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Mindaugas Pelanis, Simonas Šaltenis, and Christian S. Jensen

��	�� ��� ��������
! #"$���%�&
��('
July 2004, a TIMECENTER Technical Report

)
IME * ENTER

� �+�,��� �-�/.-�� ��%�

Aalborg University, Denmark
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Abstract

With the proliferation of wireless communications and geo-positioning, e-services are envisioned
that exploit the positions of a set of continuously moving users to provide context-aware functionality
to each individual user. Because advances in disk capacities continue to outperform Moore’s Law, it
becomes increasingly feasible to store on-line all the position information obtained from the moving
e-service users. With the much slower advances in I/O speeds and many concurrent users, indexing
techniques are of essence in this scenario.

Past indexing techniques capture the position of an object up until the time of the most recent position
sample, or they represent an object’s position as a constant or linear function of time and capture the
position from the current time and into the (near) future. This paper offers an indexing technique capable
of capturing the positions of moving objects at all points in time. The index substantially extends partial
persistence techniques, which support transaction time, to support valid time for monitoring applications.
The performance of a query is independent of the number of past position samples stored for an object.
No existing indices exist with these characteristics.

1 Introduction

Continued advances in hardware technologies combine to provide the enabling foundation for mobile e-
services. These advances include the miniaturization and the general improvement in performance of elec-
tronics, and it includes the generally improved performance/price ratio. Perhaps most importantly, wireless
communications and positioning technologies such as GPS are finding increasingly widespread use. Po-
sitioning is important for mobile e-services because these must be context aware, and the positions of the
service users are an important aspect of context.

These developments pave the way to a range of qualitatively new types of e-services, which either make
little sense or are of limited interest in the traditional context of fixed-location, desktop-based computing.
Such services encompass traffic coordination and management, tourist services, safety-related services, and
location-based games that merge virtual and physical spaces.

In these e-services, moving objects disclose their positional information (position, speed, velocity, etc.)
to the services that in turn use this and other information to provide specific functionality. Our focus is
on location-enabled services that rely on access to the positions of moving objects. Due to the volumes of
data, the data must be assumed to be disk resident; and to obtain adequate query performance, some form
of indexing must be employed.

The aim of indexing is to make it possible for multiple users to concurrently and efficiently retrieve
desired data from very large databases. Indexing techniques are becoming increasingly important because
rapidly increasing volumes of data may be stored, while the improvement in the rate of transfer of data
between disk and main memory cannot keep pace.

In this paper, we propose what we believe is the first single index that is able to accurately capture
the past, present, and (near) future positions of moving objects. Positions are obtained via sampling. The
position of an object in-between samples is computed via linear interpolation, and the position since the last
sample is given by a linear function.

Previous proposals for indexing moving objects either support only the past positions, up until the most
recent position sample (e.g., [5, 12, 16, 18, 22, 23, 30]), or they support only the positions from the current
time and into the future (e.g., [1, 2, 14, 21, 24, 25, 26, 32, 31]). No index combines these capabilities,
with the exception of one recent proposal that addresses approximate query answering [29]. Further, simply
using two existing indices, one of each type, does not solve the general indexing problem: for any object,
its position for times in-between the time of the most recent sample and the current time cannot be indexed
readily with existing techniques. In terms of Figure 1, which shows the trajectories of two objects moving
in one-dimensional space, the first type of index supports the solid parts, and the second type supports the
dashed parts—no index supports all three parts (solid, dash-dotted, dashed).
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In developing such an index, we apply a substantially extended notion of partial persistence to the TPR-
tree [25]. The TPR-tree supports the querying of the current and anticipated future positions of moving
objects, the positions being represented by linear functions. The resulting index, the R

�����

-tree (“Past,
Present, and Future”), captures and supports the efficient querying of the past positions as well. Two key
innovations make this possible.

The first is so-called “optimized” and “dou-
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Figure 1: Querying the Positions of Moving Objects

ble” time-parameterized bounding rectangles,
where the latter come in two variants. These
are novel kinds of bounding rectangles designed
specifically for the partial persistence setting,
where the conventional bounding rectangles
of the TPR-tree are inapplicable.

Second, as the R
�����

-tree captures valid time
and partial persistence supports transaction time,
novel techniques have been developed that al-
low for the correction of the past in the partial
persistence setting. Because position samples
arrive in time order, it is necessary only to be
able to correct the part of the current position prediction that covers the period since when the last sam-
ple was received. However, even this is quite challenging in the partial persistence framework, due to the
occurrence of so-called time splits.

All structures and algorithms presented have been implemented for objects moving in one-, two- and
three-dimensional space. When explaining the underlying concepts, it is often beneficial to consider only
either one- or two-dimensional space, and we most often use two-dimensional terminology.

Performance experiments with the paper’s proposals study the properties of the different kinds of bound-
ing rectangles, consider update performance, and compare the R

�����

-tree with the TPR-tree.
While we have chosen moving objects as the concrete motivation for this work, it should be noted that

positional information from moving objects is simply a specific instance of the more general sensor data
management problem, where sensors sample a continuous process. The samples we receive are (position,
velocity) pairs for objects moving continuously in from one- to three-dimensional space. We thus expect the
indexing technique to be applicable more generally, to a broad range of sensor data management settings.

The next section describes functionality of the proposed indexing technique. In Section 3, we then
consider related work, covering the two classes of existing indices and describing in more detail the TPR-
tree. Then follows the section that describes structure of the R

�����

-tree and the algorithms that maintain
the index structure under updates and allow querying it. Section 6 explores performance-related properties
of the indexing technique, and Section 7 summarizes and points to research directions. An appendix gives
some background information about fundamental design choices underlying the paper’s proposal.

2 Index Functionality

We proceed to briefly describe the general setting for the indexing problem addressed and then describe the
data and queries accommodated by the index.

2.1 Problem Setting

The problem setting aims to concisely capture the general context of the indexing problem. At the core of
the problem setting is a set of so-called moving objects that are capable of continuous movement. These
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objects move in one-, two-, or three dimensional space.
Next, a set of e-services, with an associated database, are available to the moving objects. The moving

objects communicate wirelessly with the services. Further, the moving objects report their movement infor-
mation, including, and most prominently, their current position and velocity, to the services. This capability
is achieved by means of one of a range of geo-location technologies. The services use the database for
recording the past, current, and anticipated future movement of each object.

As we are effectively sampling continuous processes, the records of the moving objects’ locations are
inherently imprecise. Different services require movement information with different minimum precisions
for them to work. For example, a weather information service requires user positions with very low pre-
cision, while an advanced location-based game, where the participants interact with geo-located, virtual
objects, requires high precision. Stated in general terms, the highest precision that may be obtained is that
offered by the geo-location technology used.

We assume that a required precision is given by the services under consideration. A moving object
is aware of the movement information kept for it in the database. An object then issues an update to the
database when its actual position deviates by more than the required precision from the position inferred
from the positional information in the database.

The workload experienced by the database then consists of a sequence of updates intermixed with
queries. The amount of updates is dependent on factors such as the number of objects, the required precision,
the agility of the objects, and the service’s representation of the objects’ movements.

2.2 Data and Queries

The representations used for the moving-object positions and the frequencies of updates needed to maintain
a reasonable precision of the moving-object positions are closely related.

Studies of real positional information obtained from GPS receivers installed in cars show that represent-
ing positions as linear functions of time reduces the numbers of updates needed to maintain a reasonable
precision by as much as a factor of three in comparison to using constant functions [10, 11]. Linear functions
are thus much better than constant functions.

The use of more complex approximations seems less appropriate for indexing purposes. The infor-
mation needed to derive linear approximations is readily available, which may not be the case for, e.g.,
higher-order functions. Also the use of complex approximations, which are less compact than linear ones,
reduces fanout when stored as key values in index nodes.

Thus, because it is important to reduce the number of updates needed, because linear functions are
easy to determine, and because linear functions are still simple and compact and incur low computational
overhead, we represent the current and (near) future positions of objects as linear functions of time and
represent past positions by linear interpolation between consecutive position samples.

When, at time
���

, an object moving in � -dimensional space communicates with the database to update
its positional information, it reports its current position ( ���� � �	��
 ����
�� � ������������� ����� � �	��� ) and its current
velocity vector ( ���� � ����
 ����
�� � ������������� ����� � ����� ). If the position of this object is queried at some later
time

�
, but before the next update, the database computes the expected position of the object using linear

extrapolation: ���� � � 
 ���� � �	��! ��"� � �	�$# � �&%'� ��� . Note that
�

can be a point that is larger than the current time.
In this way, tentative near-future positions of objects can be queried.

If all positional information reported by an object is recorded in the database, the past movement of the
object can be reconstructed. Observe though, that in order to achieve a continuous approximation of the past
positions of an object, on each update, the velocity vector recorded in the previous update will most likely
have to be updated. More specifically, if the previous update occurred at time

�)( �
and the new update occurs

at time
���

, the previous velocity vector ��"� � ( � � should be set to � ���� ��� � % ��*� � ( � ����+ � �,��%-� ( � � , where ���� ��� � is
the just-recorded position of the object.
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Figure 2 shows the trajectory of an object moving in one-dimensional space. This could be a car with
its position being the distance traveled along a highway. Here ��� ��������� ��� are update times, and CT is the
current time. The figure demonstrates how a polyline approximating the past trajectory of an object is
constructed by modifying the reported velocity vector of an object when the next update is processed.
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Figure 2: Trajectory of a One-Dimensional Moving Object

Note also that the figure is consistent with the update policy adopted—the object updates its position,
when its actual position deviates by some threshold from the position predicted by the database (shown in
dashed lines). Updates are more frequent when the object is changing its velocity vector. For example,
deceleration of the object caused the updates ��� and ��� .

Using the trajectories of two one-dimensional moving objects, Figure 1 exemplifies the two fundamental
types of queries we aim to support. Let � be a � -dimensional rectangle and

�
	
and

���
(
��	�
 ���

) be two time
points. A window query � 
 � � � � 	 � � � � specifies the ( � ! � )-dimensional rectangle obtained by adding the
time extent given by

��	
and

���
to � (see � � in Figure 1). A timeslice query ( � � and � � ) is a special case

of a window query when
� 	 
 � �

. Notice that
� 	

and
� �

can in principle be any past, present, or future time
points. In this paper we focus on timeslice queries.

3 Related Work

We first describe existing indices for indexing the positions of moving objects from some past time until the
time of the most recent position sample. We then consider techniques that index the present and anticipated
future positions of moving objects. We end by describing the TPR-tree in more detail.

3.1 Past Position Indices

Straightforward use of the R-tree for indexing the evolutions of moving objects has been suggested by
several authors. The typical, generic situation is that the evolution of an object is given by a polyline, i.e.,
a sequence of connected line segments. The R-tree is easily capable of indexing line segments, but there
also seems to be consensus that the R-tree is not well suited for this problem (e.g., [16, 17, 18]). Pfoser et
al. [22] suggest two variations of the R-tree for polyline indexing: TB-tree and STR-tree. Both attempt, to
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varying degrees, to group together segments from the same polyline, the goal being to answer queries that
retrieve object evolutions consisting of multiple segments. They index positions for an object only up to the
time of the most recent sample.

Porkaew et al. [23] suggest to allow one or more line segments of a polyline to extend into the future.
These segments then represent predictions. They also suggest to use a standard R-tree for indexing of the
segments. When predictions need to be updated, new segments are inserted into the index, which implies
that multiple segments may exist in the index that specify the position of an object at the same time point.
It is suggested that this situation be dealt with in a separate post-processing step. In our proposal, recorded
predictions are adjusted to be consistent when actual position samples are received so that at any time a
single, accurate position is indexed for each object.

The timeslice performance of an R-tree on line segments decreases as the number of updates grows.
The R-tree variant proposed by Cai and Revesz [7] has this general problem. In our quite different proposal,
timeslice performance is unaffected by the number of updates.

Kumar et al. [18] apply partial persistence to the R-tree, the objective being to support the transaction-
time aspect of temporal data. Transaction time records the history of the current database state, which
changes only in discrete, step-wise constant fashion and does not involve prediction. As this is quite unlike
the continuous valid time aspect of moving objects considered here, the resulting index falls short in meeting
our needs. However, the R

�����

-tree builds on this work in that it applies partial persistence techniques to an
R-tree extension in order to solve a problem that is more challenging to partial persistence.

Two other works [12, 16] assume a static database of object evolutions and consider the partitioning of
these evolutions into smaller time intervals, the goal being to reduce dead space when the data is indexed
with the partially persistent R-tree. When the data set is dynamic as in our case, these solutions are not
applicable.

Tao and Papadias [30] index the same data with both a standard R-tree and a variant of the partially
persistent R-tree. The combined index is called the MV3R-tree. It is capable of indexing the past trajectory
data. To address similar problem, Chaka et al. [8] propose SETI—a two-level indexing structure which
separates indexing of spatial and temporal dimensions. Both SETI and MV3R-tree can index only the
positions of an object up until the time of the most recent sample, so the proposals do not solve the more
general problem considered here.

Song and Roussopoulos [27, 28] address the problem of tracking and recording positions of moving
objects using hashing. The space is subdivided into zones and their approach works at the granularity of
zones. Future queries are not supported, because velocities are not recorded.

3.2 Present/Future Position Indices

A number of approaches for indexing of the current and predicted future positions of moving points exist
that may be considered as candidates for extension to also index past positions. Tayeb et al. [32] use PMR-
Quadtrees, Kollios et al. [15, 20] employ the so-called dual data transformation, Agarwal et al. [1] use the
ideas of so-called kinetic data structures [3], and Chon et al. [9] use a space-time grid. While each of these
has its strong points, each one also exhibits limitations in relation to our objective of obtaining a practical
index that works for objects moving in one, two, and three dimensions.

Sun et al. [29] propose a method for approximate query answering based on multidimensional his-
tograms. In contrast to our proposal, no individual positions of objects are indexed. Instead, a histogram
representing the distribution of the current positions of moving objects is maintained in main memory. The
buckets of the histogram corresponding to the recent past are also kept in main memory for some time
before being migrated to disk. To answer future queries, instead of applying linear extrapolation using ve-
locity vectors (cf. Section 2.2), a stochastic method is used to predict the future based on the recent past.
The discussed approach, to our knowledge, the only proposal that combines indexing of the past, present,
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and future positions of moving objects in one data structure. However, it addresses a different problem than
the one considered in this paper.

Three proposals for indexing the current and the predicted future positions of objects build on the ideas
of the TPR-tree. Procopiuc et al. [24] propose the STAR-tree. This index seems to be best suited for
workloads with infrequent updates. With the objective of enabling efficient deletion of data that is no longer
valid, Šaltenis and Jensen [26] propose the R

��� �

-tree, which extends the TPR-tree to accommodate data
with so-called expiration times associated that indicate when the data is no longer considered valid. Tao
et al. [31] adopt assumptions about the query workload that differ slightly from those underlying the TPR-
tree. This leads to the use of a new measure when grouping objects into index tree nodes. Due to a number
of modifications, the algorithms of the proposed index, called the TPR

�

-tree, are more complex than the
algorithms of the TPR-tree. We have thus chosen to build on the TPR-tree, described next.

Finally, two recent proposals represent the current and future positions of moving objects using linear
functions and use the dual data transformation technique for indexing these. Both proposals assume that
each linear function is updated within a specified, global maximum duration of time. They also assume
a global maximum velocity for all objects. Patel et al. [21] index the points that result from the dual data
transformation by means of two quadtrees, each covering a part of the recent past. Updates apply to the most
recent quadtree. As time passes, the old quadtree becomes empty, and a new one is created. The proposal by
Jensen et al. [14] also partitions the recent past, but allows a number of so-called phases that are a multiple
of two. Each phase has an associated B-tree. Object positions are represented as one-dimensional points
using a transformation technique that involves a space-filling curve. Updates apply to the most recent phase.
As time passes, old phases become empty, and new phases emerge. It is unclear whether it is possible to
extend these approaches to solve the problem considered in this paper, and we have chosen to build on the
TPR-tree that does not rely on the same strict assumptions about the data.

3.3 The TPR-Tree

Based on the R
�

-tree, the TPR-tree indexes the current and future positions of objects that move in one, two,
or three dimensions. While the index employs the basic structure and algorithms of the R

�

-tree, the indexed
objects as well as the bounding rectangles in non-leaf entries are augmented with velocity vectors. This way,
bounding rectangles are time-parameterized—they can be computed for different time points. The speeds
of the edges of bounding rectangles are chosen so that the enclosed moving objects or rectangles remain
inside the rectangles at all future times. Section 5.2.2 provides more details on how bounding rectangles of
the TPR-tree are computed.

Figure 3 shows three moving points in one-dimensional space (i.e., � 
 � ) together with their one-
dimensional bounding rectangle (i.e., a bounding interval). The figure shows that answering a window
query in the TPR-tree involves the checking for intersection between an � � ! � � -dimensional rectangle and
a trapezoid—a query and a bounding rectangle.

In addition to the use of time parameterized bounding rectangles, the TPR-tree differs from the R
�

-tree
in how its insertion algorithms group points into nodes. The R

�

-tree aims to minimize the areas, overlaps,
and margins of bounding rectangles when objects are inserted into the index. To take into account the
temporal evolution of these properties, the TPR-tree uses their integrals over time. The area of the shaded
region in Figure 3 illustrates a time integral of the length of the bounding interval. This use of integrals in the
algorithms allows the index to systematically take the objects’ velocities as well as their current positions
into account when grouping them.

The bounding intervals in Figure 3 illustrate that bounding intervals generally are minimum only at
the time they are computed. At later times, a bounding interval is typically larger than the truly minimum
bounding interval. To be able to efficiently answer current-time and near-future queries, the TPR-tree algo-
rithms recompute bounding rectangles every time a tree node bounded by a rectangle is updated (compare
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bounding intervals at times
� � � and CT). Performance experiments show that this recomputation, which we

term “tightening,” is essential in order to achieve query performance that does not degrade with time [25].
Note also that tightening produces time-parameterized bounding rectangles (TPBRs) that are not bounding
prior to the current time.

4 Separate Indexing of the Past and Present/Future

This paper presents a single index that captures the positions of moving objects at all points in time and
supports timeslice queries for all points in time. Here, we briefly consider the desirability of possible
alternative designs that involve two separate indices: one for all past times, and one for the present and
future times.

As described in Section 3.2, several proposals for the latter type of indexing exist already (e.g., [1, 2,
14, 21, 24, 25, 26, 32, 31]) and can be reused. For the former type of indexing, we may consider using some
type of partially persistent data structure (PP-structure) or using some variant of the R-tree.

The use of a PP-structure is problematic because the history of the position of an object � can only the
recorded up until the time of the most recent update of the object,

��� ��� �
. Given a population

�
of moving

objects, a PP-structure therefore captures the positions of an entire population of moving objects only up
until the time of the most recent update of the least recently updated object, i.e., time

� ��� � 
	��

� ��� ��� ��� ���
��� ��� � .

This is so because insertions and deletions into a PP-structure must occur in chronological order, and
we cannot insert the last, open-ended segment of a trajectory into a PP-structure until the final geometry
of this segment is known, which happens only when it is logically deleted at the next update of the object.
Only at this time is it guaranteed that the correct velocity of the last segment can be set (recall Section 2.2).

Thus, all updates to the database after
� ��� �

must be stored in some other data structure that we may
term a near-past structure (NP-structure). This data structure can become arbitrary large, as arbitrary many
updates per each object can happen in-between

� ��� �
and the current time. Also, this data structure (or,

alternatively, a separate data structure) must provide the functionality of a priority queue on all update
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times stored in it. This is necessary to enable the migration of updates in chronological order from the
NP-structure to the PP-structure. Depending on the nature of the NP-structure, a separate index to support
the future queries may also be needed.

As an alternative to the use of a PP-structure, we may store all past trajectories up to the last update
of each object in an R-tree-type index (e.g., [22]). Such an index is built on line segments that make up
trajectories.

The last, open-ended parts of the trajectories (from the last update until the current time—recall Fig-
ure 2) could be stored in a modified TPR-tree or TPR-tree-type structure (normally, these indices only
capture positions from the current time and onwards, so modification is needed). The modified TPR-tree
must store insertion times in all entries. For a time-parameterized bounding rectangle (TPBR) in such a tree,
the insertion time is equal to the minimum of the insertion times of the bounded entries. As mentioned in the
previous section, “tightening” of TPBRs—an essential element of the TPR-tree’s algorithms—produces TP-
BRs that are not bounding prior to the current time. Thus, tightening cannot be performed in this modified
TPR-tree, reducing its querying and update performance.

As the time periods covered by the modified TPR-tree and the past R-tree index overlap, both have to
be queried to answer past queries. Distant-past queries do not incur any I/O operations on the TPR-tree, as
the search in the TPR-tree stops after examining the insertion times of the entries in the memory resident
root of the TPR-tree. Similarly, no I/Os are done on the past R-tree for queries after the most recent update.
Nevertheless, most of the near-past queries will incur I/O operations in both indices. A more significant
disadvantage of this approach, than that of querying two indices, is that the query performance of the R-tree
degrades as the amount of data in it increases. No performance guarantees similar to the ones given by
partial persistence can be provided for past queries.

5 Structure and Algorithms

This section presents the data structures and algorithms associated with the R
�����

-tree. As pointed out
earlier, we aim to capture and index the actual, real-world positions of the data objects across all of time.
In temporal database terms, we consider the valid time of the objects’ positions (although we do not allow
general updates).

We assume position samples for an object arrive in time order, and we predict the future movement of
the object by means of a linear function. When a new position sample arrives, we thus need to correct the
prediction that covers the period since when the last sample was received, and we need to re-predict the
future position. This limited need for corrections enables us to support valid time by an extended notion of
partial persistence.

Partial persistence transforms a linked data structure, termed an ephemeral structure, into a correspond-
ing data structure that retains and enables the querying of all past states (in the transaction-time sense) of
the data being indexed. The application of partial persistence to an existing indexing technique is not a
mechanical process, but involves non-trivial and significant design decisions.

5.1 Partial Persistence Framework

In explaining partial persistence, we will use terminology that applies to a generalization of R-trees known
as grow-post trees [19]. These are balanced trees that store all data entries in their leaf nodes and store
bounding predicates and pointers in non-leaf nodes. For example, the TPR-tree uses time-parameterized
rectangles as bounding predicates. Non-leaf nodes thus serve to direct search. The algorithms associated
with grow-post trees use three fundamental building blocks. ChooseSubtree takes an entry that can be
inserted into the tree and a tree node as arguments, and it determines the subtree rooted at that node in
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which the entry should be placed. Split handles over-full nodes, thus enabling the tree to grow. ComputeBP
computes a bounding predicate for a node.

When applied to a grow-post tree, partial persistence guarantees that the current and any previous state
of the data set can be queried as if it was stored in a separate, ephemeral tree with a fanout of at least
� , where � is a substantial fraction of

�
, which is the maximum number of entries in a data page in the

ephemeral structure. This means that by design, no matter how many past states are accumulated in a
partially persistent data structure, past timeslice queries will have a performance similar to the performance
of timeslice queries on the ephemeral data structure.

When applying partial persistence, the data and index entries in the ephemeral structure are extended
to include two additional fields: insertion time and deletion time. Thus, an entry contains a data item or a
bounding predicate, which are managed by the ephemeral algorithms, and an interval timestamp, which is
managed specially. The timestamps record the times when the corresponding ephemeral entry was inserted
and logically deleted.

An entry is alive from its insertion time
Insert
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D

Delete
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underflow

OverflowInvariants OK
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Merge two live nodes

Invariants OK

A

Strong version
overflow

2

Key split live node

Time split

Time split sibling

Figure 4: Algorithm AssureInvariants

to its deletion time, upon which it becomes
dead. Nodes are also categorized as being ei-
ther alive or dead. In an entry of an alive node,
the special deletion time � denotes that the
entry is alive. In a dead node, which can be
produced by a so-called time split, the dele-
tion time � indicates that the entry was alive
when the node was time split.

The key property of a partially persistent
index is that for each moment in time and for
each non-root node, the number of alive en-
tries is either zero or at least � , where

� 

� # � and where

�
is the node capacity and

�
is some constant. This property is called the
weak version condition, and breaking it causes
a weak version underflow. This property guar-
antees that the alive objects at a given time are
clustered into a small number of nodes, which
makes querying efficient.

The weak version condition is one of two
invariants maintained by the update algorithms.
When an insertion or a deletion is performed
at time

�
, the target leaf node is located first.

The algorithms of the ephemeral structure are
applied while considering only the entries alive
at time

�
. Having located the target leaf node,

an insertion operation adds a data entry with
timestamp � � � � �

to that node. The deletion
operation just sets the end-time of an alive data
entry to

�
. Before writing the node to disk, algorithm AssureInvariants, sketched in Figure 4, ensures that

the invariants of partial persistence are maintained.
If the node contains no less than � alive entries and no more than

�
entries, no invariants are broken,

and the node can be written to disk. However, if the bounding predicate of the node is changed, this predi-
cate must be updated in the appropriate entry in the parent node. The timestamp of the parent entry is not
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changed. Note that the node may have a mix of dead and alive entries, denoted by the letters “AD” in Fig-
ure 4, but the ephemeral ComputeBP considers only the spatial coordinates of the entries—the timestamps
function solely to disregard those entries that are dead inside the time interval of the live parent entry. Such
entries may occur if the parent node was time split during the life time of the child node, thus producing
two parent entries, in two parent nodes, pointing to the same child, but having disjoint time intervals.

If the node already contains
�

entries, a node overflow occurs. Node overflow as well as weak version
underflow are handled by a time split (also called a version split [4, 18]). When a node � is time split at
time

�
, all entries from � alive at

�
are copied to a new node � , and their timestamps are set to � � � � �

. Node� is considered dead after time
�
. This is recorded by setting the deletion time of � ’s parent entry to

�
. This

logical deletion of the parent entry is denoted by the letter “D” in the figure. Note that node � is not written
to disk and that its bounding rectangle in the parent entry is not changed.

The new node � produced by the time split may be almost full or almost empty. If so, a few subsequent
inserts or deletes would trigger a new time split, which in the worst case will result in a space cost of � � � �
nodes per operation. To avoid this phenomenon, the number of alive entries in a newly created node must be
between � !�� and

� % �
, where

�
is a predetermined constant. This is the strong version condition. If a time

split leads to less than � !�� entries in a node, then a strong version underflow occurs, and a newly created
node has to be merged with another node of alive entries, which is produced by applying a time split to a live
sibling. To choose this sibling, the bounding predicate of the entries in � is computed, and ChooseSubtree
is used to identify that live sibling of � that is best for the insertion of this bounding predicate.

If, after merging or the initial time split, the node � satisfies all invariants, its bounding predicate is
computed, and a new entry with this predicate and timestamp � � � � �

is inserted in a parent (letter “A” in the
figure symbolizes that all bounded entries are alive).

If, after merging or the initial time split, there is more than
� % �

entries in a node, a strong version
overflow occurs, and a key split of node � is performed. In a key split, the entries are split according to
the ephemeral node splitting algorithm. Two new live entries containing the bounding predicates of the two
new nodes are inserted into the parent node, symbolized by the letters “AA” in Figure 4.

As Figure 4 shows, running AssureInvariants on a leaf node may result in changed or additional entries
in the parent node. More specifically, a live parent entry of a leaf node may get modified (exit 1, Figure 4)
or up to two live entries in a parent node may be logically deleted and up to two new live entries may be
added (exits 2 and 3). If the parent node is changed, AssureInvariants is called on this node with each of
weak version underflow, satisfied invariants, and overflow as a possible outcome.

If needed, the described process is repeated level by level until the root node is reached. If the root node
is time-split at time

�
, a pointer to the new live node together with timestamp � � � � �

is added to a special
root array [4] that is stored in main memory.

While partial persistence as described here can be applied fairly easily to the R-tree, its application to
the TPR-tree is challenging.

5.2 Computing and Maintaining Time-Parameterized Bounding Rectangles

We first provide the data structure for node entries in the R
�����

-tree. We then explain why the TPR-tree
procedure for computing time-parameterized bounding rectangles (TPBRs) cannot be used in the R

�����

-tree,
and we present three alternatives for computing TPBRs.

5.2.1 Node Entries of the R
�����

-Tree

Leaf entries for � -dimensional point objects consist of an object identifier, a time parameterized point, and
a time interval of validity. Similarly, the non-leaf entries consist of a pointer to a child node, a TPBR, and a
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time interval of validity. Node entries thus have the following structure:

������� +��	��
 �����
�&+�������
 � � 	 � � � �

Here
���
�-
 � ���� �� � 
 ��� 
 ��������� � � ��� 
 ��������� � � � , with the ��� and ��� being the position and velocity coordi-

nates, respectively, of the object at time
� 	

(also denoted ���� � 	 � and ��"� ��	 � ). To ensure this, when a node
is time split, �� is recomputed for the entries of the new live node—simple copying is not enough. The
structure of tpbr and how it is computed is the topic of the rest of Section 5.2. In the following, we consider
TPBRs that bound time-parameterized points. The generalization to TPBRs that bound other TPBRs is
straightforward.

5.2.2 TPBRs of the TPR-Tree and Partial Persistence

When constructing a partially persistent R-tree, the ephemeral algorithms of the R-tree are reused as black
boxes in the framework of partial persistence: once the alive entries during a specific time interval are found,
their minimum bounding rectangle is computed while ignoring the timestamps.

Partial persistence effectively adds an orthogonal time dimension to an R-tree representing data in �
spatial dimensions, rendering it � ! � -dimensional. In contrast, the TPR-tree already represents data in
� ! � dimensions, and partial persistence should just extend the existing temporal dimension into the past.

The TPBRs of the TPR-tree bound objects that are all alive at the current time, by computing the
minimum bounding rectangle according to the positions of objects at the current time and by extending it
with minimum and maximum speeds in each dimension. The resulting TPBR has � � coordinates:

� � � 	 
 � � � 
�� ������� � � � 	� � � �� � � � � 	
 � � �

� � � � 	� � � �� � �

Here,

� 	� 
 ��

�
���
��� �"!

� � � �#� � CT
� � �

� �� 
 �%$�&
���
��� �"!

� � � �#� � CT
� � �

� 	� 
 ��

�
���
��� �"!

� � � ��� � �
� �� 
 �%$�&

���
��� �"!
� � � ��� � �

In the TPR-tree, � 	� and � �� are additionally recomputed to represent the coordinates of the bounding rect-
angle at the common reference time (e.g., zero): � �� 
 � �� % � �� # CT and � 	� 
 � 	� % � 	� # CT.

This procedure is perfectly suitable in cases when the node has just been time split, i.e., when
� 	

of
the TPBR is CT (denoted by “A” in Figure 4). But as Figure 3 illustrates, TPBRs of the TPR-tree are not
necessarily valid for time points prior to the current time. Also, they do not take into account different
insertion times or finite deletion times of objects. Thus, as they are, they cannot be used after operations
that do not lead to time splits (“AD” in Figure 4). It is to address this problem that we investigate different
modifications of TPBRs.

Figure 5 shows the evolution of four different types of one-dimensional TPBRs that initially bound three
objects. The figure shows how the TPBRs change when two insertions are performed, the second of which
causes a time split. The left column of the figure demonstrates how the TPBRs of the TPR-tree can be used
in the R

�����

-tree, by changing how � 	� and � �� of a TPBR are computed:

� 	� 
 ��

�
���
��� �"!

� � � �#� � � 	 � � � � �� 
 �%$�&
�'���(�)�"!

� � � �#� � � 	 � � �

Effectively, the TPBR is computed to be minimum at its insertion-time (
� 	

), and the trajectories of the
entries are extended to span the time period from

� 	
to infinity.
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Figure 5: Evolution of Different Types of Time-Parameterized Bounding Rectangles

The figure demonstrates that such a straightforward use of the TPR-tree’s TPBRs may result in bounding
rectangles that grow fast and are not minimum at any point in time. The bad quality of such bounding
rectangles is even more evident when compared with the TPBRs that would result from storing the same
data in the TPR-tree. The main reason for this is the inability to do “tightening”—the process of making the
TPBR minimal at the current time. Additionally, bad alive bounding rectangles result in bad dead bounding
rectangles being produced by time splits, as exemplified by the bottom-left picture in the figure.

5.2.3 Optimized TPBRs

One may formulate the computation of bounding rectangles as an optimization problem. As described in
Section 3.3, one of the heuristics used by the TPR-tree insertion algorithms to group points is the integral
of area (or � -dimensional volume in the general case). Assuming that queries are uniformly distributed
in time from the current time (CT) and

�
time units into the future, the integration is done from CT to

CT
! �

, where
�

is a workload-specific parameter that can be automatically adjusted by observing the
index workload [26].

Similarly, when computing what we term an optimized TPBR, its spatial and velocity coordinates should
be chosen so as to minimize the integral of the area of the bounding rectangle from

� 	
to CT

! �
. Figure 6

gives a sketch of an algorithm to compute such an optimal one-dimentional time parameterized bounding
interval. Figure 7 illustrates how a convex hull is used in the computation. In this figure, the upper bound of
the interval has the trajectory corresponding to the line � computed in step 5 of the algorithm and the lower
bound has the trajectory corresponding to the line � computed in step 6 (during the repeat caused by step 8).
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It can be proven that this algorithm computes an optimal—in terms of the integral of the length—bounding
interval [26].

OPTIMALTPBI(Node)
1 Let

�
be the set of delimiting points in the ��������� -plane that specifies a set of line segments denoting the

(finite) trajectories of the one-dimensional moving points in node Node.
2 Let 	 be the convex hull of the points in set

�
.

3 med 
�� Node � ��
�� CT ���������
4 ���������! #"%$'&�(*)�+, #- .0/214365879� �;:
5 If 	 is not to the left of the line �<� med, let = be the line that goes through the upper of the two edges of

	 that cross this line.
6 If no = was found or if the slope of = is smaller than � , let = be the line with slope � that passes through one

of the vertices of 	 , but does not cross its interior.
7 Use = as the trajectory of the upper bound of the bounding interval.
8 Repeat steps 4–7, but with “upper” exchanged with “lower” and “smaller” exchanged with “greater.”

Figure 6: Algorithm OptimalTPBI

In more dimensions, near-optimal TPBRs

CT+HCT

x

med tt

Figure 7: Optimal TPBR for a Set of One-Dimentional
Moving Objects

can be computed by combining solutions for
separate dimensions. This is done calling Op-
timalTPBI for each dimension, but changing
how med is computed in step 3 of the algo-
rithm. The details can be found elsewhere [26].

Observe also that when a node is time
split, the TPBR of the old node can be up-
dated to become optimal for a collection of
finite trajectories (see “D” in Figure 4 and the
picture at the bottom of the second column
in Figure 5). This represents a refinement
of the traditional partial persistence approach,
where a finite

� �
is simply set in the bounding

predicate of the old node.
Optimized TPBRs are described by the same number of parameters as TPBRs of the TPR-tree. If we

assume that a timestamp, a coordinate, or a page id takes up one word, then the size of a non-leaf entry with
an optimized TPBR is � � ! � ! � words: � � spatial coordinates, � � velocity coordinates, two timestamps,
and one page id. When � 
 � the size is � � words. Note that live entries can be further compressed by not
storing the deletion timestamp, increasing the fan-out of nodes with live entries slightly

The disadvantage of optimized TPBRs is that their computation is complex and takes > � �@?BADC,EF? � time,
where ? is the number of objects bounded [26]. In addition, these TPBRS cannot be tightened.

5.2.4 Double TPBRs

To allow tightening, we introduce so-called double TPBRs. The idea is to divide a TPBR into two parts: a
“head” and a “tail.” The tail starts at the time of the last update (insertion or deletion),

� � � , and extends to
the infinity. The tail is the regular TPBR of the TPR-tree.

The head bounds the finite segments of trajectories of objects from
�
	

to
� � � . This can be done either

using an optimized TPBR or TPBRs with static bounds—bounds with zero speeds. Both cases are illus-
trated in the last two columns of Figure 5. In the first case, the double TPBR is represented as follows:� ����� 
9G � � � � ������� 
9H �

. In the second case, the zero speeds of
������
IG

can be omitted, thus reducing the size of an
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index entry.
The entry size is further reduced when the bounded node is time split and the TPBR for the resulting

dead node is recomputed (cf. the last row in Figure 5). In such cases, a double TPBR with a static head
becomes a simple static bounding rectangle, and an optimized double TPBR becomes a regular optimized
TPBR.

More specifically, using the same assumptions as in the previous subsection, the size of a live non-leaf
entry with a double TPBR is � # � � ! � ! � words. For dead entries, the size can be reduced to � � ! � ! � .
For two-dimensional data, the corresponding sizes are � � and � � words. A live non-leaf entry with a double
TPBR with a static head takes up � � ! � � ! � ! � words, and its dead counterpart is � � ! � ! � words
long. The corresponding sizes for two-dimensional data are � � and � words.

If the nodes are considered to contain an even mix of live and dead entries, the presented calculations
of entry sizes lead to very similar average fan-outs of nodes with optimized TPBRs and nodes with double
TPBRs with static heads. The average fan-out of nodes with optimized double TPBRs is about 33% lower
than for the other two types of TPBRs.

Note also that the computation of double TPBRs with static heads, in contrast to the computation of the
other two types of TPBRs, is as simple as the computation of MBRs in the R-tree or TPBRs in the TPR-tree.
It involves only computing minimums and maximums of ? numbers. For the upper bound:

���(��
 G � � �� 
 �%$�&
�'���(�)�"!

� �%$�& � � � �#� � ��	 ��� � � �#� � � � � ��� � �
���(��
 H � � �� 
 �%$�&

�'���(�)�"!�� ��� H��	��
 � �
� �#� � � � � � � �

���(��
 H � � �� 
 �%$�&
�'���(�)�"!�� ��� H��	��
 � �

� ��� � �

For the lower bound, minimums are used in place of the maximums.
Double TPBRs support tightening, but they also have extra associated costs when compared with the

two other kinds of TBPRs. Specifically, their update costs may be higher. An optimized TPBR of a node
may not need to be updated after the insertion or deletion of an entry from the node (stopping the ascent
of procedure AssureInvariants). In contrast, a double TPBR, by a virtue of recording the last update time,
will always have to be updated, unless several updates occur at the same time instant. This updating of� � � ascends to the root because when double TPBRs are bounded by a parent double TPBR, the

� � � of the
bounding TPBR is set to the maximum of the

� � � ’s of the bounded TPBRs.
Section 6 experimentally compares the three types of TPBRs.

5.3 Correction of Last-Recorded Predictions

With the modified procedures for computing TPBRs, the TPR-tree can be made partially persistent, but
the resulting trajectory of a moving object (see Figure 2) consists of disconnected and slightly incorrect
segments. To obtain accurate, connected trajectories, the velocity of the trajectory segment recorded at
the last update has to be modified when a new update is performed. As a result of satisfying the partial
persistence invariants, which yields performance guarantees, such a correction is not always trivial. This
section describes in detail how such corrections are performed.

5.3.1 Modifications to the Index Structure

The last-recorded trajectory segment of an object may be stored in more than one leaf node because the leaf
node in question may have been time split a number of times since the previous update. Time splits and
copying of information must be tolerated because they are essential in order for multi-version indexes to
offer timeslice query performance that is independent of the amounts of updates. The consequence is that
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while insertions that start new trajectories and deletions that end trajectories can be performed as described
in Section 5.1, updates are much more complex.

To properly correct the last-recorded trajectory segment, all leaf nodes that contain copies of this seg-
ment have to be visited. To facilitate this, we maintain two predecessor pointers pred1 and pred2 for each
node. These record which nodes were split off of which other nodes during time splits. Usually pred2 is
NIL. Whenever a node is time split, pred1 of the newly created node is set to point back to the original
node. If the time split is followed by a merge, pred1 and pred2 of the resulting node are set to point to the
two nodes that were time split prior to the merge. A key split simply copies the pred1 and pred2 of the
original node into the split-off node.

With these modifications to the index structure in place, we proceed to describe the update algorithm.

5.3.2 The Update Algorithm

As input, the update algorithm takes the old entry
� � , to be logically deleted (and corrected), and the new

entry
� � , to be inserted. Both

� � � � � and
� � � � � are infinite,

� � � � 	 is equal to the current time (CT), and
� � � � 	

is equal to the time of the last update of this object.
The update algorithm proceeds in the following five phases:

1. In the deletion down phase, the live leaf node that contains
� � is found using the ephemeral TPR-tree

deletion algorithm.

2. In the left phase,
� � is logically deleted, after correcting its velocity vector and the velocity vectors

of all
� � copies in dead leaf nodes. The velocity correction is done to produce a trajectory segment

with an end that connects to the beginning of the segment represented by
� � . The necessary dead leaf

nodes are found by following the predecessor pointers.

3. In the left-up phase, the tree is traversed upwards performing AssureInvariants as described in Sec-
tion 5.1. In addition, at each level of the tree, predecessor pointers are used to traverse left (back in
history) and to correct bounding rectangles that may have been invalidated by the corrections of the
trajectory of

� � at the leaf level.

4. In the insertion down phase, the ephemeral TPR-tree insertion algorithm is used to find the node in
which to insert

� � .

5. In the insertion up phase, after inserting
� � , the tree is traversed upwards, again performing AssureIn-

variants as described in Section 5.1.

Figure 8 gives pseudocode for the Update algorithm. Before considering the body of this algorithm in
more detail, we list the key assumptions used in the pseudocode and in Figures 9 and 12. Specifically, we
assume the array of roots mentioned in Section 5.1 has the following structure:

� � 
 � 
 � 
 � � 
 ��� � ��� � 
 � � � � � ����������� � ��� � 
 � � � � � �

The
�
-th element of a root array of � elements contains a root pointer


)� � , the start time of the half-open time
interval � � 	 
 � � � � � 
 � ��� 
 � that specifies the validity of this root (here

�	� � 
 is defined as � ), and the tree
level � � of the root (leaves are at level 0). We assume that the root array can be accessed using the function
 ��� � � � � , which returns a pointer to the root alive at time

�
. A root array is shown as part of Figure 10.

For a node Nd we define � � � � 	 to be the minimum of the insertion times of all entries in Nd. If Nd is
a root, � � � ��� is also defined and can be retrieved from the corresponding element of the root array. The
function ��
������ � � � � � returns a disk page identifier that serves as a pointer to Nd in the index structure.
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We also assume that algorithm AssureInvariants(Nd) (Figure 4) returns false when Nd is either a root
or was not changed by a previous invocation of AssureInvariants on Nd’s child. Finally, we assume that
TPRFindLeafForDeletion and TPRFindLeafForInsertion are the algorithms of the TPR-tree that find an
alive leaf for the insertion or deletion of an entry. Each of these algorithms records the path of alive nodes
from the root to the leaf it finds. These paths are later used by the function Parent(Nd), to return an alive
parent of the alive argument node Nd.

UPDATE( �  � ��� )
1 Leaf 
 TPRFindLeafForDeletion � Root � CT �*� �  �
2 � ��� � PageIds � 
 CORRECTLEAVES � Leaf � �  � ��� �
3 � � � � 
 CT, where ��� Leaf , such that � � id � �  � id // Logically delete �  
4 RightNode 
 Leaf
5 Assuring 
 true
6 while RightNode �� NIL // Do left-up phase
7 (NewRightNode, PageIds) 
 CORRECTPARENTS(RightNode, � � , PageIds)
8 if Assuring then
9 Assuring 
 AssureInvariants(RightNode) // Here RightNode is a Leaf or its live ancestor
10 RightNode 
 NewRightNode
11 Node 
 TPRFindLeafForInsertion � Root � CT �*� � � � // Insert � �
12 Add ��� to Node with timestamp 	CT ��
 �
13 while AssureInvariants(Node) do Node 
 Parent(Node)

Figure 8: Algorithm Update

Having found the alive leaf node were
� � is stored (the deletion down phase), the Update algorithm

proceeds by calling CorrectLeaves, which implements the left phase of the algorithm. The algorithm Cor-
rectLeaves corrects all copies of

� � found at leaf level and collects a set of pointers (PageIds) that point to
the nodes containing the corrected fragments of the trajectory of

� � . Algorithm CorrectLeaves also returns�
�
—the corrected variant of

� � . Using PageIds and
���

, the algorithm CorrectParents traverses the parent
level and checks if all entries pointing to nodes in PageIds contain

���
during their validity intervals (the left-

up phase). If needed, TPBRs in these entries are expanded. The procedure is repeated, correcting TPBRs
level by level up the tree (line 7 in Figure 8).

Note that the number of levels for which the algorithm calls CorrectParents is independent of how high
in the tree AssureInvariants has to ascend. In some cases, AssureInvariants will stop at the parent of the
modified leaf (setting Assuring to false), while CorrectParents has to be called on all levels of the tree, as
will be explained in Section 5.3.4. In the following, the algorithms CorrectLeaves and CorrectParents are
covered in detail.

5.3.3 The CorrectLeaves Algorithm

Algorithm CorrectLeaves, provided in Figure 9, is fairly straightforward. It first computes the corrected
variant of

� � , which at the outset differs from
���

only in its velocity vector. Then it traverses the predecessor
pointers back from the argument node Leaf , finding all copies

�
of
� � . Note that e.tpp. �� was recomputed for

the time point when the corresponding node was produced by a time split (see Section 5.2.1). This is taken
into account in line 6 when finding

�
and in line 8 when recomputing tpp. �� using the corrected velocity.

In line 10, where a predecessor pointer is followed, the case were both predecessor pointers of Leaf are
non-NIL must be handled. In this case, Leaf was produced after merging two time-split nodes. Only one
of these nodes has a copy of

� � , because otherwise there would have existed two copies of
� � in the live

TPR-tree at the time of the time split (Leaf .
� 	

), and this cannot happen in the TPR-tree. The algorithm stops
when a leaf node is found that has a life time starting before or at the time when

� � was inserted.
Figure 10 shows an example of the evolution of a part of an index storing one-dimensional data. In the
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CORRECTLEAVES(Leaf � �  � � � )
1 ��� 
 �  
2 ��� � tpp � �� 
�� ��� � tpp � �� � �  � tpp � ���� �!� CT � �  � ��
!�
3 PageIds 
 �
4 while Leaf �� NIL
5 PageIds 
 PageIds ��5 PageId � Leaf � :
6 Let � � Leaf such that� � � � � 
�� � � oid � �  � oid � � � tpp � ��6� �  � tpp � ���� � � tpp � �� � �  � tpp � �� � �  � tpp � ��'� � � ��
 � �  � ��
,�
7 � � tpp � �� 
 ��� � tpp � ��
8 � � tpp � ���
 ��� � tpp � �� � ��� � tpp � ��'� � � ��
 � ��� � ��
,�
9 if Leaf � � 
�� �  � ��
 then
10 Follow a non-NIL predecessor pointer, Leaf .pred1 or Leaf .pred2, to a predecessor node. If both

predecessor pointers are non-NIL, only one of the predecessor nodes has an entry � that satisfies the
conditions in line 6. Make Leaf point to that node.

11 else // � was inserted during the lifetime of Leaf
12 Leaf 
 NIL
13 return � ��� � PageIds �

Figure 9: Algorithm CorrectLeaves

��� � � � space (the top of the figure), the last segment of the trajectory of an object is shown in its old version
(bold line) and in its corrected version (dashed line). Double TPBRs with static heads are also shown in
non-leaf nodes of the tree. The shadings capture the correspondences between entries at the bottom of the
picture and the TPBRs.

In this case, the CORRECTLEAVES algorithm corrects four copies of the trajectory segment produced.
These copies are produced by three time-splits that happened at T3, T4, and T5. Four pointers to leaf nodes
are returned by CORRECTLEAVES in this example.

5.3.4 Correcting the Non-Leaf Entries

The pointers to leaf nodes returned by algorithm CorrectLeaves, PageIds, are passed to algorithm Correct-
Parents, whose task it is to check all parent entries of these nodes. In particular, all parent entries that do
not bound the corrected trajectory

� �
during their validity time intervals must be corrected. The output of

the CorrectParents algorithm is another set of pointers to nodes, one level above the nodes identified by
PageIds. This set will be passed to a subsequent call of CorrectParents. Intuitively, the returned set should
contain pointers to the nodes that contain entries which were changed in the course of the algorithm. It
would seem that there is no need to consider parents of nodes that were not changed. However, Figure 10
shows that this intuition is, in fact, misleading.

Specifically, Figure 10 demonstrates that an ancestor of an entry can be invalidated even if the immediate
parent is not invalidated. Consider the entry numbered 4 on level 1 and its corresponding TPBR. It follows
from the top of the figure that the TPBR in this entry is not invalidated by the correction of the trajectory
segment. Nevertheless, the entry labeled 	 , the parent of entry 4, which is live from 
 � to 
 � , is invalidated,
as its upper bound does not bound entry 4 throughout this time period!

Figure 11 shows the evolution of a small part of Figure 10. Entries 4 and 	 are shown together with
an open-ended segment of a trajectory bounded by entry 4 (note that this segment is different from the
one shown in Figure 10). The events of Figure 11 lead to the counter-intuitive configuration of TPBRs
mentioned above.

Let us consider this situation in a bit more detail. The first part of the figure shows that, as required by
the TPR-tree, entry 	 bounds entry 4 while they are both alive (from 
 � to 
 � ). From 
�� to 
 � , nothing
happened to neither entries 	 and � , nor to any entries below them. The second part of the figure shows that
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Figure 10: Correction of a Trajectory’s Last-Recorded Segment

at time 
 � , due to activity in other parts of the tree, the node containing entry 	 was time split, resulting in
the shape of entry 	 being frozen. Its child, entry 4, continued to live. Then at time 
�� , the segment of the
trajectory shown in the figure was logically deleted. As shown by the third part of the figure, this triggered
a recomputation of the TPBR in entry 4. As a result, the TPBR in entry 	 no longer bounds the TPBR in
entry 4. Note though, that all leaf-level entries that were bounded by 	 and its descendants during the time
interval from 
 � to 
 � still remain inside 	 and all its descendants during this time interval.

Summarizing, in the R
�����

-tree, TPBRs in dead entries are only guaranteed to bound their leaf-level
descendants (trajectories), not the TPBRs at higher levels. It is worth observing that this property also
applies to the partially persistent R-tree.

Returning to the example of Figure 10, entry 5 is the only entry at level 1 that is invalidated by the
correction of the trajectory segment at the leaf level. After correcting entry 5, the first call of CorrectParents
algorithm has to return not only the pointer to the node containing entry 5, but also pointers to all the other
nodes on level 1 shown in the figure, including the node with entry 4.

In general, if a node contains at least one entry with a pointer from the set PageIds, the pointer to this
node is added to the new set of pointers that will be returned and subsequently passed to the next call of
CorrectParents, on the grand-parent level (line 12 in Figure 12). This way, the algorithm checks the entries
on all paths leading from the root(s) to all copies of the corrected trajectory.
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Figure 11: The Sequence of Events Leading to the Anomalous Grandparent 	

5.3.5 The CorrectParents Algorithm

Figure 12 contains the pseudocode of algorithm CorrectParents. We proceed to explain the algorithm step
by step.

As input, the algorithm takes an entry representing a corrected trajectory segment,
� �

, a set of pointers
to tree nodes, PageIds, and a pointer to the rightmost of these nodes, RightNode. Here, the rightmost node
is the node with the largest

� 	
. All nodes identified by PageIds are at the same level. As discussed in the

previous section, the output of the CorrectParents algorithm is another set of pointers to nodes one level
above the nodes identified by PageIds.

CORRECTPARENTS(RightNode � �
� � PageIds)
1 if RightNode points to a root node then
2 Traverse the root array backwards in time: Start by letting RightParent be a pointer to the root just before

RightNode; then traverse the root array backwards until Level � RightParent � � Level � RightNode �;��� or
RightParent � � ��� ��� � � 
 . In the latter case or if the beginning of the root array is reached, return (NIL,�

).
3 DelTime 
 RightParent. � �
4 else
5 RightParent 
 Parent(RightNode)
6 DelTime 
 CT
7 NewPageIds 
 �
8 Node 
 RightParent
9 while DelTime � ��� � ��

10 for each ��� Node such that � � ptr � PageIds
11 If during 	 � � ��
I� ��� � 5 � � � � � DelTime :"! , � does not contain �
� , adjust the position and velocity coordi-

nates of � to achieve containment.
12 NewPageIds 
 NewPageIds ��5 PageId � Node � :
13 if Node � pred1 �� NIL # Node � pred2 �� NIL then
14 DelTime 
 Node. � 

15 Follow a non-NIL predecessor pointer, Node.pred1 or Node.pred2, that leads to a node with an entry� such that � � ptr � PageIds. If both predecessor pointers are non-NIL, at most one of them has such

an � . If there is no such predecessor, abort the loop; else make Node point to that predecessor.
16 else // Node is a root without predecessors
17 Traverse the root array backwards in time: Start by letting Root point to the root just before Node;

continue until Level � Root � � Level � Node � or Root � � � � ��� � ��
 . In the latter case or if the beginning
of the root array is reached, abort the loop; else Node 
 Root.

18 DelTime 
 Root. � �
19 return (RightParent, NewPageIds)

Figure 12: Algorithm CorrectParents
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The structure of the CorrectParents algorithm is similar to the structure of the CorrectLeaves algorithm—
it starts from the parent node of RightNode (line 5) and uses the predecessor pointers to traverse nodes back-
wards in time (line 15). If a node has two non-NIL predecessor pointers, at most one of these pointers points
to a node that has an entry with a pointer from PageIds. If such an entry existed in both predecessor nodes
of Node, two paths would have existed from the root to the corrected trajectory segment at time Node.

� 	
.

This is impossible, as the TPR-tree is a proper tree.
When checking whether

���
invalidates an entry

�
(line 11), the validity time of

�
must be known. If

the node to which
�

belongs (i.e., Node) was time split when
�

was still alive, the deletion time of
�

was
left at infinity. in this case, the true end time of the validity interval of

�
is equal to the deletion time of

Node, which is the time of the time split that rendered Node dead. When a normal top-down operation is
performed in the R

�����

-tree, this true end time is brought down from the parent entry of Node. In contrast,
in the right-to-left traversal of the CorrectParents algorithm, this end time (DelTime) is obtained from the
node to the right of Node (line 14).

The traversal of non-leaf level nodes using predecessor pointers is more complicated than in the Cor-
rectLeaves algorithm because the CorrectParents algorithm has to take into account that the index may grow
and shrink in height during its evolution. This causes two problems.

The first problem occurs when RightNode is already a root but, for the earlier time points, there are
nodes at higher levels of the R

�����

-tree. This situation is illustrated in Figure 10. To correct entry 	 at
level 2 after correcting the entries at level 1, algorithm CorrectParents has to start traversing from the
rightmost node at level 2 (the node containing entry

�
). This node is not on the path of live nodes followed

by the TPRFindLeafForDeletion algorithm (line 5 in Figure 12); instead, it is found as the first root to the
left of RightNode that is one level higher than RightNode. This is done traversing the root array (line 2).

The second problem occurs when a right-to-left traversal using predecessor pointers is interrupted be-
cause both predecessor pointers are NIL. This can either mean that there are no more nodes at this level
of the R

�����

-tree, in which case the traversal has to stop, or it can mean that the tree has shrunk in height
and then grown again, creating a gap in this level of the R

�����

-tree. Figure 10 illustrates the latter case.
On level 2, both predecessor pointers of the node containing entry 	 are NIL. So to check whether en-
try � needs to be corrected, the algorithm has to use the root array to skip the lower-level root (line 17 in
Figure 12).

Naturally, the above-described correction of the last-recorded fragments of a trajectory costs additional
I/O, when compared to the normal update operation. The size of this overhead will largely depend on the
number of entries that store fragments of the trajectory to be corrected. This will in turn depend on the ratio
between the average time period between two time splits of leaf nodes and the average time period between
two updates of an object. To increase the average time period between time splits, parameter � mentioned
in Section 5.1 should be increased. The performance experiments in the next section investigate the effect
of � on update performance.

6 Performance Studies

This section reports on performance experiments with the R
�����

-tree. The generation of workloads for
experiments and other settings for the experiments are described first, followed by the presentation of the
main results of the experiments.

6.1 Experimental Setting

The R
�����

-tree was implemented in C++, and the experiments were run using generated data. As the
R
�����

-tree is the result of adapting the partial persistence technique to an adapted TPR-tree, to test the
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R
�����

-tree, we use the same experimental settings as were used for the performance experiments with the
TPR-tree [25]. Here, we review these settings—details can be found elsewhere [25].

In all experiments, the indices were subjected to workloads that intermix queries and update operations.
Initially, an index is empty. It is then populated gradually, with entries being added when simulated objects
report their first positions. After an object enters the simulation, it reports trajectory updates until the end of
the workload. The number of objects in the simulation is 100,000, and the simulation is run until 1,000,000
operations, including the initial insertions, are generated.

The workloads simulate objects, such as cars, moving in a network of routes connecting 20 destinations
distributed in the space with dimensions 1000 km � 1000 km. Objects move with maximum speeds raging
from 0 to 3 km/min. Objects accelerate and decelerate at the beginnings and ends of their routes. This ac-
celeration/deceleration behavior guarantees that objects do not move according to linear functions, making
corrections to the last-recorded trajectory segments necessary (cf. Figure 2).

The workload generation algorithm distributes the updates of the positions of the objects so that the
average time interval between two subsequent updates of an object is approximately equal to a given pa-
rameter

� � , which we set to 30 min in most experiments. In addition to updates, 10,000 timeslice queries
are issued during a workload. The spatial part of each query is a randomly placed square querying 0.25%
of the total data space. Equal amounts of past and current/future queries are generated, with future queries
having times between the current time CT and CT

! � � + � .
In all experiments, the data page size is set to 8K, and an LRU buffer of 100 pages is used. Unless noted

otherwise, � , the minimum number of live entries in a node, is set to be 20% of the total capacity of the
node. Update and search performance are measured in numbers of I/O operations.

6.2 Bounding Rectangles

In Section 5.2, we proposed three types of time-parameterized bounding rectangles with different properties.
Optimized TPBRs and double TPBRs with static heads are the most compact of the three types, which is
good for fanout and thus query and update performance. But optimized TPBRs cannot be tightened and
are complex to compute, both of which adversely affect performance. Double optimized TPBRs reduce
fanout on average by 33%, but may bound the data better and can be tightened. Like optimized TPBRs,
their computation involves complex floating-point geometry and sorting. Finally, double TPBRs with static
heads may not bound the data as well as double optimized TPBRs, can be tightened, and are very easy to
compute.

To explore how these different types of time-parameterized bounding rectangles affect the query and
update performance, we performed two sets of experiments. In one set, we experimented with workloads
that vary

� � , the average interval between two updates of an object. In another set, the maximum speed
of the simulated objects was varied. We studied separately the average performance of past queries and the
average performance of current/future queries. Figures 13 and 14 show the results of the experiments with
varying

� � , and Figures 15 and 16 provide the graphs with varying maximum speed.
The query performance of all three types of bounding rectangles is comparable. When past queries are

considered, the performance of double TPBRs with static heads is somewhat worse than the performance of
the other two types of bounding rectangles, the reason being that rectangles bound parts of the trajectories
less accurately than trapezoids. For future queries, the performance of double TPBRs does not degrade as
fast as the performance of the optimized TPBRs, when the update interval or maximum speed increases.
This is as expected because longer intervals between updates mean that TPBRs are allowed to expand more
before they are recomputed. Similarly, having objects that are faster means that bounding rectangles expand
faster. Therefore, double TPBRs, which support tightening, have the advantage for such workloads. The
advantages of tightening in this case even outweigh the negative effects of the reduced fanout of non-leaf
nodes, which is caused by the larger sizes of entries recording double TPBRs.
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In the same set of experiments, the performance of update operations was measured. The results are
reported in Figures 17 and 19, which show that the update costs of indices with different types of TPBRs
are very similar. This is as expected because experiments show that the main part of the update cost is the
cost of search during deletion.

Next, figures 18 and 20 show how many I/O operations on average were performed in relation to cor-
recting the changed trajectory and checking/updating all its ancestors up the tree (in the left and left-up
phases of the update algorithm). Notice that when compared with the other two types of TPBRs, the us-
age of double TPBRs with static heads leads to slightly less I/O operations being spent on the correction
part of update. This can be explained by the rectangular heads of double TPBRs being invalidated less
frequently by the correction of trajectory segments than the more accurate trapezoids. This in turn leads to
less corrections of TPBRs.
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The findings of the described performance experiments leads to the choice of double TPBRs with static
heads as the preferred type of TPBRs, as they offer similar I/O performance and are much simpler to
compute than the other two types of TPBRs. In the following, we use double TPBRs with static heads as
the time-parameterized bounding rectangles of the R

�����

-tree.

6.3 Update Performance

As described in Section 5.3, the correction of the most recent trajectory segment incurs additional I/O on
each update. We performed a number of experiments to explore this overhead and to learn how it is affected
by index and workload parameters. Figures 18 and 20, when compared to Figures 17 and 19, show that the
correction of the last-recorded trajectory segment accounts for less than a fourth of the total update cost.

The update cost overhead is dependent on the average number of time splits that occur between two
updates of an object. To vary the number of time splits, in a first set of experiments, we varied � . For each
value of � (0.2, 0.3, and 0.4), we chose the largest possible � that allows the invariants of partial persistence
to be maintained [4]. As mentioned in Section 5.1, the frequency of time splits is inversely proportional to

� . Thus, it increases with an increasing � .
Figure 21 plots the update and query performance against � . As expected, when � decreases, the total

number of time splits decreases (from 17,948 for � 
 � � � to 8,504 for � 
 � � ��� ). This results in the
decrease by a factor of almost 2.5 in the average number of I/O operations per update. Observe that, as
the figure shows, this decrease is mainly caused by a decrease in the cost of correction of the last-recorded
trajectory segment.

While update performance is improved by decreasing � , timeslice query performance is naturally de-
creased. This is so because smaller values of � mean smaller average fanout of the index tree as “seen” at
the time of query. Nevertheless, the decrease in query performance is smaller than the increase in update
performance. Also, as Figure 21 shows, smaller values of � result in smaller index sizes.

6.4 The R
�����

-Tree Versus the TPR-Tree

Naturally, recording history in the R
�����

-tree does not come for free when both update and query costs are
considered. To quantify this cost, we performed the same set of experiments as described earlier, but with
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the TPR-tree. The parameters
� � and maximum speed were varied. Figures 17 and 19 show that performing

update operations on the TPR-tree is more than twice as fast as doing the same updates on the R
�����

-tree.
In a separate set of experiments, we explored how much search performance is lost in the R

�����

-tree
when compared to the TPR-tree. We ran a number of workloads of updates on both the R

�����

-tree and the
TPR-tree. To ensure a fair comparison, after the running of a workload, the buffer was cleared and reduced
to 50 pages. Ten thousand current/future queries were then run. Figures 22, 23, and 24 show the results of
these experiments, where, in addition to the changing of

� � and the maximum speed, we change the size of
the query (expressed in percents of the total data space). In the experiments of Figures 22 and 23, the query
size is set to 0.2%.
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Similar to the experiments on the update operations, the presented graphs show that the average numbers
of I/O operations per query performed on the R

�����

-tree are a little bit more than twice those of the TPR-
tree. This is as expected because the fanout of the live part of the R

�����

-tree is lower than the fanout of the
TPR-tree.

7 Summary and Research Directions

With the proliferation of wireless communications and geo-positioning as motivation, this paper defines
what we believe is the first single index that is able to capture the past, present, and anticipated future
positions of moving objects, where the latter positions are expressed as linear functions.

The index adapts the time-parameterized bounding rectangles of existing R-tree based indexing tech-
niques for the current and future positions of moving objects to the framework of partial persistence, in the
process developing several kinds of bounding rectangles, each with different characteristics. It extends the
partial persistence framework, which inherently supports transaction time, to support valid time for appli-
cations where moving-object position samples, given as linear functions of time, arrive in time order and
predict future positions. The index supports objects moving in one, two, and three dimensions, and it is ap-
plicable to continuous variables other than geographical position. Empirical studies with an implementation
of the indexing technique are reported that offer insight into its performance characteristics.

As an interesting future research direction, the partial persistence framework presented in this paper
could be applied to other indexing techniques that use linear functions to capture continuous change. For
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example, although the recently proposed STRIPES [21] and B
�

-tree [14] techniques are very different from
the TPR-tree based techniques, it may be possible to apply techniques similar to the ones presented in this
paper to these two, in order to extend them to accurately record the history of movement.

Next, while in the performance experiments of this paper the R
�����

-tree was tested using workloads
simulating continuously moving objects, the index is also suitable for recording other kinds of continuously
changing variables. When such data become available, it would be interesting to explore how the index
performs for workloads consisting of sensor data from scenarios where sensor networks track different
physical charactersitics of the environment, such as temperature, barometric pressure, humidity, or ambient
light.
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