph reptaisen of the road network.

As mentioned previously, our service users travel from andestinations via the road network. These
destinations, we termser objects

Definition 3.4 (User Object) Let UO be a finite set oluser objects Each user objecto is a 3-tuple
(u, circle, spls), where

1) u belongs tdJ, the set of service users.

2) circle = (xo, yo, rd) € R? x R denotes the circle defined By — x0)% + (y — yo)? = rd>.

3) spls = {(pl,17,17) | 3pl € PL ((pl,17,17) € getSpls(pl, circle))}, where functiongetSpls returns
the set consisting of all maximum subpolylinesspfs that are insidezircle. O
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Figure 6: Connections Among Polylines

We say that user objeeto belongs to user. and is located in the circular area with centeg, yo) and
radiusrd.

Note that while it is simpler to model user objects as poimdsitas circular areas, this is not appropriate.
For example, each day a user may park in a different parkiagespn the same parking lot or even in
a different parking lot close to the building where the userks. Thus, the same destination may have
different route end and start locations on different daysstidation objects can be given different radiuses
that depend on the usage patterns and the number of polgioaad them.

Next, we associate usage times with routes. To be able tareapggularities in route uses, we capture
the year, month, day, hour, minute, and second of each useasely. (Recall that the usage time of a route
is the time when the use is initiated.)

Definition 3.5 (Usage Time)Let ausage timé’ be a finite set of 6-tuple§;, m, d, h, mn, s), wherey, m,
d, h, mn, ands denoteyear, month day, hour, minute andsecondrespectively. O

With the preceding definitions in place, we can define theonotif a routeroute

Definition 3.6 (Route)Let R be a finite set ofoutes Each route is a 4-tupleR E, uos, uo., ST'), where

1) RE = ((spl1,dir1), ..., (spln,diry)) is the sequence of subpolylines that makes up the route. For
(spl;, dir;), wherespl; = (pl;, 1" ,1;') € SPL, dir; is the motion direction alongl; used:

177

1 if the motion direction on subpolylingpl;
dir; = coincides with the direction of polylingl;
—1 otherwise

2) uo, = (u, circles, spls,) € UO is the start object of the route, artipl,l",17) € spls, (pl =
pli A (5 <1 < Adiry =1) v (5 <17 <17 Adirg = —-1)).

3) wo. = (u, circle., spls,) € UO is the end object of the route, ad@dpl, 1", 1") € spls,(pl = ply A
(" <y <UAdirn =1) v (17 <y <1 Adiry = -1)).
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4) Vspli = (pli, I, 1), splivs = (Plia, 1y, 054 ), 1 <0 <N =1 ((pli # pliya A3c € C ((pli, ) €
c N\ (plz'_;_l,lg) € C)) \Y (plz' =plii Nl = lQ)) wherel; = l;‘ if dir; =1, andl; = l'z_ if dir; = —1;
Iy = lz'k—i-l if diTi+1 =1, andly = lzﬂ—i-l if diTi+1 = —1.

5) ST C T denotes the times when the route was used bywser O
Thus, a route is a sequence of subpolylines with directides(1 in the definition), where the first/last

subpolyline must intersect with the circle of the start/eledtination objects (items 2 and 3) and where the
sequence of subpolylines must form a (continuous) poly(iteen 4).

Figure 7: Example Route

Example 3.3 Figure 7 illustrates a road network with three polylineB£, = (b11,bs, by, b12), PLy =
(b1,b2,b3,b4,b5), andPLg = (bg, b2, b7, bg, by, b1p). The highlighted route = (RE, uos, uo., ST) uses
parts of all three polylines. SpecificallRE is a sequence of four route elements. The subpolyline of the
first route element is given byPLs,l, L(PLs,bs)), wherel is a measure along subpolyline specifying a
point that is in the circular area of user objeet;. The movement direction of the subpolyline coincides
with the direction of polylineP Ls. O

4 Route Construction Techniques

Techniques are first presented that identify the polylinesvbich a user travels. Then Sections 4.2 and 4.3
in turn cover algorithms that identify the subpolyline that the elements of a route, and that combine such
elements into entire routes.

We distinguish between GPS positions and points. Thus, “@#Rgion” refers to the NMEA sentences
generated by a typical GPS receiver, and “GPS point” refetke coordinate paifz, y) that is part of the
GPS position. The algorithms in this section only use paifdarimation; thus, they use GPS points.

4.1 Polyline Identification

The first step in creating a route from the data received frartieat is to identify the polylines on which
the client is moving and the client’s positions on the poigs.

We assume that GPS positions are imprecise; specificallyasseme that GPS positions are within
distanceD of the true position.



Point Projection onto Line Segment. Subsequent algorithms need to project a GPS position orme a |
segment of a polyline. The projection must be expressed asagure along the polyline, and the distance
between the GPS position and its projection must be computed

Figure 8 illustrates three cases for this projection. The Begment i$;b;.1. Small circles indicate a
sequence of GPS points, of whighg;, andg> are of interest. The large circles indicate the imprecision
of the GPS points. A GPS point can be “during” the line segmasiiisg in Figure 8(a). Its projection is
position o, and the Euclidean distance between positier@dg is d < D. The coordinate can also be

(a) During (b) Before and After

Figure 8: Projection of a GPS Position onto a Segment

before or after the polyline segment, as greand g- in Figure 8(b). In these cases, the projections of the
GPS points are the end poirttsandb; . ; of the segment.

We need the distanaéfrom a GPS point to its projection—this is used to determhegrojection of
a GPS point into the road network. Further, we need the distéinfrom the start of the polyline to the
projection.

Distanced is calculated using vector algebra. A line segmighyt, ; is part of a polyline(by, ..., by).
The segment inherits the direction of the polyline. Wittbeing the start point, we construct two vectors
that emanate frorh;. One vector ends &t 1; the other ends at the GPS poinfsee Figure 9). The angle

g g
d d
a
b b|+1 q b|+1
i g
(a) Obtuse (b) Acute—I (c) Acute—II

Figure 9: Anglesy and Projections
a between these vectors is used in the calculation of disténités calculated using scalar multiplication:
bibit1 - big = |bibiy1||big| cos a

If the angle is obtuse (Figure 9(a)), distantes the Euclidean distance from the GPS point to the start
of the segment. The measure of the projected point is th&eadégment’s start point:

If 90° < a < 270° thend = |gb;|,I" = L(pl, b;)
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If the angle is acute, there are two possibilities, as shawFigures 9(b) and 9(c)). If the length of the
projection ofb;g onto b;b; 1, |b;g’| exceedsb;b; 11| (see Figure 9(b)), distanagis the distance between
the end poinb,,; of the segment and the GPS point The measure of the projected point is that of the
segment’s end point:

If —90° < a <90° Albig| > (L(pl,bis1) — L(pl,b;)) then D = |gbii1|, 1" = L(pl, bi11)

If the projection lengthib;¢’| is less than the length of the segment (Figure 9(c)), distanis the
perpendicular distance between the GPS coordinate to thkneosegment. The measure of the projected
point is the sum of the projection length and the measutg: of

If —90° < a < 90° A fbig/| < (L(pl,bit1) — L(pl,b;)) thend = [gg’|,I” = L(pl, b;) + |big/|

We encapsulate the computations described above in adanatic Param (see Algorithm 4.1). It takes
a triple (g, pl, pls) as argument and returns a péit i), whered is the distance from GPS poiptto line
segmenpls on polylinepl, andl" is the measure along of the projection ofy onto pis.

Algorithm 4.1 Calculation of Projection Parameters (functiaricParam,)

Require: INPUT: g = (z,y) € R?,pl € PL, pls = ((x1,1), (x2,y2)), where (z;,1;) € pl
OUTPUT: (d,I") e R x R

L v = (voy, oY1) < (T2 — 21,Y2 — Y1); V2 = (v, vy2) « (T — 21,y — Y1)

2. |U1] — Jva? +vyd; |Ue| — /a3 + vyl

3: v «— arccos((vey v + vy vy2)/ (V1] |V2]))

4: if 90° < o < 270° then

5 d« |ty

6

7

8

9

. l'_ Hﬁ(plv(xbyl))
. else
projection «— |U3] cos «
length — L(pl, (x2,y2)) — L(pl, (1, 1))
10:  if length < projection then

11: d—/(z —22)2 + (y — y2)?

12: 1" — L(pl, (z2,72))

13: else

14: d «— |Us] sina

15: 1"« L(pl, (x1,91)) + projection
16: end if

17: end if

18: return (d, ")

We do better than mapping GPS positions to the nearest pehilith the lowest value ef. For example,
when a GPS position is near a crossroads, the true polyliyebethe one that crosses the nearest polyline.
Another example occurs when roads are close. Figure 1Qfa)rdtes how two GPS points andg, are
nearest to an incorrect road. To handle such cases corneetigonsider the mapping of the previous GPS
positions for subsequent GPS positions.

Initial GPS Position. For the initial GPS position, there is no collected data tosoer while mapping
it to a polyline. The initial GPS position is mapped to a pwiglif exactly one polyline exists that has a
segment with projection distanee < D. If there are several polylines that satisfy this requiretnéhe
position cannot be mapped until some later position has besgped correctly. FunctioppolyCand (see
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(a) Incorrect Mappings to Nearest (b) Correct Mapping to Polyline (c) Elimination of Candidate Poly-
Polylines lines

Figure 10: Polyline Identification

Algorithm 4.2) takes a GPS poigtas argument and returns a set of candidate polylines witlsunes of
the projection ofy onto the polyline segments. The function uses functi@aParam.

Algorithm 4.2 Finding Candidate Polylines (functigmlyCand)
Require: INPUT: ¢ € R?
OUTPUT: Cand = {(pl,1")|(pl,I") € PL x R}
1. Cand < 0
2: forall pl; = (biy, ..., bi,,) € PL do
3 d— ool —

4 forall pls;, = (b;;,bi,,,) suchthafl <j <n;—1do
5: (eD,cL) « calcPamm(g,pli,plsij)

6: if cD < DA ceD < dthen

7: (d,l) < (¢D,cL)

8: end if

9: endfor

10;: if d < D then

11 Cand «— Cand U (pl;,1)
122 endif

13: end for

14: return Cand

All line segments of each polyline are analyzed, but onlylithe segment of a polyline that is nearest
to the pointg is considered as a candidate. The function uses two tenypeasieiables,d and!. Variabled
stores the distance to the nearest line segment of the pelyariable stores the distance from the start of
the polyline to the projected point on the nearest line segme

In line 5, the parameter&:D, cL) for each line segmentpl; are calculated. If the distanceD to
the current line segment is less than or equal to the impoeciglue D and less than the distandeto
some previous line segment of the same polyline, the cudisteincecD along withcL, the measure of the
projection, are stored (lines 6—8). The polyline that has Begments in the imprecision distance from the
point g is included into the list of candidate polylineSand, (see lines 10-11).

Subsequent GPS Positions. For subsequent positions, to obtain a result consistehttié correct map-

ping exemplified in Figure 10(b), we map a GPS pgjatto a polyline considering the mapping of the
previous GPS poing;_;. Pointg; should be mapped to the same polylinegas; or to a polyline that
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shares a connection point with the previous polyline.

Considering again Figure 10(a), we see that polyjihecannot be a candidate for the mappinggef
because it is not connected with,. To avoid wrong mappings at connections, e.g., the mapging to
pl1, we introduce so-called connections areas and do not mapp8§ions inside these areas. This is
illustrated in Figure 10(c).

Function polyld (see Algorithm 4.3) identifies the polyling for the GPS pointy according to the
polyline p Pl that the previous GPS point is mapped to. The function retthra polyline and the distance
from the start of the polyline to the projection. In lines 2w#é check if the current GPS point is on the same

Algorithm 4.3 Polyline Identification (functiorolyld)
Require: INPUT: g € R2 pPl = (by,...,b,) € PL
OUTPUT: (pl,I") € PL xR

1 (pl,I") « (pPl, o), d «— oo

2: for all pl; = (bj,b;41) such thatl < j <n —1do
3 (¢D,cL) « calcParam(g, pPl, pl;)

4: if eD <dA eD < D then

5: IF— ¢L;d— ¢D

6. endif

7: end for

8: if d = oo then

9. forall pl; = (bi, ..., bi,, ) such thatl ¢ = (..., (pli, ;), ..., (pPl, pL), ...) € C do
10: for all pl;; = (bi;,bi;,,) suchthatl <j <n; —1do
11: (cD, cL) « calcParam(g, pl;, pl;,)

12: if d=00A cD < D then

13: (pl,17) « (pl;, cL); d « cD

14: else ifpl; = pl A ¢D < d then

15: IF «— ¢L:d «— ¢D

16: else ifpl # pl; ANd < D A ¢D < D then
17: (pl,17) « (L, 00)

18: return (pl, ")

19: end if

20: end for

21: end for

22: end if

23: return (pl, ")

polyline as the previous GPS point. The distanfeto every segment of the polylingP! is calculated, and
the shortest one is chosen. But the distance also has tosth&s), the imprecision value. If this search
yields an empty result (line 8), we assume that the GPS pbold be mapped to a polyline that connects
with the previous polyline. Thus, in lines 9-21 the functgearches for polylines that are in distarige
from the GPS point and intersect withP[. If there are more than one (lines 16—18) or no such polylines
the function returns an undefined polyline and an infinitéatise. The second case means that there is a
gap in the GPS data, which then has to be filled in. If two sedsnefithe polyline that intersects wifhP!
are within distanced of the GPS point (the second condition in line 14) then theestaegment is chosen.
To determine whether a GPS point is in a connection area, stentéed the result of functiopolyld,
namely the polyline the GPS point is projected onto and teadte of the projection from the start of the
polyline. Connections are given by their distance from tiaet ©f a polyline (see Definition 3.3). Thus, if
the projection is within distanc® from a connection on its polyline, the GPS point is in a cotinecarea.
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Later, we ignore projections of such positions.
Functionpossible Connection (see Algorithm 4.4) determines whether an argument GPS [®in a
connection area. All connections related to the polylirearalyzed, and the distance from the projection

Algorithm 4.4 Connection Area (functiopossible Connection)
Require: INPUT:  (pl,I") € PL xR
OUTPUT: conn € {true, false}
1: conn « false
2: forall ¢; = {ccy, ...,cep } € Csuch thaf ce;; = (pl,lz_) € ¢ do

3. forall ce;; € ¢, such thate;; = (pl, 1) do
4 W—Dgg—ﬁgpmm

5: conn < true

6 return conn

7 end if

8: end for

9: end for

10: return conn

to each connection is calculated. A distance less than igioa D makes the resuttrue; otherwise, the
function returndalse

4.2 Formation of a Route Element

Recall that a route is a sequence of connected subpolylivtgsh thus combine to form a single polyline.
We proceed to describe how subpolylines are constructed.

Routes are formed by four main kinds of subpolylines, astitated in Figure 11 and explained in the
following. As in previous illustrations, the unfilled cied in the figure denote GPS points. There are three
polylines in the figure{b, b, b3, by), (bg, b2), and(bs, bs); and a route is emphasized.

Figure 11(a) illustrates the simplest case of a route, oat dbnsists of only a single subpolyline.
According to our model, we never approximate the start addbéa route, but always fix the exact positions
of these. This means that when we form such a subpolyline,onsider the first and the last GPS points
that can be mapped correctly, i.y, and gy in Figurell(a). The distances from the start of the polyline
identify the part of the polyline that constitutes the routed the movement direction defines the start and
end.

Figure 11(b) illustrates how a first subpolyline is formedor Buch a subpolyline, the measure that
corresponds to the start of the route is exactly the meaduhe @rojection of the first correctly mapped
GPS point §).

The other measure of the subpolyline usually has to be mddifightly so that it becomes equal to
the measure of the connection where the route switches téfeaedit polyline. To illustrate this, GPS
pointsg;,0 < ¢ < j, in the figure are projected onto the same polyline, but pgjn{ is projected onto
another polyline. However, the route can only switch to tee polyline atbs; thus, the measure of the
projection ofg; is approximated as the measure of the nearest intersecttortive other polyline, i.e.,
L((b1,b2,b3,b4),b3).

Next, Figure 11(c) illustrates how the last subpolyline abate is formed. This case is similar, but
opposite, to the case of the first subpolyline. If the movenurection is the same as the direction of
the polyline, the start of the last subpolyline is approxda as forg;, in the figure. The end of the
subpolyline is determined by the last correctly mappedtosf the route, i.e.gy. If the direction is
opposite, the measures are formed in the opposite way.
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(a) Only One Subpolyline (b) First Subpolyline

(c) Last Subpolyline (d) Intermediate Subpolyline

Figure 11: Kinds of Subpolylines

Finally, Figure 11(d) shows how an intermediate subpodylism formed. This case occurs if the GPS
points of the route are mapped to more than two polylines. Stag and the end measures for such a
subpolyline are not those of projections, but must be apprated to the measures of the connections at
which the route changes polyline. In the figure, GPS pajits andg; are the first and last GPS points
that are projected onto the intermediate polyline. Thedtatice values from the start of the polyline are
approximated to values of the connectidasindbs, i.e., L((b1, b2, b3, bs), ba) andL((by, ba, b3, by), b3).

If no neighboring subpolylines exist that belong to the spauigline, only these four cases exist. How-
ever, it is possible for a route to have neighboring subpudgl that belong to the same polyline, but have
opposite directions. This happens if the user makes a u-kigure 12(a) demonstrates this. In this case,

> ﬁ\g
h b :z 102 by

\obl %5<4_ 3

(a) Movement (b) Formation

Figure 12: Subpolylines on the Same Polyline

the end of one subpolyline is the start of the next. Figurd)afers additional detail. GPS points are
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numbered to indicate their order. The last point that is @aghme direction as the current subpolyline is
the start of the new subpolyline. This GPS point can be stilhe same side of the polyline (before turning
around), or it can be on the other side (after turning araund)

We use a functioriefine Direction (See Algorithm 4.5) that determines the movement direaiong a
polyline for two consecutive projections. The functiondgakhe measures of the projections of the previous
and current GPS points as arguments. It also considers themamt direction on the polyline until the
previous GPS point. If the previous measprest is less than the current onrést, the direction coincides
with the polyline’s direction and is set to If the previous measure is greater than the current one, the
direction is the opposite and is settd. If the two measures are equal, the direction is set to thaqure
direction. This last situation happens if, e.g., the usetugk in a traffic jam and moves so slowly that
consecutive GPS points are the same.

Algorithm 4.5 Direction Identification (functioniefine Direction)
Require: INPUT:  pDst, cDst € R, pDir € {—1,0,1}
OUTPUT: direction € {—1,0,1}
. direction «<— 0
. if pDst < ¢Dst then
direction «— 1
. else ifpDst > cDst then
direction «— —1
else
direction «— pDir
:endif
. return direction

© o NA RN R

Movement directions are used to approximate measures whketonstruct “uninterruptible” routes
from sequences of subpolylines. FunctipndEnd (see Algorithm 4.6) finds the measutedDst along
polyline pPl of the connection where it and the current polylinB intersect. The function uses the
measurepDst of the projection of the previous GPS point and also the torgDir on polyline pPI.

The function chooses the nearest connection if there are mhan one connection where the polylines
intersect. Temporary variablé&stToConn stores the measure of the nearest connection found so far. Al
connectionse; where pPl and cPl intersect are considered (line 2). VariaklBist ToConn is used for

Algorithm 4.6 End Identification for a Subpolyline (functigfindFEnd)
Require: INPUT:  pPl,cPl € PL,pDst € R, pDir € {—1,0,1}
OUTPUT: endDst € R
1. distToConn, endDst «— oo
2: forall ¢; = {ce1,...,ccp } € C such thaBcee;; A cey, € ¢; (cci; = (pPl,lZ,) A ccjy, = (cPl,li:)) do
3. c¢DistToConn «— (ll'; — pDst)

4. if (pDir = 1AcDistToConn > —2D)V (pDir = —1AcDistToConn < 2D))A|cDistToConn| <
distToConn then

5: endDst «— ZZ; distToConn «— |cDistToConn|

6: elseifpDir =0 A |cDistToConn| < distToConn then

7: endDst «— l'i_j; distToConn «— |cDistToConn)|

8: endif

9: end for

10: return endDst
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calculating the distanceDst from the previously projected point to each suitable cotioec A connection
is suitable in two cases.

e Ifitis ahead of the projected point or behind with distaBé® when the direction coincides with the
polyline’s direction.

e If it is behind the projected point or ahead with distarxd@, when the direction is the opposite
(line 4).

Note thatcDistToConn will be negative when movement directigrDir is 1, but the connection is in
the direction opposite opDst (behind pDst), as well as when the movement direction-g and the
connection is in the same direction (aheag¥st). We use notationcDist ToConn| to obtain a positive
value for the distance to the connection. If the distancé¢ocbnnection is less than the distance to the
previous connection then the new connection’s measureeisahdidate end measure for the subpolyline.
The distance to it is noted in variabt&ist ToConn. If the direction on the subpolyline is undefined, the
nearest connection is simply chosen as a candidate.

Function findStart (see Algorithm 4.7) is closely related to functigindEnd. The next subpolyline
starts where the previous subpolyline ends, so fundfieStart defines where the next subpolyline starts
on the polylinecP! according to the previous subpolyline that was on polypii# and ended at measure
pDst. The function returns thetartDst that is the distance at which the current subpolyline starts

Algorithm 4.7 Start Identification for a Subpolyline (functigindStart)
Require: INPUT:  pPl,cPl € PL,pDst € R
OUTPUT: startDst € R
. for ¢ = {cecy, ...,ccp} € C such thaBcecy, e (e, = (pPl, pDst) A cep, = (Pl 1)) do
startDst «— I
end for
return startDst

ARwbhe

Finally, functionformSubPoly (see Algorithm 4.8) creates a subpolyline that satisfiesg¢fairements
for a subpolyline. Specifically, the start measure of a siytipe must be less than its end measure. While
making calculations, it may happen that the start measureegls the end measure. FunctfornmSubPoly
solves this problem. The function takes polylin@laand temporary start and end measuigsand .,
as input parameters. The function returns a correctly edeatibpolylinespl = (pl,I",1™) along with
a movement directionlir. If the input movement direction does not coincide with theection of the
polyline, i.e.,dir = —1, the start measure is greater than the end measure, andéheycaanged (lines 1—
2). If the movement direction coincides with the directidrtiee polyline, i.e.,dir = 1, the start and end
measures are final (lines 3—4). If the movement directiomlghawn, i.e.,dir = 0, the direction is set
according to the start and end measures, and the subpadlyleastructed (lines 5-10).

4.3 Route Construction

In Section 2.2, we provided an overview of the context of theeatial construction of routes that occurs on
the server side. here, we proceed to describe route cotigiriic some detail.

The state of the algorithm is captured by the data structStete = ((pPl, pDst, pDir),l”, RE),
wherepPl is the polyline that the most recent, previous GPS point wapped to,pDst is the distance
from the start of that polyline to the position on the polglithis point was mappeg@Dir is the direction of
movement along the polyline of the GPS sequelicés the distance from the start of the polyline at which
the current subpolyline starts, aftl’ is a sequence of route elements (see Figure 13).
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Algorithm 4.8 Subpolyline Formation (functiofprmSubPoly)
Require: INPUT:  pl € PL,l,,l. € R,dir € {—1,0,1}
OUTPUT: spl = (pl,1",1") € SPL, dir € {—1,0,1}

1: if dir = —1 then

2. spl = (pl, 17,17 — (pl,le,1s)

3: elseifdir = 1then

4 spl = (pl, 17,17 — (pl,1s, 1)

5: else

6. iflg <, then

7: spl = (pl, 17,17 — (pl, 15, 1.); dir — 1
8 else

9: spl = (pl, 17,17 «— (pl, le, 1s); dir «— —1
10:  endif

11: end if

12: return (spl, dir)

pPI
o 5 3
= °
e
I+ pDst
pDir

Figure 13: Current State of the Algorithm

The algorithm also uses a few additional structures. Spedifi (cPl, cDst) stores the polyline to
which the current GPS point is mapped and the distance fravstiért of the polyline to the point on
the polyline to where it was mapped. Next; is the current direction on the polyline. We also use the
well-known primitive functionshead, tail, andappendon sequences of elements of the same type.

Next, the algorithm employs a number of additional functiofirst, functiongetStartValuegsee Al-
gorithm 4.9) scans the GPS sequence for the first positiowlioch there is only one polyline in the road
network that is within the distance of imprecision (line®2-So, if the first point has more than one can-
didate polyline, the function considers the second onéigfsecond position has more than one candidate,
the function considers the third one; etc. The function @sdata structurendG = (g1, ..., gx), where
the firstk — 1 elements are undefined GPS points gpds the first GPS point that is mapped correctly.
Next, Cand is a set of pair§cPl;, cDst;) of a polyline and a distance from the start of the polylineisHet
records candidate polylines for a particular GPS positioe @). Finally, cList = (Candy, ..., Candy)
is a list of candidate sets whe€and,; contains the candidates for mapping GPS pgint

For each poiny from the GPS sequence, algorithyatStart Values finds candidate polyline€'and
using functionpolyCand (line 4). If more than one candidate exists (line 5), the algm adds the GPS
point to listundG and also adds the candidat€snd to list cList. If the first point with only one candidate
is not the first GPS point in the stream (line 10), the algamitses functiorbacktrack (see Algorithm A.2
in Appendix A.2) to map the previous points correctly, if pilde, and to get the current state. If the first
GPS point has only one candidate (line 12), the current btemes this candidate. If all point in the GPS
stream have more than one candidate polyline or no candiflate 16), the algorithms exits. The function
returns the current state of the algorithm and a part of th8 &Ream that was not analyzed yet.
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Algorithm 4.9 FunctiongetStart Values

Require: INPUT: G = (g1,...,9n),9i € R?
OUTPUT: (cState, G) = (((pPl, pDst, pDir),I", RE), G)
Cand «+ 0; cList «+ nil; undG « nil
while G not emptyA|Cand| # 1 do
g < headG); G — tail (G)
Cand «— polyCand(g)
if |Cand| > 0 then
cList — append cList, Cand)
undG — append undG, g)
end if
end while
if |cList| > 1then
cState «— backtrack(cList, undG)
. else if|cList| = 1 then
(pPl, pDst) « head Cand)
pDir — 0;1" — pDst; RE « nil
: else
EXIT
. end if
. return (cState, G)

e e i L i < e =
O N OO A WDNR O

FunctionfillGap (for details, see Algorithm A.4 in Appendix A.3) fills the ghptween two projections
based on shortest-path search in the road network repa¢isent This function constructs missing route
elements. The function takes the current state of the algorithe current undefined GPS coordinate, and
the remaining GPS sequence as input parameters. The fumetirns the new state of the algorithm and
the remaining part of the GPS sequence for further analysis.

Function newSubOtherPoly (see Algorithm 4.10) constructs a route element when theeotlGPS
point is mapped to a polyline that differs from the one thevises GPS point was mapped to. The end of
the subpolyline for the route element being generated isfireddo that it becomes equal to the measure of
the connection where the object departed from the previolydipe to reach its new polyline.

Algorithm 4.10 Subpolyline Construction for Different Polylines (furamtinewSubOtherPoly)

Require: INPUT:  cState = ((pPl, pDst, pDir),1", RE), cPl € PL
OUTPUT: cState

I« findEnd(pPl, cPl, pDst, pDir)

(spl, dir) « formSubPoly(pPl,1",17, pDir)

RE —append RE, (spl, dir))

1"« findStart(pPl, cPl,17)

(pPl, pDst, pDir) «— (cPL,1",0)

return cState

The input parameters of the function are the current stétete of the algorithm and the polylineP!,
to which the current GPS point was mapped. The function metamew stateState. The function creates
a subpolyline for the GPS points mapped to the previous ijpelylP!. The end of the subpolyline is found
first (line 1). Then a subpolyline is created (line 2) and abldethe sequence of route elements (line 3). The
function prepares values for the construction of the nevpslytine. It finds a start distance value (line 4)
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and changes the elements of the current state of the algofithe 5), i.e.,pPl, pDst, andpDir, that are
the polyline, the previously mapped point, and movemertadiion for the next route element.

Next, function newSubSamePoly (see Algorithm 4.11) constructs a new route element in tise ca
where the movement is along the same polyline, but the movedaection from the previous position to
the current is opposite to the direction until the previoasifion. The end of the previous route element is
the start of the new one. The input parameters of the funetierthe current stateState and the distance

Algorithm 4.11 Subpolyline Construction—Same Polyline (functioewSubSamePoly)

Require: INPUT:  cState = ((pPl, pDst, pDir),l", RE), cDst € R
OUTPUT: cState

«— pDst

(spl, dir) < formSubPoly(pPl,1",17, pDir)

RE —append RE, (spl, pDir))

IF — pDst

(pDst, pDir) « (cDst, (—1)dir)

return cState

l4

valuecDst along the polyline where the current GPS point was mappedtte function returns a new state
of the algorithm. The function creates a new route subpuyliAs the movement is on the same polyline,
only the movement direction is different, the distance glthe polyline where the previous GPS point was
mapped to becomes the end distance for the constructedIglipdline 1). The route element is created
(line 2) and added to the sequence of route elements (ling18).end distance of the subpolyline is the
start distance for the next subpolyline (line 4) becausertbeement direction was changed at that position.
For the algorithm state;Dst becomes the previous distance, and the direction is chatogig opposite
(line 5).

One last function is needed by the overall route finding digor. Specifically, functiorproceedEnd
constructs the last element of a route. All last route elésm#rat belong to the last polyline are approxi-
mated by one element if they are in the area of the same déstirabject. Thus, all the last route elements
constructed so far that belong to the last polyline to whi€Spoints were mapped are approximated to one
element if these route elements are in the area of the distir@bject. In Figure 14, the final point of the
route isE and all subpolylines belong to the same polyline. They as@@the destination area shown by
the circle. Each valug; denotes a distance from the start of the polyline. FungtioceedEndfor details,
see Algorithm A.1 in Appendix A.1) starts with the end pasiti(F in the figure) and searches backwards
for the start position that is the “oldest” position on théytine. Each element inside the destination circle
is considered in turn. If an element exceeds the circle, pipecximation process stops. In the figure, we
start with(z1, E') and considefz, z2). This yields(z,, E'). We then considefzs, z2), obtaining(zs, F).
Next, we obtainE, x4). The final result of the approximation is elemé¢ft E).

We now have the elements needed by the main route constriagorithm. Taking a sequencg of
GPS points as input, this algorithm (Algorithm 4.12, bel@epstructs a route consisting of a sequeRde
of route subpolylines. Note that this algorithm employs magiching as part of its solution to a larger
problem; other map matching techniques may be used in plate epecific technique employed by the
algorithm.

With the functions presented earlier in this section at ispakal, Algorithm 4.12 first uses function
getStartValues to obtain a correct start state. While the GPS sequence ismpty, the next point is
extracted and processed. The polyline that correspondgetpdint is identified using functiopolyld. If
this function returns an undefined polyline, a gap existe&@PS sequence, which has to be filled. If the
function returns a polyline, it is checked if the projectignn a connection area. If the point projection is
not in the connection area, the subsequent calculationbecdone.
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Figure 14: Approximation of the Route End

If the current polyline is not the same (line 10) as for thevimes GPS point, a new subpolyline is
formed. If the polyline is the same (line 12) as for the pragi&GPS point, the algorithm checks if the
movement direction is the same as for the previous point.hdfgrevious direction was undefined, its
value is set to a value of the current direction. If the digcis the same, no calculations are done—only
temporary variable Dst is set to the distance of the current GPS point. If the dioaci not the same, we
have to form a new subpolyline, and functiepwSubSamePoly is called.

When the GPS sequence is empty, the final route element isutethpy functiornproceedEnd

5 Experimental Validation

To validate the data structures and algorithms describeberprevious two sections, these were imple-
mented using generally available, state-of-the-art teldgies, including Java, Oracle PL/SQL, and Oracle
Spatial. We describe this implementation and lessonséeaimom testing the implementation using a real-
world, digital representation of a real road network togethith GPS log data obtained from vehicles.

5.1 Database Schema

Figure 15 contains a relational schema capable of captthmgata structures described in Section 3. Pri-
mary and foreign keys are indicated. Tabhl&lEAR ELEMENTS stores the main elements representing
roads of the road network, namely polylines. Each tuple is tidible contains the unique ID of a polyline
and the length of the polyline.

Table CONNECTIONS captures the intersections among polylines. A tuple inttdide records that
a polyline (POLID) intersects at a distance (PCHROM) from its start with one or several polylines at a
connection (CONND).

Recall from Section 3 that a polyline is given by a sequenddsase points—these are recorded in
tablePOLYLINE _ELEMENTS . A tuple records a base point of a polyline (P@R). The number of the
base point in the sequence of the base points of the po8EQUENCENR) and its distance from the
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Algorithm 4.12 Route Finding
Require: INPUT: G = (g1,....,9n),9i € R, n > 1
OUTPUT: RE = ((sply, dir1), ..., (spl,,, dirm)), spl; = (pli,15,1;)) € SPL
1: let cState = ((pPl, pDst, pDir),I", RE)
2: (cState, G) «— getStartValues(G)
3: while G is not emptydo

4. g+« headG); G « tail(G)

5. (cPl, cDst) <« polyld(g, pPl)

6. if ¢cPl = 1 then

7: (cState, G) « fillGap(cState, g, G)

8: else

o: if possibleConnection(cPl, cDst) = false then
10: if ¢Pl # pPlthen

11 cState — newSubOtherPoly(cState, cPl)
12: else

13: dir «— defineDirection(pDst, cDst, pDir)
14: if pDir = 0then

15: pDir — dir

16: else if pDir = dir then

17 pDst «— cDst

18: else

19: cState «— newSubSamePoly(cState, cDst)
20: end if

21: end if

22: end if

23:  endif

24: end while

25: RE « proceedEnd(cState, cDst)
26: return RE

start of the polyline (POLFROM) are recorded, in addition to the geographical coatés (XCOORD
and Y.COORD) of the base point.

TableSDO_POLYLINE _ELEMENTS is created to be able to use facilities in Oracle Spatial.[T8g
attributes in this table are similar to those in taBIOLYLINE ELEMENTS . The exception is attribute
ELEMENT, which does not capture the geo-information abosingle base point, but captures an entire
line segment with its start and end points.

A tuple in tableUSERS contains the unique ID of a mobile service user and additioriarmation
about the user.

Next, a tuple in tabl®ESTINATION _OBJECTS contains the ID of a destination object, the ID of the
user to whom the object belongs, a description of the obgewt,attributes that specify the circular area of
the object. Tabl&SDO_DESTINATION _OBJECTS is created to be able to use Oracle Spatial. It has an
attribute CIRCLE instead of coordinates.

Three tables and a view are used for capturing routes. Fatde ROUTES records the routes of the
mobile service users. Routes start and end at destinatjentebA tuple thus records the ID of a route and
the start and end objects.

Second, tablROUTE_ELEMENTS describes routes in terms of their elements. Each tupledbus
scribes a subpolyline. Attribute POEROM records the start measure of the subpolyline and aiérib
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Figure 15: Relational Database Schema

POL.TO captures the end measure of the subpolyline. The numiieafubpolyline in the sequence of
subpolylines that make up the route it is part of is recordgdittribute SEQUENCENR. Attribute DI-
RECTION indicates whether the direction of the polylinenmiles with the direction of the route on that
polyline. Attribute SPEED captures the average speed afisbe on the subpolyline.

Third, tableINFO captures the usages of routes. A tuple in this table correisptm an individual usage
of a route and thus captures the ID of a route and the time afgsheA viewVIEW _INFO is included that
contains the attributes ROUTID, WEEKDAY, HOUR, QUARTER, and USAGE. This view approxinest
the exact route usage times down to quarters of an hour.bAt&riUSAGE records the sum of uses of a
route during a particular quarter on a particular day of tleeky

5.2 Implementation Overview

Based on the database schema just described, the algod#suosbed in the previous section were imple-
mented using facilities available in Oracle Spatial [19g&ents of polylines are spatial data objects (SDO
elements in Figure 15), and Oracle Spatial operators anchggep functions are used. Polyline segments
are also linear referencing system (LRS) elements, whiables the use of LRS functions. To use the Ora-
cle Spatial functions, we create an index on the spatiabaté. A spatial attribute is constructed according
to the syntax of the object MDSYS.SDGEOMETRY.

The route finding algorithm implemented with Oracle Spatiffers a bit from the one described in
Section 4. The implementation is in Java, and JDBC is usegdoute SQL queries enhanced with Oracle
Spatial functionality.

The built-in Java claskinkedListis used for storing the sequences of subpolylines that faumes.
This class comes with standard list manipulation operatidihe implementation uses a separate class that
is responsible for the execution of SQL queries. The claasistresponsible for route finding includes an
instance of this class, to be able to obtain the results of §gries.

To identify polylines for subsequent GPS positions, we UBE/&QL functionpolyld. This function first
considers the polyline that the previous GPS position wagspea to. If the distance to that polyline exceeds
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the imprecision, the function searches for the nearespexinad polyline. Two Oracle Spatial operator are
used. Operator SD®IN finds the nearest spatial objects (polylines), and opei@DONN_DISTANCE
returns the distances to these objects. We used 30 metdrs imsprecision value for GPS positions and as
the imprecision value of connection areas.

5.3 Map and GPS Log Data

The proposals presented in the previous sections reprdsemesults of repeated cycles of testing and
improvement of the route-recording prototype.

The testing was done using the INFATI data [17]. This datéuthes a digital representation of the road
network of the municipality of Aalborg, Denmark. This dagajuite typical of road network representations.
The data is captured in a database with the schema just loedcrifrhe INFATI data also includes GPS
logs from twenty-some vehicles that participated in anlligent speed adaptation project. Briefly, the
position of a vehicle was logged every second when the ehels moving. Positions were logged for
approximately six weeks.

5.4 Experimental Insights

In general, the experimental validation of the prototypmponent led to a more consolidated formalization
of the concepts underlying the component and led to a mor@rsm@abmponent that is able to handle
the complex situations that occur in real-world applicasio Here, we discuss insights gained from the
validation that would be hard to gain using generated datbtain based on purely theoretical studies.

The first insights relate to what a route really is. Typicaliyers use some routes frequently, e.g., routes
between home and work. However, even if a user drives fromeitoravork along the same streets each day,
the resulting routes turn out to all be different. This happbecause a vehicle is likely to be parked in a
different location at work every day, even if it is in the sapagking lot. Should it happen that the vehicle is
parked in the exactly same location at the end (or startprblelem remains because the positions produced
by the GPS receiver are imprecise.

In Figure 16, several routes that have the same destinatoshawn. The circles represent the end of
each route. This destination is accessible from differeatls. Figure 17(a) shows how routes end if the
destination is reached from the North-East. Figure 17(byvsthow routes end if the destination is accessed
from the South. Because of the GPS imprecision and the \@ayailability of parking, the end of the route
varies.

We address this problem by first modeling destination objasftcircular regions of variable size. Routes
then start from the same destination object if they stattiwithe same circular region. Second, we approx-
imate the last elements of a route if these elements belotigeteame polyline and if they are inside the
destination object’s circular region. Thus, we consobddie number of route elements in cases similar to
that in Figure 18(a), where a vehicle drives around at itsiimkgtton to find an empty parking space.

The representation of rotaries in the map can also causéepnslrelating to the equivalence among
routes. This occurs when a rotary happens to be represesitecegular crossroads. Consider Figure 18(b)
that shows a regular crossroads that represents a rotarseguences of GPS points corresponding to two
traversals. When the lower sequence is mapped to the roadnkesubpolylines are created that use only
the horizontal road. However, when the upper sequence ipedajop the road network, the road part that
extends upwards from the crossroads is also used, cormisgoto the vehicle moving from the right to
the crossroads, then traveling upwards a short distaneg, ttaking a u-turn and traveling down to the
crossroads, and then continuing towards the left. In géndiféerent traversals make u-turns at different
locations.

24



y coordinate

6.3197e+06

T T
End positions

6.31965e+06

6.3196e+06 b
0]
§ 6.31955e+06 - b
5
o
o
o
> 6.3195e+06 [ s
6.31945e+06 - —
6.3194e+06 - —
1 1 1 1 1
559900 559950 560000 560050 560100 560150
x coordinate
Figure 16: One End Destination Object
6.3197e+06 1 6.3196e+06 - b
6.31965¢+06 1 6.31955e+06 |- 1
6.31966+06 1> 6.3195¢+06 ]
6.31955€+06 B 6.31945e+06 1
L L L L L 6.3194€+06 L L L L L
559900 559950 560000 560050 560100 560150 559900 559950 560000 560050 560100
x coordinate x coordinate

(a) (b)

Figure 17: Different Access Types of the Destination

25

560150



2140 T T
GPS coordinates  © RouteWithoutAdditionalElements ==-=-=
240 | RouteWithAdditionalElements «------- |
o
2130 - §° 4
°
° o
° 0o 0 4 o o 8
o
2120 - ° 4
°
o o ° ° o o o o
© o
& 2110 | ° 4 g
g ° £
B ° 2
g b0 o o o o g
> 2100 ° ° ° s © ] s
°
2090 4
°
2080 - 4
°
2070 . . . . . . .
330 340 350 360 370 380 390 400 410 100 120 140 160 180 200

x coordinate x coordinate

(a) End of a Route (b) Mapping at a Rotary

Figure 18: Special Cases

In this case, the standard imprecision value of 30 meteo®ismmall due to the large radius of the rotary,
and the algorithm will produce two different routes. Oneusioh is to increase the imprecision value; an
alternative is to obtain and use information about rotaries

In the above discussion, theprecisionof map and GPS data were central sources of complications.
The next insights concern in large part tigsenceof map or GPS data. Figure 19(a) illustrates a situation
where a vehicle drives where the map has no road. This casesatthe map is missing a road, e.g., the
map data is outdated, or if the vehicle actually does noedriva road (but, e.g., in a parking area or on a
bike path).
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Figure 19: Filling of Gaps

In order to make the component resilient towards this typstotion, an algorithnfillGap is used that
finds the shortest path from one known point to another. I found is much longer than the distance
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traveled by the vehicle according to the GPS coordinates,atborithm is unable to find a reasonable
solution and returns an error.

Next, Figure 19(b) shows a situation with a gap in the GPSessgpi This may occur for a number
of reasons. For example, the GPS coverage may be incompleteoduildings, trees, or a tunnel. The
component also handles this case by usfildffzap. If a gap exceeds a certain distance threshold, the
component returns error.

Further, functiorfillGap is used if there are GPS positions without any polyline cdagis in the middle
of the route, but the gap starts and ends on the same polgkeenfjore details in Section A.3). Figure 20(a)
represents such a situation. In the figure, the bold lineessmts a road in the map, and the thin line
represents the movement of a car. The car moved along théromadsouth to North, then turned into some
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Figure 20: Unmapped GPS Positions Inside the Route

area not covered by the map used. The car drove for some tithis iarea, then made a u-turn, and returned
to the road. Some of the positions inside the uncovered areall(black squares in the figure) were not
mapped to any polyline, as they are too far from the neardglip®. Figure 20(b) shows the whole end of
the same route. This area is in the city center; thus, penapdriver was looking for parking, but did not
find any empty parking at the first attempt, and moved on torengiarking area.

Function backtrack is used for finding a good start of a route. As the initial gpoag along a route
can be imprecise for a few minutes, the start of the route eadifbcult to detect. Figure 21 shows such a
situation. Figure 21(a) represents the movement of theaighe beginning of the route (black squares are
GPS positions). Figure 21(b) shows how the sequence of GEiiqms look on the road network.

In the experiments, visual inspection was used to deterthim&omponent’s ability to accurately find
routes. We found that the component works well under “nofrmoiatumstances, but found also that the
accuracy is highly dependent on the fidelity of the availabl@esentation of the road network and on the
quality of the GPS positions.

The amount of the space needed to store the routes on thedeaicnot analyzed experimentally, as
it depends only on the number of routes and destinations.rdiites, destinations, personal information,
and usage information are stored as character strings #lvetd predefined schema. The space need for
temporary storage of GPS positions in the NMEA [11, 20] fareepends on the number of positions to
be stored. The maximum NMEA sentence length is 80 characedseach GPS position can consist of
4-6 sentences.
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Figure 21: Complex Route Start

6 Related Work

We are not aware of any previous work on components that genesutes from GPS data. But our work
is related to a few lines of research in mobile services, amdense some existing techniques.

Road network modeling is a central aspect of the paper. MHaisdsrd in industry to use linear ref-
erencing for road-network representation [1, 7, 19, 22]n<isient with this, our data model uses linear
referencing for capturing road network a as well as routed,cur data model can easily be integrated with
existing linear referencing models. Using linear refemegcHage et al. [14] describe a data model that inte-
grates representations of transportation infrastrustare geo-referenced content. We build on this model,
extending it in order to capture routes. Brakatsoulos ¢bab] have recently proposed a conceptual model
for trajectories in road networks. Their approach to theagie of map-matched data is slightly different,
and their focus is not on routes. We also note that it is ptessibmodel a road network as a conventional,
mathematical (directed) graph (e.g., [12, 25]), in whickeca route becomes a sequence of edges.

We apply several existing technigues in our setting. Sktath computation is used to fill gaps when
we construct routes. This relates to works that considentes$iopaths in graphs. Barrett et al. [3] study a
generalized Dijkstra’s algorithm for shortest paths inpfpsaon large transportation networks to do route
planning.

During route construction, we map match GPS positions ommad network. Bernstein and Korn-
hauser [4] explore map matching algorithms, e.g., “padAtdrve” and “curve-to-curve,” that can be used
to reconcile inaccurate position data with an inaccuratp.nvan and Wolfson [26] propose a weight-based
off-line map matching algorithm that finds a sequence of nrap that is similar to a trajectory given by
a sequence of GPS positions. Cao and Wolfson [8] projectjectoay into the 2D(z, y) plane and then
snap the resulting projection into the road network basedot@rance values. The resulting, so-called
non-materialized view of the snapped trajectory is a secpientuples that include street names, linear ref-
erencing coordinates, and time. They use linear interjpoldd infer positions in-between those recorded in
tuples. When creating routes, we map match GPS positionstibatpolylines that represent the geographic
locations of the roads. In doing so, we use the geographatitwts of the roads together with the topology
of the road network, i.e., we use the connections among thydines. Although we apply map matching
in a specific data model, existing map matching techniqued) as those just mentioned, can be integrated
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into our work.

Our map matching involves searching for nearest neighiWesuse the allowed imprecision to control
the range within which candidate polylines are to be fountis Telates to the work of Roussopoulos et
al. [21], in which they consider minimum and maximum disesfrom the query object during search. We
also choose a polyline according to how the previous GPSiposvas map matched. The nearest neighbors
for the previous positions of the moving object are congidérsy Song and Roussopoulos [24]. Put briefly,
our use of nearest neighbor search differs from those ofiegisiorks. We search for nearest neighbors to
define the movement of a user in a road network. We construexj@esice of connected polyline elements,
not a set of nearest objects for every step.

Ashbrook and Starner [2] study the behaviors of people imsenf their start and end destinations, the
objective being to predict future movements. They disched@PS positions of routes that are not relevant
to destinations (locations), and they build a Markov modelgach location with transitions to every other
location. While we, too, are interested in the start and esgfigiations, we also consider the specific parts
of the road network that are traveled to reach one destimditmm another. Liao et al. [18] produce a
Markov model that learns and infers daily movements of a, @ggin to predict future movements. A route
is not specified through a deterministic sequence of edgeshimugh transition probabilities on the graph
(road network). In contrast, we model a route as a sequenamdfparts with movement direction, and a
route does not itself contain spatial information. We hai¢ghat this approach is most appropriate for our
purposes.

The proposed route component makes routes available t@agrand may be considered as a part
of a more general context-aware system. For example, Hgorinand Cahill [15] present a prototype
implementation of a route profiling application that aimsgenerate information on traffic flow. They
associate dynamic, contextual information—covering etspguch as weather, road-surface conditions, and
road-maintenance operations—with journey (trip) infotioa A prototype with limited functionality is
reported. A more general coverage of the notion of “contexbeyond the scope of this paper.

7 Summary and Future Work

Based on the observation that the route of a mobile user istaresting and important context for a range
of mobile services, this paper describes a system archige@iong with a detailed design and a tested,
relational implementation of a route component that coles$rand accumulates routes and associated usage
information for a mobile user based on data received from & @€eiver that follows the user.

A route is expressed in terms of the underlying road netwagka sequence of parts of roads, or,
more precisely, as a sequence of connected, linear elenemestermed subpolylines, each with a travel
direction. A route connects a source and a destination bbjgte solution presented addresses the real-
world problems that occur when attempting to derive a usetiges based on real map data and actual GPS
input.

There are several possible directions in which to extensl work. We have assumed that the user
controls the process of route recording. One extensionaésable the system to detect ends of routes. For
example, if a user is at a particular position for some timieut moving, the system may assume that the
end of a route has been reached and may end the process ofecutging.

Another possible extension is to enable the system to diétcoute is already recorded or to divide a
long route into smaller ones when smaller parts of the rorgeised. Other possible extensions include the
use of additional information about road networks that &ilable in some cases, such as allowed driving
directions and turn restrictions.
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A Algorithms

The following appendices give the details about the algor#t presented, but not fully described, in Sec-
tion 4. Section A.1 describes the approximation of the eridewdes. Section A.2 covers the detection of
the starts of route. Section A.3 covers the filling of infotima gaps. Section A.4 describes how to find a
path between two projections on the road.

A.1 Approximation of the End of the Route

As already mentioned in Section 4, functiproceedEnd (see Algorithm A.1) constructs the end of a route
and approximates the last subpolylines to one subpolylitiey are on the same polyline.

The function takes as arguments the state of the main digost the end of the analysis of the GPS
stream and the distance from the start of the polyline to tlgeption of the last correctly mapped GPS
point, i.e.,cState and c¢Dst, respectively. The function returns a sequeRde that contains all constructed
route elements.

FunctionproceedEnd analyses the sequence of constructed route elements {line the state of the
algorithm, RE contains all constructed route elements, except the la&stTme state stores the information
about the last route element, i.eP! is the polyline and" is the start distance of the subpolyline for the
route element. The second input parametBst provides the end distance of the subpolyline for the last
route element. The function looks for the earliest distamezasure on the same last polylin€l, so that
it is possible to approximate the end of the route to one dybpe. The variablesS and E are used to
represent the earliest (start) and latest (end) positilims 2). A visual explanation is given in Figure 14
(see Section 4). The latest positiéhon the polyline is the distance of the last correctly mappP&@oint,
c¢Dst. This value does not change throughout the algorithm. ThHeestdistance value should be found.
At the beginning of the analysis, is equal td" that is the start of the subpolyline for the last route elemen
(it is not added to the sequené&). Then the function checks route elements to approximageettd of
the route. The variablehecked (line 3) is used to indicate whether the elements are alrebdgked (rue)
or not (false).

The route elements are analyzed starting from the last tbriidline 5). If the last subpolyline in the
sequenceR FE belongs to the same polylingP! (line 6), the subpolyline is checked to determine whether
the earliest positiort can be approximated to the earliest position on the subipelylif the movement
direction is—1, the earliest position is the end distariceotherwise, it is the start distané¢e. The part of
the subpolyline that disappears when approximated shauiladdide the circular area of the end destination.
For example, in Figure 14 when subpolyline3(x4) is analyzed,S is approximated ta4, but (x3, F)
should be inside the circular area. Then the subpolylinensoved from the sequence of route elements
(lines 7-10).

If the disappearing part of the subpolyline does not belorthé circular destination area, the checking
process should stop, i.echecked becomes equal tarue (lines 11-12). If the currently last subpolyline
does not belong to the last polylipe’l, the check process should also be stopped (lines 14-15).

When the last subpolylines are checked, the earliest aesklpositions on the last polyline are known.
The last route element is constructed (line 18) and appetudibe sequence of route elements (line 19).

A.2 Detection of the Start of the Route

In most cases during route recording, the first GPS positiamot be mapped to polylines correctly at
once. FunctiomyetStart Values (described in Section 4) analyses the stream of GPS poiies.fuinction
collects all the candidate polylines for each GPS pointl angioint with one candidate polyline is found.
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Algorithm A.1 Approximation of the End of the Route (functigmoceedEnjl

Require: INPUT:  cState = ((pPl, pDst, pDir),lI”, RE), cDst € R
OUTPUT: RE

1: let RE = ((sply,diry), ..., (sply, diry)), wherespl; = (pl;, 15, 1)
20 E «— ¢Dst; S — IF
3: checked « false
4: while RFE is not emptyA not checked do
5. ((pl,17,17),dir) < getLast(RE)
6: if pl = pPlthen
7: if dir=—1A((E<I" <1

V(IF < E <17 NinsideCircle(I™, E))

V(" <17 < E NinsideCircle(I™,17))) then
8: S « I RE « removelLast RE)
9: elseifdir =1 A ((I" <17 < E)

V(" < E <17 NinsideCircle(E, 1))
V(E < 1" <17 AinsideCircle(I”,17))) then

10: S « I"; RE « removelLast RE)
11: else
12: checked «— true
13: end if
14: else
15: checked «— true
16: endif
17: end while

18: (spl, dir) <« formSubPoly(pPl, S, E,0)
19: RE —append RE, (spl, dir))
20: return RE

Functionbacktrack (see Algorithm A.2) determines the start of the route, logkback through the candi-
date polylines for each GPS point, and it constructs roeaehts for the unmapped GPS points if possible.
Functionbacktrack takes a sequence of candidate sdisst together with a list of unmapped GPS points
undG as its arguments. The function returns the current stateecdiligorithmeState.

When the function receives the list of candidatdsst, the last set in this sequence (line 1) contains
only one element. The last set has only one candidate pelyectause it is the set for the first correctly
mapped GPS point. The candidates are analyzed from theekast the first. Thus, the sequence of route
elements is constructed in reverse order; this is changie &nd of the algorithm.

The function uses temporary variables to store values. &h€@:d contains candidate polylines with
distances from the start of the polyline to the projectiond@articular GPS point. VariableP! stores the
polyline of the route element that is being constructed. tNéxand!™ are the start and end of the current
subpolyline (route element) on the polyline, amflir is the direction on the polyline in the current route
element. Variablehecked indicates whether the analysis of the candidates shouldhisbéid. Ifchecked is
false, the analysis should continue; otherwise, it should beggdpThroughout the algorithm, the elements
of the sequencendG are removed. This sequence is used for determining the bgsrto The currently
last element represents the point for which candidatesuarerdly analyzed.

For each GPS point, the set of candidate polylines is takan the sequenceList (line 4). If there
exists a candidatépl, [) such thaipl equalspPI (line 5) then the movement direction is checked (line 6).
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Algorithm A.2 Determination of the Start of the Route (functidwxktrack)
Require: INPUT:  cList = (Candy, ..., Cand,), whereCand; = {(pl,1)|(pl,1) € PL x R},
undG = (g1,...,gn), Whereg; € R?
OUTPUT: cState = ((pPl, pDst, pDir),1", RE)
1: Cand = {(pPl,1")} « getLast(cList); cList « removelasicList)
2: 17« I"; pDir « 0; RE « nil; checked « false; (undG « removelLast undG))
3: while cList is not emptyA not checked do

4:  Cand —getlLast(cList); cList «+ removelLast(cList)

5. if 3(pl,1) € Cand such thapl = pPl then

6: dir « defineDirection(I™,1); (undG « removeLastundG))
7 if pDir = 0then

8: pDir — dir;l7 — 1

9: else if pDir = dir then

10: 171

11: else

12: ((pPl, 17, pDir),1”, RE) «+ newSubSamePoly(((pPl,17, pDir),1", RE),1)
13: end if

14: else

15: polys «— {(pl,1)|pl € PL,l € R,3c € C((pPL,1y) € ¢ A (pl,1) € ¢ A pPl # plA
3901 € C(C Z£c1 N\ (ppl,lg) e€c1 N\ |l1 — l_|| > |12 — l_||/\
((pDir = 1Al —IT< DAl — 1" < D)V
(pDir = —1AlL 17> —DAly—17 > —D))))}

16: if I(ply,1},) € polys A I(ply, k) € Cand A B(ply,1,) € polys A I(ply,1y) € Cand then
17: ((pPlL,17, pDir),I", RE) « newSubOtherPoly(((pPl,1”,pDir),1", RE), pl},)

18: (undG «— removeLastundG))

19: else ifB(plk, lx) € Cand((plg,1},) € polys) then

20: checked <+ true

21: end if

22 endif

23: end while

24: (spl, dir) < formSubPoly(pPl,1",17, pDir); RE « append(RE, (spl, dir))
25: cState — updateState(RE)
26: return cState

1. If the movement direction was unknown up till now, the euatrdirection is stored (lines 7-8).

2. If the direction is the same as until the previous poirg,dtirrent point is stored (lines 9—-10) for the
end distance of the subpolyline.

3. Ifthe direction is the opposite of the previous directiamew route element is constructed (lines 11—
12).

If the same polyline is not among the candidates for the @dai GPS point (line 14), all the polylines
that intersect with the current polyline at the nearest ection are found (line 15). Temporary variable
polys stores these intersecting polylines with their distanoas fthe start of the polyline to the connection.
The connection is ahead no further than distaboer behind on the polyling PI.

If there is only one candidate polyline Wland that is also ipolys (line 16), this polyline is chosen and
a new subpolyline is constructed (line 17). If there is nodidate polyline inCand that is also inpolys,
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the value ofchecked becomesrue (lines 19-20), and the analysis of the candidates is stoppduere is
more than one candidate that is alsgirdys, the algorithm does not select any of them, and continues the
analysis of the candidates.

When the analysis of the candidates is finished, the lase releiment is constructed and added to the
sequence of route elements (line 24). As mentioned eafiefunction analyses the unmapped GPS points
from the last one to the first one and constructs route elesviemeverse order and with opposite directions.

Thus, functionupdateState (see Algorithm A.3), which reverses a sequence of route e is ap-
plied. The function takes a sequence of route elemBitS as its input and returns the current staf2ate
of the algorithm. Initially, the functionipdateState takes the first element from the sequeitle* (line 1).

Algorithm A.3 Update the Current State of the Algorithm (functiepdateState)
Require: INPUT:  RE* = ((sply,dir1), ..., (sply,diry,))
OUTPUT: cState = ((pPl, pDst, pDir),1", RE)
((pPl,ls,1.),dir) —head (RE*), RE* «—tail (RE™)
if dir =1 then
pDst «— ;17 — l.; pDir — —1
else
pDst «— ;15 — Ig; pDir — 1
end if
RE < nil
while RE* is not emptydo
(spl,dir) < getLast (RE*); RE* «— removelLast(RE™)
RE — append(RE, (spl, (—1) dir))
: end while
. return cState

R
N P O

This element should be the last element in the sequence t&# edements. But it cannot be constructed
because some further GPS points, yet to be analyzed, maygddhe same subpolyline. Thus, this ele-
ment represents the current state of the algorithm (lin€3. 2All other elements are constructed with the
opposite direction and in the opposite order (lines 8-11).

A.3 Filling of Gaps

For various reasons, gaps may occur in a GPS stream or indftal depresentation of a road network.
The route finding algorithm (see Algorithm 4.12 in Sectiora$p needs gap filling when the current GPS
point cannot be mapped correctly based on information gii@vious, correctly mapped GPS points. This
happens when the current point cannot be mapped to themmiylithe previous GPS point and either more
than one or no candidate polylines exist that intersect thighpolyline of the previous point.

Function FillGap (see Algorithm A.4) takes the current stat€fate of the main algorithnmyfindRoute
(see Algorithm 4.12), the GPS poiptthat could not be mapped correctly using algorithaiyld (see
Algorithm 4.3), and the GPS streaghas arguments. The function returns a new state for the #igoand
the GPS stream without the points that are used in the gayfilli

At the beginning of the gap filling (lines 1-6), the algoritlsearches for a GPS point that can be mapped
correctly to the polyline, i.e., has only one candidate [pody A temporary variable&and is used for two-
tuples of candidate polylines together with distances fthenstart of the polyline to the projection on the
polyline. Cand is calculated by functiomolyCand (see Algorithm 4.2). A temporary variablewdG is
used to collect points that have either more than one or ndidate polyline.
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Algorithm A.4 Filling the GPS Gap (functio#’illGap)

Require: INPUT:  cState = ((pPl,pDst,pDir),l", RE),g € R?,G = (g1,...,gn) Whereg; € R?

OUTPUT: cState, G

1: Cand < polyCand(g); undG «+ nil

2: while ((V(pl,1) € Cand 3(pl',1") € Cand(pl # pl')) V Cand is empty) A G is not emptydo
3 undG «— appendundG, g)

4. g+« headG);G — tail(G)

5. Cand «— polyCand(g)

6: end while

7. if V(pl, 1) € Cand B(pl',1') € Cand(pl # pl’) then

8: if pl = pPl then

9: dir «— defineDirection(pDst,,0)

10: if dir = pDir then

11: pDst — |

12: else

13: cState «— newSubSamePoly(cState, 1)

14: end if

15: else

16: gpsLength — findGpsLength(undG)

17: Path «— findPath(pPl, pDst, pl, 1, gpsLength)

18: (pPl, pC) «— head Path); Path «— tail (Path)

19: dir < defineDirection(pDst,[*,0), where(pl*,1*) € pC, pl* = pPl

20: if dir = pDir V pDir = 0then

21: (spl, dir) < formSubPoly(pPl,1",1* dir); RE « append RE, (spl, dir))
22: else

23: (spl, dir) < formSubPoly(pPl, 1", pDst, pDir); RE « append RE, (spl, dir))
24: (spl, dir) «— formSubPoly(pPl, pDst,l*, dir); RE — append RE, (spl, dir))
25: end if

26: while Path is not emptydo

27 (cPl,cC) < head Path); Path « tail (Path)

28: (spl, dir) <« formSubPoly(cPl,ls,l.,0),(cPl,ls) € pC, (cPl,l.) € cC

29: RE — append RE, (spl, dir))

30: pC +— cC

3L end while

32 dir < defineDirection(l*,1,0), where(pl*,1*) € cC, pl* = pl

33: cState = ((pPl,pDst,pDir);1", RE) « ((pl,1,dir),l*, RE)

34:  endif

35: else

36: EXIT

37: end if

38: return cState
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First of all, the candidates for the input GPS pgjrdre found, and a seindG is empty (line 1). Then
the GPS points are analyzed until a point with one candidalgipe is found, or until the GPS stream
becomes empty (lines 2—6). Points with no unique candidali@ipe are added tandG (line 3). If the
GPS stream becomes empty, but no point with a unique caediddyline is found, the algorithm exits the
whole route finding algorithm (lines 35-36).

When a GPS point with one candidate polyliplds found (line 7), candidatépl, () is checked. If this
polyline is the same as the polyline for the previous, cdalygonapped point, i.e., it is the same polyline as
pPlin cState (line 8) then the movement direction from the previous pasipDst to [ is also calculated
(line 9). If the direction is the same, only the positipDst in the current state is modified (lines 10-11). If
the direction is the opposite, a new route element is coctgttiubased on statgtate, and the construction
of a new subpolyline is started (lines 12—13).

If the candidate polyling! is different from polylinep Pl of the previous, correctly mapped position, the
path from the previous projection to the current projeci®iound. Before that, lengthpsLength of the
stream of the undefined GPS pointsundG is calculated. FunctiofindGpsLength (see Algorithm A.5)
takes a sequence of GPS poitt&ind returns the length of the polyline constructed fromestré&’. While
calculating the distance between two neighboring poihtsatgorithm checks that this distance is no greater
than D*, which is the maximum allowed distance between points. dfdistance is greater than this, the
algorithm exits the route finding algorithm. The length of tBPS stream is used to decide whether the

Algorithm A.5 Finding GPS Length (functiofind GpsLength)
Require: INPUT: G = (g1,...,9n),n > 2 Whereg; € R?
OUTPUT: length € R
length «— 0
g1 <—headG); G «tail (G)
while G is not emptydo
g2 —head G); G — tail (G)
if |g1g2| > D* then
EXIT
end if
length « length + |g19s|
g1 < 92
. end while
. return length

Tl
[N =)

path found can be consistent with the GPS stream in termangtielmore about paths in Section A.4).
The information gap starts at distaneBst on polyline pPl and ends at distandeon polylinepl. Function
findPath finds the path that fills this gap (line 17).

The returned pattPath represents the sequence of nodes to pass through to movéheastart of the
gap to the end of the gaf?ath = (nodes, ..., node,,), wherenode; = (pl;,¢;) € PLx C,1 <i<m
represents the part of the path from connectipn to connectiore; on polylinepl;.

The information about the start and end of the gap is alretahed in variablePl, pDst, pl, andl.
Then the elements iath represent the path from polyling”! to polyline pl. The current stateState
captures the previously constructed subpolyline on puyliPl: from distance” to distancepDst. The
first element inPath indicates whether this subpolyline should be extendedddtbstance at connection
c1, or whether there should be two subpolylines . The first element of the path is considered as
(pPl, pC), and is removed from the sequence of path nodes (line 18)nibvement direction frompDst
to connectiompC' on pPl is defined in line 19, wheré& is the distance from the start of polylineg’! to
connectiorpC' along the polyline.
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If the movement direction is the same as it was until posid?st (or the previous direction was
unknown), there is only one subpolyline froin to i* on pPI (lines 20-21), and one route element is
constructed. If the movement direction is the oppositeetisdould be two subpolylines grPl, one from
I" to pDst, and another frompDst to I* (at connectiorpC) (lines 22—24).

Now the remaining nodes of the path are analyzed (lines 2633t currently first node in the path is
taken and removed from the path (line 27). The node condigislgline ¢P! and connectiorC (line 27).
The subpolyline for a new route element is on polyliF from connectionpC to connectioreC (line 28).
This route element is appended &&. The current connection then becomes the previous coonefcir
the next node (line 30).

When all the nodes of the path have been analyzed, the gafeddll the way to the polyline! on
which the end of the gap is. The movement directionfrom the final connection (distan¢®) to the end of
the gapl is defined (line 32). The current state to return is the pogylil, the start for the new subpolyline
I*, the current end for the new subpolylihghe directiondir, and all the route elemenf3E (line 33).

A.4 Calculating the Shortest Path Between Two Projections

As part of filling information gaps, it is necessary to find shpasetween two projections located on different
polylines.

Function findPath takes five arguments, namely two polylines, two distanced,the maximum al-
lowed length for the path. PolylingP! with distancepDst is the start of the gap. PolylineP! with
distancecDst is the end of the gap. ArgumenpsLength is the maximum allowed length for the path. The
function returns a patfPath that is the shortest path from positipvst on polyline p Pl to positioncDst
on polyline cPI.

Throughout the algorithm, temporary patRath and Path, represent a sequence of nodes to pass
through from the required positionPath = (nodey,...,nodey,), wherenode, is the position where
all analyzed paths start, i.enpdey = (pPl, pDst), andnode; = (pl;,¢;) € PLx C,1 < i < m s
a polyline and one of its connections. The last element offthed pathPathy contains an artificial
nodenode,, = (cPl,{(cPl, cDst)}) that represents the end of the information gap. The first badast
elements are removed from the path before returning the(paé34). The polyline of each node is also
contained in the previous connection, i¥node; = (pl;,¢;),1 < i < m,3(pli,l;) € ¢;, (pli, 1)) € ¢i—1.

For example, assuming the pattpl1, c¢1), (pl2, c2), (pl3, c3)) is returned by functiorfindPath, the
necessary subpolylines are constructed using nodes tbdilyap: frompDst to ¢; along polylinepPl
(pPl = ply), from ¢; to co alongpls, from ¢, to c3 alongpls (c3 is a connection with polyline Pl), and
from c3 to cDst alongcPl.

The algorithm also uses other temporary variables. AisetCon contains all the connections that
are already analyzed while constructing paths. Acgetis contains connections of a particular polyline.
A sequencePaths contains paths in ascending order of their lengths. Patitheis defined as follows:
|Path| = Y5 |li — Ui] + |[pDst — 11|, where(pPl,11) € ¢1, (cPl, Path = (node, . . ., node,), node; =
(pli,ci),Vi, 1<i<m (El(plulz) € ¢ ((plz,l;) S Ci—l))- Thus, Paths = (Pathl,. . .,Pathn), where
| Path;| < |Pathii1|,1 <i <n.

At the beginning of functiorfindPath, the shortest available pathath is constructed from the first
node that should be in the path, i.eadeq that represents the start of the gap (line 2). Then all theeon
tions on polylinep Pl are found (line 3). The connections represent all possibleswo reach other polylines
from the start of the gap. For each of the connections, a paitristructed (lines 4—7). A node with polyline
pPl and a particular connectian is created (line 5) and added Ruthg by function modifyPaths (line 6).
FunctionmodifyPaths (see Algorithm A.7) takes the sequence of patlaghs, the currently analyzed path
Pathgy, a new nodenode, and the maximum allowed path lengjpsLength as arguments. A new path is
constructed by adding a new node to the currently analyzéd(jwae 2). If the length of the path does not
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Algorithm A.6 Finding the Shortest Path (functigindPath)

Require: INPUT:  pPl, pDst, cPl, cDst, gpsLength, wherepPl, cPl € PL,pPl # cPI,

pDst, cDst, gpsLength € R
OUTPUT: Pathy = (nodey, ..., node,,), wherenode; = (pl;,c;) € PLx C,1<i<m
usedCon < (); Path < nil; Paths < nil

2: nodeg < (pPl, pDst); Patho <—append node,)
3: conns «— {c1,...,cn}, Wheree; € CA (Ve; € conns 3(pl, 1) € ¢;(pl = pPl))A

10:

1

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

© N2k

=

(A € C((pPLI") € ¢ AN ¢ conns))
for all ¢; € conns do
node «— (pPl, c;),
Paths — modifyPaths(Paths, Pathg, node, gpsLength,)
end for
found «— false
while not found A Paths not emptydo
Pathy <—head( Paths); Paths « tail (Paths)
(pl, c) < getLast( Pathy)
if (c¢Pl, cDst) € cthen
found « true
else
if ¢ ¢ usedCon then
if 3(pl', ") € c(pl’ = cPl) then
node «— (cPl,{(cPl, cDst)})
Paths «<— modifyPaths(Paths, Pathg, node, gpsLength)
end if
usedCon «—add(usedCon, c)
forall (pl’,l") € ¢(pl’ # pl) do
conns «— {c1,...,cn}, wheree; € CA (Ve; € conns I(pl*,1*) € ¢;(pl* = pl'))
AP € C((pl',1") € cx Ay, & conns A ¢ & usedCon))
for all ¢; € conns do
node «— (pl', ¢;)
Paths «— modifyPaths(Paths, Pathg, node, gpsLength,)
end for
end for
end if
end if
end while
if not found then
EXIT
end if
Pathg < tail (Pathg); Pathy < removeLast Path)
return Pathy

exceed the maximum allowed length, the path is insertedti/@sequence of all paths (lines 3-5) based
on the rules discussed in the previous paragraph. Thuscompetitive paths are pruned. A constahis
introduced to allow a variation of path lengths. The funetieturns the sequence of paths.

Then functionfindPath searches for the shortest path to the end of the gap repeedey(tcPl, { (cPl, cDst)}).

This is a greedy algorithm that chooses the currently skibp&th to search for the end of the gap. Tempo-
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Algorithm A.7 Modification of Paths (functiomodifyPaths)
Require: INPUT:  Paths, Pathg, node, gpsLength
OUTPUT: Paths
Path +— Pathyg
Path «— append(Path, node)
if |Path| < F gpsLength then
Paths < insert(Paths, Path)
end if
return Paths

rary variablefound represents the state for the search. At the beginninddtds (line 8) as the path has yet

to be found. Variablgound becomesrue when the node of the gap end is found at the end of the currently
analyzed path. During the search, the first (current shipppash is taken and removed from the sequence
of paths (line 10). The last node of the path is analyzed (lite If the connection in the last node is the
required end of the gagyund becomesrue and the search stops (lines 12-13).

If the current connection is not the end of the gap, it shoeldtecked that it is not in the set of analyzed
connections (line 15). If it is not in this set, the possiblays from this connection to other polylines are
detected.

If the connection is not the end of the gap, but relates to ¢ggired polylinecP!, the current path
is duplicated. The end node is created and added to the pagls 16—18). The path is inserted into the
sequence of paths based on the length (line 18) by funetiafify Paths.

The current connection is added to the set of used connedlioe 20). Connections are detected on all
polylinespl’ that intersect at the current connection, except for theeatipolylinepl. A connection is not
considered if it is already insedCon. New paths are created by adding a new connection to thecaigsi,
currently analyzed path (lines 23-26).
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