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Abstract

An infrastructure is emerging that supports the de-
livery of on-line, location-enabled services to mo-
bile users. Such services involve novel database
queries, and the database research community is
quite active in proposing techniques for the effi-
cient processing of such queries. In parallel to
this, the management of data streams has become
an active area of research.

While most research in mobile services concerns
performance issues, this paper aims to establish
a formal framework for defining the semantics of
queries encountered in mobile services, most no-
tably the so-called continuous queries that are par-
ticularly relevant in this context. Rather than in-
venting an entirely new framework, the paper pro-
poses a framework that builds on concepts from
data streams and temporal databases. Definitions
of example queries demonstrates how the frame-
work enables clear formulation of query seman-
tics and the comparison of queries. The paper
also proposes a categorization of location-based
queries.

Keywords: Location-based service, data stream,
continuous query, skyline query, range query,
nearest-neighbor query.

1 Introduction

The emergence of mobile services, including mobile com-
merce, is characterized by convergences among new tech-
nologies, applications, and services. Notably, the ability to
identify the exact geographical location of a mobile user
at any time opens to range of new, innovative services,
which are commonly referred to as location-based services
(LBSs) or location-enabled services.
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Inan LBS scenario, the service users are capable of con-
tinuous movement, and changing user locations are sam-
pled and streamed to a processing unit, e.g., a central server.
The notion of a data stream thus occurs naturally. Ser-
vice requests result in queries being issued against the data
streams and other, typically relational, data.

Conventional queries are one-time queries, i.e., queries
that are simply issued against the state of the database as
of the time of issue, upon which they, at a single point
in time, return a result. In our scenario, so-called contin-
uous queries are also natural. Such queries are “active”
(i.e., being re-evaluated) for a duration of time, and their
results are kept up-to-date as the database changes during
this time. As an example, an in-vehicle service may dis-
play the three nearest, reasonably priced hotels with rooms
available along the route towards the vehicle’s destination.
The vehicle’s location (a data stream) together with data
about hotels (relational data) are continuously queried to
provide the result (a data stream).

Significant results on the processing of location-based
queries (LBQs) has already been reported. As LBQs are
defined in different settings, no direct means are available
for classifying and comparing these queries. As more and
more work, considering more and more different kinds of
queries, is reported, the need for comparison increases.

This paper presents a general framework within which
the semantics of LBQs can be specified. This enables the
definition of LBQs in a single framework, which in turn
enables the comparison of queries. The framework is well
defined—it is based on precise definitions of data structures
and operations on these. The framework has the following
characteristics.

e Streams as well as relations are accommodated.

e Because queries often involve ranked results, relations
are defined to include order.

¢ Relational algebraic operators are extended to also
apply to streams, by using mappings of streams to
relations, and, optionally, mappings of relations to
streams.

The result is an expressive yet semantically simple frame-
work that may be extended with additional operators and



mappings. To illustrate the extensibility, a new operator,
the skyline operator, is introduced.

Rather than listing and defining all possible location-
based queries, this paper represents several prominent ones,
such as a range query, a nearest-neighbor query, and a
location-based skyline query; and it discusses categoriza-
tions of LBQs.

The research area of stream data is quite active and has
produced a number of interesting concepts in relation to
the semantics of continuous queries. Specifically, signifi-
cant research results have been reported on query process-
ing for data streams (e.g., [3, 6, 22, 29]). Some works con-
sider queries over data streams together with relations (e.qg.,
[1, 18]), but only few works consider the formalization of
queries over streams and relations.

Similarly, location-based query processing is an active
area of research, and many interesting results have ap-
peared. Much attention has been given to the indexing
and query processing for moving objects. Numerous index
structures and algorithms have been proposed for a variety
of location-based queries (e.g., [4, 9, 12, 13, 14, 17, 19,
20, 23, 24, 26, 27, 28]), such as nearest neighbor queries,
reverse neighbor queries, spatial range queries, distance
joins, and closest-pair queries. A new type of query, the
skyline query, has recently received attention [5, 8, 15, 21].
However, only little attention has been paid to query pro-
cessing in relation to spatial data streams [16]. To the best
of our knowledge, no formal frameworks have been pro-
posed for the definition of location-based queries against
relations and data streams.

Recently, Arasu et al. [1] have offered an interpretation
of continuous queries over streams, by formalizing streams,
relations, and mapping operators among them. We build on
their general approach. To accommodate ordering as well
as duplicates, we use list-based relations and a variant of
the list-based relational algebra proposed by Slivinskas et
al. [25]. To be able to express query semantics precisely,
our approach also accommodates the notions of activation
and deactivation times and reevaluation granularity.

The paper is outlined as follows. Section 2 defines
the data structures underlying the framework and presents
the application scenario. The next section completes the
framework, by defining the operators that map between the
different operators in the framework. Section 4 uses the
framework to define different location-based queries and
also discusses the categorization of location-based queries.
The last section summarizes and offers directions for future
research.

2 Data Structures and Application Scenario
2.1 Data Model Definition

Building on the relation concept defined by Slivinskas et
al. [25], we define relations as lists to capture duplicates
and ordering. We define schemas, tuples, and relation in-
stances, then define the same concepts for streams.

Definition 2.1. A relation schema (2, A, dom) is a three-

tuple where Q is a finite set of attributes, A is a finite set of
domains, and dom : Q2 — A is a function that associates a
domain with each attribute.

obj_id | obj_loc obj _type
301 (20, 35) police station
302 (30, 80) hospital
303 (65,75) | fire department
304 (80, 120) hospital
305 (70, 80) police station

Figure 1: Relation 7

Relation 7,; in Figure 1 has schema (£, A, dom),
where 2 = {obj_id, 0bj loc, obj type}, A = {number, lo-
cation, string}, and dom = {(obj id, number), (obj_loc,
location), (obj-type, string)}.

b

Definition 2.2. Atupleover schema S = (2, A, dom) isa
functiont : Q — Jsc A 0, such that for every attribute A of
0, t(A) € dom(A). Arelation over S is a finite sequence
of tuples over S.

The definition of a relation corresponds to the definition
of a list or a sequence. A relation can thus contain duplicate
tuples, and the ordering of tuples is significant. Relation
ropj from Figure 1is the list (¢1, t2, ¢3,t4, 5 }), Where, e.g.,
t1 = {(obj-d, 301), (obj-loc, (20, 35)), (obj type,
“police station”) }.

Definition 2.3. A stream schema is a relation schema
(Q, A, dom), where €2 includes a special attribute T, A in-
cludes the time domain T, and dom(T) = T.

We assume that domain T is totally ordered. While, for
simplicity, we use the non-negative numbers as the time
domain in the sequel, other domains may be used. For ex-
ample, the real or natural numbers, the TIMESTAMP do-
main of the SQL standard, or one of the domains proposed
by the temporal database community may be used.

Stream s, in Figure 2 has schema (2, A, dom), where
0 = {usr_id, usr_v,usr_loc, T}, A = {number,
velocity, location, T}, and dom = { (usr_id, number),
(usr_v, velocity), (usr_loc, location), (T, T)}.

usr_id usr_v usr_loc T
1004 (10, —15) (90, 80) 10
1002 (—25,25) (200,10) | 12
1003 (—12,-11) (60, 80) 10
1004 (0,0) (100,60) | 12
1003 (—10,3) (40, 58) 12
1001 (0,1) (16, 38) 9
1004 (20, 35) (100,60) | 15

Figure 2: Stream s,

Definition 2.4. A stream is a possibly infinite multiset of
tuples over stream schema 7.

For a stream tuple ¢;, the time 7; = ¢;(T) indicates when
the tuple became available in the stream. While a relation is
ordered, we have chosen to not introduce an inherent order



on streams. Streams come with the natural (partial) order
implied by their time attribute.

Stream s, in Figure 2 is the possibly infinite multiset
Susr = { ..., (1004, (10, —15), (90, 80), 10), .. ., (1004,
(20,35), (100, 60),15), ... }.

While a query is issued against an entire relation state,
intuitively, a query issued at some time 7, will only see ei-
ther what has appeared in the stream so far, i.e., all tuples
with timestamp less than or equal to 7,, or what has ap-
peared in the stream between some past time and r,. The
latter may be assumed if what has appeared in the stream
so far does not fit in the available memory.

2.2 Discussion

As we pointed out earlier, we use streams for modeling the
locations of moving objects such as pedestrians, cars, and
buses. We use relations for modeling aspects of an applica-
tion domain that change discretely.

As we aim for a generic framework, we make no as-
sumptions about the representations of the geographical lo-
cations and extents of objects that limit the applicability of
the framework. However, to be specific, we assume that
positions are simply points (z, y) in two-dimensional Eu-
clidean space; in accord with this, a velocity vector is given
by (vz, vy). We note that in some application scenarios, po-
sitions of objects are given in terms of road networks, using
linear referencing [11]. The framework is also applicable
in the context of this kind of positioning.

In the example we use throughout, stream s, in Fig-
ure 2 captures positions and velocities of moving users.
Attribute usr_id records the ID of a user, and usr_v and
usr_loc record the velocity and location of the user at the
time instant recorded in attribute T. In a real-world appli-
cation, multiple streams may well be present. For example,
users moving by bicycle and by car may be captured by
separate streams. For simplicity, we only use one stream.

Relation r,, in Figure 3 captures discretely changing
properties of the service users. As before, usr_id records
the ID of a user; and attributes usr_name capture the first
name of a user.

Finally, relation r,;; in Figure 1

usr_d | usr_name . i

1001 Kate records the points of interest that
1002 Bill service users may query. Attribute
1003 Joan obj _id captures the ID of a point
1004 Tom of interest, obj _loc records its loca-

tion, and obj _type records its type.
Figure 3: Relation In real-world applications, addi-
Tusr tional attributes and relations may
of course be used, beyond the ones introduced above.

In our scenario, the users of the services that issue
the queries are moving, and the points of interests being
queried are static. However, in other equally valid sce-
narios, a static user can query moving objects, e.g., a Su-
permarket wants to know all the potential customers who
are near the supermarket between 8:00 a.m. and 5:00 p.m.
Also, a moving user may query other moving users—this
may be typical of location-based games.

3 Mapping Operators

Queries are either one-time or continuous, they apply to
relations and streams, and their results are either relations
or streams.

Relations are well known, and the semantics of queries
against relations are generally agreed upon. In contrast,
what the appropriate semantics of queries against streams
should be and how these should be defined are less obvi-
ous. Following Arasu et al. [1], we aim to maximally reuse
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Figure 4: Mapping Operators
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the relational setting in defining the semantics of queries
against streams. We do this by introducing mapping opera-
tions between streams and relations, so that a query against
a stream can be defined by mapping the stream to a rela-
tion, then applying a relational query, and then, optionally,
mapping the result to a stream. This results in the frame-
work of representations and operators outlined in Figure 4.
Note that direct stream-to-stream operators are absent.

3.1 Relation-to-Relation Operators
3.1.1 Basic Algebra Operators

A relation-to-relation operator takes one or more relations
ri,- -, T, as arguments and produces a relation r as a re-
sult. As our relations are ordered, we use operators intro-
duced by Slivinskas [25] as our relation-to-relation opera-
tors: selection (o), projection (x), union-all (L), Cartesian
Product (x), difference (\), duplicate elimination (rdup),
aggregation (&), sorting (sort), and top (top).

These carry their standard meanings when applied to re-
lations without order. As an example of how the operators
are defined, consider selection o. Based on the definitions
in Section 2, we use R to be the set of all relations and let
r = {t1,t2,...,t,) € R. We let p € P, where (follow-
ing standard practice) P is the set of all selection predicates
(also termed propositional formulas, see, e.g., [2, pp. 13-
14]) that take a tuple as argument and return True or False.

The selection operator o : [R x P — R] is defined using
A-calculus rather than tuple relational calculus, to contend
with the order. Being a parameter, argument p is expressed
as a subscript, i.e., o, (r).

o2 p(r=1)—>r,
(tail(r) = L) — (p(head(r)) — head(r), L),
(p(head(r)) — head(r), L) Q op(tail(r))

The arguments are given before the dot, and the definition
is given after the dot. Thus, if r is empty (denoted as L),
the operation returns it. Otherwise, if » contains only one
tuple (the remaining part of the relation, tail(r), is empty),
we apply predicate p to the (first) tuple, (head(r)). If the
predicate holds, the operation returns the tuple; otherwise,
it returns an empty relation. If these conditions do not hold,



the operation returns the first tuple or an empty relation
(depending on the predicate), with the result of the oper-
ation applied to the remaining part of  appended (@). The
common auxiliary functions head, tail, and @ are defined
elsewhere (e.g., [25]). Since the objective is to obtain an
expressive framework, the framework is kept open to the
introduction of such auxiliary functions, although they may
increase the conceptual complexity.

3.1.2 Skyline Operator

We proceed to demonstrate how a skyline operator, which
is of particular interest in location-based services, can be
expressed in the framework.

To understand the operator, consider a set of points in
l-dimensional space. One point p; dominates another point
po if py is at least as good as p, in all dimensions and
is better than p, in at least one dimension [5]. It is as-
sumed that a total order exists on each dimension, and
“better” in a dimension is defined as smaller than (alter-
natively, larger than) with respect to the dimension’s to-
tal order. Next, we assume a relation r with attributes
{ai,...,a;,b1,...,by} so that the sub-tuples correspond-
ing to attributes {a1,...,a;} make up the I-dimensional
points. The skyline operator then returns all tuples in r that
are not dominated by any other tuple in r.

To be precise, we first define two auxiliary functions.
Let 7 denote the set of all tuples of any schema. The first
function is Dmnt: [T x R x Q'] — {True, False}, which
returns True if there exists a tuple in the (second) relation
argument that dominates the first argument tuple with re-
spect to the argument attributes.

Dmnt £ Xt,r a1,...,a;.(r = L) — False,
Eql(t, head(r),a1,...,a;) = Dmnt(t, tail(r),a1,...,a1),
Comp(t, head(r),a1,...,a;) — True,
Dmnt(t,tail(r),a1,...,a;)

Function Eql returns True if the two argument tuples are
identical on all argument attributes a1, ...,q;. Function
Comp returns True if the second argument tuple is no
worse than the first argument tuple on any of the argument
attributes.

In the first line, if r is empty, the operation returns False.
Otherwise, if the first argument tuple ¢ is the same as the
head of argument relation » on the argument attributes, the
operation continues to consider the rest of r. Else, the third
line checks if head(r) is no worse than ¢. If so, ¢ is dom-
inated by head(r), and the operation returns True. Other-
wise, the operation proceeds with the rest of r.

Next, we define auxiliary function Fitr: [Rx R x Q] —
‘R. For two relations r and r, having the same attributes
ai,as,.---,a;, Fltr collects all the tuples in r, that are
not dominated by any tuple in ro with respect to attributes
ai,as,...,qa.

Fltr £ X1 79,01, ... a5.(r = 1) = 71,
Dmnt(head(r1),r2,a1,...,a;) =
Fltr(tail(r1),r2, a1, ..., a1),
head(r1) Q Fltr(tail(ri),r2,a1,...,a;)

Here, if r; is empty, the operation returns it. Otherwise,
if the head of r; is dominated by any tuples in r5 on the
argument attributes, the operation continues with the rest
of 7. Else, it returns the head(r,) with the result of the
operation applied to tail(r,) appended.

The skyline operator skyline : [R x Q'] — R is defined
next. Arguments ! are parameters and are expressed as
subscripts, i.e., skyline,, . ().
ai(r=1)—>r Fltr(r,r,a1,..

skyline £ Ar,a1, .. ., ap)

3.2 Stream-to-Relation Operators

A stream-to-relation operator takes a stream as input and
produces a relation. As relations are finite while streams
can be infinite, windowing is commonly used to extract a
relation from a stream [3]. We describe three types of slid-
ing windows [1]: time-based, tuple-based, and partitioned.
Other types of windows can be easily incorporated into the
framework, as this does not affect other parts of the frame-
work. The stream-to-relation operators map multisets into
lists. We assume that each operator described next orders
its result according to the time attribute T (tuples with the
same time value may be in any order).

3.2.1 Time-Based Windows

A time-based sliding window operator W*, with absolute
or now-relative time parameter 7, on a stream s returns all
tuples ¢ € s for which 7, < ¢(T) < 7., where 7. is the
current time.

usr_id UST_v usr_loc
1001 (0,1) (16, 38)
1004 (10, —15) (90, 80)
1003 (—12,-11) | (60,80)
1002 (—25,25) (200, 10)
1004 (0,0) (100, 60)
1003 (—10,3) (40, 58)

Figure 5: Result of W¢ (s,s,) at Time 12

Note that WW¢ (s) consists of tuples that made their ap-
pearance in s at time 7., while W§(s) consists of all tuples
that appeared in the stream so far. For stream s, in Fig-
ure 2, suppose 7. = 12 and r;, = 9. The result of W (sysr)
can be seen in Figure 5.

3.2.2 Tuple-Based Windows

A tuple-based sliding window operator YW?, with positive
integer parameter IV, on a stream s returns the NV most re-

usr_id usr_v usr_loc
1003 (—12,-11) (60, 80)
1002 (—25,25) (200, 100)
1004 (0,0) (100, 60)
1003 (—10,3) (40, 58)

Figure 6: Result of W?(s,,) at Time 12

cent tuples in s, i.e., the tuples ¢ € s for which ¢(T) < 7.
and such that no other tuples exist in S that have larger time




values (that do not exceed 7..). If ties exist, tuples are cho-
sen at random among the ties. Note also that fewer than N
qualifying tuples may exist.

A tuple-based window is specified as W4 (s). Note that
WP _(s) = Wg(s). As an example, recall s, in Figure 2
and let 7. = 12. Then W% (s, ) is given in Figure 6.

3.2.3 Partitioned Windows

A partitioned sliding window over stream s takes a posi-
tive integer NV and a subset of s’s attributes, { A1, ..., A, },
as parameters. This operation first partitions S into sub-
streams based on the argument attributes, then computes
a tuple-based sliding window of size N independently on
each substream, and then returns the union of these win-
dows.

usr_id UST_v usr_loc
1001 (0,1) (16, 38)
1002 (—25,25) | (200,10)
1004 (0,0) (100, 60)
1003 (—10,3) (40, 58)

Figure 7: Result of Wi ysr_ia(Susr)

Using W as the operator name, the partitioned window
can be expressed as Wy, 4,,....4,, (s). To exemplify, con-
sider s,s, in Figure 2, let 7. = 12, N = 1, and let the set of
attributes be {usr_id}. Then the result of Wi ysp_ia(Susr)
is given in Figure 7.

3.3 Relation-to-Stream Operators

A relation » may be subject to updates, so that its state
varies across time. We use the notation r(7) to refer to
the state of r at time 7. With this definition, we can specify
the two relation-to-stream operators Istream and Rstream
(adapted from [1]). The operators LI, x, and \ are the alge-
bra operators defined in Section 3.1.1.

Istream (“Insert” stream) maps relation R into a stream
Ssothatatuplet € v(7)\r(r —1) is mappedto (¢,7) € s.
Next, Rstream maps relation r into stream s by tagging
each tuple in » with each time that it is present in r. As-
suming that 0 is the earliest time instant, the operators are
defined as follows.

Istream(r) = Ur>o((r(7)\r(7 — 1)) x {r}) U (v(0) x {0})
Rstream(r) = U,>o(r(7) x {7})

Assume that a moving tourist wants to continuously
know the nearest hospitals. The result, which is sub-
ject to change as the tourist moves, may be returned as a
stream produced using one of the windowing operators and
a relation-to-stream operator. We discuss nearest-neighbor
queries in the next section.

We have so far defined relational operators and mapping
operators between streams and relations. As location-based
queries involve operations on spatial data, spatial opera-
tors are intrinsic to such queries. We treat spatial operators
as black boxes and simply assume a set of such operators.
Specifically, we will use spatial operators proposed by the
OpenGlIS Consortium [7].

3.4 One-Time and Continuous Queries

A one-time query is a combination of stream-to-relation
and relation-to-relation operators, while a continuous query
is a possibly infinite numbers of one-time queries that are
run repeatedly within a specified time interval according
to a specified time granularity. The result of a continu-
ous query can either be relations or streams. To generate
a stream result, relation-to-stream operators are naturally
employed by the continuous query; see Figure 8.

Let a one-time query be expressed as LBQ,(s,r),
where s and r are argument streams and relations and p
is the parameters of the query. Then a continuous query
can be expressed as CLBQ (s, 7)[Ts, Te, G], where T and
T, are the start and end time of the continuous query and
G is the time granularity of the query. A relation-to-stream
operator may also be included in this expression to map the
results into stream.

Since relations and the associated algebraic operators
accommodate duplicates and order, any queries that can be
expressed using traditional relational algebra can be pre-
sented in the framework; and the framework is open to new
kinds of queries, as new algebraic and mapping operators
can be added.

4 Location-Based Queries

The literature covers the processing of quite a few kinds
of LBQs, including range, nearest-neighbor, and reverse
nearest-neighbor queries, as well as closest pair queries,
spatial joins, and spatial aggregate queries. Queries can
concern past states of reality, or present and (anticipated)
future states. Our focus will be on queries that concern the
current state.

We proceed to demonstrate how the semantics of three
queries can be specified: spatial range and nearest neighbor
queries, and a new location-based skyline query. We end by
discussing the categorization of location-based queries.

4.1 Spatial Range Query

Various kinds of spatial range queries are used commonly.
A range query may be used for finding all moving objects
within a circular region around a point of interest; and a
continuous range query may be used for the monitoring of
aregion.

We assume a spatial range sr is given and define a range
query (RQ) and continuous range query (CRQ) using a
combination of stream-to-relation, relation-to-relation, and
relation-to-stream operators.

To define the range query, we first obtain the most recent
positions of all users. This is done by applying a partition
window W ysr_ia(Susr) 10 Stream s,q, and by applying a
function CurLoc, using an extended projection. The func-
tion takes as argument a tuple ¢ € s, that records the
movement of an object, and it returns the location at time
7. of the object.

Ts = Tusr_id,usrv,CurLoc(t) ASIOC(Wl,usT_id(Susr))
CurLoc(t) = t(usr_loc) + t(usr_v) - (1o — t(T))
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Figure 8: The Working of a Location-Based Query

Then a selection retrieves all users that are inside the spatial
region. Operator within(sr, loc) returns true if loc is within
spatial range sr. The one-time range query is then given as
follows.

RQST(Susr) = Ouwithin(sr,loc) (1"5)

Next, assume that the start and end times of the continuous
range query are T and T, and that the time granularity is
G. By applying the Rstream operator, the definition of the
continuous range query is given next.

CRQST(SUST) [TS7 Te7 g] =
Rstream(ouithin(sr,10c) (Rs))[Ts, Te, G]

To exemplify, let spatial range sr be a circle with radius
50 and center (20, 35),and let T, = 0, T, = 20,and G =
1. Then the result of the continuous range query against
stream s, IS given in Figure 9. Note that the result is a
stream.

usr_id UST_v loc T
1001 (0,1) (16, 38) 9
1001 (0,1) (16,39) | 10
1003 | (—12,—11) | (48,69) | 11
1001 (0,1) (16,40) | 11

Figure 9: Result Stream of CRQ,,.(s4sr)[0, 20, 1]

According to the above definition, all the users’ loca-
tions are calculated at each time instant. However, it may
be that some users have not reported location data for sev-
eral hours, rendering their location data useless. This sug-
gests an alternative definition where only location data that
has arrived within some time duration from the current time
is used.

Using the same T, T,, and G as above and assuming
that we are only interested in location data that arrived since
time 7, an alternative definition follows.

CRer,‘rs (SUST‘) [T67 Te7 g] =
Rstream(awitin(sr1oc) (14)) [ Ts, Te, G]

In this definition, = is rs where s, is replaced by
Rstream(W¢ (susr)).  Intuitively, this query may miss
some users who are actually inside the spatial range, but
have not reported their location for some time.

4.2 Nearest Neighbor Query

The k nearest neighbor query (KNNQ) is another basic
LBQ. Example uses include locating the nearest hospitals
or emergency vehicles. To formulate the query that finds
the k& nearest neighbors of an object m_id, we first define
several auxiliary functions.

A partitioning window query Wi ysr_ia(Susr) first re-
trieves the most recent position data for each object from
the stream. Then a selection with predicate usr_id = m_d
is applied to retrieve the position data for our object. Let r;
denote the relation resulting from this selection.

To compute the & objects nearest to m _id, we calculate,
using a spatial operator “dist,” the distance between m _id’s
current location and the locations of all other objects, which
are stored in attribute obj loc of 7,5;. As the next step in
computing the query, we apply a generalized projection to
associate the distance to the user object with each other
object:

rs = Wobj_id,obj_loc,obj_type,dis(Tobj X 7“1)

Here, “dis” denotes dist(obj_loc, CurLoc(t)), function
CurLoc(t) was defined earlier, and ¢ denotes a tuple from
the argument relation.

Then we apply the sort and top operators to r, to ex-
press the query.

kNNQ,,, ;g 1 (susr; Tobj) = topk(sortas(rs))

Let Tp = Oobj_type=‘police station’ (Tobj) contain all po-
lice stations and consider the query kNNQ g3 1 (Susr, 7p)
issued at time 7. = 11. The query finds the one police
station nearest to user 1003. Using the definition, a win-
dow operator extracts all the most recent tuples for each
user from stream s,s,.. Then the tuple with usr_id =
1003, usr-v = (—12,-11), usrldloc = (60,80), and
7 = 10 is selected. The current location is approximated
as (60,80) + (—12,—11) - (11 — 10) = (48,69). (We
define the distance between points (1, y1) and (x2,y2) as
|22 — 21| + |y2 — y1]). Among all objects in relation r,,, the
object with obj _id = 304 is selected.

If the user issues the same kind of query continuously
while moving, a relation-to-stream operator may be used
to map the result of each one-time query to a stream, which
is expressed as follows:



CkNNQm_id,k(Susr; Tobj)[Tsa Te, g] =
RStream(kNNQm_id,k (Susr, Tobj))[Ts: Te, g]

The result of CKNNQ g3 1 (Susr, 7p)[0, 20, 1] is shown in
Figure 10.

obj_d | obj_loc obj _type dis T
304 (70,80) | police station | 10 | 10
304 (70,80) | police station | 33 | 11
301 (20,35) | police station | 43 | 12
301 (20,35) | police station | 36 | 13

Figure 10: CKNNQ over Relation r,,

4.3 Location-Based Skyline Query

The query assumes the following scenario. A user drives
along a pre-defined route towards a destination. The user
wants to visit one or several points of interest enroute. The
most attractive of the qualifying points of interest are those
that are nearest to the user’s current location and that result
in the smallest detour. The detour is the extra distance trav-
eled if the user visits the point of interest and then travels
to the destination.

Let r;, CurLoc and ¢ be as defined earlier. We assume
that spatial operator “dist” takes into account the user’s
route, and we denote the user’s destination by dest. Then
the detour fe can be expressed as follows.

fe(obj-loc,t,dest) = dist(obj_loc, CurLoc(t))+
dist(obj _loc, dest) — dist(CurLoc(t), dest)

Next, a (generalized) projection is applied to the Cartesian
product of r,; and r; to get all the objects’ distances and
detours to the user:

rs = Wobj.id,obj.type,dis,da(Tobj X Tl)

Here, “dis” denotes dist(obj_loc, CurLoc(t)) and “det”
denotes fe(obj_loc, t, dest).
Finally, the skyline operation generates the result.

SQm_id,dest (SUST 3 TObj) = Skylinedi&da (Irs)

Following the scenario described above, let 7. = 15
and assume a user with usr_id = 1002 wants to go to a
hospital or a police station enroute to the destination, the
location of which is (10,90). For simplicity, we use di-
rect line segments as routes between two points. Using
the calculation above, the current location of the user is
(200,10) + (—25,25) - (15— 12) = (125, 85). For all static
objects with usr_type “police station” and “hospital,” the
distance and detour are listed in Figure 11. The skyline
operator returns the last three tuples.

4.4 Towards a Categorization of Location-Based
Queries

As it is obviously impossible to define all possible LBQs,
we proceed to explore the space of possible LBQs by pre-
senting several orthogonal categorizations of such queries.

obj_id obj type dis | det
301 police station | 155 | 100
302 hospital 100 | 10
304 hospital 80 60

305 police station | 60 20
Figure 11: Intermediate Result

First, queries can be categorized based on whether they
refer to data concerning the past, present, or future states of
reality.

Second, queries can be categorized according to
whether they are one-time or continuous queries. Contin-
uous queries may be classified further, based on whether
they are constant or time-parameterized. The latter occurs
when a query refers to the (variable) current time. An ex-
ample is a continuous query that retrieves all objects cur-
rently within a spatial range. A corresponding constant
query might retrieve all objects that are (currently believed
to be) within a spatial range at some fixed near future time.
Constant continuous queries have been termed “persistent”
in the literature.

Third, queries may be classified as being either “one-to-
many” or “many-to-many.” The former queries apply one
predicate to many objects, returning one set, multiset, or list
of objects. The latter conceptually repeatedly applies many
different predicates to many objects, potentially retrieving
many objects for each predicate.

A simple selection is thus an example of the former. The
k nearest neighbor query in Section 4.2 retrieves (up to) k&
objects that are the nearest to some (i.e., “one”) specified
object; it is thus also a “one-to-many” query. In contrast,
joins are “many-to-many” queries: The predicate involving
one (left hand side) object is applied to many (right hand
side) objects, and this repeated many times. The so-called
“closest pair” query, which finds pairs of objects from two
different groups that are closest, is also a “many-to-many.”

Fourth, LBQs may be categorized based on whether
they involve “topological,” “directional,” or “metric” pred-
icates.

Fifth, based on the time at which a query is registered
to the system, it can be “pre-defined,” meaning that it is
present before the streams it uses start, or it can be “ad
hoc,” meaning that it is registered after at least one of its
streams has started.

5 Summary and Future Work

Substantial research has been reported on query processing
in relation to mobile services, in particular location-enabled
mobile services. Different techniques are applicable to dif-
ferent kinds of queries. Based on results from stream and
temporal databases, this paper proposes a framework for
capturing the semantics of the diverse kinds of queries that
are relevant in this context. By enabling the definition of
queries in a single framework, the paper’s proposal enables
the comparison of queries.

The framework consists of data types, relations and
streams, as well as algebraic operations on relations and



operations that map between streams and relations. The
specific representations of spatial data and the associated
operations on these are treated as black boxes, in order
to enable applicability across different such representations
and operations. The extensibility of the framework was ex-
emplified by adding a skyline operator.

The use of the framework was illustrated by the defini-
tion of three location-based queries, a spatial range query, a
nearest-neighbor query, and a location-based skyline query.
Toy examples were given for illustrating these queries. Fo-
cus has been on the capture of the semantics of LBQs,
and how to use one-time or continuous queries in actual
location-based services is beyond the scope of the paper.

This paper represents initial work, and future work may
be pursued in several directions. First, the framework may
be enriched in various ways. One is to introduce explicit
representations of the space within which the spatial ob-
jects are located and move, e.g., road networks. Second,
while this paper has given one definition of each of three
queries, it would be worthwhile to explore the different
possible semantics that may be given to queries within the
framework. Such a study may reveal whether or not de-
sirable semantics can be specified in all cases. Third, more
work on taxonomies for location-based queries is desirable.
Interesting initial steps have been taken in this direction
(e.g., [23]), but much more detail is desirable.
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